
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

June 2002

On Propagation of Deletions and Annotations Through Views On Propagation of Deletions and Annotations Through Views

Peter Buneman
University of Pennsylvania

Sanjeev Khanna
University of Pennsylvania, sanjeev@cis.upenn.edu

Wang-Chiew Tan
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation Recommended Citation
Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan, "On Propagation of Deletions and Annotations
Through Views", . June 2002.

Postprint version. Copyright ACM, 2002. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 21st
ACM Symposium on Principles of Database Systems 2002 (PODS 2002), pages 150-158
Publisher URL: http://doi.acm.org/10.1145/543613.543633

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/206
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/206
mailto:repository@pobox.upenn.edu

On Propagation of Deletions and Annotations Through Views On Propagation of Deletions and Annotations Through Views

Abstract Abstract
We study two classes of view update problems in relational databases. We are given a source database S,
a monotone query Q, and the view Q(S) generated by the query. The first problem that we consider is the
classical view deletion problem where we wish to identify a minimal set T of tuples in S whose deletion
will eliminate a given tuple t from the view. We study the complexity of optimizing two natural objectives
in this setting, namely, find T to minimize the side-effects on the view, and the source, respectively. For
both objective functions, we show a dichotomy in the complexity. Interestingly, the problem is either in P
or is NP-hard, for queries in the same class in either objective function.

The second problem in our study is the annotation placement problem. Suppose we annotate an attribute
of a tuple in S. The rules for carrying the annotation forward through a query are easily stated. On the
other hand, suppose we annotate an attribute of a tuple in the view Q(S), what annotation(s) in S will
cause this annotation to appear in the view, minimizing the propagation to other attributes in Q(S)? View
annotation is becoming an increasingly useful method of communicating meta-data among users of
shared scientific data sets, and to our knowledge, there has been no formal study of this problem.

Our study of these problems gives us important insights into computational issues involved in data
provenance or lineage — the process by which data moves through databases. We show that the two
problems correspond to two fundamentally distinct notions of provenance, why and where-provenance.

Comments Comments
Postprint version. Copyright ACM, 2002. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 21st ACM Symposium on Principles of Database Systems 2002 (PODS 2002), pages
150-158
Publisher URL: http://doi.acm.org/10.1145/543613.543633

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/206

https://repository.upenn.edu/cis_papers/206

On Propagation of Deletions and Annotations Through
Views

Peter Buneman
∗

University of Edinburgh
University of Pennsylvania

peter@cis.upenn.edu

Sanjeev Khanna
†

University of Pennsylvania

sanjeev@cis.upenn.edu

Wang-Chiew Tan
‡

University of Pennsylvania

wctan@saul.cis.upenn.edu

ABSTRACT
We study two classes of view update problems in re-
lational databases. We are given a source database S,
a monotone query Q, and the view Q(S) generated by
the query. The first problem that we consider is the
classical view deletion problem where we wish to iden-
tify a minimal set T of tuples in S whose deletion will
eliminate a given tuple t from the view. We study the
complexity of optimizing two natural objectives in this
setting, namely, find T to minimize the side-effects on
the view, and the source, respectively. For both objec-
tive functions, we show a dichotomy in the complexity.
Interestingly, the problem is either in P or is NP-hard,
for queries in the same class in either objective function.

The second problem in our study is the annotation place-
ment problem. Suppose we annotate an attribute of a
tuple in S. The rules for carrying the annotation for-
ward through a query are easily stated. On the other
hand, suppose we annotate an attribute of a tuple in
the view Q(S), what annotation(s) in S will cause this
annotation to appear in the view, minimizing the prop-
agation to other attributes in Q(S)? View annotation
is becoming an increasingly useful method of communi-
cating meta-data among users of shared scientific data
sets, and to our knowledge, there has been no formal
study of this problem.

Our study of these problems gives us important insights
into computational issues involved in data provenance

∗Supported by NSF IIS 99-77408 and NSF DL-2 IIS
98-17444. Currently at University of Edinburgh.
†Supported in part by an Alfred P. Sloan Research Fel-
lowship and by an NSF Career Award CCR-0093117.
‡Supported by NSF IIS 99-77408 and NSF DL-2 IIS
98-17444.

or lineage — the process by which data moves through
databases. We show that the two problems correspond
to two fundamentally distinct notions of provenance,
why and where-provenance.

1. INTRODUCTION
Given a desired update to a view of a database, what
update to the source tables should be made to effect
this update to the view? This is the view update prob-
lem, which has a long history in database research. Its
importance derives from the fact that most access to
databases is through views. Unfortunately, only in very
restricted circumstances there is a unique update to a
source database S that will cause a specified update to
the view Q(S). If we cannot find a unique update to
S, an alternative is to find a minimal update to S that
will cause the specified update to Q(S). Here, there
are two ways we can measure minimality: the first is
by the number of changes in the source tables S; the
second is by the number of side effects that changes in
S cause in Q(S) (in addition to the required update.)
We study this minimization problem for two kinds of
updates. The first is deletions to Q(S) that are to be
generated by deletions to S. The second kind update is
that of an annotation placed on a location in the view
Q(S). This is novel view update problem, and it gives
us interesting insights into issues of propagating anno-
tations and of data provenance.

Deletion Minimization. In deletion minimization,
the input is a source database S, a query Q, the view
V = Q(S), and a tuple t ∈ V . The view side-effect prob-
lem is to find a set T ⊆ S so as to minimize |∆V |, where
Q(S \ T) = V \ (∆V ∪ {t}). In other words, we wish
to find a set of source tuples whose removal will delete
t while minimizing the number of other tuples deleted
from the view. The source side-effect problem is to sim-
ply to find a smallest set T that causes the removal
of t (regardless of the size of the side-effect in Q(S).)
Our goal is to study the complexity of these problems
over the monotone fragment of relational queries. We
will show that these problems are NP-hard in general.
This is perhaps not surprising when the full generality of
SPJU queries is allowed. However, we show that these
problems become NP-hard even over a very restricted
fragment where only join with either project or union

is allowed. For the case of view side-effect problem,
we show that it is NP-hard to decide whether or not
there exists a T whose deletion only deletes the tuple t
from the output. Thus this problem is inapproximable.
For the case of source side-effect an interesting phe-
nomenon occurs whereby every class of queries is either
poly-time solvable or is NP-hard via an approximation-
preserving reduction from the set-cover problem1. The
set-cover problem is known to be O(log n)-approximable
by a simple greedy algorithm2. It is known that un-
less NP ⊆ DTIME(nlog logn), no polynomial-time algo-
rithm can achieve o(logn)-approximation for this prob-
lem [12]. Altogether, our results show a dichotomy in
the complexity of these deletion problems for any sub-
class of SPJU queries.

Annotation Placement. The propagation of annota-
tions is a new topic and deserves some introduction. An
increasing amount of scientific communication is car-
ried out through shared annotations of existing data.
In some cases the annotations are anticipated when the
database is designed so that fields and/or tables are
created to hold annotations. In this case annotating a
view is an example of the standard view update prob-
lem.3 A second form of annotation is much looser and
we may allow annotations on annotations. Hence it is
impractical to accomodate annotations by adding ex-
tra fields in the source relations. The changes are usu-
ally not anticipated and the annotators may not have
update privileges to the database so that annotations
have to be stored in a separate database. An example
of this kind of annotation is found in biological annota-
tion servers [9]. Although specific to genetic sequence
annotation, there are issues in the design of the soft-
ware of how widely an annotation can spread. From a
database perspective an annotation is interesting in that
a query cannot “see” the annotation, it can only trans-
mit it. For such queries, we formulate the annotation
placement problem as follows. Given a source database
S, a query Q, the view Q(S) generated by Q, and a loca-
tion in Q(S), find a location to annotate in the source
such that annotating it propagates the annotation to
a smallest number of locations including the specified
view location. We develop a natural system of rules for
propagating annotations from source to view, and show
that under this system of rules, the annotation place-
ment problem is NP-hard for queries that allow project
and join together. However, for other relational queries
(any normal form SJU queries or any SPU queries), the
problem is polynomial time solvable. As before, our re-
sults establish a dichotomy theorem for the complexity
of the annotation placement problem. We also establish

1In the set-cover problem, we are given S = {S1, ..., Sm}
where each Si contains a subset of elements from X =
{x1, ..., xn}. The goal is to find a S

′ ⊆ S such that
⋃

S∈S′ S = X and |S ′| is the smallest.
2An α-approximation algorithm for a problem is a poly-
nomial time algorithm that computes a solution of cost
at most α times the optimal cost.
3In practice such databases are heavily curated. The
maintainers of the database carefully scrutinize and con-
trol changes to the data.

a normal form theorem that allows us to rewrite queries
but does not change the propagation of annotations.

Annotations, Deletions and Provenance. Data
provenance and lineage are synonyms for the study of
how, in an environment in which data is repeatedly
copied and transformed, we trace the origins of a piece of
data. Thus provenance is closely connected with views,
which are simply queries that describe the tranforma-
tion of one database to another. In [7], two forms of
provenance are discussed: why-provenance, which de-
scribes the reason, e.g., a proof tree, for the existence
of a data item in the output. This is the form of “lin-
eage” described in [15] and used in [14] to compute an
exact deletion-to-deletion translation. A second form,
where-provenance, describes the path by which a data
item was copied into the database. This form of prove-
nance is closely related to the transport of annotations
through a view. Thus it is appropriate to study com-
putational issues of both forms of provenance together.
In fact, one interesting outcome of our work is a result
(Corollary 3.1) that shows the intractability of tracing
both forms of provenance through a view, and thus in-
dicates that some limitations need to be placed on view
definitions in order to make any progress with the study
of provenance.

Related Work. While the view update problem has a
long history, with the exception of [8], which discusses
the complexity of finding the “complement” ([4]) of a
view, we could find no discussions of the complexity of
some of the basic problems in this area, such as that of
finding even one witness 4 for a view deletion.

The problem of translating view deletions to source dele-
tions has been studied in [14] which gives an algorithm
that exploits lineage information[15] to find an exact
deletion-to-deletion translation (i.e no side-effects) when-
ever possible. The lineage information is used to as a
starting point, to enumerate all candidate witnesses for
a deletion. However, as we just remarked, it is NP-hard
to find all witnesses for a tuple in the output.

Previous work on view updates has explored general
translations from views to source [11, 1, 2, 4, 8]. The
kinds of updates allowed are generally insertions, modi-
fications and deletions to the view. They generally con-
sider different kinds of translations. For example, an in-
sertion may be translated to a source insertion or even
a source deletion. Hence, the view update translation
process is generally ambiguous since there are usually
many possible ways to translate a view update to source
update(s).

In [11], the concept of clean sources was discussed. In
the context of view deletion from views, clean sources
correspond to source tuple(s) which when deleted will
delete exactly the desired view tuple, i.e, no side-effects.
And in the general setting of view updates, exact trans-

4A witness for a tuple t in a view is a minimal subset
S′ of source data S such that t ∈ Q(S′)

lations (i.e, no side-effects) are only possible when func-
tional dependencies are also considered. Finally, [1, 2]
study the view update problem for select-project-join
queries on relations that are in Boyce-Codd Normal
Form. Various criteria are proposed to capture “accept-
able” view update translations.

Annotation is an example of superimposed information
as described in [3]. For example, bookmark files and
the schema of a database are examples of superimposed
information (data “placed over” existing information).
There are also emerging efforts to build annotation sys-
tems such as Annotea [13] and BioDAS [9]. Annotea
allows one to annotate on web pages through special-
ized web browsers and BioDAS allows one to annotate
on genome sequences. However, to our knowledge, there
has been no formal study of the annotation placement
problem.

Organization. Section 2 studies the view deletion prob-
lem from both the source perspective as well as the view
perspective. In Section 3 we study the annotation place-
ment problem. Finally, we conclude with some remarks
in Section 4.

2. DELETIONS IN THE VIEW
In this section, we consider the problems of minimizing
side-effects on the view (or source) when we are allowed
to delete a tuple in the view. The problem of minimiz-
ing side-effects on the view is to find a set of source
tuples to delete so that the number of other tuples that
are deleted in the view as a result, is minimized. The
problem of minimizing side-effects on the source is to
find a minimum set of source tuples to delete so as to
delete the tuple in the view.

2.1 Minimizing Side-effects on the View
The table below is a summary on the complexity of
determining whether there is a side-effect-free deletion
for any subclass of SPJU queries. There is a dichotomy
in the complexity for this problem.

A somewhat surprising result is that for the class of
queries involving projection and join, it is already NP-
hard to decide whether there is a side-effect-free dele-
tion. We say a set of source deletions is side-effect-free
if deleting those source tuples do not delete any other
tuple in the view, other than the desired view tuple.
The result is true even when the query is of constant
size and only involves two relations.

Query class Deciding whether there is a
side-effect-free deletion

Queries involving PJ NP-hard
Queries involving JU NP-hard

SPU P
SJ P

2.1.1 Project and Join Queries
We will show that once we allow these two operators to-
gether, the view side-effect problem becomes NP-hard

even when the source consists of two relations with two
attributes each. For instance, consider an example of
two relations taken from [14]: UserGroup(user,group) and
GroupFile(group,file) where each user may belong to sev-
eral groups and a file may be shared by several groups.
For a query that projects out the user and file attributes
after a join on the two relations, i.e,
Πuser,file(UserGroup ./ GroupFile), it is NP-hard to

decide if a (user,file) combination can be deleted from
the output in a side-effect-free manner.

The intuition behind why the above query makes it dif-
ficult to determine if there is a side-effect-free deletion
is that an output tuple in the result of this query may
have many witnesses (due to projection) and there may
be many possible ways of destroying each witness (due
to join). A witness is destroyed if one of the tuples in
the witness is removed from the source. Therefore the
combination of project and join gives rise to many pos-
sible ways of removing an output tuple. The difficulty
arises when one has to consider how a set of source tuple
deletions affects the existence of other output tuples in
order to minimize side-effects.

Our starting point is a NP-hard problem known asmono-
tone 3SAT:

Input: A 3-CNF formula where each clause consists
either of all positive literals or all negated literals.

Goal: Decide whether or not the formula is satisfiable.

The NP-hardness of this variant of 3SAT was shown by
Gold [5] and also follows from Schaefer’s Theorem [10].

Theorem 2.1. The problem of deciding whether there
is a side-effect-free deletion for a PJ query in normal
form is NP-hard.

Proof. The proof is by reduction from monotone
3SAT. Our reduction uses two relations with schema
R1(A,B) and R2(B,C). For every variable xi, there is
a tuple (a, xi) in R1 and a tuple (xi, c) in R2. In addi-
tion, for each clause Ci = (xi1 + xi2 + xi3), R1 contains
tuples (ai, xi1),(ai, xi2) and (ai, xi3) where ai is a fresh
constant that does not occur elsewhere in R1. Similarly
for each clause Cj = (xj1 + xj2 + xj3), R2 contains tu-
ples (xj1 , cj),(xj2 , cj) and (xj3 , cj) where cj is a fresh
constant that does not occur elsewhere in R2. For ex-
ample, an encoding of the instance (x1 + x2 + x3)(x2 +
x4 + x5)(x4 + x1 + x3) is shown in Figure 1.

The project join query is given by ΠA,C(R1 ./ R2) which
produces (i) the tuple (a, c), (ii) a tuple (ai, c) for each
clause Ci = (xi1 +xi2 +xi3), and (iii) a tuple (a, cj) for
each clause Cj = (xj1 +xj2 +xj3). The goal is to delete
(a, c). It is easy to see that in order to do so, for each
variable xi, we must delete either (a, xi) or (xi, c). We
now show that there exists a side-effect-free solution to
this view deletion problem if and only if the given 3SAT
instance is satisfiable.

R1

A B

a x1

a x2

a x3

a x4

a x5

a2 x2

a2 x4

a2 x5

R2

B C

x1 c

x2 c

x3 c

x4 c

x5 c

x1 c1

x2 c1

x3 c1

x4 c3

x1 c3

x3 c3

ΠA,C(R1 ./ R2)

A C

a c

a c1

a c3

a2 c

a2 c1

a2 c3

Figure 1: Relations involved in reduction of The-

orem 2.1.

Suppose we are given a satisfying assignment to the
3SAT instance. For each variable xi, if it is set to true
then we delete (a, xi), and otherwise we delete (xi, c).
It is easy to verify that since this is a satisfying assign-
ment, each clause Ci = (xi1 + xi2 + xi3), at least one
of (xi1 , c), (xi2 , c) or (xi3 , c) will survive and thus (ai, c)
would continue to be in the output. A similar argument
applies for clause with all negated literals.

To see the converse, consider any solution for deleting
the tuple (a, c) from the view such that no other tuple in
the output is affected. We may assume without any loss
of generality, that the given solution only deletes one of
(a, xi) or (xi, c). We will interpret deletion of (a, xi)
as assigning true to variable xi and deletion of (xi, c)
as assigning false. Consider a clause Ci = (x + y + z).
Once again it is easy to verify that since (ai, c) is in
the output, at least one of x, y, or z was set to true.
A similar argument applies to clauses with all negated
literals.

Functional Dependencies and Foriegn Key Con-

straints. Fortunately, most joins are performed on
foriegn keys. It is easy to show that project join queries
based on key constraints (eg. lossless joins with respect
to a set of functional dependencies) allow us to decide
whether there is a side-effect-free deletion in polynomial
time. See, for example, [11, 1].

2.1.2 Join and Union Queries
We show that even in the absence of projection, the
problem remains NP-hard if we allow union.

Theorem 2.2. The problem of deciding whether there
is a side-effect-free deletion for a JU query in normal
form is NP-hard.

Proof. The reduction is again from monotone 3SAT
formulas. Given a monotone 3SAT formula consisting of
clauses C1, C2, ..., Cm defined over variables x1,...,xn, we
introduce 2(m + n) relations as follows. There are two
relations Ri(A1) and R

′
i(A2) for each variable xi where

Ri(A1) contains a single tuple T and R′i(A2) contains
a single tuple F . For each clause Ci, there are two
relations Si(A2) and S′i(A1) which each consists of a
single tuple ci.

Our query consists of union ofm+n queries, Q1, ..., Qm,
..., Qm+n. For 1 ≤ i ≤ m, the query Qi corresponds to
clause Ci and is itself a union of 3 queries. If Ci =
(xi1 + xi2 + xi3), then Qi = (Ri1 ./ Si) ∪ (Ri2 ./ Si) ∪
(Ri3 ./ Si). A similar query is written for clauses with
all negated literals — we replace Ri with R

′
i and Si with

S′i. For 1 ≤ j ≤ n, the query Qm+j corresponds to the
variable xj and consists of Rj ./ R′j . The output of
these queries consists of m+1 tuples: (i) a tuple (T, ci)
for each clause Ci = (xi1+xi2+xi3) (generated by Qi),
(ii) a tuple (cj , F) for each clause Cj = (xj1 +xj2 +xj3)
(generated by Qj), and (iii) a tuple (T, F) (generated by
each of Qm+1, Qm+2, ..., Qm+n). The goal is to delete
the tuple (T, F) from the output. It is easy to see that
in order to do so, we must delete either the tuple T
from relation Ri or tuple F from relation R′i. We now
show that there exists a side-effect free solution to this
view deletion problem if and only if the given formula
is satisfiable.

Suppose we are given a satisfying assignment for the
monotone 3SAT instance. For each variable xi, if it is
assigned value true, we delete the tuple F from the rela-
tion R′i, and otherwise delete the tuple T from Ri. It is
easy to verify that this deletes only tuple (T, F). For the
converse, we assume without loss of any generality that
the given solution deletes exactly one tuple from either
Ri or R

′
i. We construct an assignment by assigning to

each variable xi true if T remains in Ri and false other-
wise. Since this is a side-effect free deletion, every other
tuple (T, ci) or (cj , F) remains the in the output. This
means the corresponding 3SAT clause is satisfiable.

An example reduction from the formula (x1+x2+x3)(x2+
x4 + x5)(x4 + x1 + x3) is shown in Figure 2.

2.1.3 SPU and SJ Queries

Theorem 2.3. There is always a side-effect-free dele-
tion for SPU queries and is poly-time solvable.

Proof. We will establish that for SP queries there is
always a unique solution to the deletion problem. Thus
it suffices to show that the problem is poly-time solvable
for SP queries and the result follows for SPU queries.
It takes linear time (in the size of the source database)
to select all tuples that satisfy the select condition in
the query. A second pass over these tuples identifies
the ones that project on to the specified output tuple t.
We must delete all of them and clearly, there deletion
suffices to delete t from the output.

For SJ queries, any tuple in the output has only one
witness. If the query involves a join on k relations then
the witness has k components. If some component of
the witness does not participate in any other witness
we have a side-effect-free deletion.

Theorem 2.4. The problem of deciding whether there
is a side-effect-free deletion or determining a minimum
side-effect deletion for a SJ query is poly-time solvable.

R1

A1

T

R2

A1

T

R3

A1

T

R4

A1

T

R5

A1

T

S1

A2

c1

S2

A2

c2

S3

A2

c3

R′1

A2

F

R′2

A2

F

R′3

A2

F

R′4

A2

F

R′5

A2

F

S′1

A1

c1

S′2

A1

c2

S′3

A1

c3

(R′1 ./ S′1) ∪ (R′2 ./ S′1) ∪ (R′3 ./ S′1)∪
(R2 ./ S2) ∪ (R4 ./ S2) ∪ (R5 ./ S2)∪
(R′4 ./ S′3) ∪ (R′1 ./ S′3) ∪ (R′3 ./ S′3)∪
(R1 ./ R′1) ∪ ... ∪ (R5 ./ R′5)

A1 A2

c1 F

T c2

c3 F

T F

Figure 2: Example reduction in Theorem 2.2.

Proof. Let t be the output tuple to be deleted. Let
R1, ..., Rk be all the relations that participate in the SJ
query. We consider for each t.Ri, i ∈ [1, k] (the Ri

component of t) whether there exists another tuple t′ in
the output such that t′.Ri = t.Ri. If yes, then there will
be a side-effect if we delete the tuple t.Ri from Ri. If no,
this is a side-effect-free deletion. To find the minimum
side-effect deletion, we determine i where i ∈ [1, k] such
that t.Ri gives the smallest side-effect.

2.2 Minimizing Side-effects on the Source
The table below is a summary on the complexity of de-
termining the minimum source deletions for fragments
of SPJU queries. Every class of queries is either poly-
time solvable or is as hard as the set cover problem. In
what follows, we will use the hitting set problem [6] as
the starting point for our hardness reductions. The in-
put to the hitting set problem is same as the set cover
problem, but the goal now is to find a smallest subset
X ′ ⊆ X of elements such that Si ∩X

′ 6= ∅ for each set
Si in the collection. The hitting set problem is a dual to
the set cover problem and has the same approximability
threshold.

Query class Finding the minimum source
deletions

Queries involving PJ NP-hard
Queries involving JU NP-hard

SPU P
SJ P

2.2.1 Project and Join Queries

Theorem 2.5. The problem of minimizing source dele-
tions in order to delete a tuple in a PJ query in normal
form is NP-hard. Moreover, it is set cover-hard to ap-
proximate.

Proof. We give a reduction from the hitting set prob-
lem. We are given sets sets S1,...,Sm such that each
Si ⊆ {x1, ..., xn}. We encode each set as a tuple in
the relation R0(S,A1, ..., An) as follows. For a set Si =
{xi1 , xi2 , ..., xik}, we add a tuple
(si, d, ..., d, xi1 , d, ...d, xi2 , d, ..., d, xik , d, ..., d) where d is
a “dummy” element. In other words, we are encoding

the characteristic vector for each set in relation R0 —
if the value of Ai is xi, it indicates that the set contains
the element xi, and otherwise it is d. In addition to R0,
we have n other relations, R1,...,Rn. Each of these rela-
tions is of the form Ri(Ai, Bi, C) and consists of n + 1
tuples: (xi, α0, c),(d, α1, c),...,(d, αn, c). See Figure 3.

We construct a PJ query as follows: ΠC(R0 ./ R1 ./

... ./ Rn). The output of this query is a single attribute
tuple (c) and we wish to delete this tuple. Consider
the intermediate expression before projection is applied,
i.e, the expression (R0 ./ R1 .// Rn). Observe

that each set Si will generate (n)
n−|Si| tuples in the

intermediate expression. Hence we can “hit” a set Si,
(i.e, destroy all nn−|Si| intermediate tuples) by either
deleting a tuple (xp, α0, c) from Rp such that xp ∈ Si,
or deleting the n tuples (d, α1, c) through (d, αn, c) from
a relation Rq such that xq 6∈ Si.

We now show the equivalence between the minimum hit-
ting sets and minimum source deletions in this encoding.
Given a minimum hitting set H, for each xp ∈ H, we
delete the tuple (xp, α0, c) from Rp. It is easily veri-
fied that this deletes the tuple (c) from the output. On
the other hand, consider any solution T that deletes c.
We first argue that without any loss of generality, we
may assume that T only contains tuples of the form
(xp, α0, c). Suppose T contains a tuple from R0 — say,
corresponding to some set Si. Then we can simply re-
place it by a tuple (xp, α0, c) for some xp ∈ Si. On the
other hand, if T contains tuples of the form (d, αj , c)
from Rq, then it must contain all n such tuples (or else
we can just discard them). In this case, we can simply
replace them with (xp, α0, c) for each element xp with-
out increasing the cost of the solution. Thus T can be
assumed to be in the form claimed above. Since deletion
of T deletes (c) from the output, it is easy to see that
for each set Si, T must contain a tuple (xp, α0, c) for
some element xp ∈ Si and thus corresponds to a hitting
set.

Chain Joins: For PJ queries in normal form if the joins
are restricted to be a chain join on distinct relations, the
problem of minimizing source deletions is solvable opti-

R0

S A1 A2 A3 ... An

s1 x1 d x3 ... xn

...
sm ...

R1

A1 B1 C

x1 α0 c

d α1 c

...
d αn c

...

Rn

An Bn C

x1 α0 c

d α1 c

...
d αn c

Figure 3: Relations involved in the reduction Theorem 2.5.

mally using flow networks. A join on k distinct relations
R1,...,Rk is called a chain join if the attribute sets of any
two relations Ri and Rj are disjoint for j > i + 1, i.e,
only consecutive relations share attributes.

Theorem 2.6. For PJ queries in normal form whose
joins on distinct relations form a chain, the problem of
minimizing source deletions is solvable optimally.

Proof. Let R1, R2, ..., Rk be the relation in the chain
join, and let t0 be the tuple that we would like to delete
from the output. We first eliminate from each Ri any
tuples that do not agree with t0. Now we construct a
layered network such that the ith layer of the network
corresponds to the remaining tuples in Ri. There is a
node for each tuple in Ri in the ith layer, and an edge
from a node in the ith layer to one in the (i + 1)th
layer if the tuples agree on the common attributes of Ri

and Ri+1. We now add two special nodes s and t such
that s is connected to all nodes in the first layer and all
nodes in the last layer are connected to t. All edges are
assigned capacity ∞. We now replace each node v in a
layer by two nodes vi, vo such that all incoming edges
into v go to vi and all outgoing edges from v leave from
vo. Finally, we add an edge from vi to vo of capacity
1. It is easy to see that any s − t path in this network
corresponds to a witness for the tuple t0. Thus in order
to delete the tuple t0 we must delete all such witnesses.
It is straightforward to show that an s − t min cut in
this graph corresponds to destroying all witnesses for t0
and vice versa.

2.2.2 Join and Union Queries
We next show that the hardness for PJ queries contin-
ues to hold if we replace projection by union. However,
our proof, shown below, relies on renaming (δ) and it re-
mains open if this hardness may be established without
using renaming.

Theorem 2.7. The problem of minimizing source dele-
tions in order to delete a tuple in a JU query in nor-
mal form with renaming is NP-hard. Moreover, it is set
cover-hard to approximate.

Proof. We once again use a reduction from the hit-
ting set problem. We assume without any loss of gener-
ality that each set Si has the same number k of elements
(otherwise, we can pad a set with additional distinct el-
ements). For each element xi in the universe, there is a
relation Ri(A) which consists of a single tuple (a). The
query consists of a union of m queries where each query
corresponds to a set. If a set Si consists of elements

xi1 , ..., xik , we write a query Qi = δA7→A1(Ri1) .//
δA7→Ak

(Rik). Q is Q1 ∪ ... ∪ Qm. The output of Q ap-
plied on these relations is a single tuple (a, a, ..., a) and
we wish to delete this tuple.

Suppose we are given a hitting set H We first show
that a hitting set is a source deletion and vice versa.
Given a hitting set, if xi belongs to the hitting set, we
delete the tuple (a) from Ri. It is easy to see that
this will delete (a, a, ..., a) from the output since every
witness corresponds to conjunction of all elements in a
set. Conversely, if we are given a solution to the deletion
problem, we can construct a hitting set H by including
each element xi such that tuple (a) from Ri is deleted.
It is easy to see that H is a hitting set — otherwise,
a witness that corresponds to a set not being hit still
survives and this is a contradiction.

2.2.3 SPU and SJ Queries

Theorem 2.8. There is a unique set of source tuples
to delete for SPU queries and is poly-time solvable.

Proof. The proof is similar to that of Theorem 2.3
which establishes that there is always a unique solution
in order to delete an output tuple for an SP query. The
problem is poly-time solvable for SP queries and the re-
sult follows for SPU queries. It takes linear time (in the
size of source relations) to select all tuples that satisfy
the select condition of the query and which will have
the same projected attributes as the output tuple to be
deleted. We must delete all these tuples.

Theorem 2.9. The problem of determining a mini-
mum source deletion for SJ queries is poly-time solvable.

Proof. Let t be the output tuple to be deleted. We
delete a source tuple t.R for any relation R that partic-
ipates in the join. t.R denotes the components of the
tuple that consists of attributes from relation R. We
can determine t.R in time linear to the size of R.

3. ANNOTATION PLACEMENT
A topic closely related to view update is that of data
provenance or lineage [15, 7]. In data provenance, one
is concerned with how one trace the history of some
piece of data as it moves through databases. A specific
problem here is to ask how a data item is to be traced
backwards through a query. In this context, finding
a reasonable definition of provenance has been elusive.
Most definitions are fragile in that they are sensitive to

query rewriting, and a clear semantic characterization of
provenance has yet to emerge. We have found it useful
to consider a related issue, that of annotations. As we
observed in the introduction, annotations are increas-
ingly being used as a method of scientific communica-
tion. We believe that it is useful to ask how annotations
are carried through queries and use that as a basis for
understanding provenance.

We are going to address some of the computational is-
sues of tracing annotations through queries, but before
doing this we should briefly justify the framework in
which we are working. Suppose a tuple {Name: Joe,

Age: 41, tel: 1231} exists in some table and imag-
ine two possible annotations on the number 41 in the
Age field: (a) “this number is prime” and (b) “this num-
ber is too low”. (a) is clearly an annotation on the
number itself and could, in principle, propagate to any
occurrence of 41 in this or other databases. Thus the
propagation of this annotation has nothing to do with
the query that produced this tuple. However (b) is a
statement about the contents of the Age field of the tu-
ple and should not propagate to every other occurrence
of value 41 in the database. We are concerned with
annotations of the second type.

We assume that annotations propagate between loca-
tions in the database, and define a location as a triple
(R, t, A), which refers to attribute A of a tuple t of re-
lation R. We say that an annotation is propagated for-
ward if it is propagated from the source to view. We
consider the following set of forward propagation rules
for each monotone relational operator. These determine
how an annotation is carried from source to view under
a relational query.

• Selection. If t ∈ σC(R) then an annotation on
(R, t′, A) propagates to (σC(R), t, A) if t = t′. C
is the selection condition.

• Projection. If t ∈ ΠB(R) then an annotation

on (R, t′, A) propagates to (Π−→
B
(R), t, A) if A ∈

−→
B

and t′.
−→
B = t where t′.

−→
B stands for

−→
B components

in t′.
−→
B is the set of projected attributes.

• Join. If t ∈ (R1 ./ R2) then an annotation on
(R1, t1, A) (or (R2, t2, A)) propagates to (R1 ./

R2, t, A) if t.R1 = t1 (or t.R2 = t2).

• Union. If t ∈ (R1 ∪ R2) then an annotation
on (R1, t1, A) (or (R2, t2, A)) propagates to (R1 ∪
R2, t, A) if t = t1 (or t = t2).

• Renaming. If t ∈ δθ(R) then an annotation on
(R, t, A) propagates to (δθ(R), t

′, θ(A)) if t′ = t. θ
is a mapping on attributes of R to attributes.

It should be noted that we have used “equality of sim-
ilarly named fields” as the reason for forward propaga-
tion. However explicit equality is not used. For example
(R, t′, A) does not propagate to (σA=A′(R), t, A′) when

t = t′. As a result of this certain rewrites do not preserve
annotation propagation, e.g. ΠACD(σA=B(R ./ S))
and R ./ δB→A(S) on tables R(A,C) and S(B,D) are
equivalent but do not preserve annotation propagation.
There are other marking schemes for annotations that
one might consider such as flagging variables in a dat-
alog program or adding directives to SQL. These are
not the topic of this paper. We consider an annotation
placement problem that we believe will be an issue for
any reasonable propagation scheme. In what follows,
we shall make use of a normal form for SPJRU queries.
Let R(Q,S) be the relation between locations in S and
locations in Q(S) induced by the rules given above.

Theorem 3.1. There is a normal form of PSJRU
queries that preserves R.

The proof is straightforward and is omitted. It should
also be noted that as a consequence of the given propa-
gation rules, constants defined in the view do not carry
annotations from any source location. For example, if
V = {A : a} ./ R on the table R(C,D), (V, t, A) will
not carry any annotation for any tuple t in the output.
We will assume that our queries do not contain such
constants.

3.1 Minimizing Annotation Side-effects
We can now formalize our annotation placement prob-
lem: Given a source database S, a query Q, the view
Q(S) generated by Q, and a location in Q(S), find a
location to annotate in the source such that annotat-
ing it propagates the annotation to a smallest number
of locations including the specified view location. We
briefly contrast the annotation placement problem with
the deletion problem. In the latter, in order to delete
a tuple we may have to delete multiple tuples from the
source. In contrast, in the annotation placement prob-
lem, the optimal solution is always a single location in
the view (hence we do not need to consider the prob-
lem of minimizing the number of source annotations
needed). However, as we will shortly see, the problem
continues to be intractable for PJ queries. But the class
of JU queries now becomes polynomial time solvable.

Query class Deciding whether there is a
side-effect-free annotation

Queries involving PJ NP-hard
SJU P
SPU P

3.1.1 Project and Join Queries
For queries involving both project and join operators,
we show that it is NP-hard to determine if there is a
source location that will give a side-effect-free annota-
tion.

Theorem 3.2. The problem of deciding whether there
is a side-effect-free annotation for a PJ query in normal
form is NP-hard.

Proof. The proof is by reduction from 3SAT. Sup-
pose the 3SAT formula has m clauses. For each clause

Ci consisting of variables xi1 , xi2 and xi3 , we have a re-
lation Ri(Ci, xi1 , xi2 , xi3). Each Ri includes seven “as-
signment” tuples, each of which corresponds to a possi-
ble satisfying assignment for the clause Ci. For exam-
ple, if Ci = (xi1 + xi2 + xi3) then there is a relation
Ri(Ci, xi1 , xi2 , xi3) consisting of seven tuples:
(ci, F, F, F), (ci, F, F, T), (ci, F, T, F), (ci, T, F, F),
(ci, F, T, T), (ci, T, T, F), (ci, T, T, T). In addition, each
of the relation, R1,..., Rm−1, has an additional “dummy”
tuple (ci, d, d, d) where d is a “dummy” element and Rm

has two additional tuples (cm, d, d, d) and (c
′
m, d, d, d).

We write the query Q = ΠC1,...,Cm(R1 .// Rm).
The output of this query consists of 2 tuples (c1, ..., cm)
and (c1, ..., c

′
m). It is easy to see that the 3SAT for-

mula is satisfiable iff there are m assignment tuples
from R1, ..., Rm, corresponding to the satisfying assign-
ment, that can join successfully to produce the tuple
(c1, ..., cm) in the output.

Now suppose we are asked to annotate on the first com-
ponent of the first output tuple, i.e, the location
(Q(S), (c1, ..., cm), C1). There are two possible solutions
— annotate either one of the assignment tuples in R1 or
annotate the dummy tuple. If the formula is satisfiable,
annotating (R1, t, C1) where t = (c1, ...) corresponds to
the satisfying assignment is a feasible solution that does
not annotate the second tuple in the output. On the
other hand, suppose we are given a solution with no
side-effects. We claim that it must correspond to anno-
tating one of the assignment tuples or else the second
tuple in the output would get annotated as well. Thus
the 3SAT formula must be satisfiable.

An interesting corollary of the above proof is that com-
puting either kind of provenance information for an out-
put tuple is NP-hard even for this restricted subclass of
queries.

Corollary 3.1. Given a source database S, a PJ
query Q in normal form, its output Q(S) and a tuple
t ∈ Q(S), it is NP-hard to determine if a given tuple
t′ ∈ S is part of a witness for t. Moreover, it is also NP-
hard to determine if an annotation on a source location
appears in the output.

3.1.2 SPU and SJU Queries
For SPU queries, it is easy to determine the source loca-
tion that will give a side-effect-free annotation. For SJU
queries, one can determine the source location that will
give the minimum side-effects. The proofs are shown in
the appendix.

Theorem 3.3. Given an SPU query, the annotation
placement problem is solvable in polynomial time.

Proof. We will show that there is always a location
in the source which produces an annotation on the de-
sired view location without any side-effects. We first
consider SP queries. Given an attribute A of an output
tuple t which we wish to annotate, we scan the input

relation until we find the tuple t′ which satisfies the se-
lection condition and whose projected attributes equal
t. Annotate on attribute A of t′ and it is an easy con-
sequence of our propagation rules that only the desired
view location receives the annotation. For SPU queries,
we consider each SP query fragment and we apply the
same procedure for each SP query till we find a tuple t′

as above and annotate it. Once again, only the desired
location receives the annotation.

Theorem 3.4. Given an SJU query in normal form,
the annotation placement problem is solvable in polyno-
mial time.

Proof. We first show how one can find the source
location to annotate with minimum side-effect for a sin-
gle SJ query. Let Q denote the SJ query and suppose
we wish to annotate on the location (Q(S), t, A). Sup-
pose A exists in relations R1, ..., Rk which participate
in Q. We check for each t.Ri, i ∈ [1, k], the number of
other tuples t′ in Q(S) such that t′.Ri = t.Ri. We can
determine i ∈ [1, k] such that annotating on location
(Ri, t.Ri, A) gives the smallest side-effect. Now in order
to do this for an SJU query, we do the same for each
subquery except we now also check for the additional
locations that would receive annotations through other
queries in the union. We choose the location with min-
imum side-effects. In other words, suppose A exists in
relations Ri1, ..., Riki

which participates in an SJ query
Qi. We check for each t.Rij , j ∈ [1, ki], the number
of other tuples t′ in Q(S) such that t′.Rij = t.Rij and
t′ ∈ Qi(S). In addition, we also check for every other SJ
query where Rij occurs, the number of other locations
that gets annotated as well according to that SJ query.
We choose the location with minimum side-effects.

4. CONCLUSIONS
We establish a dichotomy in the complexity for both
view side-effect and source side-effect minimization prob-
lems. Interestingly, the tractable and the intractable
query classes are identical for both problems.

Our study of annotations introduces a new model for
provenance, related to “where-provenance” [7]. One of
the interesting findings of this work is that it is difficult
for annotation propagation to be invariant under equiv-
alent queries in general, i.e, equivalent queries may not
carry annotations in the same way. However we can
identify a set of rewritings, which gives rise to a normal
form and which preserves the relationships between an-
notations on the input and output. It will be interest-
ing to study other models of propagating annotations,
based, for example, on datalog, SQL and non-relational
query languages.

Our study of these problems also reveals that comput-
ing both why-provenance and where-provenance is in-
tractable for monotone relational algebra. This sug-
gests that additional constraints, such as key or foriegn
key constraints, will be necessary for efficiently tracking
provenance information.

5. REFERENCES
[1] A. M. Keller. Algorithms for Translating View
Updates to Database Updates for Views Involving
Selections, Projections and Joins. In Principles of
Database Systems, 1985.

[2] A. M. Keller. Choosing a view update translator
by dialog at view definition time. In Int’l Conf. on
Very Large Data Bases, 1986.

[3] D. Maier and L. Delcambre. Superimposed
Information for the Internet. In Proceedings of the
Int’l Workshop on Web and Databases (WebDB),
pages 1–9, 1999.

[4] F. Bancilhon and N. Spyratos. Update Semantics
of Relational Views. ACM Transactions on
Database Systems, 6(4):567–575, 1981.

[5] E. M. Gold. Complexity of automatic
identification of given data, 1974. Unpublished
manuscript.

[6] M.R. Garey and D.S. Johnson. Computers and
Intractibility: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
New York, 1979.

[7] P. Buneman and S. Khanna and W. Tan. Why
and Where: A Characterization of Data
Provenance. In Int’l Conf. on Database Theory,
2001.

[8] S.S. Cosmadakis and C. H. Papadimitrou.
Updates of Relational Views. In Principles of
Database Systems, 1983.

[9] Lincoln Stein. Distributed Annotation Server.
http://biodas.org.

[10] T. J. Schaefer. The complexity of satisfiability
problems. In Tenth Annual ACM Symposium on
Theory of Computing, pages 216–226, 1978.

[11] U. Dayal and P.A. Bernstein. On the Correct
Translation of Update Operations on Relational
Views. ACM Transactions on Database Systems,
8(3):381–416, 1982.

[12] U. Feige. A threshold of ln n for approximating
set cover. Journal of ACM, 45(4):634–652, 1998.

[13] W3C. Annotea Project.
http://www.w3.org/2001/Annotea.

[14] Y. Cui and J. Widom. Run-Time Translation of
View Tuple Deletions Using Data Lineage.
Technical report, Stanford University, 2001.
http://dbpubs.stanford.edu:8090/pub/2001-24.

[15] Y. Cui and J. Widom and J.L. Wiener. Tracing
the Lineage of View Data in a Data Warehousing
Environment. ACM Transactions on Database
Systems, 25(2):179–227, 2000.

	On Propagation of Deletions and Annotations Through Views
	Recommended Citation

	On Propagation of Deletions and Annotations Through Views
	Abstract
	Comments

	final.dvi

