ON PROPER (STRONG) RAINBOW CONNECTION OF GRAPHS

Hui Jiang, Wenjing Li
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
e-mail: jhuink@163.com
liwenjing610@mail.nankai.edu.cn
Xueliang Li
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China and
School of Mathematics and Statistics
Qinghai Normal University, Xining, Qinghai 810008, China
e-mail: lxl@nankai.edu.cn

AND
Colton Magnant
Department of Mathematics
Clayton State University, Morrow, GA, USA
e-mail: dr.colton.magnant@gmail.com

Abstract

A path in an edge-colored graph G is called a rainbow path if no two edges on the path have the same color. The graph G is called rainbow connected if between every pair of distinct vertices of G, there is a rainbow path. Recently, Johnson et al. considered this concept with the additional requirement that the coloring of G is proper. The proper rainbow connection number of G, denoted by $\operatorname{prc}(G)$, is the minimum number of colors needed to properly color the edges of G so that G is rainbow connected. Similarly, the proper strong rainbow connection number of G, denoted by $\operatorname{psrc}(G)$, is the minimum number of colors needed to properly color the edges of G such that for any two distinct vertices of G, there is a rainbow geodesic (shortest path) connecting them. In this paper, we characterize those graphs with proper rainbow connection numbers equal to the size or within 1 of the

size. Moreover, we completely solve a question proposed by Johnson et al. by proving that if $G=K_{p_{1}} \square \cdots \square K_{p_{n}}$, where $n \geq 1$, and $p_{1}, \ldots, p_{n}>1$ are integers, then $\operatorname{prc}(G)=\operatorname{psrc}(G)=\chi^{\prime}(G)$, where $\chi^{\prime}(G)$ denotes the chromatic index of G. Finally, we investigate some sufficient conditions for a graph G to satisfy $\operatorname{prc}(G)=r c(G)$, and make some slightly positive progress by using a relation between $r c(G)$ and the girth of the graph.
Keywords: proper (strong) rainbow connection number, Cartesian product, chromatic index.
2010 Mathematics Subject Classification: 05C15, 05C40, 05C75.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[2] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[3] P. Johnson, E. Jones, K. Kumwenda, R. Matzke and S. Bau, Rainbow connectivity in some Cayley graphs, Australas. J. Combin. 71 (2018) 381-393.
[4] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2
[5] X. Li and Y. Sun, An updated survey on rainbow connections of graphs - a dynamic survey, Theory Appl. Graphs 0(1) (2017), Art. 3. doi:10.20429/tag.2017.000103
[6] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer-Verlag, New York, 2012).

Received 23 July 2018
Revised 9 January 2019
Accepted 9 January 2019

