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Abstract 

Functional data analysis is intrinsically infinite-dimensional; functional principal 

component analysis, or PCA, reduces dimension to a finite level , and points 

to the most significant components of the data. While this technique is of

ten discussed, its properties are not as well understood as they might be. In 

this study we show how the properties of functional PCA can be elucidated 

through stochastic expansions and related results. Our approach quantifies the 

errors that arise through statistical approximation, in successive terms of orders 

n - 1
/

2
, n - 1

, n - 312
, ... , where n denotes sample size. The expansions show how 

spacings among eigenvalues impact on statistical performance. The term of size 

n-1
/

2 illustrates first-order properties, and leads directly to limit theory which 

describes the dominant impact of spacings. Thus, for example , spacings are seen 

to have an immediate, first-order effect on properties of eigenfunction estimators, 

but only a second-order effect on eigenvalue estimators. Our results can be used 

to explore properties of existing methods, and also to suggest new techniques . 

In particular, we suggest bootstrap methods for constructing simultaneous confi

dence regions for an infinite number of eigenvalues, and also for individual eigen

values and eigenvectors. Also , the impact of eigenvalue spacings on properties of 

functional linear regression estimators and the validity of simple accounts of its 

performance are discussed. 
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Notation and terminology 

Notation 

I 

K 

K 

llllvIIII 

IIJ lvf JJI sup 

f Nfa/3 

Ja /3 

6 

Dsup 

e-] 

The bounded interval on which we define the random process 

X(t), i.e. the argument t EI. We took it I= [O, 1] 

Either covariance operator or the kernel function; K f ( u) = 

J K(u, v) f (v) dv, where t he kernel 

K ( u, v) = E { X ( u) - µ ( u)} { X ( v) ~ µ ( v)}, and µ ( u) = EX ( u). 

Either empirical covariance operator or its kernel function; 

K f ( u) = f
1 

K ( u, v) f ( v) dv , where the kernel 

K (u, v) = ¾ L~=1{Xi(u) - X (u)} {Xi(v) - X (v)} . 

= (f J1 2 hf2
)

1l 2
, called the Hilbert-Schmidt norm. 

= SUPuEI IINI(u, .)JI. 

= JJ1 2 M(u , v) a(u)/3(v) du dv. 

= f
1

a(u)/3(u) du . 

= IIIK-KIII-

= IIIK - Klllsup· 

The jth eigenvalue of the covariance operator K. 

Xlll 



XlV 

'1/) j 

(J . 
J 

'1/) j 

(j 

'r}j 

P:i 

6· J 

F 

(T1 , T2) F 

E 

L2 (I ) 

!'2 

11.11 

II - lls 11 p 

,..-t' 

NOTATION AND TERMINOLOGY 

The jth eigenfunction of the covariance operator K. 

The jth eigenvalue of the empirical covariance operator R. 

The jth eigenfunction of the empirical covariance operator K. 

(j E (0, 1) denotes the infimum of 1- (0k/0j) over k such that 

ek < ej 

T/j E (0, 1) denotes the infimum of (0k/0j) - 1 over k such that 

ek > ej. 

Pj = mink#] 1ek - 0jl• 

6j = min1::;k::;j(0;,; - 0k+1). 

The space of all Hilbert-Schmidt operators on E . 

The inner product in F, which is defined by (Ti , T2) F = L j(T1 ej, T2 eJ E, 

~ ,-,-, - ., r -
: -. f ., ~ /_J ~ 17 , ...... 1 ..,' ,"::, /(:' G ;1,- r--. ,-\1,~·,1··\lt,1 r. 

- 1 ? -- ,., - - ~- -- -- l ~ J) -·~ ~ ~- .) ~~ - -~ 1-- ~~ "~ ~;-1<~1 

in E. 

The Hilb ert space L71(I , Q, /-l ) of fun ctions g I ~ H such 

that J r g( u )2 dµ ( u) < oo. 

The space of square-integrable fun ctions from I to t he re::-Ll 

line. 

The space of all sequences { ai} such t hat "£: 1 Jai 12 < oo. 

The L2-norm; i.e. ll f 11
2 = J f2. fo r each J E L2. 

The sup-norm ; i.e. ll f llsup = SUP1a lf (t )j . 

= { X 1 . · · · ) X n} a random sample from population. 



X* 

{J~ 
J 

'l/J; 

¢, q> 

xv 

= {X; , · · · , X~} a resample obtained by sampling from X with 

replacement. 

The bootstrap version of {Jj, computed from X*, rather than 

X. 

The bootstrap version of 'lj;j, computed from X*, rather than 

X. 

Standard Normal density and distribution functions , respec

tively. 





Chapter 1 

Functional Principal Components 

1.1 Introduction 

In recent years, research on functional data analysis has increased. This is partly 

due to technological advancements which have made it possible to measure an 

object over a dense grid by high frequency automatic sensing equipment. For 

example, Chemometrics, a field of chemistry that studies the application of sta

tistical methods to chemical data analysis, has been one of the first areas of 

research to move towards analysing these kinds of data. Some of the data in this 

field , observed mostly from organic and analytical chemistry and food research , 

have important features which make the data different from other kinds. Each ob

servation is distinguished by many measured variables ( sometimes more than the 

number of the observations) which tend to have high autocorrelation. For exam

ple , when applying near infrared reflectance (NIR) spectroscopy information to 

obtain percentages of fat or of other constituents in biscuit dough , NIR informa

tion for one signal consists of hundreds of digitizations (Marx and Eilers , 1999). 

Another example of the relationship between log-sp ectra of sequences of spoken 

syllables and phoneme classification can be found in Iviarx and Eilers ( 1996). 

1 



2 CHAPTER 1. FUNCTIONAL PRINCIPAL COMPONENTS 

Also, further applications of these data may be found in estimating the link 

between a real random response and a random function, X ( t) say, being digitized 

at many points. For instance, by constructing a linear regression, we can predict 

the percentage of fat in biscuit, using NIR wavelengths as the argument of the 

independent variable X, which is in the form of a discrete representation of the 

observed signal (Marx and Eilers, 1999) . Another example arises when using 

near-infrared spectroscopy to obtain information about the level of a particular 

protein in different varieties of wheat. Let Xi(t) be the recorded intensity of 

reflected radiation, when the wavelength equals t and ~ is the level of the protein 

for the ith wheat type. By construction of a linear regression model, we may use 

the model with new values of X ( t) to predict the level of the protein in that 

cernal type (Hall and Horowitz , 2004). In both examples, prediction of the value 

of the dependent variable, for a new X, from the constructed model, could be very 

useful due to difficulties in measuring the dependent variable. While measuring 

the dependent variable could be expensive and slm-v in a laboratory, the covariate 

X1· (NIR photometric measurements) ca.n be measured faster with less expenditure 

(rvfarx and Eilers, 1999 , Hall and Horowitz 2004). 

1.1.1 Random and Age Effects 

One of the aspects of functional data is to show changes over time ( the "age" 

rffcct) . scpc1rnted from the effects caused by differences among subjects which 

me chosen from the population fo r the study. This is due to the nature of the 

collected data: consisting of repeated measurements of subjects through time. 

Unlike cross-sectional studies . in which we measure a single quantity for each 

object. here we cue able to use the capacity of data t.o explore the ((age" effect 



1.1. INTRODUCTION 
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Figure 1.1: The heights of 10 Swiss boys measured at 29 ages. The points indicates 
the unequally spaced ages of measurement. See Ramsay and Silverman (1997, page 2). 

by analyzing the data. Separation of changes over time within objects from 

those among them can be beneficial for revealing useful characterizations of the 

population from which the sample was drawn. In a sample like X 1 (t), · · · , Xn(t), 

the former variation refers to the variable t, time, which belongs to an interval, 

say [a, b], and the second can be seen through the essential randomness of X , in 

which for a certain time, we have different values of X when running from the first 

individual ( X 1 ( t)) to the last one in the sample ( X n (t)). In cross-sectional data, 

however , we can see the differences among individuals by measuring a quantity 

over sampled individuals, showing X 1 ,X2 , · · · ,Xn. 

Figure 1.1 shows the heights of ten boys, obtained by measuring each boy 

at 29 different points of time (Ramsay and Silverman 1997, page 2) . For each 

boy, measurement was begun at age two and continued annually until age ten, 

after which it was done biannually for all boys. Therefore , we have 29 records for 

each person, which can be assumed as a continuous function due to the nature of 

growth. As the graph shows , it can be easily recognized that the sign of almost 

all boys' height accelerations tend to change at some points (ages), especially at 
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12, 14, and 16. This might be due to pubertal effects on their growth. However , 

the effect is not the same for all boys, and differs in the timing and the intensity. 

To explore the "age" effect, one can be benefited by using tools for investigating 

behavior of functions, such as obtaining the acceleration curves by estimating the 

D 2 H eighti from the data. Thus, thinking of records as curves rather than vectors 

of observations in discrete time enables us to employ derivatives for investigating 

the "age" effect in functional data (Ramsay and Silverman, 1997, page 2). 

1 .1.2 High Dimensionality 

Compared to other kinds of data., the second difference is in the view of dimension 

of the spaces to which the data belong. Because our data are functions, they lie in 

function spaces, which are of infinite dimension. One possible way of explaining 

:_.--- ij· .. ,-.~ i.._· ~ t. [_"1, , ;-1 \1 7 i+·il ,-.!. ,._;c,;, .. ,·! ;-\'1,1 ::;.,_.,, ... ;. ,,:.. , , : "'.,-.+,. '\ y,,.l-...-, .. :, . 1-......1:-·\ '\ ', . .'\ ., ... ---.. "' .. .. ..... l . .._ . .._,,,. J u \.•,.1 , _.1...,\..,. 1,.,1.,. v \\.l.VJ. ... '-.,, .1-.L-t. •• •.. .n J J.. \...,., l.UJ.. J..~J.\.l.JUJ\Ll•J...l.(.. , , l•V .J..J<..~ · l._1(.t. • J.l.1J(.t •.lj• 1 J11 \J \ .l.1..__,/J..1.J• J.).1J1 _l lllll\_ 

that vve drnw n. subjects at random from a population and for each subject, p 

quantities a.re measured. In other words, we assigned a p-vector of real numbers to 

each individu al. Hence, we haven p-vectors, each belonging to the p-dimensional 

space RP. Therefore:;, we can re:;present each of them 8S a linear combination of 

JJ orthonormal vectors, e 1 , e 2 , · · · , eP say, 8ssumcd to be a. complete bc1.sis in Rt. 

Then , tbe p-vector Xi , related to t he ith sub ject, can be presented as 

xi = fo e 1 + ~i2 e 2 + ... + ~ ip e p , 

\vhere the random variables fo denote the coordinates of the Xi with respect to 

the basis. In this \vay, we can represent 
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~11 ~12 6P en e12 e1p 

Xn;p = 

~nl ~n2 ~np ep1 ep2 ePP 

where the first matrix on the right-hand side contains the coordinates of the Xi 

with respect to the basis in RP. 

When data tend to be a continuum, they can not be shown as a linear com

bination of any finite basis, but they may need an infinite number of basis. In 

FDA we take X(t) to be in a separable Hilbert space (usually L2 (I), the space 

of square-integrable functions defined on the bounded interval I). This implies 

that the Xi ( t) can be represented as 

CX) 

Xi(t) = L fo ej(t) , 
j=l 

where the sequence { e1(t), e2 (t), ···}is a complete basis in the Hilbert space and 

the random variables fo, ~i2 , ... are its coordinates corresponding to the basis. 

If the associated series of X(t) is truncated at j = p , then we can represent a 

sample of size n as 

~11 62 6P e1(t1) e1(t2 ) e1 ( i q) 

Xn; p = 

~n l ~n2 ~np eP(t1) eP(t2) eP(tq) 

where the second matrix on the right-hand side is a discretization of the basis at 

some points , say q point s. If we let p go forward , meaning we are increasing the 

dimension , the number of columns of the firs t matrix and thus t he number of rows 

of the second matrix will be increased. Therefore, in some sense, FDA can be 

imagined similarly to MDA as the number of variables (p) increases . In this way, 
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also the concepts and tools in MDA can be easily just ified for FDA. For example, 

in the case of the inner product, the two p-vectors u 1 , u 2 in RP can be multiplied as 

(u1 , u 2) = u f u 2 = Lf=1 'lhiU2i, where u T denotes the transpose of u. However , 

as p tends to infinity, the vectors tend to h ave infinite number of coordinates , 

which can be interpreted as measurements of ui( t) at time tj, for many tj. Thus, 

the inner product here is changed to t h e integral (u1 , u 2 ) = J u 1(t)u2 (t)dt. Then, 

the concept of orthonormality of two elements is the same in both MDA and 

FDA, i.e. the corresponding inner product of the two elements is zero. As a 

result , the norm obtained from their inner product is defined as llx!l2 = (x, x). 

So, it can be seen that majority of concepts in FDA have similar interpretation in 

the Iv1DA, as the dimensionality goes to infinity. These features were pointed out 

in Ramsay's first art icle about FDA (1983) as well as by Ramsay and Silverman 

(1997). 

In regard to high dimensionality of function al data, they may challenge classi

cal methods of data analysis and need theoretical ,iust ificQtion. Some t heoretical 

justification fo r PCA jn functional data. analysis (FDA) is provided by limit the

ory. See, for example, the -vvork of Dauxois, P ousse and Romain (1982) and Bosq 

(2000). 

1 .2 Principal Component Analysis for Functional 

Data 

1.2.1 Introduction 

Classical principal component analysis (PCA) is amongst the oldest of the mul

ivmiate statistical methods of data reduction. A :'v1ultivariate Analysis problem 

could st.art out with a substantial number of correlated variables. In such situ-
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ations , PCA produces a small number of constructed variables from the original 

data that are uncorrelated and account for most of the variation in the original 

data set. The main reason for reducing the number of variables in this way, is 

that it helps us to understand the underlying structure of the data. For this 

reason, PCA has found application in fields such as signal processing, face recog

nition, image compression and so on (Jolliffe, 2002). Similarly, PCA is widely 

used in the study of functional data, since it allows finite-dimensional analysis of 

a problem that is intrinsically infinite-dimensional. See, for example, Chapter 6 

of Ramsay and Silverman (1997), and several of the examples treated by Ramsay 

and Silverman (2002). In traditional PCA the effects of truncating to a finite 

number of dimensions are often explored in terms of a finite-dimensional para

metric model, for example when the data are Gaussian. However, this approach 

is often not feasible in the case of functional data analysis (FDA), and as a result 

the justification for methodology there tends to be more ad hoc. 

Early work on PCA for FDA includes that of Besse and Ramsay (1986), Ram

say and Dalzell (1991), Rice and Silverman (1991), Pezzulli and Silverman (1993) 

and Silverman (1995, 1996). Accounts in monographs include t hose of Ramsay 

and Silverman ( 1997), especially Chapter 6, and Ramsay and Silverman ( 2002). 

Work of Dauxois et al. (1982), Bosq (1989), Besse (1992), Huang et al. (2002) 

and Mas (2002), for example, addresses empirical basis function approximation 

and approximations of covariance operators. 

Recent work includes contributions to techniques for functional PCA (see 

e.g. Brumback and Rice, 1998; Cardot, 2000; Cardot et al. , 2000 , 2003; Girard , 

2000; James et al. , 2000 ; Boente and Fraiman , 200 ; He et al. , 2003 . 
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1.2.2 Definition 

Let (D, F ) and (I , Q) be m easurable spaces with the probability measure P and 

the bounded measure µ, respectively. Suppose that { X (., t) ; t E I } denotes a 

vector of random functions mapping from (D, F , P ) into (H, BH), where H is 

a separable Hilbert space and BH is its Borel field. Furthermore, let L71 (P 0 

µ) denote the separable Hilbert space of the equivalent classes of measurable 

functions defined from the product m easurable space (D x I , :F 0 Q) to (H , BH ) 

such that their squared norm is P 0 µ-integrable. It is assumed t hat X E L71 ( P 0 

µ), i. e. JI J0 X(w , t) 2 dP(w) dµ(t) = JI E [X(w, t)2] dµ(t) < oo, and without loss 

of generality 77(t) = E[X(., t)] = f
0 

X(w, t) dP(w) = 0. 

Let the Hilbert space LMD, F , P ) (denoted by L 2(P)) be square P-integra.ble 

fonctions J : S1 ---t R, and the Hilbert space LJ-1 (I , Q ,f-l) ( denoted by E) of 

lu11cLium; y : 1, ---t H ~mch that JI g( u Y dJJ,(u) < oo. ~uppoi:ie that the bounded 

linear opera.tor V from L 2 (P) to E is defined by 

(Vf)(t.) = lo X(w ,i;)f(w)dP(w) = E[X(.,t)J], /J, ae for each f E L 2(P). 

The adjoint op erator V* is defined through (VJ, v) = U, V*v) , for each f E 

L ~ ( P) and v E E as follows: 

( ( X(w. t) J(w) v(t;) clP(w) cl;1(t) = ( ( X (w, t) f(w) v(t) d;j,(t) dP(w) 
.JI .Jo Jo JI 

= 1 { [ (X (w, t), v(t)) H dJt( t)} J(w) dP(w ) 

= 1 (V'v)(w) J(w) dP(w), 
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where (., .)H denotes the inner product of H. Hence, for each g EE, 

(V*g)(w) = hx(w, t), g(t))H dµ(t) = (X(w, .) , g), P a.e., 

where (., . ) denotes the inner product of E. 

Let ¢ be a continuous linear functional on a Hilbert space H. There exists 

a unique y EH such that ¢(x) = (x, y) for all x EH, and /1¢11,c = IIYII, where 

11¢11£ = sup { 11¢xll : x EH, llxll ~ 1 }. Moreover, the mapping, which associates 

to ¢ the unique element y, is one-to-one, onto, norm-preserving conjugate-linear 

map of the dual of H onto H ( a result of the Riesz Representation Theorem, see 

Theorem 3.3.4 of Ash 1972). Thus, the dual of His identified (via this map) with 

H itself. 

The associated schema of duality for these operators is 

V 
Er--

KI l1 

L 2 (P) 

Ir l w 

V* 

E --t L 2 (P) 

With this schema, the identity operator I identifies the two Hilbert spaces with 

their corresponding duals , as discussed before. Furthermore, Kand Ware Vo V* 

and V* o V , respectively. For each g E E and u EI, the former can be expressed 

as 

(K g)(u ) = (Vo (V*g)) (u) = (Vo ( (X (w, .), g)) ) (u) = E [X (, u)(X (w, .), g)] 

This is actually a kernel operator with symmetric kernel K ( u, v) = E [ X (., u) X (., v)] 
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such that 

(Kg) (u) = 1 K(u, v) g(u) du, (1.1) 

where 

11 IK(u, v)l
2 

dµ(u) dµ(v) = 11 IE [X(., u) X(., v)] 1

2 

dµ(u) dµ(v) 

~ 11E[X( ,u)
2

] E[X(.,v) 2
] dµ(u)dµ(v) 

= { 1 E[X(, u)
2

] dµ(u)} { 1 E[X(., v)2] dµ(v)} < oo. 

(1. 2) 

It is also clear that the operator K : E -+ E is self-adjoint and non-negative. 

Theorem 1.1. Let C(u, v) : Ix I -+ R be a symmetric kernel function. 

Then the linear integral operator 

(Cg) ( u) = 1 C(u, v) g( u) d;1.(11), for each g E L2 (d;1.), 

is a. compact self-adjoint Hilbert-Schmidt operator on L2 
( dµ) if 

1 Dc(u, v)l2 dµ(u) d;J,(v) < 00. 

Furthermore, if the above condition is satisfied then C( u, v) is diagonalizable and 

can be expressed as follows: 

CX) 

C(u, v) = L >-_7 <pj(u) q>j(v), 
j=] 

,vhcrc /\ 1 2 /\2 2 · · · 2 0 is an ennmeration of the eigenvalues of C, and the 

corresponding orthonormal eigenfunctions are ¢1, ¢2, .... 

Prno.f: See Conway (1985), page 47, or Dunford and Schwartz (1963), pages 
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1009 and 1130. • 

Therefore , using the above theorem with (1.1) and (1.2) implies that K is a 

Hilbert-Schmidt operator with 

CX) 

K(u, v) = L 0j 1/Jj(u) 1/Jj(v)' (1.3) 
j=l 

where 01 2 02 2:: · · · 2 0 is an enumeration of the eigenvalues of K, and the 

corresponding orthonormal eigenfunctions are 1/J1 , 'ljJ2 , . . . . Moreover, if all 0j are 

positive, the sequence { 1/Jj} forms a complete orthonormal sequence in E (Riesz 

and SZ. Nagy (1955), page 234). In analogy to K, it can be shown that W : 

L2 (P) -t L2(P) is a non-negative, self-adjoint Hilbert-Schmidt operator. We will 

not investigate further the operator W since it is not related to PCA. 

It should be noted that F = 0"2 ( E), the space of all Hilbert-Schmidt operators 

on E, with the inner product 

(T1, T2) F = L (T1 ej, T2 ej) E , 

j 

(1.4) 

is a separable Hilbert space, where T1 , T2 E F and { ej } is any complete orthonor

mal basis in E. Thus , the Hilbert-Schmidt norm induced by the inner product 

does not depend on the choice of the basis ( Conway 1990, page 273), and for 

KE F, IIIKlll 2 = (K,K)F = L;:1 IIK'l/Jjll 2 
= L;:10; < oo. 

Suppose that h1 : E ----+ E x E maps x E E to (x , x) E E x E and h2 : 

E x E -t F maps (x , y) E E x E to x ® y E F , where x 0 y is defined by 

(x® y)f = (x , J)y for each f EE. The two maps h1 , h2 are continuous . So , 

we have h2 o h1 (X ) = h2 ((X,X )) = X ® Xis a random variable on (F,Bp ) (BF 

denotes the corresponding Borel field of F), by which each w E D is mapped 

to X (w, .) 0 X (w, .) E F. Therefore , K can be shown in the simple form K = 
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E(X 0 X) in F. 

The above arguments can be easily justified for the classical multivariate 

analysis of PCA (simply, take H =R and I= {l, 2, · · · ,P} ). Furthermore, if we 

take D = { w1 , · · · , wn} and the probability measure P such that P ( { wi}) = ¾, 

for i = 1, · · · , n , it can be shown that L2 (P) is isomorphic to Rn with metric 

¾ In, where the n by n matrix In is the identity matrix. Define a map to carry 

any element J E L2 (P) to }n (J(wi), · · · , j(wn)f E Rn. The map is isomorphic, 

and we have the following schema of duality: 

Vn ( r E f--- Rn .. 

Kn I 1 J I In 

~~ 
E __, Rn 

v-rlwrP (R11 )* rlPnntPS thP. rl11 r1.1 spr1r:P nf !7 71 ;:inn 

1 71 

Vnf = - L X (wi, .)J(wi), 
n 

for each J E (R 11
) *, 

i=l 

( 1/;
1
* u) ( wi) = ( X ( wi, . ) , u) j for each u E E , 

811d 

l n 

Kng = - L (X (wi, .), g) X (wi, .) 
n 

i =l 

= (¾ t X(w;, .) @X(w;, )>g), for each g EE. (15) 
i = l 

Suppose that (f1~
1 

fl. 11_;:
1 

F , n_;:
1 

P ) is the measure product space, where 

..,1..;· = (w1 . JJ2. · · · ) E TI;:
1 

0: and f1;:
1 

F is the minimal a -field over the measur-
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able rectangles. We denote the above measure product space by (D00
, :F00

, P 00
). 

Let Ili be the ith canonical projection from (.000
, :F00

, P 00
) into (D, :F, P) such 

that Ili(w) = wi for each i = 1, 2, · · · . 

Theorem 1.2. Let (Dj, :Fj , Pj) , j = 1, 2, · · · be an arbitrary sequence of 

probability spaces. If D' = Ilf=1 Dj, P = Ilf=1 :Fj , and P' = Tif=1 Pj , then 

the canonical projections Ili(w) = wi, i = 1, 2, · · · are a sequence of independent 

random variables with the distribution P'(Ili EA)= Pi(A) for each A E Fi. 

Proof: See Theorem 5.11.1 of Ash (1972). • 

The above theorem implies that {II1 , II2 , · · · } is a sequence of independent 

and identically distributed random variables. Moreover, the random variables 

Xi =X o Ili; i = 1, · · · , n, for all n, are independent, identically distributed (iid) 

as X with the common distribution induced by P , Px say. Therefore , for each 

w = (w1 ,w2 ,···) E .000
, the random variables Xi(w) = X(wi) are iid from the 

distribution Px. 

It should be mentioned that the above construction of the Xi on .000 is only 

needed when we are dealing with limit theory. Dauxois , Pousse and Romain 

(1982) showed that as n -+ oo, the random variables Kn(w) = ¾ ~~=l Xi(w) ® 

Xi(w), defined from (.000
, F 00

, P00
) into (F, Bp) , converge almost surely to Kin 

F. 

To analyse a sample of size n of trajectories X (wi), however , we need to 

consider the subspace _on of .000 whose elements are in the form of finite sequences 

( w1, · · · , wn). For the time being, we restrict X on _on. So, we ignore the index n 

in Kn(w), and denote it by 

l n 

K (w) = - L Xi(w) ® Xi(w), 
n 

i =l 

as the empirical estimator of K. 
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The above arguments can be easily changed for the situations when r;( t) =/- 0. 

All we need is to replace X(w, t) - r;(t) instead of X(w , t) in the above formulas, 

by which we obtain 

K(u,v) = E[{X(u) - r;(u)} {X(v) -r;(v)}], (1.6) 

R(u, v) = ~ t {Xi(u) - X(u)} { Xi(v) - X( v)}, (1.7) 
n 

i=l 

where X = n- 1 
~ i X i. Also, for simplicity in notation we ignored the component 

w of X in the equations (1.6) and (1. 7) as the randomness of the function can be 

reflected by X itself. Furthermore, without loss of generality, we take I= [O, 1]. 

Also, the bounded measure µ(dt) is replaced by Lebesge measure on the interval 

[O, 1] , and random functions are regarded as real-valued. In this case, we denote 

the Hilbert space Eby L2 (I). Analogously to (1.1) and (1.3) we can defin e the 

non-negative, self-adjoint Hilbert-Schmidt operator R on L2 (I ) by (Kg)(u) = 

J~ K('1l, v) g(v) dv for each g E L2 (I ), ·where 

CX) 

R ( u' V) = L 0 j ~ ( u) 1ij ( V) . (1.8) 
j=l 

Ill (1.8) the random Vcl,riables 01 ~ 02 ~ · · · ~ 0 are eigenvalue~ of the operator 
----- ,,__ ,,__ 

J( , m1cl '1/Ji, 1/J2, . .. is the corresponding sequence of eigenvectors. 

1.2.3 Karhunen-Loeve expansion 

An expansion of the function X - r; with respect to the orthonormal basis 1/Jj (in 

L2 (I ) sense) is its Ka.1-hlmen-Loeve expansion: 

CX) 

X (u) - rJ(u) = L (j '1/Jj(u), (1. 9) 
j =l 
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where the principal component scores 6 , 6, ... are given by ~j = Jr( X - TJ) '1/)j. 

As regards the kernel K ( u, v), it follows that 

E(~J~k) = 111PJ(u)K(u,v)1/Jk(v) d1Ldv = 0JOJk, (1.10) 

where 6 jk is the Kronecker delta (recall that the 0j are eigenvalues and '1/)j are the 

corresponding orthonornal eigenfunctions of the operator K). Equation (1. 10) 

implies that the random variables ~j are uncorrelated. Furthermore, they have 

zero means and variance 0j = E(~J). Moreover , Jr E(X - TJ)
2 = ~j~l 0j < oo. 

We call the expansion (1.9) the Karhunen-Loeve expansion of X - Tl· It is also 

known that if the kernel K ( u, v) is a continuous function on I x I, then the series 

on the right-hand side of (1.9) converges uniformly to X(u) -TJ(u) (Theorem 1.5 

of Bosq 2000). However , we do not need this restriction on K ( u, v), as long as we 

work with L 2 convergence of the series to X ( u) - TJ ( u), satisfied by the condition 

f1: E[(X - 17)2] < oo. 

Also, in regard to K( u, v) as the standard empirical approximation to K( u, v), 

we write 
00 

xi - x = L [j ;;;j , 
j = l 

where [j = Jr(Xi - X) ;j;j is the jth empirical principal component score of Xi. 

In analogy to (1.10), 

¾ t u:k = 11 ;J;j(u)R(u,v);/jk(v)dudv = ejojk· 
i=l I I 
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1. 2.4 St ochastic Expansions for Eigenvalues and Eigen

functions 

In this Section we give expansions for eigenvalues and eigenfunctions which ex

plicitly include terms of sizes n-1
/

2 and n-1
, where n denotes sample size, and a 

remainder of order n-3
/

2
. This work shows that eigenvalue spacings have only a 

second-order effect on properties of eigenvalue estimators, but a first-order effect 

on properties of eigenfunction estimators. Our expansions are immediately valid 

for any finite number of principal components, but they are also available uni

formly in increasingly many components; the issue of uniformity is addressed in 

the next Chapter. 

Assume t hat the eigenvalues 0j are all distinct. The case ,~,here there is only 

a fini te numb er of tics among the 0/ s can be t reated without much difficulty, 

but other settings arc more awkward . Distinctness of eigGiwalues implies that 

the operator K is strictly p ositive definite , i. e. each 0j > 0. Also, since 1/;j and 

- '1/J j are both eigenfunctions associated with 0j , the st atistical parameter '1/Jj is 

not well defined . To overcome problems ari sing from t he fact t hat '1/Jj and '1/Jj are 

defined only up to a sign change, and to ensure that '1/Jj is viewed as an estimator 

of ·7/Jj rc1ther than of - 'lj)j, we shall tacit ly assume, below , that the sign of 'l/;j is 

clm3en so that fr '1/Jj ;j;j 2: 0. 

Lemrna 1.1. Let ;f;j = ~ k~I ajk '1/Jk, where the generalised Fourier coefficients 

a..71,_- cu e functionals of the data X . T hen, 

Clj.7 = 1 - ½ n-1 .I:: (ej - 0et2 ( / z 1/Jj 'I/Jc)2 + Op(n-3/?.) 
r: lfj 

(1. 11) 
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and for each k-/- j, 

ajk = n-112 (0j - 0k)-l J z 'ljyi/Jk 

+n-
1
{(0j-0k)-

1 
Ij (0j-0tJ-

1 (J Z'lj;j'I/J£) (J Z 'I/Jk'I/J£ ) 

-(0J-0k)-
2 (J Z'I/JJ'I/JJ) (! Z 'I/JJ'I/Jk) }+Ov(n-312

), (1.12) 

where Z = n 112 (K - K) and J Z VJr VJs denotes J fr2 Z( u, v) VJr( u) VJs( v) du dv. 

Proof of Lemma: It should be mentioned that the current proof is not rigorous. 

We shall give a rigorous proof of it later in Chapter 2. 

The eigenfunctions 1j;1 , 1j;2 , · · · are defined recursively. For example, supposing 
.,.....__ .,.....__ ,,...._ 

we have defined ?/J1 , · · · , '1/Jj -l, we define VJj so as to be orthogonal to these previous 

functions , to have unit length , to be such that J ;j;j VJj 2:: 0, and to maximise 

J K ¢¢over all functions ¢ that satisfy these constraints. That is , ;j;j is obtained 

by maximizing 

j 1, R(u ,v)¢J(u)¢J(v)dudv 

subject to, (1. 13) 

11¢jl l
2

=1 , (¢j,fk) =O fork <j , 

where(.,.) and 11-11 are the inner product and norm in L2 (I), respectively. In 

fact the above problem is equivalent to maximization of the scale-invariant ratio: 

r r v (" , v) rA . (" l ) ¢ .r v \ rlu riv jjy2J.'l.. U,) 't'J L J\ JU u, 

ll¢jll
2 

(1.14) 
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with respect to <pj , and under the orthogonality constraint. Assume that 

00 

</>e = L aefl/J j , 

j=l 

(1.15) 

where 'lj;1 , 'lj;2 , ... are the eigenfunctions of the covariance operator ]{, and make 

up an orthonormal basis for L2(I) if its eigenvalues ej are all positive. After 

substituting (1.15) into (1.13), the problem is reduced to seeking an extremum 

of the Lagrangian function 

oo ( oo ) e r-l oo 

~ aJ1 0J + Ao ~ aiJ - I + 2; ~Ar, ~ a,J a,J 

+ t t %ae+-1
!
2 j zip1 ipk), (1.16) 

where Ao and \ .5 are La.grange multipliers. It is assumed that apj, Ao , and \ .5 

have the foll owing expansions: 

Ao = AgJ) + n-1 /2 A~1 ) + n-1 A~2) + Op(n -3/2) 

G.rj = a~~) + n-
1
/
2 a~.~) + n-

1 a~.~) + Op(n-
3
/
2
) 

Ars = A~~) + n- 112 A?} + n- 1 A~.~) + OP(n- 312
). 

( 1.1 7) 

Differentiating Vlith respect to aej, and equating to zero fo r an extrcmum , we 

have 

l' -1 oo ( , ) 

CT.cj (01 + Ao ) + L Ac, a,J + L aa n-
1
!

2 j Z 1/!J 1/!k = 0. 
s=l k=l 

(1. 18) 
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The constraint II <pe II = 1 implies 

00 00 00 

I)a~~))
2 + 2 n-

1
/

2 La~~) ag) + n-
1 L (2 a ~~) a~~)+ (a~~))

2
) + Op(n- 31

2
) = 1, 

j=l j=l j=l 

(1.19) 

and the orthogonality constraint gives us , for s < f, 

00 00 00 

"""" . . _ """" (0) (0) -1/2 """" ( (0) (1) (1) (0)) 
0 ae1 as1 - 0 a£j asj + n 0 a£j asj + a£j asj 

j=l j=l j=l 

00 

+ -1"""" ( (1) (1) + (0) (2) + (2) (0)) + 0 ( -3/ 2) - 0 n 0 a£j asj a£j asj a£j asj P n - . 
j=l 

The two equations (1.19) and (1.20) give the following results: 

00 00 

L (a~~))2 = 1, """"a ~~) a(~) = 0 
0 ,:,J SJ ' 

j=l j=l 

a (l) + a (l) = 0 for s < f 
sf £s , 

(1) 
a u = 0, 

00 00 

2 (2) __ """" ( (1)) 2 
au - 0 a ej , 

a(2) + a(2) = - """"a (~) a(l_) 
sf £s L...,; £J SJ 

j=l j=l 

Result (1.21) points to a~~) = 6ej - Also, from (1.18) we obtain 

£-1 

( (0)) """" (0) _ 
6ej ej + Ao + L...,;Aek Jkj - 0, 

k=l 

(1.20) 

(1.21) 

(1.22) 

( 1. 23) 

(1.24) 

which implies /\ ~o) = -0e, and ,,\~~) = 0, for all j < t Substituting from (1.17) 



20 CHAPTER 1. FUNCTIONAL PRINCIPAL COMPONENTS 

into (1.18) leads us to 

co f -1 } 

n -1
/

2 
{ aW ( 0J - 0e) + A61

) 5eJ + ~ 6ek ( j Z 1/JJ 1/Jk) + ~ A}~) 5,J 

+ n -l { 6 . A (2) + a(~) A (l ) + a(~) (0 . - e ) + ~ a (l ) ( J z ,,;, . ,,/, ) + ~ A (l ) a (l_) e] 0 e] 0 e] J e 0 ek '+'J '+'k 0 es SJ 
k = l s= l 

+; 5,J A}!)} + op(n-3
!

2
). (1.25) 

The above equation shows that 

co e-1 

(1) ( ) (1) ~ ( J ) ~ (1) af_j ej - 0e + Ao 6ej + 06ek Z 'l/_J j 'l/Jk + 0 >-es 6sj = 0 , 
k=l s= l 

co e-1 e- 1 

(2) (1) (1) (2) ( ) ~ (l)( j ) ~ (1) (1) ~ (2) 
6ej Ao + aej Ao + aej ej - 0e + 0 aek Z 'l/_}j 'l/J 1,~ + 0 >-es asj + 0 6sj >-es = 0 , 

k = l s=l s=l 

(1. 26) 

where t he fi rst equation , when j = I!,, implies. 

,\61
) = - j Z 1/Je 1/Je , ( 1. 2 7) 

and, if j f- £, ag) (0j - 0e) + J Z 1/y1/Jc + >.g) I (j ~ (!_ - l ) = 0, implying, by t he 

:--;ccond part of (1.22), 

CL g) = ( 0; - 0 t j~ 1 
[ ; Z 1/J; '1/) t + ,\~:) I (j '.S f - 1)] . 

Using t he first part of (1.22) ·with this result gives >-~!) 0, for each s < £. 

Therefore, 

a.)}) = (0r - 0Jj~ 1 
( j Z 1/JJ '1/)} for j 7U. ( 1. 28) 
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vVhen j -/:- f, the second equation in (1.26) implies 

a ~~) = (0j - 0e) -
2 
(/ Z 1/;j 1/Je) (/ Z 1/Je 1/Je) 

- (0j - 0e)- \ "f:,/k - 0e) -
1 

( j Z 1/Jk 1/Je) ( j Z 1/)j 1/Jk ) 

+ (Be - ej) - 1 Ag) I (j < 1!,) . ( 1. 29) 

R esults (1.28) , second part of (1.22), and firs t part of (1.23) lead us to : 

a~) = - ½ I:, j # £ ( ej - 0e) - 2 ( J z 1/)j 1/Je) 2 ( 1. 30) 

Also , from the second part of (1.23), (1.26), and (1.29) we have 

a~~) + a~;) = ;; (0k - 0e) -
1 

( 0k - 0 s) -
1 
(/ Z 1/Jk 1/Js) (/ Z 1/Je 1/Jk ) 

kTs , e 

_J_ (e - e )- 1 A (2) 
I £ S £s 

00 

= - " aP) a(~) 
L__, i:.J SJ 

j = l 

= k"f,} 0 k - 0 e )-
1 

( 0 k - 0 s ) -
1 

( J Z 1/) k 1/) s) ( J Z 1/) e i/J k) , 

which gives Ai~) = 0, for each s < I!,, Consequently, 

a ~~) = ( 0 i - 0 e J-2 
(/ Z 1/) i 1/) e) (/ Z i/J e 1/) e) 

- (0j - 0e) - I k"f,,/ 0k - 0e) - I ( J Z i/Jk UJe ) ( J Z i/Jj 1/Jk } for j f (l . 

(1.31) 

Combining second part of (1.22), (1. 28), (1.30) and (1.31) finishes the proof of 

r;he Lemma.• 
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Results (1.11) and (1.12) point to the following expansion: 

ij(t) - 1/Jj(t ) 

= n-l/Z k~j (0 j - 0kJ-l 'lf/k(t) J Z 'lf/j 'lf!k - ½ n-
1 

'lf/j(t) k~ j (0j - 0k)-
2 

( J Z 'lf/j 'lf/k y 
+ n-l k~j 'lf!k (t) { (ej -0k)-l £'fj(0j-0e)-l (! Z 'lf/J'lf!e) (! Z 'lf/k'lf!e ) 

- (0j - ek)-
2 (J Z 'lj;j'lf/j ) (J Z'lj;j 'lf/k)} + Op(n- 3

/
2
). 

(1.32) 

Analogously t o (1.11 ) and (1. 12), it can be shown that 

iJj - 0j=n- 112 J Z1/;j'lf/j +n-
1 

I:: _(ej -ek)-
1 (! Z 'lflj1/Jk )

2 

+ Or (n-3
/

2
). 

k: k=/=J 

( 1. 33) 

Of course. t here arc analognes of (1.11 ) anrl (J .12) with H-'rnainrlc-~rs n,/n.-r/2 ) 

for any positive integer r . Vve have t aken r = 3 only fo r brevity and simplicity. 

1.2.5 Properties of Stochastic Expansions 

\A/e develop theory based on stochastic expansions of eigenvalue and eigenvector 

cstima1.ors , providing not only a new understanding of the effocts of truncating to 

a finite number of principal components, but also pointing to nev•.r methodology. 

Vve slrnw hmv stochastic, bootstrapped versions of these ideas can be used to con

strnct simultaneous conficlC?.nce regions for literally all eigenvalue estimates, and 

for increasing numbers of eigenfunction estimates. The developed theory makes it 

possible to jnstify bootstrap methods of that type, in terms of asymptotic theory. 

In particular, we a rc ab le to obtain coverage accuracy of bootstrap confidence 
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regions. These results have appeared in Chapter 3. The theory also provides new 

insight into more conventional FDA methods , including those which are used for 

linear regression. These results are used to explore the validity of simple accounts 

of the performance of functional linear regression. We shall discuss it in Chapter 4 

and the Appendix. 

In the next Chapter we shall discuss conditions under which the stochastic 

expansions hold , and in particular under which the infinite series in (1.11), (1.12) , 

(1.32) and (1.33) converge. However, it should be mentioned that the relationship 

between L2 (I ), the space of all square-integrable functions from I to the real 

line, and £2 , the space of all sequences {aJ such that ~~ 1 /aj/ 2 < oo, may 

be used to illustrate a method for proving convergency of the infinite series in 

the expansions. For example , using this method, below we show that in (1.12), 

S1j = ~ e:ei=J(0j - 0e) - 1 bje bke < oo, where b,s = f Z '1/J, '1/Js · For this purpose, we 

first prove that S2j = ~ uh{(0j - 0e) - 1 - 0;1} bje bkf. < oo. To do that , we show 

that the series of absolute values, S~j say, converges: 

. * ~ 0e ~ 0e 
0j s2j = ~ /0 · - 0 I /bje bke/ :S ~ min . _j_. /0 · - e I /bjel /bke/ 

e:t/.j J e e:eh e.erJ J e 

1 
= min. -" 10 _ 0 I L 0e lbJe bkel . 

e. er1 1 e e: t:j=j 

Hence, denoting II I as the length of I and II Z II 00 as su Pu, v I Z ( u, v) I, and using 

the fact that If fr2 Z(u , v) '1/J , (u) '1/Js(v) dudvl :S II Zll 00 /I /, we deduced 

CX) 

ej ( min_ /0j - 0e/) s;J. :S II Z I/~ II /2 ~ 0e < 00 . 
e:e-1..1 ~ 

T f.= 1 

Thus , the series S2 converges absolutely. Moreover, 
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S1j = L (0j - 0et
1 

bje bke = L {(0j - 0et
1 

- 0-;1} bje bke + 0-;1 L bje bke . 
J!: t=l.j JJ,; JJ,=/j JJ,; tj=j 

(1.34) 

We have already proved that the first series on the right-hand side of (1.34) 

converges, so it suffices to prove that S3j = L u=h bje bke converges. 

Below we will prove that S3j is equivalent to the integral 

j j 1, Z(u,v1)Z(u,v2)1/JJ(v1)1/Jk(v2)dudv1dv2. 

Define (A .t)(u) = J Z(u, v) j(v) dv. We have A: L2(I ) ---t L2 (I ). Further-

more, 

(A 2
f)(w) = j j Z(w ,1L)Z(u,v)f(v)dudv= j {! Z(w ,u)Z(u,v) du}f(v)dv 

= j Z2(w , v) f (v) dv, 

\vhere Z2 (w, v) = J Z(w, u) Z(u, v) d?J. is ca11cd the kernel of the operator. We 

know that B : { Ok} E £2 ---t {;_1,j} E f2 such that Lk?::l D jk 01-.: = /_1,j · Moreover , 

define J : f E L2 (I) ---t J f(u) 7/Jj(u) du E £2 . This map is an isometric iso

morphism ( a one-to-one-onto, linear, norm-preserving map) between L2 (I) and 

e2 (Theorem 3.2.15 of Ash 1972). These arguments lead us to 

L2 (I ) ~ L2 (I) 

1l l1 
£2 ~ £2 
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We also have 

{ Bk} E f2 ~ ( L Bk '1/!k(v) ) E L2(I ) ~ ( j Z (u, v) L Bk '1/!k(v) dv ) E L2(I ), 
k21 k21 

and 

Lek j Z(u,v)1Pk(v) dv E L2(I ) __.!_, Lek j j Z(u,v)'1/!k(v)1j!j(u)dudv 
k2 1 k21 

= Lek B jk = µ j , 

k2l 

where Bjk = J J Z(u, v) '1/Jk(v) '1/Jj(u) du dv. Thus , 

B = 1 o A o 1-1 and B 2 = 1 o Ao 1-1 o 1 o A o 1-1 = 1 o A 2 
o 1-1 

In other words, we have B 2 
: f 2 ---t f2 , where 

B
2
({0k}) = J 0A

2
( LBk'1/!k(v) ) = 1( Lek j Z2(w,v)'1/!k(v)dv) 

k21 k21 

= L Bk j j Z2(w, v) '1/!k(v) '1/!j(w) dv dw 
k2l 

( 1. 35) 

=L ek 11· r, Z(w , u) Z(u, v) '1/!k(v) '1/!j(w) du dv dw' (1.36) 
k2l Jr 

Comparing Bjk in (1.35) with (1.36) , we can write E]k in analogy with Bjk as 

follows : 

B]k = L bjebkl = 11· r, Z(w,u) Z (u,v)'1/!k(v)'1/!j(w)dudvdw. 
e21 J1 

Because the integral of the absolute value of the integrand is bounded by /I Z/1~ II /2 , 

S3 converges . 
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It can be shown that the expected value of the term in n-1
/

2 on the right-hand 

side of (1.12), is zero . It then follows from (1.11) and (1.12) that, for all k 2:: 1, 

ajk = 6jk+Op(n- 1!2
) and E(ajk) = 5jk +O(n- 1

), where 6jk is the Kronecker delta 

(see Lemma 4.1). For a general discussion about the stochastic expansions and 

their properties see Chapter 2. 

1. 3 Weak Convergence Results 

In this Section, we give asymptotic results for eigenvalues and eigenfunctions . In 

order to study asymptotic behavior of our estimators, we need first the asymptotic 

distribution of the bivariate random process Z ( u, v). 

Lemma 1.2 . If the random process X(t) satisfies the follm;ving condition: 

fo r alJ C > 0 and some E > 0, 

SU p EI X (t;) ( < co ) SU p E [ {I s - t; 1-( IX ( s) - X (t;) It'] < co ' ( 1. 3 7) 
1.E'I s,lEI 

then Z( u, v) = n 112 (I< - K) (u, v) ~ (( u, v) in distribution, where ( is a Gaw_)siau 

process. 

Proof of Lemma: We have 

Z(u, 'u) = n 1!2 (K - J<)(u , v) 

[(
1 n ) _ _ ] = n] /

2 
;, L 1~. ( u) }~ ( V) - ]( ('I/,' V) - { X ( '/l) - r; ('Ii,) } { X ( v) - 'I] ('I))} 

1.=l 

[ 
1 

71 

] = n 112 
;, L VVi(u, v) - {X(u) - 77(u)}{X(v) - 77(v)} , (1.38) 

1.=l 

where 17 ( u) = E { X ( u)} , }~: = Xi - 17 and 11Vi ( u, v) = }~ ( u) }~ ( v) - K ( u, v). The 

first term on the right-hand side of (1.38) is the sample mean of then independent 

terms. Furthermore, by using the fact that X ( v) - 77( v) = O7ln- 1l
2

) (Theorem 
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3.2.5 of Sen and Singer (1993) wit h t ightness of X (v) which is discussed later), we 

can write Z(u, v) = Zn (u, v) + Op(n- 112
), where Zn (u, v) = n- 1

/
2 

~ ~= l vVi (u, v) . 

Theorem 1.3. Let Pn and P be probability measures on ( Cro,1], :Fl where 

Cro,iJ is the space of continuous functions on [O, 1] with the uniform metric p( x, y) = 

supt Jx(t) - y(t )I, for each x, y E Cro,1], and Fis the o--field constructed on Cro,l] · 

If the finite-dimensional distributions of Pn converge weakly to those of P , and if 

{Pn} is tight , then Pn converges weakly to P. 

Proof: See Theorem 8.1 of Billingsley (1968). • 

Using the above t heorem , if Xn are random elements of Cro,1], then { X n} is 

tight if { Pn} is tight , where Pn is the distribution of Xn , as we identify the finite

dimensional distribution of X n with t hose of Pn in the above theorem. Therefore 

Theorem 1.3 is equivalent to the following argument . 

If the finite-dimensional distributions of X n converge weakly to t hose of X, 

and { Xn} is tight , then X n --* X in dist ribution. Regarding the k points 

(u1 , v1) , · ·· , (uk ,vk), for each point if f1:E (X 4) < oo, then the classical Cen

tral Limit Theorem with the Slutsky Theorem (Theorem 3.3.1 and 3.4.2 of Sen 

and Singer 1993) implies that , for each j = l , · · · , k , 

Zn (-uj, Vj) + op (l ) --+ ( (uj , vj ), in distribution ) (1.39) 

where ( (uj, vj) is the weak limit of Z (uj, vJ, for each j = l , · · · , k. Now, for the k 

points (u1 , v1), · · · , (uk, vk) in (0, 1] x [O, 1], let Il (u i ,vi) ,· .. ,(uk ,vk ) be t he mapping that 

carries t he point h of Cro,i] x [D, l ] t o the point ( h( u1; v 1 ) , · · · , h( uk, vk )) of Rk. Since 

II (u1 ,u1 ), .. , ,(uk,vk ) is continuous , we have II cu1 ,v1 ) ,··· .(uk,Vk } ( Zn) ---;. II (u1,v1 ) ... , ,(u1c ,v.1;: ) ( () 

in distribution (Corollary 1 of Theorem 5.1 of Billingsley, 1968), i.e. 
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(Zn(u1, v1), · · · , Zn(uk, vk)) --+ (((u1, v1), · · · , ((uk, vk)), in distribution. 

(1.40) 

(in particular, ( 1.40) follows via the Cramer-Wold device.) 

Theorem 1.4. The sequence { Xn} is tight if it satisfies these two conditions: 

(i) The sequence {Xn(O)} is tight. 

(ii) There exist constants , 2:: 0 and a > l and a nondecreasing, continuous 

function F on [O, 1] such that 

1 
P{IXn(t2) - Xn(t1)I 2:: A}~ )tt IF(t2) - F(t1)l

0

, (1.41) 

holds for all t1 , t2 and n and all positive >.. 

Proof: See Theorem 12.3 of Billingsley (1968). • 

\ ·•,:, , ! · • , , •, • / I , • , { : ( l , , , , , , , , , , , , T , / r,,, n , l ; -/- ; n.,,,.. 
\ I .... . J L. J .,i.. ' J \ \ '- ' J.. J. ... , . \. I \ I.I .I \.. ; j .l J. ' ,I j J j \ , j .I \ I \.. • \ J j J \ t J ~, .I \ j I l 

E{\Xn(t2) - Xn(t1)I ' } ~ \F(i;2) - F(t;J )\0
· , (1. 42) 

implies (1.41). Furt hermore , we can immediately obtain t ight ness of {Xn} from 

condition (1.37), (1. 42) and Theorem 1.4. Also, fo r some 11 = 2k, where k 2:: 1 

is an integer, using Rosenthal's inequ ality (Hall and Heyde 1980, p. 23) fo r fixed 

v., 'u,s,f. E [O, 1] resul ts in 

11 n n 

E[ln-J 12 L Wi(u,v)- n- 112 LVVi(s,t)I'] = n-k El L {VVi(u,v)-W1(s,t)}l
2
" 

i=l i=l i=l 

,:; C17 n-k { t EIWi(u, v) - Wi(s, t) l
2k + ( t EIWi(u, v) - J,V;(s, t)l2) k} 

~ C2, EI vv ( U, V) - vv ( S, t) I' , ( 1. 43) 
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and 

EJW(u , v) - W(s , t) I' = EJ {Y(u) Y(v) - Y(s) Y(t)} - { K(u , v) - K (s, t)} I' 

~ C3-y ( E[Y(u) Y(v) - Y(s) Y(tW + Ef Y(u) Y(v) - Y(s) Y(tW) 

~ C4, EJY( u) Y( v) - Y(s) Y(t) I', (1.44) 

where C1,, C2,, C3, and C4, are constants depending only on,, and W and Y 

denote a generic VVi and ~ ' respectively. Also, 

E [fY(u) Y(v) - Y(s) Y(tW] = E [fY(u) (Y(v) - Y(t)) + Y(t) (Y(u) - Y(sW] 

~ C-y { E[IY(u)l'Y IY(v) - Y(t)l'Y] + E[IY(tW IY(u) - Y(s)l'Y]} 

{ ( ) 

1/2 ( ) 1/2 
~ C, E[jY(u)l2 1

] E[!Y(v) - Y(t)l2 1
] 

( ) 
1/2 ( ) 1/2} 

+ E[jY(t)l2 1 ] E[jY(u) - Y(s)12 1
] , 

(1.45) 

where C, is a constant depending only on ,. If condition (1.37) holds , then 

(1.43)-(1.45) imply that for each two points (u, v), (s, t) E [O, 1] x [O , 1], 

E [rn-112 t Wi( u, v) - n-112 t Wi( s, tW] ~ C-y { Iv - ti"+ lu - s1"} ' (1.46) 

where , can be chosen such that a = E, > 2. Hence , using Markov's inequality, 

for each>.> 0, each two points (u,v), (s,t) EI x I and all n we have 

Pn (In -l/
2 t Wi( u, v) - n -l/

2 t Wi(s, t) I > A) ~ C-y A-, { Iv - ti"+ lu - si"} . 
i=l i=l 

(1.47) 

The proof of the above theorem, given by Billingsley (1968), with condition 
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(1.47) instead of (1.41 ) may be followed to show that n-1
/

2 
~ ~=l Wi(u, v) is tight. 

To appreciate why, fix n, 8, j and k, then for a positive integer m consider the 

random variables 

Ke= n- 1/ 2 f (VVi(j 6 + !_ 8, k 8 + !_ 8) - VVi(j 8 + (f - l) 8, k {; + (!!, - l ) 8)) , 
i=l m m m ni 

fo r /!, = 1, · · · , m. The random variables Ke with Sk = ~1=1 K,e satisfy 

Ss - Sr= L K,e 

r</!,~s 

= n-
1

/
2 f (vVi(j 8 + !_ 8, k 8 + !_ 8) - Wi(j 8 + !_ 8, k 8 + !_ 8)) . 

m m rn ni 
i=l 

So, for O ::; r ::; s ::; m and >. > 0 \Ve h ave 

P(ISs - 5\./ ~ >.) = P(/ L Ke/ ~ >.) 
r <C~ s 

I , ( _q - r \ Fi . - ( q - 'I~\ r) _ l 
:_; C\ /\-';' l (-~--m_:__' .. r + ( I m / J" j 

::; C, >- -, [( L 8m-1f+( L 8m- 1)°'] 
r < f!. ~ s r <f.~.s 

::; C, >--, 8°· , 

wh ere we have used ( 1.4 7) t o obtain the first inequality ab ove. By using Theorem 

12.2 of Billingsley (1968), we have 

I 
n ( I!, I!, )I B P( max n- 1

/
2 L VVi (j 8 + - c), k c)+ - c)) - VVi (j 8, k 8) > e: ) ::; - 5°, 

O<f< rn 777, rn, f.1 
- - i= ] 

\"rherc B depends on , ' and a ( B = R ,, , 0 ) . Since t he VVi fo r each 1 ::; i ::; n a rc 
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continuous functions , if m --+ co we have 

P( sup I n -
1

/
2 t (wi(u, v) - vVi(j 5, k 5)) I > E) ~ ~ 5a . (1.48) 

/l(u,v) - (j6,k6)JIE<6 i=l E Y 

where 11 -IIE denotes the Euclidian norm in R2. If 5- 1 is integer , the above in

equality leads to 

L L P( sup I n -
1

/
2 f (wi(u, v) - Wi( j 5, k 5) ) I > c) S ~ 5°-

2
. 

j<J-1 k<J-1 ll(u,v) - (j 6,k<S) IIE<6 i=l E 

(1.49) 

Define the modulus of continuity of an element x of Cro,1Jx[o,1J by 

wi2)(5) = sup lx(u, v) - x(s, t)I, 
ll(u ,v) - (s,t) II E <6 

where O < 5 ~ l. Let 

As,t = {n-1
!

2 t wi : sup jn-1!2 t (wi(u, v) - vVi(s , t)) I 2: E}. 
i = l IJ(u,v) - (s,t )II E<6 i = l 

If we want to lie ( u, v) and ( s, t) each in rectangles of t he form [j 5, (j + 1) 5] x 

[k5, (k + 1) 5], then if ll(u,v) - (s, t)IIE < 5, these rectangles either coincide or 

abut . Therefore, 

p ( n-
112 t wi : w~

2
], ; , L~, w/5) ::::: 3 c) s P ( uj,k<8 - l Aj8 ,k8) 

S'. L L P(Aj8,k8) S'. ~ c5a- 2 , 

k<J-1 j<J- 1 

where we have used (1.49) to obtain the last inequality above. Because we can 

choose 1' such t hat a = E1' > 2, we may take 5 as the reciprocal of a large 

integer: and in t his way make ( B / E') 50:- 2 very small. Moreover: for all a > 0 
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and adequate choice of 5 we have 

n n 

P(ln-112 L wi(O,O)I ~ a) :S; a-6 E[ln-1l2L wi(o ,0)16] 
i=l i=l 

<:'.'. C10 a-
0 

{ EjY(O) Y(O) IO+ jK(O, 0) ir 
<::: C26 a-

0 
{ EjY(O) x Y(O) I

O
+ EjY(O) x Y(O) j

0
} 

{ }

1/2 { } 1/2 
:S; C36 a-6 EjY(O)j

26 
x E jY(O)j

26 

:S; C4J a-6
, 

'where C16 , C26 , C36 , C46 are constants depending only on 5, and we have used 

condit ion (1.37) to obtain the last inequality above. Thus, 

Z(u, v) ~ ((u , v), in distribution. • (1.50) 

The vleak limit of Z, C is a bivariate Gaussian process 'With mean zero and the 

covarj ance function 

C ( u , v, s, t) = cov { ( ( u, v) , ( ( s, t)} = cov { 1V ( u , v) , vv ( s, t ) } 

= E{Y (u) Y (v) Y (s) Y (t,)} - K (u, v) K (s,t,), 

where Hl and Y denote a generic 1V1 and }~, respectively. Using t he Karhunen

Loeve expansion X (1L) - 17(1 L) = ~ ~ 1 (j 1/};(u), where (j = fy( X ~ 17) '1/Jj, we 

have: 

00 00 

C(u) v, s, t) = L .. . L E(~j1 .. . ~j4 ) '1/)j 1 (u) '1/)j 2 (v) '1/)j3 (s) 1/);4 (t) 
J1=l j,i=l 

00 00 

- L L 0j1 0j2 '1/Jj 1 (u) 'l/J11 (v) w12 (s) 'l/J12 (t), (1.51 ) 
]1=1 h = l 
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where we have used the fact that E (~JJ = 01k. If the absence of correlation 

among the ~j's is replaced by independence, only for the purpose of calculating 

the expected values of products of four of the variables ~ j, then the first series on 

the right-hand side of (1.51) can be wTitten as 

(X) 00 

L · · • L E(~h • • -~j4) '1/Jj1(u)'I/Jj2(v)'lj)j3 (s)'lj)j4 (t) = 
j1 =l j4=l 

L E ( ~;) 'lj) j ( u) 'lj) j ( V) '1/) j ( s) '1/) j ( t) 
j = l 

+ LL 0j1 012 { '1/)j1 (u)'lj)j1 (v)'ijJ12 (s)'lj)12 (t) 
)1 =/=j2 

+ '1/)Jl ( U) '1/)j1 ( S) '1/)12 ( V) '1/)jJ t) + '1/)j1 ( U) '1/)Jl ( t) '1/)12 ( S) '1/)j2 ( V)} . 

Therefore, 

00 

c ( u, v, s, t) = L { E ( ~;) - eJ} '1/J j ( u) 'lfJ j ( v) 'lfJ j ( s) 'lfJ j ( t) 
j = l 

+LL ej, eh { 'lpji (u) 1Pj1 (s) 'lpjz(v) 'lpjz(t) + 'lph (u) 1Pj1 (t) 'lpjz(s) 1/Jjz(v) }. 
h=l=h 

(1. 52) 

Under the assumption that random processes Xis a Gaussian processes, (i .e. 

the variables ~1 are independent and jointly normally distributed, rather than 

merely uncorrelated, and with zero kurtosis ), E( ~J) = 3 0J. In this situation, the 

asymptotic covariance function is simplified as follows: 

C(u, v, s, t) =LL 0j1 012 { 1/)j1 (u) 'l/)12 (v) 1µj 1 (s) 'l/)12 (t) + ?fih (u) ?µj 2 (v) ?t,12 (s) ·1h (t)} 
hh2 

00 

+ 2 L eJ z1;1(u) 1/Jj(v) ?fj(s) 1/Jj(t) . (1. 53) 
·= l 
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1.3.1 Asymptotic Distribution of Eigenvalues and Eigen

funct ions 

It should be mentioned that accounts of asymptotic normality of eigenfunctions, 

eigenvectors and their projections have been given by Dauxois et al. (1982) and 

Bosq (2000) . In connection with the results discussed above, using the expansion 

(1.32) and (1.33) , the following shorter expansions can be derived: 

n112 ( v;j(t) - 1/;j( t)) = L ( ej - ek)-11/Jk(t) J Z 1/JJ 1/Jd Dp(l) . 
k : k:/=j 

( 1.54) 

n
1
1

2 
(OJ - 0J) = j Z 1/JJ 1/JJ + op(l) . (1.55) 

Sirnilarly, it can be seen from equation ( 1. 32) that: 

00 

' ' ii '7: :, ii~ . ~ / \ \ ~: 
,1 \\ <f-' j . <f-' j II - ,1, L ,u_;1,: - u_;1,;) 

k=l 

2 

= k~ j ( 0j - 0k)-
2 

( J Z 1/Jj 1/Jk ) + o7, ( 1) , ( 1.56) 

Results (1.54)- (1. 56) lead directly to limit theorems fo r ;j;j and Oj, as follows. 

Let P_; = VJj 0 1/Jj and Qj = L k:k-/=J (0j - 0kt 11h @'1/JJ-,: - Define the operator 

c]>j s1ich that it maps Z E F to QjZPj E F , where F, the space of all Hilbert

Schmidt operators on E ·with the inner product (., .)p introduced in (1-4), and 

the I3orel field Bp. The operator cDj is linear and continuous. So , (1.50) implies 

that cD.i(Z) ~ <Dj(() in distribution (Theorem 5.5 of Billingsley (1968)). In regard 

Lo the latter result, if the 1h's are continuous (for each j ~ l , 1/Jj E Cro ,1 ]), t hen 

(1.54) entails that the random function n 112 (;f;j(t) - 'I/Jj(t)) converges weakly to 
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a Gaussian process, wj(t) say, precisely; 

n 1
/

2 (;/;j(t)- 1/!i(t)) ----> \Jrj(t) = L (0j - 0k )~1 '1/Jk(t) J ( 'lpj'lpk, in distribution, 

k:k-::j=j 

(1.57) 

where the non-stationary Gaussian process wj(t) has zero mean and covariance 

function 

Tj (u,v) = L L (Bj - Bkl )- 1 (Bj - 0k2 )- 11/Jk1(u) 1/Jk2(v) 
kl : kl-/=j k2: k2:/=j 

x JC( u, v, s, t ) '1/Ji (u) 'lpkl(v) '1/Ji( s) '1pk2(t ) du dv ds dt, 

where C (u, v, s , t) was introduced in (1.5-1). After some algebraic calculations , 

under the assumption of independence the above formula is simplified to 

l j ( u' V) = L ( 0 j - 0 k )- 2 
0 j 0 k 1/Jk ( u) 1/J k ( V) . 

k:k#j 

In particular , the asymptotic variance of n 1/
2 ·Jj ( t) equals 

j(t)2 = Tj(t, t) = L (0j - 0k) - 2 0j 0k 1/Jk(t) 2
. (1.58) 

k: k-/=j 

Result (1.57) can be extended to a p-tuple of the ;j;j· The p-tuple n 112 (;f;j (t ) -

ih(t)) for 1 ::; j ::; p converge jointly and weakly to the non-stationary Gaussian 

process W1 , ··· , WP. In particular , for j 1 ,)2 2: 1, the two random functions 

n
1
l

2 
(-~1 (t) - 1/Jj1 (t)) and n1

/
2 (;/;h (t) - ·l/Jh (t )) have the asyn1ptotic covariance 
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function 

'Jl,]2(u, v) = 6)1,)2 L (0)1 - 0k)-
2 

0)1 0k '1/Jk(u) '1/Jk(v) 
k: k-::/j1 

+ (5)1,]2 - 1) (0)2 - 0)1(
2 

0)1 0j2 '1/J12 (u) '1/JJ1 (v)' 

where 6Ji ,h denotes the Kronecker delta. The covariance function shows that for 

j 1 f j 2 , the two elements n- 1
/

2 ({!;Ji (t) - '1/)J
1 
(t)) and n-1

/
2 ({!;12 (t) - '1/JJJt) ) are 

not asymptotically independent. 

Moreover, in connection to (1.56) we have , by (1.50) , 

n 112 il1lj - '1/Jj II -+ UJ , in distribution, (1.59) 

where 

UJ = L (0j - 01,~(
2 

N]k ' ( 1. 60) 
!: : .'~-!- ~ 

and the random variables NJk = J ( '~J_7 ~J k are jointly normally distributed with 

zero mean. If the random function X is a Gaussian process then NJ1 , N_72 , .. . are 

independent as well as normally distributed. Note that, since f
1 

E(XtJ ) < oo, 

t E(N]k) = E( t N]k) = E{ 1 [ 1 ((11, v) 1/JJ(v) dvf du } 

= 1 Eu ((u,v)1/JJ(v)dvf du~ fl
2 
E((

2
) 

= j L E(l1V
2

) = 11 { E[X(u) 2 X(v) 2
] - K (1,, v) 2

} d11,dv 

~ Ll E[X(v)2X(v)
2
]dndv=E( 1x

2y ~ 1E(X'
1
)<oo, 

(1.6 1) 

from ·vvhich it follmvs that the series defining U} is finite provided the eigenvalue 
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0j is not repeated. Observe too that (1.55) implies 

n1; 2 (Bj - 0j) ------+ Njj' in distribution , (1.62) 

where Njj is normally distributed with mean zero and variance 

ry] = Var ( / W 'lj.;i 'lj.;i ) = E(~j) - 0J. (1.63) 

An extension of the result (1.62) is available for any p-tuple of the Bj . The 

p-tuple n 112 (Bj - 0j ) for 1::; j:::; p converge jointly to a p-variate Normal distrib

ution . In particular , for j 1 , )2 2:: 1, the two random quantities n 112 (Bh - 0ji) and 

n 112 (032 -0jz) are asymptotically distributed as a two-variate Normal distribution 

with the covariance 

[]1]2 = E( el ~;J - e]l 0j2 . 

Comparing result (1.62) with formula (1.60) for the limiting distribution of 

n 1/
2 11-J;j - -z/;j II, we see t hat spacings among the eigenvalues 0k impact immediately 

on properties of 'lj)j, t hrough first-order terms in its limit ing distribution; but 

impact on Bj only through second-order terms. Note also (1.33), where it is clear 

that eigenvalue spacings affect only the term in n - 1
, not that in n - 1

/
2

. 

1.4 Inequalities 

Explicit bounds on 11-J;j - '1/J j II in terms of spacings, and a spacings-free bound for 

1Bj -0jl, can be obtained from Theorem 1.5 below. Define 6. = (J IK - Kl2 )
112

, 

6,; = min1 <k<1 (0k - 0k+l)' 
J - -oJ 

Jj = min1::;k::;j ( ek - Bk+i) , 

J = inf { i > l ,~ -

J = inf {j 2:: 1 

0j - 0j+l :::;26.}, 

ej - ej+1:::;2Z}. 
(1.64) 
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Theorem 1.5. (a) With probability 1, supj2:'.l l0j - Bjl < .6. and for all 

l:s;j:s;J-l 

11 ,J> v,j\l s 2112 [1 - {1 - 4 (E/oj)2 } i;2f2 s g112 E;oj. 

(b) This result continues to hold if ( J, 5j) is replaced by ( J, Jj) throughout. 

Proof: The theorem follows from Bhatia et al. (1983). Let Bj1 ~ Bj2 ~ · · · ~ 0 

denote the eigenvalues of the self-adjoint, semi-positive definite Hilbert-Schmidt 

operator Kj (j = 1, 2) on L2(I) , and Vh 1,'I/J12,VJi3, · · · and VJ21,VJ22,'I/J23, · · · be 

the sequence of respective orthonormal eigenfunctions K 1 and K 2. Sections 4-6 

of Bhatia et al. ( 1983) show that 

if 11!<1 - K2II ~ E, then IBie - 02el ~ E, for each/!,~ 1. ( 1. 65) 

. .. ,., - - - - -
T , l • r II r r T.,,... II . , 
!1! ( :: .: 1{ ·1· ~; t: !\ ~ :~ ~ ~ ;; ----- F) t.t'l(='-~'l e!ge~~~.-s~lu~ seclucr.:.e:c~ ~ ~ },~ i ~~; ~c! .:~ ~; \\ 'l 

multiplicities included , are no further apart than c Furthermore, Theorem 6.1 

of Bhatia et al. (1983) implies that if II K 1 - K2II ~ E ~ ½ c5j then > for 1 ::; /!, ~ .i, 

! 5_; ll1/J1e - '01ell 2 ~ E, where 5j = infe~j(0ie - 01,e+ 1) and 'l~ie = VJ2e J 1/Jlf 1/J2e 

denotes the projection of 1/Jie onto 1/J2e. I-Iencc, if II K1 - K2 II ~ E ~ ½ c5j, then, 

for 1 ::; £ ~ _j > 

II 1P 1e - Vh e I I 
2 = 2 { 1 - ( 1 - II 1/J ie - 1~ 1 e I I 

2
) 
1 
/ 
2 
} 

~ 2 [1 - {1 - 4(c/6j) 2
}

1
/

2
] ~ 8 E

2 /5]. (1.66) 

Parts ( a) ;rnd (b ) of Theorem 1.5 follow on taking E = .6. and letting (1<1, K 2) = 

(K , K ) and (K , K ), respectively. The only assumptions needed for the theorem 

are tlrnt X 1 ) . . . , X
11 are square-integrable random functions. Theorem 1.5 can 
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also be obtained from Bosq (2000 , Lemma 4.2 , and Lemma 4.3). • 

The inequalities are potentially attractive, because they can be used as the 

basis for simultaneous confidence regions , and for bootstrap confidence proce

dures. These methods can be justified, and in particular can be shown to have 

appropriate degrees of accuracy, by using the stochastic expansions mentioned 

earlier. See Chapter 3. 

Numerical experiments show that regions based on the simultaneous bound 

for //,0'1 - 'l/J1 II are too conservative to be of much practical benefit. However, the 

simultaneous bound for /0j - 0j I can give useful results. See Chapter 5. 



·. 



Chapter 2 

Mathematical Properties of 

Stochastic Expansions 

2.1 Introduction 

The stochastic expansions for eigenvalues and eigenfunctions given in Chapter 1 

are of intrinsic interest. They can be used as the foundation for theory in a par

ticularly wide range of settings, for example bootstrap methods for confidence 

intervals for eigenvalues and eigenfunctions. However , in order to develop infor

mative theory about the performance of such methodologies , we need a concise 

~ ------

account of the accuracy to which 0j and VJj approximate 0j and VJj, respectively. 

That account can be easily provided using properties of the expansions. More

over , the problem of determining estimator accuracy, uniformly over many com

ponents, prompts consideration of explicit uniform bounds that are obtainable 

via the mathematical theory of infinite-dimensional operators. 

In Section 2.2, we first state the basic theorem about the properties of the 

stochastic expansions. vVe introduce the notations used in this Chapter , and also 

give the two auxiliary Theorems 2.2 and 2.3 in Section 2.3. Section 2.4 provides 

41 
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bounds in both Sup and Hilbert-Schmidt metrics for K - K. In Section 2.5, we 

exploit the auxiliary results, discussed in Section 2.3, for empirical approxima

tions. After that, we give approximations to 0j and :(fj in Sections 2.6 and 2.7, 

respectively. In the latter Section, we obtain bounds in both Sup and L2 metrics. 

2.2 The Basic Theorem 

Take I to be the unit interval. P ut A = X - E(X) and assume that 

(a) for all C > 0 and some E > 0, 

supEIX(t)l c < oo , supE[{!s-t\-EIX(s)-X(t)!} c] <oo; (2.1) 
LE.I s,t.E.I 

(b) for ea.ch integer r ~ l, Bi' E(JI A 1/Jj )2
' is bounded uniformly in j . 

For example, (2.1 ) holds for Gaussian processes with Holder-continuous sample 

paths. If Xis a Gaussian process, then the variables ~ j in X -E(X) = L_: 1 ~J 1h 

are in dependent and jointly normally distributed . Therefore, ~J / 0J has a Chi

squared distribu t ion wit h one degree of freedom , and E (JI A 1/JJ )2r = E (~J7') ~ 

Cr o_;- > where t he constant Cr only depends on r . Generally; if ~ j / ( E~;) 1 
/

2 has the 

distribution of~ ' fo r each j , t hen part (b) of (2 .1 ) holds whenever E((t) < oo. 

Rccc1 1l t ]rnt the eigenvalues of the covariance operator I< are ord ered so that 

01 ~ 0"2 ~ . . . ~ 0. Defin e ll! R -K\11 2 = J (K - I<)2
, and put PJ = min kh \0j - (hi, 

s_7 = s111\, l1hj(u)\ and (J = inf~.:~J {1 - (0~./0j)} . 

RcsuHs (1.11). (1.12), (1.32) and (1.33) are straightforward corollaries of the 

fo llmving theorem. 
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Theorem 2.1. If (2.1) holds , then for each j for which 

11/R - K//1 :S ½ min(0j - ej+l, ej-l - 0j) ' (2.2) 

the absolute values of the "Op(n- 312
)" remainders on the right-hand sides of 

(1.32) and (1.33) are each bounded above by n-3
/

2 Unj (l - (j)-1
/

2 f; 3 0;
112 

sj , 

where the random variables Unj satisfy SUPn,j~l E(UZ) < oo for each C > 0. 

In the case of (1.32), this bound is also valid uniformly in t. Moreover, the 

"Op(n-312
)" remainders on the right-hand sides of (1.33) are bounded above in 

the L2 metric by n-3
/

2 Unj p-;3, where the Unj have the same properties as before. 

We may paraphrase (2.2) by saying that that condition holds for all j for which 

the distance of 0j to the nearest other eigenvalue does not fall below 21/IK - KIii, 

which in turn equals Op(n-1
/

2
) . Moreover, using Markov's inequality for each 

E, C > 0 we have 

P (UnJ· > l) :S r 0
E EIUnjlc' 

Then , using the Borel-Cantelli Lemma for appropriate values of C and E im

plies that j - E Unj = 0 (1), with probability one. Therefore, the bounds given in 

Theorem 2.1 imply that the "Op(n-312
)" remainders in (1.32) and (1.33) equal 

Op{n - (3/
2

) f (1 - ~jt 1!2 p5
3 0;

112 sj } uniformly in j for which (2.2) holds and 

1 :S j :S n° for each C, E > 0. In the case of (1. 32) the bound is also uniform in 

t EI. 

2.3 Notations and Auxiliary Results 

In t his Section we state and prove two theorems used to derive Theorem 2.1. 

Derivations of t he parts of T heorem 2 .1, pertaining to expansions ( 1. 32) and ( 1. 33), 

will be given in Sections 2.8 and 2. 7, respectively. 
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Define III = JI dx, denoting the content of the compact region I. Given 

univariate functions a and (3, and a symmetric bivariate function M, put llaii = 

(JI a 2
)
1
/
2 

denoting the L2 norm of a, IIIMIII = (f JI2 M2
)112 and IIIMlllsup = supuEI IIM(u, .) II, 

and write J a (3 and J Ma (3 for 

l a:(u)f](u) du, j L M(u, v) a:(u)fJ(v) dudv, 

respectively. Furthermore, let J Ma denote the function of which the value at u 

is JI M(u, v) a(v) dv. 

Let J{ and L be two self-adjoint, positive semi-definite, Hilbert-Schmidt op

era.tors on I, with respective kernels which we also write as J{ and L. By the 

singular value decomposition theorem, we can ·write the respective spectral de

compositions as 

00 00 

T< (,11 ,,1\ - ~ f:I . ,,/, .f ,, ,\ ,,/1 .(,,,\ 
,... .,. \ .._.._ • .._, ; .,./ \.1 ,' \, '! \ \ J1 ,' \.._I,,,./ \ L, } • 

T (" , " , \ - " \ ,,/, f" . \ ,,/, f " . \ 
,.L., \ t t , . I i/ - / ' ,/\'] 1 ! 1

1 
I I/ }l!l,J ~ 1 : J , (~ . 3: ,,__ . . -

j=l j=l 

\Vhere the terms are ordered in such a way that 

01 ~ 02 ~ ... ~ 0, )q ~ A2 ~ · · · ~ 0. (2.4) 

\".Jc wish to clescri be the closeness of 0 j to Aj, and of 1./J.i to cpj, in terms of the 

nearness of I< to L. The results discussed below apply only to Hilbert-Schmidt 

operators, of \vhich the covariance opera.tor J{ and its estimator , the sample 

covari ance operntor I< , are examples . 

Theorem 2.2. If I< and Lare Hilbert-Schmidt operators with corresponding 

kernels that have the expansions (2.3 ); and if we write </>j as " 1./Jj plus a. first-order 
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term xj plus a remainder 6./ , i.e. as 

¢j - '1/Jj = X + 6.j ; (2.5) 

then, 

1(0j - Aj)(1+ f XfifJJ) - jrK-L)(1PJ+XJl1PJI 

:S IJL.jll (Jej - Ajl +I112 IIIK - Llllsup)· (2.6) 

Proof: Formula (2.3) directly implies a series expansion of K - L. Multiplying 

both sides of this by ¢j ( u) 'lj)j ( v), and integrating over u and v, we deduce that 

(0 · - ,\ ·) f rl-i · w · - f (K - L) dJ · w · = 0. J J YJ I J I JI J (2. 7) 

In view of (2 . 5), 

If ¢J'1/}j -1- f XJ'1/Jjl = If t. j'1/}jl ~ ll t.JII, 

I f ( K - L) ( ¢} - '1/)j - XJ) '1/){ = I f (K - L) t,j 1/JJ I 
2 

'.'.: (! t.]) l[ 1 { K (u, v) - L (u, v)} 1/JJ(u) du r dv 

:S II I II L.j ll 2 III K - Llll;up' (2.8) 



46 CHAPTER 2. MATHEMATICAL PROPERTIES OF STOCHASTIC EXPANSIONS 

Results (2. 7) and (2.8) imply (2.6) as follows: 

I (0j - >.j) ( 1+ j XJ'I/Jj) - j (K - L)('I/Jj + XJ)'I/Jj I 

= I ( 0 J - >. J) ( 1+ / XJ 1/J J - j ¢ J 1/J J) - j ( K - L) ( 1/J J + XJ - ¢ J) 1/J J I 

::::: iej - >-j1 I/ Lj 1jl + I Ju-< - L) Lj1jl 

~ 1ej - Ajl IL jll + IIl 112 IIIL j lll lllK - Llll sup 

= l!Lj II (j0j - Aj I+ I 112 IIIK - Ljllsup) · • 

Theorem 2.3. Assume ]{ and L are Hilbert-Schmidt operators for which 

the corresponding kernels have the expansions (2.3) , and that the eigenvalues 0j 

are all distinct. Then , provided (for a given value of j) inf1c:"~fj jA j -01cl > 0, 

</J j - 1/J; = L ( >.; - 0 ,y 1 
1/J k J ( L - K) ¢ j 1/J k + 1/J; J ( cf; j - 1/J j) 1/J j ( 2' 9) 

J; : /,'.=/-7 

= f)oj - >.;) 8 L (0j - eki-(s+l) 't/;k I (L - K )¢j 1/Jk 
s=O k:l,;fj ' 

+ 1/Jj j (cpj - 1/JJ)'I/Jj (2.10) 

~(0·-A·)s ~ J = 0:;1 ~ 
1 

0 J 
1 

k ~ J 1/Jk ( L - K) c/ij 1/Jk 

+ f (0j - >.j) 8 L {(0j - ek)-(s+l) - e;(s+l)} 1/Ji j (L - K)¢; ·if;k 

s=O k :kfj 

+ 1/J; J (<Pj - 1/J; ) 1/Jj , (2.11) 

Let (J E (0, 1) denote the infimum of 1 - (0k/0J over k, such that 01,. < ej, 

and let ?]j E (0, 1) denote the infirnum of (01j0j) - 1 over k such that 01c > 0j. If 

j0i - /\ jl ~ ej min ((j,7]j), a.nd if Kand Lare uniformly bounded , then the series 
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in s at (2 .10) and (2 .11) are absolutely convergent. Moreover, 

I k ~j 7/Jk J (L - K) ¢) 7/Jk, ~ IIIL - Klllsup { 1+ :~~ 11/JJ( u) I}, 

(2 .12) 

10j - Ajl" L /{(ej - 0k) -(s+l) - e;(s+l)Hk I (L - K) ¢) 7/Jkl 

k: kc/=j 

~ max{ (j(s+l) (l _ (j )-1/2' 7Jj (s+l) + l} e;3/2 

I 

e · - ,\ · / 1;2 
x 

1 

0
_ 

1 
{ supK(u,u)} I/IL -Kl/I. 

J uEI 

Proof: It can be shown directly from (2.3) that 

Aj (¢) - 1/)J) = I K (¢J - 1/)J) + j(L - K ) ¢) - (Aj - 0j) 7/JJ 

Multiplying both sides by 1fk, and integrating, we deduce that 

AJ j (<PJ - 1/)J)(v)i/Jk(v) dv = J L K (u,v)(¢J - 1/)J)(u)i/Jk(v)dudv 

+ J L (L - K )(u, v) ¢J(u) 1/)k(v) du dv 

- (AJ - 0J) J 1/)J(v) 7/Jk(v) dv 

= ek I (¢) - 1/)j)(u) 7/Jk(u) du 

(2.13) 

+ I (L - K ) ¢) 7/Jk - (Aj - 0Jl i5jk , (2.14) 

where 5jk denotes the Kronecker delta. Equivalently, provided Aj # 0k , 

j (<PJ - 7/JJ) 7/Jk = (Aj - 0jt
1 j(L -K ) ¢J 7/Jk - iijk· 
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Results (2 .9) and (2 .10) follow from this formula and the fact that 

</>j - 7/ij = f 7/ik J ( </>j - 7/ij) 7/ik, 
k=l 

(A· - 0k)-1 = (0 · - 0~)-1 (1 - 0j - Aj)-1 = ~ (0j - Aj)s 
J J k 0j - ek L- (0J· - - · · · 

s=O 

To derive (2 .12), note that 

lk~j 7/ik j (L-K)</>j"Pkl=I J (L-K)</>j-7/ij j (L-K) Ujl 

::; IIIL - Klll sup {1 + sup 17/-Jj(u)I}. 
u 

To obtain (2 .13), we need the following lemma. 

Lemma 2.1. For each integers~ l , we have: 

lf ·1 - ( ~ . / ~ .n-(s+l) - 71 UL /fJ . \1/2 / mr,~ - u--(s+l) ( 1 r \-1/2 __ -( s+ 1) I 11 - ,1 ! t . .:... \ \ t: .' \J ; ' . ' ! ..1 ! \ \J ',• / \J J,-- ,I _.::: I I I, 1, ,, , 1_ \~:j \ ..!... - 1-.:· .: - ! I. 7- _1 f == . .:'~ , ... 

uniformly in values of k such that k -::J j. 

Proof of Lemma: Define 7/jk = {1 - (01) 0 j )} , ( j = infu.:>j {l - (01,j0j)} and 

?l) = infu~<j {(81,)0_7) - 1} . Fork> j, (j::; 7/j k < l , 

l{ l - ((h, / 0.i)}-(s+1) - 11 (8j/0;J1/2 = 1//jk(s+l) - 11 (1 - 7/jk)-1 /2 

_ ( -(s+l) ) ( ) -1 / 2 - 7/j k - l 1 - l/jk 

_ - (s+ l)(l s+l)( )-1/2 - 1/jk - 1/jk 1 - Vjk 

_ -( s+ 1) ( l ) ( l s ) ( l )-1 /2 - l/jk - 1/jk + l/jk + · · · + 1/jk - 1/jk 

.-(s+l) ( )1/2 (l s ) = V j k l - 1/j k + 1/j k + · · · + 1/j k 

_ ( )1/2 ( -1 -2 -(s+l)) - 1 - Vjk 1/jk + 1/jk + . .. + 1/jk · 
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The left hand-side is a decreasing function of vjk , as the terms on the right hand

side are decreasing functions of Vjk· So , its maximum is obtained at vjk = (j for 

all k > j, implying that 

I {1- ( ek / ej n-(s+l) - 1 I ( ej I ek)l /2 ~ ( (j-(s+l) - 1) (1-(j )-1/2 ~ (j- (s+l) (1-(j )-1/2. 

(2.15) 

For k < j, we also have 

l{l - (0k / ejn-(s+l) - 1/ (0j/0k) 112 ~ l{ l - (0k/0j)} - (s+l ) - 1/ 

= /{1 - (0k/0j)}l - (s+l ) + 1 

= {(0k/0j) - l}-(s+l) + 1 

< ~(s+l ) + l 
- 'TJ] . 

Combining this result and (2.15) finishes the proof of the lemma. • 

Therefore , by using lemma 2.1 , we deduce that 

0;+(3/2) L 1{ (0j - 0k) - (s+l) - 0j(s+l )} 'I/Jk IL -K )!pj 'ifJkl 

k:k=h 

<:: Aj k ;j /et
12

1!'k j (L - K ) cpj 'ifJk / 

( ) 
1/2 [ { } 2] 1/2 

<'.'. Aj k ; j 0k 1!'l k ; j j (L - K ) cpj 1/Jk 

~ Aj { sup K (u, u)} 
112

1!/L - K ii/ - (2.16) 
u 

This finishes the proof of (2.13). • 

Theorem 2.4. If there are no ties fo r the eigenvalue 0j , then 

Su p j?:1 ma,'( { 10j - ej I , 3- l/
2 Pj 111/½ - 'I/;, II } <'.'. lllk - Kill , (2.17) 
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and 

1 ej - ej - J (R - K) 1/Jj 1/Jj I s; 211;;;j - 1/Jj 11111R - Klllsup 

::; 8 P3 1 IIIK - Kiil lllK - Kl\lsup · 
(2 .18) 

Prnof: The bound (2.17) follows from Lemmas 4.2 and 4 .3 of Bosq (2000) . 

To obtain the first inequality in (2.18), using (2. 14) with L = K, Aj = 0; and 

¢j = '1/Jj, we can write 

{JJ - 0J = J (I{ - K) ,$J 1/JJ - (0; - 0J) J (,$J - 1/J,) 1/JJ . (2.19) 

Thus , 

I ej - ej - j ( R - K) 1/JJ 1/JJ I 

= I J (I{ - K) ;;;j 1/J j - ( {J j - 0 j) J ( ;;;j - 1/),) 1P j - J (I? - K) 1P j 1/J j I 

s; I J (R- K) (-$j - 1/Jj)'ljJj l + 1(0j - 0j)I I j (;J;j -1/Jj)'ljJjl, (2.20) 

where the equality above resulted from substituting (2 .19) instcc1d of {-Jj :_ {-Jj · \Ne 

have 

I j ( R - K) ( ;J;J - 1,b,) 1/JJ I s; [J {/ (R - K) (1l, v )( ;j;J - 1,bJ) ( v) dv } \nf 12 

111/JJ II 

s; [J {/ (R _ K )
2(1l, v) dv } {J ('l,bj - 1/;;)

2(v) riv }d1lr 

:::; 110; -1PJII IIl 112 hp { J (I( - K)2(1l, v) dv} r 
_ ,,,___ 1/2 ,,,___ 
- \11/J.i - 1/Jj II II I \\\K - I<llls11p · (2.21) 
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Hence, (2 .20) leads us to 

/ej - ej - J (R - K) 1/J11/J1I ::; 11J1 - 1/JJ!I (101 - 01[ + 111R - K[llsup) (2.22) 

s 211 ij - ?/Jj II IIIK - KIil sup ' (2 .23) 

where we have obtained the last inequality from the fact that l0f - 0jl S jjjR -

Kill S IIJK - K lllsup· The second inequality in (2.18) follows on applying (2.17) to 

11ij - ?j)j II- This finishes the proof of Theorem 2.4. • 

2.4 Bounds in Sup and H-S Metrics for K - K 

Lemma 2.2. Let X(t) satisfy part (a) of (2 .1 ). Then, for each C > 0, 

E{ sup IX(t)J 0
} < oo. 

tEI 

Prnof of Lemma: If X(t) satisfies part (a) of (2 .1) for a given C > 0, then we 

show that 

E{ sup IX(t) 1°1
} < oo, for all C1 < C . 

099 

Assume X(O) = 0. Let Qm = { 
2

~ Ii = 1, 2, 3, · · · , 2m}, and O < A < l such 

. that /\-c 21
-E < 1. Define b0 , 61 , · · · as bm = ~==o Ai. Then, for any fixed NI> 0 

define Am= P(maxtEQm JX(t)J > M bm), Now by Chebyshev's inequality 

El Y(l)J° C* 
Ao = P(ma.,x [X(t)[ > M b0 ) = P([X(l )[ > M bo) ::; ( _,. )C ::; ~. (2.24) 

tEQo M bo NI 

For m 2:: 1 we have: 
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Am= P(max IX(t)I > M bm) 
tEQm 

~ Am-1 + P(max IX(t)I > M bm, max IX(t)I ~ M bm_i) 
tEQm tEQm-1 

~ Am-1 + P( max IX(t - rm) - X(t)I > lvf (bm - bm-1)) 
tEQm - 1 

~ Am-1 + L P(IX(t - rm) - X(t)I > M (bm - bm- 1)) 
tEQm- 1 

C*2-mE 
< A 2m-l - m-1+ _Jvf_C_A_m_C 

C* = Am-1 + - M-C (21-E A -Cr . 
2 

(2.25) 

Let k = C* + ~:=1 ~· (21
- E A-er which is finite by construction of A. Now as 

1n -+ oo, 0111, ----+ l~A. Therefore, 

{ max IX(t)I > M \} ==> there exists m * and there exists t* E Q111, . such that 
t EU~=0 Qrn 1 - /\ 

M M 
00 

{ M } IX (t) I > --\ ==> max IX(t)I > --\ ==> LJ max IX(t)I > -- . (2.26) 1 - /\ 1. EQm + 1 - /\ tEQm 1 - A 
rn=O 

_L,\1rt h e.rmore, 

{ M} { Af} m ax IX (t) I > - _- ~ n m ax IX(t)I > -=-
t EQ, 1 A tEQJ 1 A 

j'?_i. 

i;;_; n { 1,1J&~ IX (t)I > Mb,, } for all n ~ 1 i;;_; n {?J~~ IX(i;)I > M bj} (2.27) 
J '?_1. J '?_i 

Substitut ing (2.27) into (2.26) resul t[) in 

M oo { } 1nax IX(t)I > -- ~ u n m ax IX(t)I > j\lJ Om 
IEU,,,= 0 Qrn 1 - A . IEQ,,, 

m=OJ'?_m 

= lim in f { max IX(t).I > l\1 bm } . 
rn IEQ111 
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Using (2 .24) and (2 .25) implies that 

NI . oo C* 
P ( ~ax /X(t)/ > --) ~ hmsupAm ~ Nr ° C* + L M-C _ (21

- E A-Cr 
tEUrn=• Qrn 1 - A ID-l-00 2 m=l 

= NJ - 0 k. 

Since u:=0 Qm is dense in I = [O, 1), we have P (supog9 IX (t)I > l1!_A) < 

JvJ- 0 k. Now, define V = SUPo:;t::;i jX (t)j . We have 

00 00 00 

E/VIC1 ~ L P (jV/C1 > n) = L P(/VI > n1/ C1) ~ k (1 - ,\)c L n - (C/C1) . 

n =O n =O n = O 

It follows t hat E{ SUPo:;t::;i jX(t)/ 01
} < oo when C > Ci.• 

Theorem 2.5. If t he random process X (t) satisfies part (a) of (2.1 ), then for 

each integer C > 0, with 

z;up = 111 R - Klll;up = s~p J {R(u, v) - K (u, v)}
2 

dv 

we have 

E( 7.:C ) - C / 2 
Ll.sup < const. n . (2.28) 

Moreover , from the first part of (2.1 ) we see that 

E(li0
) < const . n - 0 12

. (2.29) 

(Recall that .62 = 11/ K - Kll/ 2 = J {K(u, v) - K (u, v)}2 .) 

Proof: vVe have: K (u, u) = K (u, v) - {X(u) - 77(u)}{.,-Y- (v) - 77(v)}, where 

~ 1 n -_ - ,,.__ ,,..__ (1) ,,.__ (2) 
K (u,v) = ~ L i=l{-:C (u) - 77 (u) }{Xi(v) - 77 (v)} . Also , Dsup ~ D sup+ .6.sup, where 
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-----(1) _ - -----(2) _ - -6sup - IIIK - Klllsup and 6sup - lll{X(u) - 77(u)}{X(v) - 77(v)}lllsup· So, 

[
,..__ JC ,..__(1) C ,..__(2) C E 6sup ~ Const. E [ 6sup] + E [ 6sup] , (2.30) 

where the constant depends on C. Regarding K1 = (K - K) = ¾ z~=l VVi(u, v) , 

where Wi(u, v) = {Xi(u) - 77(u)}{Xi(v) - 77(v)} - K(u, v), we have 

E[Z~~~]° = E[IIIKdlsup]° = n-C/
2 E[ sup L(u)]°, 

u 

( ) 

1/2 

where L( u) = n J K1 ( u, v )2 dv Thus, it is enough to prove that 

,..__ C 
E [ sup L( u)] < oo. (2.31) 

u 

To do that , v.,rc need the follmving Lemma. 

Lemma 2.3. For each s, t E [O, 1) and each C 2:'.: 1, 

EIL(s)l
0 
~ C1, EIL(s) - L(t)j° ~ C1 is - tl 0 C, (2.32) 

where c > 0 is as at (2.1 ) and C1 = C1 ( C) docs not depend on s or t. 

Proof of Lemma: For each fixed u E [O , 1) and fo r C = 2k , by using Holder 's 

inequality, \VC have 

El Z(o) le = nk E [ / R 1 (s, v)2 dv]' 

k .I / I-"). 2 ----- 21k :Sn · · · · E l\ 1(s:v 1 ) x · · · x I<1(s,vk) . dv1 · · ·dv1.; 

I· .I .I I ----- 12k I ----- 12k } 1 / k ~ n' · · · {E K 1(s,v1) x · · · x E K 1 (s,v1.;) clv1 · · · clv1.;, 

and then by the relationship between ari t hmetic and geom etric means, we con-
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elude that 

------ C k l J J I ------ 12k I ------ 12k EIL(s)I Sn k ··· {EK1(s,vi) +· .. +EK1(s,vk) }dv1···dvk 

=nk{J EIR1(s,v)l2kdv}. (2.33) 

Using Rosenthal's inequality for each fixed s, v E [O, 1] gives 

El~ twi(s,v)l
2
k::; n-

2
kclk{ tEIWi(s,v) l

2
k + ( tEIV\l;(s,v)l2) k} 

:; n-k C2k { EIW(s , v) 1

2k + (EIW(u, v)l2)k} 

-k I ( ) 12k -k Sn c3k E W s, V Sn c4k, 

where vV is a generic version of the Wi, and we have used (2 .1 ) to obtain the last 

inequality above. Combining this result and (2.33) implies the first part of (2.32). 

For the second part of (2.32), we define f(s, t, v) = I:~=l {Wi(s, v) - Wi(t, v)}, 

then 

Eli(s) - i(t) !
2

k ::; nk El [ j k\(s, v) 2 dv] 
112 

- [ j R1 (t, v) 2 dv J112
1

2

k 

:; n-k El j [t{Wi(s,v) - Wi(t,v)}]
2 
d{ 

:; n-k E [ j · · · j J(s, t, v1 )
2 

x · · · x f (s, t, vk)2 dv1 · · · dvk] 

:; n-k j · · · j Elf (s, t, v1)
2 x · · · x f ( s, t, vk) 2 

I dv1 · · · dvk. 

Using Holder 's inequality and the relationship between arithmetic and geometric 

means for the right-hand side of the last inequality above leads to 

------ - 2k k r 
1 1

2k 
EjL(s) - L(t) j Sn- j E J(s, t, v) dv. (2.34) 
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Furthermore, using Rosenthal's inequality for the integrand on the right-hand 

side of (2.34) for fi.,"'Ced s,t,v E [0,1] results in 

E/J(s , t , v)l 2
k::; Cik { t EIW;(s, v) - W;(t, v)/

2
k + ( t E/W;(s, v) - W;(t , v)l2t } 

::; C1knk { E/W(s,v) - W(t,v)/
2
k + (E/W(s,v) - W(t ,v)/2/} 

k I 12k ::; C2k n ~ E W(s, v) - W(t, v) . (2.35) 

Moreover, we have VV(s,v)-W(t,v) = Y(v) [Y(s) - Y(t)]+E[Y (v){Y(t)-Y(s)}]. 

Thus, 

E /VV(s,v) - W(t, v)/
2
k::; elk { (EIY(v)l 4k) 112 

(EIY (s) - Y(t)l4k) 112 

+ ( E [ Y ( v ){ Y ( t ) - Y ( s)}]) 
2

k } 

::; C2k{ (EIY(v)l 4k)1 l2 
(E IY (s) - Y(t )1 4

k )
112

} 

/ .rt (,,-11 , ,,-1 _ \ , ,,-/ .L\14k ,1 / 2 
..__ '--' ::L- i .!.__, ! J. ~ L' : 1. ! L ! 1 r 

'-- . ,) 

~ C4,1;; Is - t j2kE' (2. 36) 

where vve h ave used (2.1) and t he Cauchy-Schwarz inequality to obtain the above 

results. F inally, combining (2.34)- (2. 36) gives t he second part of (2.32) . • 

l'vfarkov 's inequality and the second part of (2.32) imply t hat . for each 11, C > 

0, 

P{ IL (s) - L(t)I > u Is - W12} ~ C1 u- cl s - t lCE /
2

. (2.37) 

Put tb = Z: ?_ - k _ In vie,v of (2.37), we have for each O ~ i ::; 2k - 1, 

P{ jL (tki )-L(tk.i- 1)1 > u ltki - tk,i+1 IE12} ::; C1 u - Cltki - tk,i+llCE/ '.2 = C1 u - C r CEk/
2

. 
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If we define Ak = jL(tki) - L(tk,i+1) j, then 

2k-1 

P( max Ak 2'. u2Ek/2) SP( LJ {Aik 2'. u2Ek/2}) 
0<i<2k -1 

- i=O 

2k-1 

s L P(Ak 2'. u 2Ek/2
) 

i=O 

2k-1 

s C1 u-C L rCEk/2. 

i=0 

If we choose C 2 4/E, then I:~~~1 2-CEk/2 S 2-CEk/4_ Therefore, 

P( max jL(tki) - L(tki+1)j > u2Ek/2) < C1 u-c 2-CEk/4. 
0~i<2k-1 ' - -

Also, define Bk = max0~i<2k_1 { 2Ek/2 
j L( tki) - L( tk,i+1) I}. Then, using the above 

result gives 

00 

P ( SU p { 2E k 12 IL ( t ki) - L ( t k, i+ 1) I } 2: U) S p ( u {Bk 2'. U } ) S L p (Bk 2'. U ) 

O~i<2Ll, k2_0 k=O k2_0 

= LP( max {2Ek/
2 jL(tki)- L(tk,i+1)j} 2: u) 

O<i<2k-l k2_0 -
00 

s C1 u-C L rC Ek/4 _ 

k=O 

Thus , if we define C2 = C1 L~o 2-c E k/4, then 

P( sup {2Ek/2 jL(tki) - L(tk,i+1)j} 2: u) S C2u-c. 
0~i<2k -1 , k2_0 

(2.38) 

If v E [O, 1) then we may express v in a dyadic expansion, say v = I:;:1 
'j 2-j, 

where each 'j = 0 or 1. Write Li< .<k 'j 2-j = ik ( v) 2-\ where the integers 
_]_ 

i1(v),i2(v), · · · satisfy O S ik(v) S 2k - 1 and ik+i(v) = 2ik(v) + 'k+1(v). 

Define io(v) = 0. Then, since X is left-continuous with probability 1, and 
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V = limk---+oo tk,ik(v) = limk-too ik( V) 2-k = limk-too =:=1 rj 2-j' 

00 

IL(v) - L(O)I :s; L IL(tk,ik(v)) - L(tk+l,ik+ 1 (v)) I 
k=O 

00 

:s; L IL(tk,2ik(v)) - L(tk+l ,2ik(v)+i)I 
k=O 

00 

:s; ~ max IL(tk+1,i) - L(tk+1,i+1)I • 
~ O<i<2k+ 1 -l 
k=O - -

Hence, by (2 .38) we have 

00 

P(IL(v) - L(O)I > L urEk/
2

) 

k=O 

00 00 

:s; P( ~ max IL(tk+l i) - L(tk+l i+1) I > ~ U rEk/2
) 

~ O<i< 2k+1-l ' ' ~ 
k=O - - k=O 

:s; P ( LJ { max IL( tk+1 i) - L ( tk+l ,i+l) I > u rEk/2
}) 

O<i < 2k+ 1-l ' 
k;?:O - -

00 

:s; L P ( { o<i~~
1

_
1 

IL( tk+l,i) - L( tk+1,i+1) I > u r Ek/
2
}) 

k=O - -

CX) 

< ~ C u-C rCEk /2 < C u - C -L 1 _ 2 , 

k=O 

·where C2 = C 1 L ~o 2-CEk/4. So, with C 3 = L ~o 2-Ek/2 we obtained that with 

probability at least 1 - C2 u-c, IL (v) - L (O)I :s; C 3 u . That is , for each C > 0 

there exists C3 > 0 such that 

P( sup JL(v) -L(O)J > C3u) :s; C2u-c . 
0'.'Sv<l 

Define T = SUPo:::;v<l IL (v) - L(O) J . Then 

00 

E[Tc] :s; L P (J T J ~ nl/C) :s; L C4 n-CJ/C. 

71=1 n=l 
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If we choose C1 > C, then ~~=l n-Ci/C < oo. Therefore, by Theorem 3.2.1 

---.. ---.. C 

of Chung 1974, it follows that E{ SUPo:s;v<l JL(v) -L(O)j} < oo for each C > 0, 

and hence, (2.31) holds by the first part of (2.32). On the other hand, 

E[.6.~~tJ° = E[ s~p /X(u) - 77(u)/
2 

{ / (X(u) - 77(u))
2 
dv} ]°12 

{ }

1/2 

= E [ s~p /X(u) - 77(u) /]2° E[ { / (X(u) - 77( u))
2 
dv} ]° 

(2.39) 

If we define 1': ( u) = Xi ( u) - 77 ( u), then the second term on the right-hand 

side of (2.39) can be bounded as follows: 

E Y(v) dv =E ··· Y(v1) ···Y(v2k) dv1···dv2k [ J - 2 ] 2k [ J J - 2 - 2 ] 

{ } 

1/2k ::; J · · · J E/Y( v1) /
4
k x .. · x E/Y( V2k) /

4
k dv1 .. · dv2k 

:':'. 
2
~ / · · · / { E/Y(vi) /

4
k + · · · + E/Y(v2k) /

4k} dv1 · · · dv2k 

= J E/Y(u) /
4

k dv. (2.40) 

Moreover, for each fixed v E [O, 1] we can write 

E/Y(u) /4k = n-4k E/ t Y;/4k '.':'. C1k n-4k { t E/Y;(v) 14k + ( & E/Y;( v)/2)2k} 

~ C2k n-2k { E jY ( v) j 

4
k + ( E jY ( v )/2) 2k} 

~ C3k n-2k EjY(v) j
4

k ~ C4k n-2
k, (2.41) 

where we have used Rosenthal's inequality and (2 .1) to obtain the above results. 

For the first term on the right-hand side of (2 .39) we have: 
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E [ sup jY(u) IJ2c = E [ sup I_'.:_ f)'i(u) l2c] 
u . u n i=l 

<::: E[ sup ( ..'.:_ t IY;(u)l
2
c)] 

u n i=l 

<::: E[..'.:. t sup IY;(u)l2c] 
n i=l u 

= E[ sup IY(u)i2°] < oo. (2.42) 
u 

Combining (2.39)- (2 .42) implies that E[.6.~~~]° = O(n-0 12
). This finishes 

the proof of Theorem 2.5 for C = 2k , where k > 0 is an integer. Finally, if 

C=2k -1,then 

( ) 

(2k-1)/2k 

E[Z2k-1] ~ E[.6.2k] ~ (const. n-k/2k-1)/2k ~ const. n-(2k-1)/2. 

A similar but simpler argument can be used to prove (2 .29). This finishes the 

proof of Theorem 2.5. • 

2.5 Application of the Auxiliary Results to Em

pirical Approximations 

In Section 2.3 one can interpret L, Aj and cpj as R, !Jj and i, respectively. Recall 

that supj l0j - 0jl ~ Z, and note that, since I= [O, 1], v...re have /I/ = 1. Then , 

for example, (2 .6) and (2.11)-(2.13) imply that, for each candidate for xj, 

[ ( e j - e j l ( 1+ / xj 1P j) - j ( R - 1< l ( 1P j + xj l 1P j [ 

~ 11,0j - VJj - Xj I/ (Z + Zsup) , (2.43) 
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......... 

00 

(0 · -0 ·)
8 

J......... ......... '1/)j - '1/Jj = 0;1 L J 
0

. J L '1/)k (K - K) '1/)j '1/)k 
s=O J k:k#j 

00 

+ L(ej - 0j)8 L {(0j - Bk)-(s+1) - e;(s+1)} 

s=O k:k#j 

x 1/Jk J (R - K) :J;j 1/Jk + 1/Jj J (ij - 1/Jj) 1/Jj, (2.44) 

and, provided z ~ min(Bj - ej+l , ej-l - ej) , 

IL 1/Jk j(R-K) ij1Pkl=I J(R-K)ij- 'lj;j j(R-K)ij1/Jjl 
k:k#J 

~ I j(R -K) :J;jl +j j(R -K)jj 'lj;jl 

{ }

1/2 { }1/2 
~ j (R - K)2(u, v) dv j ;jlf (v) dv 

{ }

1/2 

+ ~~f 11/Ji ( u) I / 1/J]( u) 

X [/ {j(R-K)(u,v )ij(v)dvr du]
112 

Thus , 

I 
L '1/Jk j (K - K ) ;j;j '1/Jkl ~ {1 + sup /1/Jj(u)/ } Z sup. (2.45 ) 

k: k#j uEI 

Also, using (2 .16), we deduce t hat 

1ej - {Jj 1s L I { ( ej - 0k)-(s+l ) - e;(s+l)} 1/Jk J (R - K) :J;j 1/Jk I ~ 
k:k#j 

max{ (j- (s+l) (1 - (j )- 1
/

2
, TJi (s+l ) + 1} e;312 

{ sup K ( u, u)} 112 (Z/ej )8 Z. 
uEI 

(2 .46) 
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For £ 2:: 0, put 

e. - e- ---- -f, ( A ) s 

Xie = 0j ~ J 0j J k~ j 1/Jj J ( K - K) 1/Jj 1/Jk 

f, 

+ L (ej - 0j)8 L { (Bj - ek((s+l) - e;(s+l)} 
s=O k:k#j 

x 1/Jk J (R - K) ;;;j 1/Jk+ 1/Jj J (;j;j - 1/Jj) 1/Jj. (2.47) 

For a function a, define Jiallsup = supu Ja(u)I. We know from (2.44)-(2.46) and 

the bound 1ej - ej I ~ Z that, provided 

(L/ ej) max( (t, 77; 1
) ~ ½, (2.48) 

v1,e have 

---- II ~ (B · - 0-) s ~ J ,.,.__ ,.,.__ 111/Ji - 1/Jj - xifi!sup = 0;1 o~1 J 0j J •~; 1/Jk (K - K) 1/Jj 1/Jk 

+ f ( 0j - 0j}s L { ( 0j - 0k)-(s+ l) - e;(s+J)} 1/Jk l (R - I<) ;;;j 1/Jk II . 
s= t+ l k: J-,4 j sup 

Therefore, 

llf; - 1/Jj - xidlsup ::'. 0; 1 f 1°j; i}J 1.5 {1 + sup 17/Jjl} Lsup 
s= l'+l J vE'I 

00 

+ L max{(j-(s+l) (1 - (jtl /\ 77j(s+l) + 1} 0;3/2 

s=l'+l 

1/2 ,.,.__ s ,.,.__ 

x {supK(u:u)} (6 /0j) 6 
uE'I 

~Vj[ \ 1 t, (2.49) 
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where ½ = .6_Hl .6.sup, and, for a constant C not depending on j, 

Vj!!_ = C { max( (t' r;;l) f+2 (1 - (j )-1/2 (1 + e;3/2) e;(f+l) 

X { 1 + SU p I '1,U j ( u) I + SU p K ( u' u) 1 
/

2 
} . 

uEI uEI 

Note that (2.48) is equivalent to the condition (2.2). 

A 

2.6 Approximation to f)j 

63 

Substituting Xj = xjf!_ at (2.47) into (2.43) and using (2.49) to bound the right

hand side of (2 .43), we obtain an approximation to 0j - ej. Provided (2.48) 

holds, 

I ( ej - ej) ( l+ J Xjl 1/Jj) - j(R -K)( 1/JJ + Xi£) 1/Jj I ~ Vj£ Ve (Z + Z,up) 

S 2 Vjf_ ½ .6.sup. (2.50) 

Note too that, by (2.17), we have 

- 6 ~ 
11'1,U · - '1,U· II S s-1/2 . . S s-1/2 (6/0-) max(C-1, r;-:-1) , 

J J 0 . (0J-l 1 1 0J+l) J J J · mm-- --
J 0j ' 0j 

(2 .51 ) 

whence, writing "canst." for a generic constant not depending on j or n but 

depending on I!,, 
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I 2;j 7Pk J (R - K)( ;J;j - ?j;j) 7Pk I 

= It ?j;k J (R - K)(;/;j - 7PJ) 7Pk - ?j;j J (R - K)(;/;j - ?j;j) 7PJI 

::; II (R - K)( ;j;j - ?J;j) II sup + ll?J;J llsup I J (R - K) ( ;j;j - ?J;Jl?j;j I 

s 111R - Klllsup ll~j - 1/Jj II + 111/Jj llsuplllK - Klllsup ll~j -1/Jj II 

,,,___ 2 -1 -1 ,,,___ 
S const. (L./0j) max((j , rJj ) 6-sup. (2.52) 

(Here we have used (2.17), and the fact that 111/Jjllsup S 11Kllsur/0j.) Also, with 

Ck= (0j - 0k)-(s+l) - e;-(s+l) fork =J. j and Cj = 0, we have: 

I k~j Ck 1/Jk J cR - KJ(;J;j - 7PJl 7P{ 

= lck j (R - K)(u, v)(;J;J - 7PJ)(v) dv 1

2 

::; ck I j (R - K)
2
(u, v) dvl ll;J;; - 7P;ll 2 

2 ,,,..__ 2 .;--. 2 
S Ck 6 sup 11 1/Jj - VJ_ill 

------2 ------ 2, 2 
S 6 sup 11 1/Jj - VJj II ~ C~; · 

k: k=/:-.i 

Below we show that ~ CX) c2 < C { ma.x((-:- 1 77-:- 1 )s+1 0-:- (s+
2

) }

2 

0k=l k - s J > J J 

(2.53) 

Lemma 2.4. For an integer s~ l if Ck = (ej - ek)- (s+ ]) - e;- (s+l} fork i- j 

and c.i = 0, then 

t ck ::; Cs { max( (;1, 7/;1 r 1 e;(s+Z) } 
2 

, (2 .54) 

where Cs denotes a constant depending only on s. 
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Proof of Lemma: 

L Ck= L { (0j - 0k)-(s+1) - 0;(s+1)} 
2 

k :k/=j k:k#j 

= L { (0j - 0k)-(s+1) - 0;(s+1)}2 + L { (0j - 0k)-(s+1) - 0;(s+1)} 2. 

k<j k>j 

(2.55) 

For the first series on the right-hand side of (2.55), related to k < j = 0k ~ 0j, 

provided I:~1 0~ ~ C, by using Chebychev's inequality, we have 

#{k: k < j} = #{k: 0k ~ 0·} < ~~ 1 0~ < C 
1 - 0j - 0'2: · 

J 

Hence, 

C C ( )-2(s+l) 
L(ej - 0k)-

2
(s+l) ~ 0'2: 2(s+1) inq(Bk/0J - 1} 

k<j J 0j k<J 

C ( )-2(s+l) 

= 0~(s+2) i~~ { ( 0k/ 0j) - 1} 
J 

= C 0~2(s+2) n ~2(s+1) 
J 'IJ ' 

(2.56) 

and 

~ e~2(s+l) < C _1_ = C e---:2 (s+2) 
L__, J - 0~ 

0
2(s+l ) J . 

k<j J j 

(2.57) 

For k > j = 0k ~ e j, define lJjk = (l - :k )-1
. Then , 

J 
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L { ( ej - 0k)-(s+l) - e;(s+l)} 2 = e;2(s+l) L { (1 - :k i-(s+l) - 1} 2 

k>j k: k>j J 

= e;2(s+l) L {v;:1 - l }2 

k: k>j 

= e;
2
(s+l) L { (vjk - 1)(1 + Vjk + · · · + vJk)} 

2
, 

k: k>j 

which is simplified to: 

!2k_ 

L { (0j - ek)-(s+l) - e;(s+l)} 2 = e;2(s+l) L { ( 1 ~ e, )\1 + Vjk + ... + vJk)2} 

k>j k:k>j 0j 

= e;2(s+l)-2 L { ei l/jk (1 + l/jJ,: + ... + v J;,Y } 

k: k>j 

-2 (s+2) , {02 2 2 ( -1 1 _ + ... + s )2 } = 0j ~ k Vjk Vjk l/jk + + 711k l/jk · 

k: k>j 

Thus, 

'{ (fJ- - [) ·) - (s+ l) - 0-:-(s+1) }2 < 0-:-2 (s+2) ' {02 V4 (1 + 1 + 7/·. + ... + //~ )2} 
~ J k J - J ~ k Jh: Jk Jk 

k>j J,:: l,:>j 

< 9-:-2(s+2) , {02 /1 ( + l)2 2(s-l)} 
- J 0 k l Jk 8 l/Jk 

J,:: k>j 

_ ( + 1)2 9-2(s+2) , {G2 2(s+l)} 
- S j 0 k l/jk 

k: k>j 

~ (s + 1)2 o;2(s+2) ct(s+l) L el 
k: k>j 

:c; (s + 1)2 0j2(s+2) (j2(s+J) { k~ j 0i} ' 

< C e-:-2(s+2) /~2(.s+l) 
- s J '--:,J ) 

(2.58) 

where we have used the fact that vjk 
1 

1-!!.l,_ < 
oj 

inf 1,;: k>j (1--?- ) ct· Finall) 
J 
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combining (2.55)-(2.58) finishes the proof. • 

Therefor e, combining (2.53) and (2.54) results in 

I )~;j { ( 0j - 0k)-(s+l ) - 0;(s+l)} Vik j(R -K)( :(fj - 1/'j ) Vik I 

< C EE max((-:-1 r;-:-l)s+2 0-_-(s+3) 
_ s sup J , J J • (2.59) 

Let 

x)~l = 0;1 't, (0j; 0j) s L V'j j (R - K) V'j Vik 

s=O J k: k=/=j 

e 

+ L(0j - 0j)5 L { (0j - 0k) - (s+l ) - 0;(s+l)} 
s=O k :k=/= j 

x Vik J (R - K ) V'J Vik+ 1/'j J ( :(fj - 1/;j) V'j - (2. 60) 

Then , by (2.47), (2.52), (2.59), (2.60) and (2.17) if (2.48) holds , 

[1] II ~(0 ·-B·) s ~ 1- _,...._ llxje - Xje II sup = 0;1 ;:;j" J 0j 
1 /;'h Vik ( K - K ) ( V'j - 1/'j) 1/'k 

+ t( 0j - 0j )8 k .z;j { ( 0j - 0k) - (s+ l) - 0;(s+l) }Vik J (R - K)( :(fj - 1/'j) Vik I/sup 

~ ,0- -0·/s (z) -:S 0j
1 
L, J 

0 
_ J 

0
~ max( (j- l, r;-;1) 6 s up 

s=O J J 

e 

+ ~ 10 . - e · Is E E ma."'<:(( -:-1 r; -:- l)s+2 0-_- (s+3) 
L, J J su p J , J J 

s=O 

e 

:S Const . ~ E s+l E max(( -:-1 r;-:-1 )s+2 0-_- (s+3) 
L, sup J , J J , 

(2 .61) 

s=O 

Moreover, the following property holds : 
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if we were to add to xt~l the quantity 

L ( ej - ek)-11/Jk j (R - K)( ;;;j - 1/JJ) 1/Jk, (2.62) 
k:ky=j 

then, using (2.17) and (2 .52) implies that 

f_ 

llxje - X[·1 llsup :s; const. 'z. s+l z. max((-:-1 r;-:-l)s+2 e~(s+3) J 0 sup J , J J , 

s=l 

which means that (2.61) would continue to hold if the term corre

sponding to s = 0 were dropped from the series on the right-hand 

side . 

Replacing Xj£ by xl~l in (2.50), taking I!, = l, and noting (2.17) and (2.61 ), we 

deduce t hat if (2. 48) holds then 

I (0J - ej) ( 1+ j xYh\ ) - j (R - K )('I/JJ + xWH}J I 

I 
A ( / [1] ) J "' [l ] I = ( ej - ej) 1 + . (xj1 - xj1 + xj1) 1/Jj - (I< - J< )('i/Jj + xj1 - xj1 + xj1) 1/Jj 

I 
A ( / [l ] ) J "' [l] I :s; ( ej - ej) . (xj1 - xj1) 1/Jj - (I< - K ) (xj1 - xj1) 1h 

+ I ( 0 j - 0 j) ( l+ J XJ 1 1/J j) - J ( R - K ) ( 1/J j + XJl) 1/J j I 

,,___ [l] "' 2 . 

{ } 

1/ 2 

:S: const. 6 IIXji - XJ1 llsup s~p 11/JJ(u)I + j j (K - K ) (u, v) dv 

{ } 

1/2 

x J (x;1i1 - XJI )
2

( v) dv 1/Jj ( u) du+ 2 Vj] Vi E , up 

1 

~. A A ' A s+l '((-1 -l)s+2 e-(s+.3) 1,,/, ( )I ~ consi.. u. u.. sup 0 u.. max j , 7]j j sup y.;j u 
s =O n 

"' [1] "' + 6 S11]) llxj] - Xj1llsup sup 11/Jj(u)I + 2vjl Vi 6sup. 
'I.LEI 
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Thus, 

I 
A ( J [1] ) J ,,.._ [1] I (0j-0j) 1+ Xj 17/Jj - (K-K)(?/Jj+Xj1)7/Jj 

1 (E )s 
:::; const. E2 Esup max( ct' r;; 1

)
2 0;3 

s~p l?/Jj( u) I L 0- max( ct' r;;1
) 

s=O J 

1 (E )s 
+ E;up max( ct' r;; 1 

)
2 E 0;

3 L 0- max( ct' r;;1
) sup 17/Jj ( 'U) I 

s=O J uET 

+ 2 Vjl Vi 6.sup :=:; Dnj , 

where 

D _ -3/2 u (l ;- )-1;2 (;--1 -1)3 0-712 In/, ( ) I nj - n nj - ½j max ½j , r;j j sup 'Yj u , 
uET 

and Unj denotes a generic random variable satisfying: 

sup E(U;:J) < oo, for each integer m 2:: 1. 
n,j2:'.1 

(2.63) 

(2.64) 

In (2.63) it suffices to take Unj = const. (n1
/

2 Esup) 3
, not depending on); this 

result uses (2.28) and (2.29). (More generally, Unj will alter from one appearance 

to the next in versions of Dnj below.) 

It should be mentioned that since 0j 17/Jj 12 
:::; Kdiag , where Kdiag = K( u, u) = 

Var(X(u)), then 117/Jjllsup :::; 0;
112 IIKdiagllii; . Therefore, 117/Jjllsup in Dnj can be 

replaced by 0;112
, because IIKdiagllsup < oo by (2 .1 ). 

Note that J(;j;j - 7/Jj) ?pj = J ;J;j ?pj - l ~ 117f7jll 117/Jjll - 1 ~ 1 - 1 = 0. Bearing 

this sign in mind , we have: 
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1. 11:J;. - ?/J ·ll2 = 1. (n7: . - nl,. ;;; . - w·) = 1. {-("/, · - w· w·) + (n7: . - nl,. ;;; ·)} 
2 1 J 'f' J 2 'f'J 'f'J) 1 J I J 2 'f'J I J) I J 'f'J 'f'J) 'f'J 

= - ½ ( ;;;j - rljJ j ) rljJ j ) + ½ { ( ;;;j ' ;;;j ) - ( ;;;j ) rljJ j ) } 

= - ½ ( ;;;j - rljJ j ' rljJ j) + ½ { ( 'i/J j ' rljJ j) - ( ;;;j ' rljJ j) } 

= - ½ ( ;;;j - rljJ j ' rljJ j) - ½ ( ;;;j - rljJ j ' rljJ j) 

= - (;/; · _ n/, . n/, . } = -J(;;;· _ n!,.)n !, . > Q. 
I ] 'f'J) 'f'J I ] 'f'J 'f'J -

From this result and ( 2. 51) we see that 

I ; ( J1 - 1/11) 1/11 I = ½IIJ1 - 1/1111 2 
<; canst. (6. /81 )2 max( ct, 7)j

1 
)

2 
(2.65) 

Let 

e A 

[2] " ( 0 . - 0 · ) s " J ,,,...._ Xje = 0-;
1 

L-, J 0- J L-, 'i/Jk (K - K ) 'i/Jj 1h 
s= O J k :k#j 

e 

+ ~ ( ej - {j j )' -~ { ( 01 - Bk) - (s+l ) - e;(s+l)} 1/'k ! ( R - K ) 1/111/ik, 

"vh ich is x}~l, except for t he la.st term which was dropp ed. VVe have 

I 

A J [2] ; ,,,...._ [2] I (0j - 0j)(l + Xj1 '1/Jj) - (I{ - K )('I/Jj + Xj1) '1/Jj 

I 

A J [l] ; ,,,...._ [1] I ~ (ej - ej)(1 + xj1 'i/Jj) - (K - K )('i/Jj + xj1) 'i/Jj 

+ I ( e 1 - 01) j ( J1 - v, 1) v, 1 + { j u< -1 <) 1/11 v, 1 } { j ( J1 - 1/11) v, 1 } I 

:c:; D,, 1 + I j (01 - i\) w 1 I I ( 01 - e 1) - j u< -K) w 1 1-b 1 I 

~ Dn j + ½ IJ'0j - 1/,'j 11 ~ X 2 jj1bj - 1fJj JJ JJJ .K - I< Jllsup 

~ D 111 + canst. (6. /0j) 3 
max((t, 77;1)

3 
.6.sup, 

""here \\·e used (2.63;. (2.65 ) and (2.18) to bound t he terms on the right-hand 
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side. We see that the terms on the right-hand side of the above inequality can be 

bounded by Dnj again . (The only change is that the value of Dnj is inflated by 

a multiplicative constant). That is: 

I 
A ( / [2] ) J _,___ [2] I (0j - 0j) 1 + Xjl ?pj - (K - K)(?/Jj + Xj 1 ) ?pj ~ Dnj . (2.66) 

Lemma 2.5. Let X(t) satisfy (2.1). Then, for each integer k,j, m 2 1, 

E[ j(R -K) '1/'j'1/'kJ2m = O({n~! ej ekr)' 

where the 0j and ?pj are eigenvalues and eigenfunctions of the operator K. 

Proof of Lemma: Define Bjk = f (K - K) ?pj 1Pk· We have 

----- 1"' (K - K)(u, v) = - L-, n{ Xi(u) - 71(u)} {Xi(v) - 71(v)} - K(u, v) 
n 

i=l 

- (Xi(u) - 71(u)) (Xi(v) - 71(v)). 

Thus , 

Bjk = j j(R -K )(u,v)1f!h)'1/'k(u)dudv 

= ¾ t { j (Xi(u) - ry(u)) '1/'k(u) du} { / (Xi(v) - 17(v)) '1/'j(v) dv} 
i=l 

- 0 j 5 j k - { J ( Xi ( u) - 7] ( u)) 1{J k ( u) du} { / ( Xi ( V) - 7] ( V)) 1{J j ( V) dv} 

1 ~ - -
= - L__, ~ik fo - ~k ~j - 0j 6jk, 

n 
i=l 

where fo = J (Xi - 7J) '1/Jj and [j = ¾ L7=1 fo. If k /: j then, 
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2m / - 2m 1 ~ - - ] 2m E [ B j k ] = E [ (K - K) '1/Jj'I/Jk] = E [~ L..,,, ~ik ~ij - ~k ~j 

i=l 

S Cm { ( E[¾ tfo fo]
2

m) + ( E[[k [j]
2

m)}. 

(2.67) 

By using Rosenthal's inequality and part (b) of (2. 1) we have 

El¾ tfo(ir s C1mn-2m{ tE1e;ar1 + ( tE[fofoJ2) m} 

and also, 

S C1mn-2m{ t {El(tml El(fkl}112 
+ ( t {E[(t] E[~ficl}112) m} 

s C2m n-
2m{ t 0j e;;: + ( t ej ek) m} s C3m n-m 0j e;;: , 

(2.68) 

r , 1/ 2 

blCkCi"" ::::c t E1Cji '' EiCki'" j 

{ 

n n } 1/2 
= n - 4m El 8 fol4m El 8 fol4m (2.69) 

{ 

71 71 } 1/2 

S C3m n-
4m 8 El(i;j4m + ( 8 E[(fj])

2

m X 

{ 

n n } 1/2 
8El(ikl4m + (8E[(fk])2m 

{ 

n n } 1/2 { 71 71 } 1/2 
s C4m n-2m 8 er+ ( 8 0j)2m 8 0l"' + ( 8 0k)2m 

< C n-2m, em 0.,.n, 
4m J k · (2.70) 
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Combining (2.67)-(2 . 70) finishes the proof for k I- j. When k = j, we have 

{ }
2m { 1 n }2m 

E j (k - K) '¢J '¢J = E ;;: ~ (eJ - E((})) - ([J)
2 

, 

where ~j denotes a generic fo. Hence, similar to the case k I- j, by moment 

methods and using part (b) of (2 .1 ), we see that 

E{ J (R - K) '¢J '1/JJ rm~ Cs (n- 1 e;r 

This finishes the proof. • 

Define 11-llm = {E(.)m}l/m_ By Minkowski's inequality 11-llm is a semi-norm. 

Then, using Lemma 2.5, we conclude that: 

E[ k~j (0j -0k)-
2

{ j(R -K)'¢J'1/Jk}
2

]m = (11 k~j (0J -0k)-
2B]kilm) m 

~ C;j (0j - 0k)-
2 IIB]kilm) m 

= 0( {n-1 P3 2 ej L ek}m) = 0( {n-1 P3 2 0j}m). (2 .71 ) 

k:k=/=j 

If (2 .48) holds , working out the integrals on the left-hand side of (2.66 ) and 

moving a portion of J (K - K ) x;~l 1/Jj onto the right-hand side , we obtain the 

following result: 

I (jj - 0j - J (R - K ) '¢J '1/JJ - k; j (0j - ek )-
1 

{ J (R - K ) '¢J '1/Jk } 

2

j 

I 

_, 1 [2] 1 ----- [2] I 
~ (0j ~0j)( l+ Xj i 1/Jj) - (K-K)(1/Jj + Xj 1 )1/Jj 

+ j j (I?. - K ) xl1 '1/JJ - k; j (0J - 0kt
1 

{ j(R -K ) 1/JJ 1/Jk fl, 
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and then , 

I 
0j - 0j - j (R -K) '1/;j '1/Jj - L (0j - 0k)-

1 
{ j (R -K) '1/Jj 'I/Jk }

2
i 

k:k#-J 

S Dnj + l0j - 0jl I L _ (0j - 0k(
2 

{ j (R -K)'I/Jj'l/;k }

2

1 

k: k#-J 

S Dnj + n-3
!

2 p72 0j Unj S const. Dnj, (2.72) 

·where Unj is a generic random variable satisfying supn,j~l E(U
1
7}) < oo for all 

m 2 1. Furthermore, by (2.71), we considered the random variable Unj as 

{ }

2 

3/ 2 2 -1 -----. -2 -----. 
n PA 6. L (0j - 0k) ju< - K)'l/;j 'I/Jk , 

k : k#-j 

,vhich has the properties ascribed to Unj in (2.64). To obtain the above results, 

we also used (2.71 ) and (2.17) as well as (2.28) and (2.29). 

2. 7 Approximation to 1/)j 

2.7.1 Bounds in Sup-norm 

Let 

'(f~ = 0;1 { 1 - 0;1 J (R - K ) '1/;j 1/J;} { L '1/Jk J (I{ - K ) '1/;j ·,/Jk} 
k:~4j 

+ L { (0j - 0,,i- 1 -0;1} 1Pk f u< -K)'l/;j'I/Jk 
k:k#-j 

-{ j (I? - K ) '1/Jj wj } [ k~ j { ( 0j - 0,,i-
2 

- 0;2} '1/J" j ( R - K ) '1/Jj '1/J"] , 

14] [3] 1 L -1 J -----. -----. J -----. ,, . = -v. - (0 . - ek) ,, 1i ,. (K - K ) (w · - w-) w,. _J_ 'I/) . (rJJ. - +) 11• . . \.J '.2 AJ'.2 I ] y i,; , ] , ] ' i,; I , J , ] 'f] f/J 

k:kfj 
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We have 

Xj2 = L (0j -0k) - 1'1/Jk j (R -K);j;j'lf/k 
k:k=/=j 

+ (0j - 0j) L (0j - ek)-21/Jk I (R - K) ;j;j 1/Jk 
k: k::l=J 

+ (0j - 0j) 2 L (0j - 0k)-3'1/Jk I (R - K) ;j;j 1/Jk+ 1/Jj I (;j;j - 1/Jj) 1/Jj 
k:k=/=j 

and 

[4] _ " ( ) -1 /( ,.,..._ ) xj2 - L ej - ek 1/Jk K - K 1/Jj 1/Jk 

k: k=/=j 

- { / (R - K) 1/Jj 1/Jj } L (ej - ek)-
2

1/Jk J (R - K) 'lflj 'iflk 
k:k=/=J 

+ L (0j - ek)-
1

1/Jk j(R - K) (;j;j - 1/Jj) 1/Jk+ 1/Jj I (;j;j - 1/Jj) 1/Jj · 
k:k=fj 

Therefore, provided (2.48) holds, 

II 
[4] _ A " -2 / ,.,..._ ,.,..._ 

Xj2 - xj2llsup-ll(0j -0j) ~ (0j -ek) VJk (K -K)VJjVJk 

k:k=l=J 

+ (0j - 0j) 2 L (0j - 0k)-3'iflk j(R - K) ;j;j 1/Jk 
k:k=/=j 

+ { / (R - K) 1/Jj 1/Jj } k~j (0j - 0k)-
2

'1/Jk J (R - K) 1/Jj 1/Jk flsup. 

(2 .73) 

Substitute the Taylor-expansion-with remainder of 0j, given in (2. 72), for 0j 

into the above terms, but omit the "order n-1
" term, the absolute value of which 

is dominated by: 
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Tj = 2;j 10j - 0k1 -1 
{ J (R - K ) ,pj ,pk} 

2 

(2 .74) 

l\foment methods , together ·with part (b) of (2 .1 ) and Lemma 2.5 , show that 

E ( Tj) = 0 ( n - l ~ I e j - e k 1- 1 e j e k) = 0 ( n - l p j 1 e j ~ e k) = 0 ( n - l p -;1 0 j ) ' 
k:ki=j k :ki=J 

and passing to higher-order moments, similar to (2.71 ) , we obtain for each integer 

771 ~ 1: 

E(Tt ) = O({n- 1 P-;1 ejtl) . 

In particular ) if we t ake R nj = n pj 0-; 1 Tj, then R,1j has t he properties ascribed 

o Unj in (2.64) . Thus, we deduce tha 

11Xj2 - xW llsup :::; const. p-;3 
{sup lc/Jj(u)I} 6.sup 6 2 

(1 - (j) -
1

/
2 0;112 + D nj. 

11 

Finally. by (2.28) an d (2.29 ) ,Ye obtain 

II 
l-1 1

11 
- 3/ 2 u 8- 112 - 3 ( ~ ) - 112 { 

11 ( )I } , D \_ j?. - \_ j ?_ sup :::; const. n nj j Pj ) - Sj sup Wj 'U T nj 
u 

:::; const . Dnj , (2.75) 

\-here the random variable U nj satisfies supn,j ~l E(u;;J) < x. fo r each integer 

m ~ 1. and thr constant not depending on j . 



2. 7. APPROXIMATION TO ;J;J 77 

Combining (2.49) and (2. 75), we see t hat, provided (2.48) holds, 

- [4] _ - [4] 
II V'j - ?{/j - Xj2 llsup - IIVJj - ?{/j - Xj2 + Xj2 - Xj2 llsup 

- ~ 
S IIV'j - ?{/j - Xj2llsup + llxj2 - Xj2 llsup 

-3-
s Vj2 ½ + D nj = Vj2 6. 6.sup + D nj 

S const. D nj . (2 .76) 

Put 

Cl'j = ,J;j - 'lfj - L (0j - 0k) -
1
'!fk J (R - K ) 'lfj 'i!ik. (2.77) 

k:k/=j 

Lemma 2.6. For a constant C > 0 and all k -=/- j, we have et
12 

/l0k - 0j l s 

1/2/ C 0j Pj· 

Proof of Lemma: For k> j define 1- 0k / 0j = Xjk· We have (j = infk:k>j( l -

0 k / 0 j ) S x j k S 1, for all k > j . So, 

gl /2 
k 

ej - ek 

e- 1/2( 1 - X ·k)l/2 gl /2 r -:-- 1 
j J s j '-:1] 

Xjk 

(2 .78 ) 

On the other hand , fork< j, define 0k/0j - l = Vjk· Here, also infk:k<j (0k / 0j -

1) = T}j S Vjk, for all k < j. Therefore, 

e~
12 

_ 0-1;2(vjk+1) <e~1;2(r;j+
1

) = e~112(i+r;-:-1). (2 .79) 
--- . J J J 

ek - ej J Vjk - T}j 

Combining t he two results (2.78) and (2.79 ), we deduce that 

01/2/j0. - 0 ·1 < C0~1/2 (r -:--1 -:-1 ) < C01/2 ~1 
k k J - J max s 1 ' TJ1 - J P1 ' 

which finishes the proof. • 
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Writing J{diag(u) = K(u , u) = Var(X(u)) and defining 

S = " 0k J -----. 1 ~ 
0 

_ (
0 

· _ 
0 

~) 'I/Jk (K - K) aj 'I/Jk, 
k: k-/=j J J k 

we have, by the Cauchy-Schwarz inequality and the above Lemma, 

( 

oo )1/2[{ }2]1/2 
IS1I ::; C 0;

112 
P;1 L ek 1/Jk j(R - K) aj 1/Jk 

k=l 

::; C 0; 112 P-;1 K~(:g 111R - Kiil llajll. (2.80) 

More simply, 

S2 = 0-;1 L 1/Jk j (R - K) aj ,Pk 
~~ : kc/=j 

= 0 ;1 { j ( R - K) a j - ,jJ J j ( R - K) a j 1/J; } . 

N ni-P tnn t 11 ~i- ~in r'P A. 11 !,. 12 < T-< ,. t lwn c . < r;-l/2 II T.< ,. II 1 
/

2 
rr'l,or r:-trwo 

. - - . ------ , ----- - '- ) i -,.-• _j ! _..._ (l jh~~"I u.L_._..__,....,_._ I.../} ...., _, t1...L-fJ.!Ll.,'.!_l J:-,,II!)• ..a...J...L "-• • "'· ~ '-.1 ..i.. "- . 

11S2 llsup ::; e-;1 { 111R - K) lllsup llaj II + Sj 111R - Kiil llaj II} 
-3 /2 -----. 

::; const. ej IIIK - KIii sup llaj II . (2.81) 

Using (2.9) , W8 have 

;;;j - i/;j - 1/)j J ({i;j - 1/JJ 1/)j = L (0j - 0, )-1 1/)k J (I( - K) ,(h 1/Ji . 
k:kc/=j 
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Therefore, 

{}j = ;;;j - 'i/Jj - 'i/Jj Jri j - 'i/Jj) 'i/Jj - L (0j - ek)-
1 

'i/Jk jrR - K) 'i/Jj 'i/Jk 
k:k=/=j 

= L (0j -0k)-
1 'i/Jk j(R -K) {f;j'i/Jk - L (0j -0k)-1 'i/Jk j (R -K) 'i/Jj'i/Jk 

k:k=/=j k:k=/=j 

= L (0j - ek)-1 'i/Jk I (R - K) ({f;j - 'i/J1) 'i/Jk 
k:k=/=j 

- L {(0j - 0k)-) - (0j - 0k)- 1 }'i/Jk j(R - K) ;;;j 'i/Jk 

k : k=/=j 

= f3jl + f3j2 , (2.82) 

where 

f3j1 = L (ej - eki-
1 

'i/Jk jrR - K)({f;j - 'i/JJ 'i/Jk, 
k : k=/=j 

""""' (0j -0j) 1---- ----
{3j2 = - L. ( 0 - 0 ) ( 0 - 0 ) 'ifJk (K - K) 'i/J1 'i/Jk . 

k: k=/=J J k J k 

By (2.17), 

ll f3j1II = [ :z= (0j _ ek) -
2

{ 1 (R -K) ({f;j _ 'i/Jj) 'i/Jk rr 
k: k=/=J 

[ 

oo { } 2] 1/2 
"5cp;1 ~ j (R -K)({i;j - 'i/JJ)'i/Jk 

= P;1 II j (R - K) ({f;j - 'i/Jj) II 

~ P-;1 IIIK - Kiil ll~j - 7/Jj II ~ 8
112 p;2 111R - Klll 2

; (2.83) 
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if (2.2) holds, then by (2.17), 

10j - 0kl ~ 1ej - 0jl + 1ej - 0kl ~ z + 1ej - 0kl 

1 • A 

~ 2 0 j mm ( (j , r13) + I 0 j - 0 k I . 

Thus, 

" I i . 10 0 I i - i . 101· - (hi ~ 10j - 0k - -2 pj ~ mm_ j - k - 2 Pj - 2 P1. 
k: k=/=J 

Hence, if (2.2) holds then by (2.17), l0j - 0k/- 1 ~ 2 p/, and 

ll,Bd ~ 2 j0j _ 0jl pjt~j { 1 (R _ I<) v:j '1/Jk n 112

, 

~ 2 Pj
2 IIIK - Klll 2; (2.84) 

and ll v'j j( {j;j - 'I/Jj) 1/Jjll equals the left-hand side of (2 .65), and so admits the 

bound there. Combining this result with (2.8'.2)-(2.84), and noting that O:.j 

/J.i + 1/Jj .f (1ij - 'lj)j) 1/Jj, v"e deduce that, if (2.2) holds then 

l!o:.j II ~ canst. PJ 2 IIIK - Klll2, (2.85) 

which, in view of (2.80) and (2.8 1), implies t hat 

-1/2 -3 ,,..__ 2 ,,..__ 1181 lls11p + ll82llsup ~ canst. 0j Pj IIIK - KIii IIIK - Klll sup. (2.86) 
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Let 

x)~ = x)~ + k~ j (0j - 0k) -l 1/Jk j(R - K) t'f}ej - 0r)-
1

1/Jr j (R - K) 1/;j 1/Jr} 1/Jk 

- ½ ll~j - ?/Jj 11
2 

?/Jj . (2.s1) 

Then it can be seen that x}~ - x;~ = S1 +S2. Consequently, by (2 .86) and (2 .17), 

II 
[
4] [5]/I -l / 2 - 3 /II.,,..._ /2 111.,,..._ Xj2 - Xj2 sup ::; 0j Pj K - KIi K - K Ii/sup 

< - 3/ 2 0~1 /2 -:-3 U _ _ n J pJ nJ, 

where Unj is a generic random variable satisfying 

sup E (UJ) < oo, for each integer m 2:: 1 , 
n , j2'.l 

and by (2.76) and (2 .88) we have 

- [
5l - [4l 11 II [

4l [5l II /1 ?/Jj - ?f}j - Xj2 I/sup ::; /1 ?/Jj - ?fJj - Xj2 sup + Xj2 - Xj2 sup 

::; const . D nj . 

Moreover , 

llx)~ 11 2 
= t ~ j ( ej - ek )-

1
1/Jk j (R - K) 1/;j 1/Jk 

- { j(R - K)'lj;j 1/Jj } L (0j - 0k )- 2 1/Jk J (R - K) 1/;j 1/Jk 
k: k#-J 

(2.88) 

(2. 89) 

+ k~ j (0j - 0k) -
1

1/Jk j rR - K)t"'f?j - 0r) -
1

1/Jr j rR- K)'lj;j1/Jr } 'lj;k 

- ½ 11 -J;j - IP j I I 2 1P j Ir . ( 2. go J 
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Now, for each x, y E L2 (I) it is shown that 

Jllxll2 - IIYll 2 J = JllxlJ - IIYIII (JJxJI + IIYII) ~ JllxlJ - IIYIII (21Jxll + Jlx -yJJ) 

~ 2l!xll (!Ix - YI!)+ !Ix - Yll 2
. (2.91) 

Therefore, 

I llxlW - k~ j (ej - ek)-
2 

{ j (R - K ) '1/Jj '1/Jk r\ = 

\ llxl~ 11

2 
- 11 k~ j (0j - ek)-

1
'1/Jk { j (R - K ) 'I/JJ'I/Jk } 11

2

1 

'.':'. 2C~j (0j _ ek)-
2

{ 1 (R - K )'if;j'I/Jk rr 
X (I j(R -K)Uj\ II k~ j (0j -0kt

2
'1/Jk j (R - I<) 1Pj'I/Ji,I I 

+ II L . (0j - ekt
1

1/Ji, j (I{ - K ){ L (0j - 0rt
1

'1/Jr j u< -K) 'lj;j 'I/Jr } '1/Jk 
k: b f J r: rf J 

II\ 
; ,, ...-·- . ,,,. I! \ 

- t 11
1/J j - '1/) j I I - 'l/J j I I ) 

+ { J (R - K) 'I/Jj 'lj;j } 
2 

k~ j (0j - ekt
4 

{ J (R - K ) 1/Jj 1/Jk r 
+ k~ j (0j - 0,J-

2 
[T; j (0j - 0,.)- ] { J (R - K ) 1/;r '1/Jk } { J (I{ - K ) '1/JJ 'I/Jr } ] 

2 

------- 4 
+ ¼ 111;0j - 1/J j II . 
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So, by (2. 17) and Lemma 2.5 

I llx)~ 11

2 
- I:: ( ej - 0k) -

2 u (k - K) 'IJ!J 'IJ!k rr :s; 
k:k:/=J 

canst . UnJ [ n-
1

/
2 P-;1 et x ( n-

1
/

2 
. n-

1
/

2 pj2 + n-1 pj2
) 

+ -1 / 2 -1 -3 0-+ - 3/2 - 3 0-+ - 3/2 -3] 
n . n pj 1 n p j 1 n pj 

-3/ 2 - 3 U ::; const. n pj nj , (2.92) 

where SUPn,j E(U:J) ::; oo, for each integer m 2:: 1. 

Let 

[6] -1 { - 1 / .,....._ } { ~ J .,....._ } 
Xj = ej 1 - 0j (K - K) '1/Jj '1/)j ~. '1/Jk (K - K) '1/)j '1/Jk 

k:k=/=J 

+ L {(0j - 0k)-! - 0;1} 'IJ!k j (k - K) 'IJ!J 'IJ!k 
k :k=/.j 

-{ j(R -K) 'IJ!J'IJ!j } [ k; j {(0j- ek) -
2 
-0j

2
}'1/1k j (R -K) 'IJ!J'IJ!k] 

+ L (0j - 0k)-1 'IJ!k j(R -K){ L (0j - 0rJ-
1

'1/1r j(R -K) 'IJ!J 'IJ!r} 'IJ!k 
k: k=/.j r: r-/=j 

-½ 'IJ!j L (0j-0k) -
2
{J(k-K)1J!J'l/1k r (2 .93) 

k :k=/.j 

We have 

llx)~ - x)~llsup = ll½'IJ!j ll~J - 1J!J ll 2
- ½1JJj L (0j - 0k) -

2
{ j (k - K) 'IJ!J'IJ!k r II sup · 

k:k=/.j 

Substituting the right-hand side of (2.89) for ;j;j - '1/Jj in the previous result , and 

ignoring the remainder term implies that 
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II [5J [6J II 
Xj 2 - Xj2 sup 

S'. canst. I llx;si 11 2 
- k~J (0J - 0k)-

2 
{ j (_K - K) 'lf!J 'lf!k ri s~p l'!f/J ( u) I 

:=:; const. n-3
/

2 p3
3 

Unj sup l?f1(u)I 
u 

:=:; const. Dnj , (2.94) 

where we have used (2.92) to obtain the second inequality above. Therefore, we 

m ay replace x;~, in (2.89), by x;~ as follows: 

--- [
5l ------ [5l I 11 [5l [6l II ll ~Jj - ~Jj - X12 llsup :=:; ll ?fj - ?f!j - Xj2 lsup + Xj2 - Xj2 sup 

:=:; const. Dnj , (2.95) 

where ·we have used (2.89) and (2.94) to get the last inequality. The right-hand 

side of (2.93 ) is identical to the right-hand side of (1.32), except for th e remainder 

term t here. Hence, (2. 95 ) implies the part of Theorem 2.1 that pertains to ;f;j - 1b_7. 

2.7.2 Bounds in L2-nonn 

'\Vhen using the L2 metric, ,ve can find a better bound fo r tlw ''O7i('n, - 3
/

2 
)" re

mainders on t he right-hand sides of ( 1. 33) . In this subsection , we shall derive the 

corresponding bounds in terms of the L 2 norm: 

[1] ~ ~ -2 / ,,-.._ ------llxjl - X11 II = 11(81 - ej) 0 (ej - eh) ?fk (K - K ) (?f1 - ?f1) ?f1,;II 
k: b/=j 

S'. ,& fj 2 ( II / (I( - ]{ ) ( ;j] - 'lf/ j) I I + I / ( R - ]{ ) ( ;jj - 1/;j) 1/; j I) . 

(2.96) 
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We know that 

11 j (R-K)({iJ - 'VJJ)ll 2
= J {j(R-K)(u ,v)(;fJ - 1/JJ)(v)dvr du 

~ j {j (R -K)(u,v)
2

dv }{J({iJ - 'VJJ)(v)2dv }du 

= Z2 
llfj - 'I/Jjll

2
, 

I j (R - K) ({ij - 'VJJl'I/JJ[ ~ II j(R - K) ({ij - 1/JJ)ll ll'VJJII ~ Z 11;fj - 1/JJII . 

Thus, combining these results with (2.96), and using (2.17) we have 

[1] -"' 2 -2 _,,_._ -"'3 -3 
llxj1 - X}1 II :S 2 6 Pj 11'1/Jj - '1/J} II :S const. 6 Pj . (2.97) 

Moreover, if (2.48) holds, by (2.44) and (2 .47) we can obtain 

11 ;fj - '1/JJ - XJl II = II f (0j - ej )s L ( ej - 0k)-(s+l) '1/Jk J (R - K) ;fj '1/Jk II 
s=2 k:k#j 

00 

~ ....-.. - (s+l) _,,_._ 
:S const . L..,; 6s+l pj :S const. 6 3 p3

3
, 

s=2 

00 

ll f j - '1/Jj - X}2 II :S const. L Z s+l Pi(s+l) :S const. Z 3 p3
3 

. 

s=3 

Also , using (2.43) and (2.98) we conclude that 

1 ( e j - e j l ( 1+ J x j 1 'VJ j ) - j ( R - Ki ( 'VJ j + x j 1 i 'VJ j 1 

(2.98) 

(2.99) 

....-.. ....-.. _,,_._ - 3/ 2 - 3 
:S IJ'I/Jj - '1/)j - X} 1 II (6 + 6sup ) :s; const. n pj U n j , 

(2.100) 
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where Unj is a generic random variable satisfying SUPn,j~ l E[U;}] < oo for each 

integer m ~ 1. So, by (2 .100) we have 

j(0j-0j)(l+ Xj1 '1/Jj) - (K-K)('l/Jj +Xj1)'1/Jj 
A ; [1] ; ----- [1] I 

~ (ej - ej)( (xj1 - xj1) 'l/Jj) - (K - K ) (xj1 - xj1) '1/Jj 
I 

A ; [1] ; ,,.__ [1] I 

+ 1(0j - 0j)(l+ J Xj1) 1/;j - j (R -K) ('1/;j + Xj1)'1/;jl 

,,.__ [1] ,,.__ [1] ,,.__ 3 -3 ,,.__ 
~ L llxjl - Xjl II + L llxjl - Xjl II + const. 6. Pj 6.sup . 

Therefore , by ( 2. 97), this result leads to 

I ( 0j-0j) ( 1+ j xW '1/;j )- j (R - K ) ( '1/;j - xW) '1/;j I :C:: const. n-
3

/
2 p·;3 Unj. (2.101) 

Furthermore, by using (2 .101), (2.65) and (2. 18) we lead to 

I (A. - rn r 1 + / ) 2l ?I,., _ ! r v _ r~, r ')1 , . __J_ .J2h 
! \ _; • .' I \ - I f ·"' \ .-; J •r .} } : \ ....._ ...._ _.i. - ) \ \.,,- ~I I ,·~ ,· ·1 / 

J J J 

:c:: 10j - 0j)(l + J xW 1/Jj - ju< -K) (1/Jj + xW) '1/;jl 

+ I ; ( ;;;j - 1/J j ) 1/J j I I ( 0 j - 0 j ) - J (I{ - K) 1/J j 1/} j I 

< t -3/2 -3 U + t A 3 -.3 A - cons . n Pj nj cons . Ll Pj Llsup 

-3/2 -3 U 
~ const. n Pj nj • (2.102) 

Now, result (2.72) holds with the bound given in (2.102). Thus, a similar argu

ment given to obtain (2.75), now results in 

IIXJ2 - xW II :-S: const pj3 i... 2 (11 j (R - K ) ,(j_i - '1/;j j (R - K) 1/7j 1/Jj II) 

< t A .3 -3 < t -3/2 -3 U _ cons . D pj _ cons . n Pj nj , (2.103) 



2. 7. APPROXIMATION TO j 1 87 

where we have used (2.29). In regard to (2.99) and (2.103) we have 

ll i j - 7/Jj - xi~ II ::; ll ~j - 7/Jj - xdl + llxj2 - xi~ II ~ const. n-
3

/
2 P33 Unj. 

(2.104) 

Analogously to (2.88), we write 

[4] [5) - II ~ -1 1 ----- -----
11 xj2 - Xj2 II - ~ (0j - 0k) 7/Jk (K - K) (7/Jj - 7/Jj) 7/Jk 

k : k-::/=j 

- L (01 - 0k)-
1 

'1/Jk [ L (01 - 0r)-l{ j(R - K) Mr)} { j(R - K) '1/Jr'1/Jk}] 11 · 

k:k=/-J r:r=/-J 

(2.105) 

In regard to ( 2. 77) we have 

J1 - '1/J1 = CL1 + L (01 - 0r)-
1 

'1/Jr J (R - K) '1/J1 '1/Jr 
r: r=/-j 

Thus , substituting the right-hand side of the previous equation for 7/Jj - 7/Jj in 

(2.105) and using (2.85), we conclude that 

ll xl~- xl~ll=/1 L (01-0kt
1

'1/Jk j(R-K)a1'1/Jk l/ 
k:b/J 

<:; P-;1 II j (R - K) a1 - '1/J1 j (R - K) a1'1/}1II 

<:; P-;1 (11 j (R-K)a1I I+ I j (R- K) a1'1/J1/ ) 

<:; 2 p/ (/ {/ (R. - K )(u, v) a1(v) dvf du r 
<:; 2 P-;1 (/ { j(R - K )(u, v)

2 
dv } lla1 ll 2 

du r 
~ 2 P-;1 l/aj/1 .6 ~ const . p3

3 .63 = const . n -
3

/
2 

p3
3 Unj . (2. 106) 
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Hence, results (2.104) and (2.106) lead us to 

II
_,....,_ _ - nf, . - [

5
] II II_,....,_ . - · - [

4] II II [
4] - [5] II -

3/ 2 - 3 VJ1 <flJ Xj2 :::; 1/)1 1/)1 Xj 2 + Xj 2 Xj 2 :::; const. n pj Unj . 

(2.107) 

Therefore, using (2.92), we may replace 11,J;j - V}j 11
2 in xW by the series on the 

left-hand side of (2.92), without affecting the veracity of the version of (2 .107) 

that holds with xW in place of x;~. That is, llxW - x;~ II :::; const. n-
3

/
2 f; 3 Unj 

and then by (2.107), 

11ij-1/Jj-x;~II:::; 11ij-V}j-x1~11+11xW-x1~11:::; const.n-
312 p7 3 Unj· (2.108) 

Hence , the part of Theorem 2.1 that appertains to ,(/;j -'I/Jj in the L2 metric follows 

from (2.108). 



Chapter 3 

Bootstrap Confidence Statements 

for Eigenvalues and 

Eigenfunctions 

3.1 Introduction 

In this Chapter we suggest bootstrap methods, justifiable using the expansion 

approach developed in Chapters 2 and 3, for quantifying the accuracy of {Jj and '1/Jj 

as approximations to 0j and '1/Jj, respectively. We first briefly express the general 

idea of bootstrap in Section 3.2. Then we explain how to construct bootstrap 

confidence intervals for eigenvalues and eigenfunctions. Those results appear 

in Sections 3.3 and 3.4, respectively. In Section 3.5, we propose simultaneous 

confidence regions for ej and '1/Jj, by using the inequalities, given in (2.17) and 

Theorem 1.5, as a basis for bootstrap confidence procedures. These methods 

can be justified, and in particular can be shown to have appropriate degrees of 

accuracy, by using the stochastic expansions and their related properties discussed 

in Chapters 1 and 2. 

89 
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3.2 General Idea of Bootstrap 

The key idea behind the bootstrap in nonparametric problems is very general and 

can be applied to construct estimates of means, mean squared errors, quantiles, 

etc. Let X = { X 1 , · · · , Xn} denote a sample drawn at random from a population 

with distribution function (d.f.) F = F0 . The idea is that of replacing the true 

d.f. F = F0 by the empirical d.f. F = F 1 (the probability measure that assigns 

to a set a measure equal to the proportion of sample values that lie in that set) 

in a formula that expresses a parameter as a functional of F, say 0 ( F). This 

entails replacing the pair (F0 , Fi) by (F1 , F 2 ), ,vhere F 2 denotes the d.f. of a 

sample drawn from Fi = F conditional on F 1 . The latter sample (resample) is 

called a bootstrap dataset, and denoted by X* = {Xi ,··· , X
1
~}. Each resample 

is collect ed by sampling randomly, with replacement from the dat aset X. 

n 1 ·r· · , , . , . . , ,.. .., . .., ,,.. ---
!"\!J.! { ·_;-~ .~! ! !1 1)1 !' . i: V/ !' :-::·r, l~:(11llt,~ ·1,() ('c~1 1·: 11:iT.(' ;-·~ :, ·1!r~:r•~~-; r1J .:~ y)r11_1t:l~'.t lr_-..Tl_ r! t .!._ -', 

such as the popul ation mean, 0(F) = µ = J x dF (x), v·-.re can replace F by F and 

obtain X = J x dF(x), which is the sample mean. As another example, assume 

,ve v,r ish to estimate mean squared error 

T
2 = E (0 - 0)2 = E[{0(F1 ) - 0(Fo) }2

1 Fo] . 

Then , the bootstrap estimator of T
2 is 

f 2 = E{(0* - 0)2J X} = E[{(0(F2) - 0(Fi)} 2J F1] 

where O* = 0[X*] is the version of 0 computed from X * rather than X . 

Hc1l1 ( 1092) argued that construction of a confidence interv(l,l is equivalent to 
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solving the population equation 

E{ft(Fa , Fi )I Fa} = 0 , (3.1 ) 

for t = T(Fa ), where Fa and Fi are the population distribution function and 

empirical distribution function, respectively, T is a functional of Fa, and ft = 

I { 0 (Fi) - t S 0 ( F0 ) S 0 ( F 1) + t} - a is a functional which determines the 

relationship between 01 = 0(F1 ) (bootstrap estimation of the parameter 0a = 

0(Fa)) and the parameter 0a. 

Since Fa is unknown in the equation (3.1), we can not solve the population 

equation. Using the main principle of bootstrap methods , we believe that the 

relationship between Fa and Fi is similar to that between F2 and Fi , where F2 is 

the distribution function of the resample drawn from our sample X conditional 

on X. Therefore, we solve the sample equation 

E{ft(Fi , F2)!Fi} = P{0(F2 ) - t S 0(Fi) S 0(F2 ) + t !Fi} - a = 0 , (3.2) 

fort. The solution t ·= T (Fi ) of (3.2) is an approximate solution to (3.1 ), i.e. 

E {h(Fi )(Fo, Fi )IFa} ~ 0 . (3.3 ) 

To improve on t his approximation , result ing in improvement of t he coverage 

accuracy of t he confidence interval , we appeal to double-bootstrap methods for 

constructing confidence intervals . In t his way, we introduce an additive correction 

term t by defining U( ., t) = T (.) + t such that U(., 0) = T (.). 'vVe choose t so as 

to improve on t he coverage accuracy or to find a better approximation fo r 

E{ft=T(Fi)( Fo , Fi )I Fo} = P {0 (Fi ) - i S 0(Fo) S 0(Fi) + i IFo} - a ~ 0 . 
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Now, our aim is t o solve the equation 

E{fu(F1 ,t) (Fo , Fi)IFo} = 0. (3.4) 

For this purpose, we define fu (G,t )(F, G) = 9t(F, G) . We observe that (3.4) is 

equivalent to 

E { 9t ( Fo , Fi) IFo} = 0 . (3.5 ) 

Again , using the main principle of bootstrap methods, we would like to solve its 

associated sample equation , 

E{gt(F1, F2)!Fi} = E{Ju(F2 ,t) (Fi ,F2)IFi} = E{Jr(F2)+t (F1 , F2) 1Fi} = 0 

for t , leading to the solution i = T1 (Fi) , for some functional T1 of Fi . Conse

quently, we have an approximate solution to (3 .5), 

E {g'f\ (Fi)( Fo,F\ Jj Foj = E{.fu(F1 ,T1 (Fi))(_t,o,F1 ) jJ, oJ ~ u . (j. o) 

Using U(F1 , T1 (F1 )) = T(F1) + T1 (Fi) permits t he left-hand side of (3.6) to be 

closer to zero th an the left-hand side of (3 .3). This allows th e coverage accuracy 

of t be conficl C? nce interval t o be improved. See Sections 1.4 and 1. 5 of Hall ( 1092). 

3.3 Bootstrap Confidence Intervals for Individ

ual Eigenvalues 

A confidence band fo r ;j;j provides info rmation about t he likelihood that a bump 

on ·1/Jj refl ects a similar feature in the trne component fu nction '1/Jj · Also , confidence 

intervals for fh help to quant ify t he amount of variabili ty t hat is lost by confining 
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attention to k dimensions. 

Draw a resample, X * = {Xi , ... , X~}, by sampling randomly, with replace

ment , from the sample ,--1:' of random functions. For this resample, compute t he 

analogues e;, :(f; of 0j, :(/;j. Approximate the unconditional distribution of 0j - 0j 

by the distribution of BJ - 0j conditional on X, and approximate the uncondi

tional distribution of the random function 'lj)j - 'lj)j by the conditional distribution 

of ;j;; - ;j;j· In this way, develop confidence statements about the sizes of (a) 0j-0j, 

(b) supt J:(/;j(t) - 'lj;j(t)J or (c) Jj :(/;j - 'l/Jjll• Using (a) we construct percentile boot

strap confidence intervals for 0j , or for a collection of 0/s if we address several 

eigenvalues simultaneously; using (b) we obtain simultaneous bootstrap confi

dence bands for 'lj)j; and using ( c) we get confidence intervals for the L2 distance 

of 'lj)j from 'lj)j . 

3.3.1 Coverage Accuracy for the Bootstrap Confidence 

Interval of 0j 

Result (1.62) shows that n 112 (0j - 0j) is asymptotically Normally distributed. In 

particular, we obtained in Theorem 2.1 that 

(jj - ej = n-
1
!

2 J z 1/Jj 'lj;j + n-
1 L (0j - ek)-

1 
( J z 1/;j 1/Jky + Rnj;l, (3.7) 

k: k-::/=J 

where R nj ;l can be bounded above by n-3
/

2 
Znj in which Znj = OP(l ), 

z . _ ·E - 3 e-1/2 (1 _ ( ·) -1/2 . 
nJ - J Pj j J SJ , 

(j = infk~j{l - (0k/0j)}, p j = minki=J J0j - 0kl and Sj = supt l'l/Jj(t) J. Therefore, 

Znj grows up as j increases . 

Edgeworth expansions of the distributions 0j - 0j and the first two terms on 
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the right-hand side of (3. 7) generally disagree only in terms of order n-3
/

2 
( or 

smaller). 

In order to evaluate the coverage probabilities, we need an Edgeworth expan

sion of the distribution function of 

n
1

/
2 (0 · - 0·) = D· =I · + n-

1!2 
'"""' Wk 12 + Rn · J J J J ~ Jk J' 

(3 .8) 
k : k=pj 

where Ij = J Z 'ljJj 'ljJj, Ijk = J Z 'lj)j '1/Jk, Wk= (0j - 0k)- 1 and Rnj can be bounded 

above by n-1 Znj. We may write both I j and Ijk in terms of the principal com

ponents as follows: 

Ij = n
112 

[ ~ t wj - E(~fj)} - ([j)
2

] , [
l n --i I ;,= n

112 
:;:; ~fo fo - ~J~k , 

(3.9) 

where fo = fx Xi 'ljJj and [j = ¾ ~:~1 fo. 

A bootstrap confidence interval for ej ca.n be constructed by using either a 

percentile bootstrap or a percentile-t bootstrap method. We will disci1ss con

stru cti on of t hat by a percentile bootstrap method. 

Let kj(U) denote the jth cumulant of a random vari able U. Then , 

k1 (Dj) = E (D_7) = E(Ij + n-112 L w;j:k + Rnj) 

k : h=/.j 

= k1(Ij) + 2 n- 112 aj + ERnj, 

v-Jhere a1· = ""' wk--: 1 E(I 2 
) . We may write, fo r fixed j, 

L_;h :kcjcJ Jh · 

n 

I j = n-1 /2 L ui+ Op(n-1/2) J 

i=l 

n 

I . = n- 1!2
'"""' V . + 0 (n- 112

) Jk ,i___, 1.,/... p , 

i=l 

(3. 10) 

(3.11) 

where Ui ~;j - E(aj) , \~,k = fo ~ik and the pairs (Ui) l~,;J) 1 ~ i ~ n, are 
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independent and identically distributed with zero mean. Therefore, 

E(I]) = E(U{) + O(n-1
), E(I:J = E(½\) + O(n-1

), (3 .12) 

E(I -12 ) = n- 1
/

2 E(U 11;2 
) + O(n-312

) 
J jk l l,k , E(I]) = n-1

/
2 E(U{) + O(n-1

) , 

(3.13) 

E(IJkJ]kJ = 3E(Vi ,kJ E(Vi ,kJ + n-
1 

{c5k1k2 E(½\J - 3E(Vi,k1 ) E(Vi ,kJ} + O(n-2
) , 

(3.14) 

E(I] 1:J = n-
1/

2 {3 E(U;) E(U1 ½\) + 6 E(U1 Vi,k) E(U;½,k)} 

+ n-312 E(U1 Vi,k) E(U;Vi,k) + O(n-2
). 

Using the above results we have: 

k2(Dj) = E (D] ) - (EDj)
2 = E(IJ) + 2n-112 L wk E(Ij 1:J 

k: k=/=j 

(3.15) 

+ n-l L L Wk 1 Wk2 E(IJk1 IJkJ + 2 E(Ij Rnj) + O(n-2
) 

k1: kl-I=} k2: k2=/=j 

= k2 (Jj) + n - l ( b1j + b2j) + 0 ( n - 2
) , (3.16) 

where 

b1j = 2 L Wk E(U1 ½\) + 3 L L Wk1 Wk2 E(½\J E(½\J ' 

k: k=/=j k1: k1 =/=j k2: k2=/=j 
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and n- 1 b2j = 2 E(Ij R1j), Furthermore, 

k3(Dj) = E(D]) - 3 E(Dj) E(D;) + 2 (EDj)3 

= k3(Ij) + 3n-112 L Wk [E(IJij
2
J - E(I;)E(I}J] + O(n- 1

) 

k: kcj=j 

= k3(Ij) + n- 1
/

2 cj + 0( n- 1
) , (3.1 7) 

where Cj = 6 Lk: ki=J Wk [ E(U1 Vi,k) J2. Also, 

k4 (Dj) = E(DJ) - 4 E(Dj) E(D]) - 3 (ED])2 + 12 E(D;) (EDj) 2 - 6 (EDj) 4 

= k4 (Ij) + 4 n- 1
/

2 L wk [E(I] I},J - E(I])E(I},J - 3 E(IjI}k) E(I;)] + O(n- 312
) 

k:k-/=j 

= k1(Ij) + n-1 dj + O(n-312
), (3.18) 

where dj = Lk : k-/=j Wk { 24 E(U1 Vi,k) E(UrVi,k )-16 E(Ul) E(V1\)}. Tlrns, (3.10) 

n.ncl (3 .16 )-(3. 18) imply that 

where Uj = b1j + 02_7-

k1,2(Dj) = k1 ,2 (f7) + aj, 

k2 2 (D -) = k2 2 (J -) + u · 
' J ' .7 J ' 

k3,l (Dj) = k3,] (Ij) -J- Cj > 

kt1,l (DJ = k 11,1 (Ij) + dj ' 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Standardizing l j by dividing to O"j, where a; is the asymptotic variance of 

n 112 0.J, and vniting the usual Edgeworth expansion for that, ·we have: 

P(Jj :s; :-c) = cD(u; 1 :r)+n- 112 p1 (u; 1 x) cp(u;-1 :t)+n- 1 
p2 (a; 1 

x) cp(u;-1 x)+O(n- 312
), 

( 3. 23) 
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where <I:> and ¢ denote the distribution function and density funct ion of t he Stan

dard Normal , and the functions pj are polynomials of degree at most 3 j - l and 

odd/ even indexed polynomials pj are even/ odd functions. In particular , p1 and 

P2 are 

P1(x ) = - {k1 ,2 + ½ k3 ,1 (x2 - 1)} , 

P2(x ) = - x {½ (k2,2 + kf, 2 ) + 2
1
4 (k4,1 + 4 k1 ,2 k1 ,3)(x2 - 3) 

+ /2 kl1 (x
4 - 10x2 + 15)}. 

(3.24) 

(3.25) 

Thus, using (3.10) and (3.16)- (3.18) we can express the polynomials p1 and p2 in 

terms of the first four cumulants . Note that as (3.19)- (3.22) show, the coefficients 

ki.j, appearing in (3.24) and (3.25), have a different formula in t he case of I j t han 

they do for Dj . Hence 

P (Dj <,'. x) = P (I j :::; x) - n- 1
/

2 
{ aj + i Cj (x2 

- 1) }¢(x) 

- n - 1 - (b · + 2 a · k19 + a~) + - (d · + 4 a · k, 3 + c- kp) (x2 
- 3) 

{

1 1 
2 1 1 ,= 1 24 1 1 - , 1 ,-

+ 
7
~ (2 Cj k3 ,1 + c] ) (x4 

- 10 x2 + 15) }x ¢(x) + O(n- 3
1

2
), 

(3.26 ) 

Substitut ing (3.23) in equation (3.26 ) we can obtain an approximat ion t o the 

distribution of n 112 
( 0j - 0j) as follows : 

P ( 1/ 'J. (0- 0 ) < ~ )' _ rf, ( - 1 ~ ) I - 1/ 2 x ( - 1 ~ ) ' ( - 1 ~ \ n j - j , _ ..:,a - '±' (j j ---a T n P1 (J"j ,., Cl: <!J (jj ---o.) 

I, - 1 *( - 1~ ) .'( - 1 ,_,, ) I 0 ( - 3/ 2\ 13 ) ,- ) 
1 n p2 (j j ---o. <D (j j ..., a: , n ,1 . \, . _ 1 

where: 
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p;(x) = P1(x) - aj - i Cj (x2 
- 1), (3.28) 

* [1 2 1 2 p2(x) = P2(x) - 2 (bj + 2 aj k1,2 + aj) + 
24 

(dj + 4 aj k1,3 + cj k1,2) (x - 3) 

+ /
2 

(2 Cj k3,1 + c]) (x
4 

- 10 x
2 + 15)] x. (3.29) 

The two polynomials Pi and p2 preserve the parity of p1 and p2 according to the 

index. Consequently, 

-1/2 A 

1 - a = P ( n I 0 j - 0 j I ::; Za) 

= P(n- 112 (0j - ej) ::; Za) - P(n-112 (0j - ej) ::; -za) 

= 2 <D(o-; 1 z0 ) - 1 + 2 n-1 p;(a-;1 z0 ) cp(o-;1 z0 ) + O(n-312). (3.30) 

Inverting the above expansion, we derive a Cornish-Fisher expansion a.s follows: 

Zc, = O-j z~ + n-
1 

O-j p13( z~) + n-
2 o-.7 JJ23( z~) + · · · , (3.31) 

Vi here ( = 1 - %, and 

]JJ 3 ( .T) = - p; ( X) 
1 

])23 ( X) = JJ; ( X) J)n X) - 2 X JJ; ( X) 2 
- JJ; ( X) . (3.32) 

Note t hat p2' denotes t he fir st derivative of p2. The bootstrap es timate of Za is 

Zen the solu t ion of t he equ ation 

P (n1
/

2 10; - 0jl ::; z0 I X ) = 1 - O'. • 

By zmalogy v-1ith (3.3 1), Za admits t he obvious bootstrap expansion 

,ia = CYj Z( + n- 1 CYj p13(z() + n-2 
CYj f323(z() + · · · , (3.33) 
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where O"j is the bootstrap estimate of D"j . 

Therefore, Za - Za = Op(n- 1
/

2
) since S-j - D"j = Op(n- 112

) . Moreover, using 

the delta method (see Section 2. 7 of Hall , 1992), we have: 

P(n1!
2 

(0j - ej) ~ ia ) 

P ((eA 0 ) < -1 / 2 A - 3/ 2 A A ( ) - 5/ 2 A A ( ) + ) = j - j _ n D"j zr, + n D"j P13 zr, + n D"j P23 zf, · · · 

= P(S ~ zr, - n- 1 p;(z,)) + O(n- 2
), (3 .34) 

where S = T + n - 312 6 in which T = n
11 2 

~ej - ej) and 6 = n 112 {p (zc) -
n, O"j n 13 c.,, 

p13 (zr,)} = n 112 {p2(zr,) - p2(zr,)}. It follows that 6 n is asymptotically Normally 

distributed, and therefore 6 n = OP( l ). 

Assume the usual Edgeworth expansion for the Studentized statistic T i i.e. 

P (T ~ x) = q) (x) + n- 1
/

2 
q1 (x) ¢(x) + n- 1 

q2 (x) ¢(x) + · · · , 

where odd/ even indexed polynomials qj are even/ odd functions , respectively. 

Note that we have changed the symbol p to q in the above expansion , because 

we are now working with Edgeworth expansions for the Studentized statistic T 

rather than the non-Studentized statistic n 1/
2 

( 0j - 0 j) . 

The delta method , and (3.34), imply that 

P (S ~ Zf, - n- 1 p;(ztJ) = P (T ~ Zf, - n- 1 p;(zf, )) + O(n- 312
) 

rf.. ( - 1 * ( )) I -1 / 2 ( - 1 * ( )) i ( - 1 * ( )) = '±' Zf, - n p 2 zr, -r n q1 Zf, - n p2 Zf, <p Zf, - n p2 Zf, 

+ n- 1 q2(zf, - n- 1 p;(zf,)) cf>(zr; - n- 1 p;(zr;)) + O(n- 312
) . (3. 35) 
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Taylor expanding the corresponding functions, the following is obtained: 

P(S ~ z~ - n-
1 p;(z~)) = <p(z~) + n-

1
/

2 r 1 (z~) ¢(z~) 

+ n- 1 ,2(z~) ¢(zd + n-312 ,3(z~) ¢(z~) + · · · , (3.36) 

where r1 ( x) = q1 ( x), T2 ( x) = q2 ( x) - p2 ( x) and T3 ( x) = x PH x) q1 ( x) - p2 ( x) q~ ( x). 

Here, as it can be seen, the 'j are odd or even functions according to whether j 

is even or odd. Therefore, 

( 
1/ 2 A A ) ( 1/2 A A ) ( 1/2 A A ) p n I e j - e j I ~ Zcx = p n ( e j - e j) ~ Zcx - p n ( e j - e j) ~ - Z a 

= 2 <D(z~) - 1 + 2 n- 1
, 2 (z~) ¢(z~) + O(n- 2

) 

=l-a+O(n- 1
). (3.37) 

This means that the coverage error of single-bootstrap confidence interval ( ()j -

/~0 . n- 1
/

2
, 0j + i a n- 1!2

) is of order O(n- 1 
). It should be noted that 0j used in 

the confidence interval is not the actual ej but an approximation to that. lt can 

be shown that this error can be reduced to O ( n-2
) by using double-bootstrap 

calibration. See Proposition 1.2 of Hall (1992). We will present the numerical 

result about bootstrap confidence statements in Chapter 5. 

Since the distribution of §j is likely to be asymmetric about 0j , it is bet ter 

to construct an equal- tailed confidence interval rather than a symmetric one. In 

rn1me:rical work, vve can obtain ta = ta/2 and i 1-a/2 from 

l B A A 

B L1(e1:-e ~to:) = a, (3 .38) 

b=l 

where ez is a version of {J which is computed from resample xi; = { x;b, ... ) x1~1J 
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(b = 1, • • · , B ) rather than the sample X· Using the fact that 

P( §* - e s xix) ~ P( e - e s x) , 

the confidence interval ( 0 - ti-cx/2, 0 - icx;2) has nominal coverage 1 - a. We call 

it a "single bootstrap" confidence interval. Drawing C resamples from each of 

our resample , we can obtain t = i;;cx/2 and i;;l - cx/2 from 

C 
1 ~ A A 

c ~ I(e;; - e; s t;;cx) = a 

c=l 

(3.39) 

Finally, we can find t = tcx/2 and ti-cx/2 so that 

B B 
1 ~ A A A a l ~ A A A , a 

B ~1w;- e s t;;cx;2+t) = 2' and B ~J(e; - e s tb;l - cx/2+t) = 1- 2 (3.40) 

b=l b= l 

respect ively. Then our double bootstrap confidence interval is ( 0 - ti-cx; 2 -

i1-cx/2, 0 - icx/2 - tcx;2) . See Chapter 5 for numerical results. 

3.4 Bootstrap Confidence Intervals for eigenfunc

tions 

To construct confidence bands fo r the eigenfunctions '1/)j we proceed as follows. 

From the bootstrap dataset X* = { x; , ... , X~} , compute the bootstrap versions 

........... ........... ........... ........... 

'1/J ~: 'I/J2, . . . of '1/)1, 'lj;2, . . . . Then construct standard two-sided percentile-method 

confidence regions for ·z/Ji, 'lj)2 , ... as follows. Define Zjcx by 

P { ~~¥ i?bJ(t) - ?b;(t)I :S ~" I X} = 1 - a 
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the bivariate region given by 

{ ( t, u) : t E I and I~ ( t) - u I :S: Za } 

is a nominal ( 1 - a )-level confidence region for graphs of 'l/Jj . 

Similar approaches such as those employed in the previous Section can be 

used to show that this band covers the true 'l/Jj with probability 1 - a, within an 

error of O ( n - l), in the sense that 

P { su P I 0j ( t) - 1/;j ( t) I :S: Za } = 1 - a + 0 ( n - l) . 
t,E'I 

The error can be reduced to O(n-2) by using double-bootstrap calibration. Sim

ilarly, we can construct confidence bands for the eigenfunctions 1/J j by using the 

L2-norm. 

3.5 Sirnultaneous Confidence Bounds for Eigen-

values and Eigenfunctions 

If \Ve want the approximation to be valid for a large number of values of j, the 

above approach for constructing bootstrap confidence intervals is problematic. In 

theory, vle would wish that number to diverge as n increases. The inequalities 

given in Theorem 1.5 are potentially attractive in this regard, because they can 

he used as the basis for simultaneous confidence regions v,rith a degree of con

servatism. Suppose we have a one-sided prediction interval for 6., of the form 

P(6. :S: .6.upp) = 1 - 0:11 , say, where 6.upp is computable from data and the sub-
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script denotes "upper bound." Define 

lupp = inf {j ~ l ej - ej+l S 2 Zupp}. 

Then , in view of the theorem, the following is true: 

with probability at least 1 - an, supj~l 10j - ej I s Zupp , and for 

all 1 < J. < J -1 11,,1, · - W · 11 < 21
/

2 [1-{1-4 (Z /5 -) 2
}

112
]
112

. _ _ upp , lf/J , J - upp J 
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(3 .41) 

We may readily compute Zupp using bootstrap methods , as follows. Let K * 

denote the bootstrap version of K , computed from X * rather than X , and put 

Z * = II K* - K Ii - Given O < a < l , for example a = 0.05 , take Zupp to be the 

upper a -level critical point of the distribution of 6 *, given X . 

Note that P(Z S Z upp) converges to 1 - a as n -+ oo. To appreciate why, 

recall from Section 1.3 t hat n 112 (K -K) converges weakly to a Gaussian process(. 

Analogously, and condit ional on X , n 1/
2 

( K* - K) converges weakly to t he same (. 

Therefore, the limit of the distribution of n 1/
2 6 *, condit ional on X , is identical 

to the limit of the unconditional distribution of n 112 Z. It follows that n 1/
2 Zupp 

converges in probability to the upper a -level critical point of the distribution of 

f JI2 (
2

, and hence that P(Z S Zupp ) converges to 1 - a . 

The simultaneous bootstrap confidence interval for 0j , suggested by (3.41 ), is 

indeed conservative but not especially so. Its numerical properties will be dis

cussed in Section 5.3. The confidence band for 'l/J j tends to be quite conservative , 

however. Therefore, we will not discuss it theoretically any further. 

From Chapter 1 we have: 

n
1/ 2 (0~. - e ·) - D . - J . _L n-1/ 2 J . + R . 

J J - J - J I J nJ 1 
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where Ij = J Z '1/Jj '1/Jj, Jj = ~ f.:f!,i=j wef]e, in which I je = J Z '1/Jj '1/Je, we = (0j -

0e)-1 and Rnj can be bounded above by n-1 Znj· 

Assume that from the sequence 0j, only the first k eigenvalues are non-zero. 

Then we may write 

D = l+n- 112 J+Rn , (3 .42) 

where D , I , J and Rn are k-vectors with elements Dj , I j, Jj and Rnj, respectively, 

for 1 S j S k. 

A Multivariate version of the percentile technique can be used to construct 

simultaneous confidence regions for 01 , · · · , 0k. Then, the two k-vectors D and I 

satisfy a vector version of the results (3.19)- (3 .22), and for any k-variate sphere 

S centered at the origin we have: 

P(D E ~- 1
/

2 S) = P(I + n-1!2 J + R n E ~- 1
/

2 S) 

= r { 1 + n - l r l ( X) + n -
2 

r 2 ( X) + · · · } cp ( X ) dx , ( 3. 4 3) 
}r,- 1/2 5 

where ~ is the k X k asymptotic covariance matrix of n 1!2 oj and n 112 
ek for 

1 s j, I!, s k with the asymptotic variance of n 1
/

2 (}j on its diagonal and the r/s 

arc polynomials in t he comp onents of k-vectors x , and of degree 3j and odd/even 

functions for odd/ even j ( recall that the odd indexed polynomials were vanished 

due to the symmetry of the region about t he origin). 

To const ruct a bootstrap ellipsoidal region 

R 3 = { 0 - n - 1
/

2 i 112 x : x E S3} . 

Choose S3 to be the k-variate sphere centered at the origin and of radius z0 . such 

that 

P(6 * S Zaj X ) = 1 - Ct . 
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Then, 0 E R 3 is equivalent to f- 1
/

2 D E S 3 . 

Suppose that S = ~-1
/

2 D and S 1 is a sphere centered at the origin and of 

radius Za such that 

1 - a = P ( S E S1) 

= r {l + n-
1

/
2 

S1 (x) + n-
1 s2(x) + · .. } cp(x) dx 

isl 
= ( {l + n-

1 s2(x) + n-
2 s4(x) + · · ·} cp(x) dx, (3.44) 

1s1 

where the Sj are polynomials in the components of x, of degree 3j and an odd/ even 

function for odd/ even j , respectively. Moreover , we have used the fact that for 

any odd polynomial 1r and any sphere S centered at the origin, 

fs 1r( x) dx = 0 . 

Therefore , (3.44) implies that 

+ -1 _i_ -2 + 
Za = Zo n C1 1 n C2 · · · , 

where z0 denotes the radius of the sphere S2 centered at the origin and such that 

P(N E S2 ) = / cp(x ) dx = 1 - a, 
1s2 

in which N is k-variate Standard Normal, and c1 , c2 , · · · are constants depending 

on population moments . Also, similarly to (3.44) , we have: 

P(S* E S3 IX) = r {l +n- 1 i\(x ) +n- 2 f2 (x ) + . .. }¢(x)dx , (3.45) 
1s3 
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where, in the k-variate statistic 

S* = n 1; 2 ~-1 / 2 ( 0* _ 0) = ~-1/ 2 D * , 

the r j 's are obtained from rj on replacing population moments by sample mo

ments , and are of degree 3j and odd/ even functions for odd/ even j. 

Applying the argument at (3.44) to (3.45), we deduce that 

" + -1 " + -2 " + Zo: = Zo n C1 n C2 · · · , (3 .46) 

where t he Cj denote the version of the Cj obtained by replacing population mo

m ents by sample moments. Therefore,. by the delta method, 

P (0 E R 3 ) = P(D E ~ -
1

/
2 S 3 ) = P(S E S3) 

=P(S Ezaz: 1
S1) 

= P({l + (nzot1(c1 - c1) + OJJ(n-2)} S E S1) 

= P ( { 1 - ( n zo t 1 
( c 1 - c1 ) } S E S 1 ) + 0 ( n -

2
) , (3 .4 7) 

where \Ve used the fact t hat Cj - Cj = Or;(n- 1!2
). '\Ne know that t he distri bution 

of 

S1 = {1 - (nzot 1 (c\ - c1)} S 

admits an Edgevmrth expansion of the form 

P(S1 ES) = ls {l + n- 112 t 1 (x) + n- 1 t2(x) + · · ·} q,(x) dx, (3.48) 

where i,
1 

is c1 polynomial of degree 3j and is an odd/even function for odd/even 

j, respectively, and S is any k-variate sphere in Rk. More precisely, since S and 



3.5. SIMULTANEOUS CONFIDENCE BOUNDS 107 

S1 differ only in terms of Op(n-3!2
), tj = Sj for j = l , 2. Furthermore, if Sis a 

sphere centered at the origin, terms of odd order in particular the term in n-1/2 

vanish from the expansion (3.48). Thus, 

and then 

P(S1 E S1 ) = ( {l + n-1/2 t1(x) + n-1 t2 (x) + · · ·} ¢(x) dx 
1s1 

= ( {l + n- 1 t2 (x)} ¢(x) dx + O(n-2
), 

1s1 

P ( 0 E R,3) = 1 - a + 0 ( n - l) . 

(3.49) 

However, since we deal with the multivariate distribution of ( 01 , · · · , (h) for 

finding the distribution of max1::;j::;k(0j - 0j), and the remainder terms in (3.7) 

grow up as j increases, we need to restrict k = kn to increase sufficiently slowly. 

This condition arises when we obtain the Edgeworth expansion of the distribution 

function D in terms of that of l. In particular , the distribution of max1::;j::;k ( ej -

0j) depends on the moments of the distribution of ( 01 , · · · , 0k), needing to be 

controlled with terms of n - 1/2 or n- 1 as k increases. See (3.10) and (3.16). 

Therefore, we can expect the same results to hold if k = kn increases sufficiently 

slowly. 



·. 



Chapter 4 

Properties of Linear Regression 

Estimators 

4 .1 Introduction 

Suppose that ) for j = 1: · · · i p and i = 1 i · • · : n) the Xi ( tj ) are discretiza.tions 

of continuous functions )C: where t1 ) · · · ) tP E I are the points a.t which the 

continuous functions Xi(t ) are digit ized. Then, when t reating a linear regression 

model with these predictors ) for a function b(t) we may approximate a linear 

functional like E(~I Xi) = fyXi(t) b(t) dt by ~;=1 Xi(tj) b(t j) . In such problems: 

Frank and Friedman (1993) summarized two methods: Partial Least Squarn (PLS) 

and Principal Components Regression (P CR) . commonly used bv chemometrists 

in analysing these kinds of data. Then the authors compared the nm methods 

·with ridge regression (RR) in a unified situation in which the coefficient , -ector is 

constrained to be in some subspace. and the projected sample predictor ,Tariables 

m this subspace hm-e larger spread (\-ariance) . 

Hastie and ~Iallm-vs: discussion (1993) of the three techniques (PIS. RR and 

PCR) as ,Yell as the penalized least square method haYe contributed to the better 

109 
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understanding of the problems arising from analysing functional data. Hastie 

and Mallows (1993) pointed out that in the presence of a large number of the 

covariates Xi ( tj), which generally exceed the number of the sample, the model 

may loose its efficiency for prediction. Furthermore, high correlations of the 

explanatory variables Xi ( tj) in the model may result in an uninterpretable model. 

Then, the authors mentioned how to get a better estimation of the coefficient by 

constraining, via the penalized least square method, the regression slope to be 

smooth. Hastie and Mallows (1993) emphasized that it is better to use methods 

creating an order relation among the covariates in terms of their index values. 

In this way, the problem can be removed by using fewer covariates rather than 

hundreds of the original covariates. 

Hastie and Mallows (1993) also proposed a "Smooth Ba.sis Expansions" method 

to model tlrn coefficient o( t) smoothly, where the regression coefficient o(t;) is ex

pressed in terms of expansion of a sequence of smooth basis functions such as 

polvnomials. cosinusoids and splines. In their rr.sponse to Hastie 8.nd Jvfa.llnws 

( 1993) , Frank and Friedman confirmed that procedures that take an order rela

tion among the covariates indices into account or that constrain the coefficient 

h(t;) to be a. smooth function might work better than RR, PLS and PCR in cases 

in which the predictor curves are not smooth . Indeed, such methods that take 

the:. functional nature of the problem into account seem more reasonable than 

those which do not. See Marx and Eilers (1999) , who expressed the advantages 

of a functional technique by comparing with the nonfunctional ones such as PLS 

and P CR. 

Kc1rlrnnen (1946) developed a theory of stochastic processes in Hilbert spaces. 

Using this theory
1 

Grena.nder ( 1950) was able to take first steps on FDA by 

applyi ng the Ka.rhunen-Loeve expansions to functional data, including a proposal 

fo r fun ctional regression. However , functional regression models were widely used 
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only after recent works such as Ramsay and Dalzell (1991) and Ramsay and 

Silverman (1997, Chapters 10 and 11). 

There are three kinds of functional regression models depending on the nature 

of predictors and responses: 

• Both predictors and response variable are functions. 

• The response is a function and predictors are vectors. 

• The response is a scalar and predictors are functions. 

Models of the first type were introduced by Ramsay and Dalzell (1991). These 

models can be viewed as extensions of the multivariate linear regression model 

E(YjX) =BX, where Band X are matrices. When both response and predictor 

tend to be a continuum, the model is changing to 

E[Y(t)JX] = µ(t) + J X(s) f3(s, t) ds, 

where µ is the mean response function and /3 is slope of the regression. Then 

the unknown parameter /3 can be estimated by applying regularization methods; 

for example by penalized splines (James, 2002), by basis representations or trun

cation of series expansions (Ramsay and Silverman 1997, Chapter 11 and Chiou 

et al., 2004) . Also a discussion about models in which the response is a random 

function and the predictors are scalars or vectors can be founded in Chiou et 

al. (2004). Accounts of models , in which the predictors are functions and the re

sponses are generalized variables such as binary, count or continuous type, can be 

founded in work. of Cardot , Ferraty and Sarda (1999, 2003), Cardot , Ferraty, Mas 

and Sarda (2003) , J ames (2002) and IVfoller and Stadt miiller (2005). This type 

of data arises in functional prediction problem such as prediction of total annual 



112 CHAPTER 4. PROPERTIES OF LINEAR REGRESSION ESTIMATORS 

precipitation for Canadian weather stations from the pattern of temperature vari

ation through the year (Ramsay and Silverman, 1997; Chapter 10) as well as the 

two examples given in the introduction to Chapter 1. In this research we discuss 

a linear regression model of the third kind. In Section 4.2 we explain the problem 

of estimation of the slope function, and also its differences from the prediction 

problem in functional linear regression. In Section 4.3, using the expansions and 

their properties given in Chapters 1 and 2, the impact of eigenvalue spacings on 

properties of linear regression estimators is discussed, and the validity of simple 

accounts of the performance of functional linear regression is explored . It is ob

served that those accounts are valid if eigenvalues are reasonably well separated, 

but not otherwise. We also briefly discuss the prediction problem along with the 

estimation one in Section 4.4. 

4.2 Estimation of Slope Function 

The functional simple linear regression model is 

}~ = a + 1 b xi + Ei , 1 :':'. i. :':'. n , (4 .1 ) 

\vherc b and X i are square-integrable functions from I to t he real line, a, )~ 

and Ei are scalars, a and bare deterministic, the pairs (X1 , e: 1), (X2 , c-: 2 ), ... are 

independent and identically distributed, the random functions Xi are independent 

of t he errors Ei, CJ
2 = E(E2

) < oo, E(E) = 0 and f7 E(X 2
) < oo, where c-: and X 

are distributed as Ei and X i, resp ectively. 

Estimabon of b is intrinsically an infinite-dimensional problem. Therefore , 

in fun ctional linear regression , the problem involves using smoothing or regular

isation methods which enable us to reduce dimension . Thus , this is an aspect 
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which makes functional regression analysis distinct from classical linear regres

sion. Depending on the purpose for which the estimator b is used , the amount of 

smoothness needing to be applied is different. When dealing with estimating b, 

optimal smoothness of b will usually result in J bx, which is used for prediction, 

being over-smoothed for estimating J b X given a value x of X. This is due to 

operation of integration in computing J bx from b, awarding additional smooth

ness. Therefore, the manner in which b is used for prediction is different from 

that for estimating b. 

However, these two problems are not entirely separated from each other, be

cause knowing the behavior of the slope function b, for example in what points 

b( t) takes large or small values , gives useful information about the role of the 

functional explanatory variables in the model which in turn provides information 

about where a future observation x of X will have greatest influence on the value 

of J b x . Thus , it seems that the problem of estimating the slope b is as a prelude 

to estimating J bx, and perhaps because of that, unlike the case of classical linear 

regression , in this field there is significant interest in estimating b in its own right 

(Cai and Hall 2004). See for example Ferraty and Vieu (2000), Cuevas et. al 

(2002) , Cardot and Sarda (2003), Hall and Horowitz (2004), in which estimation 

of b and in particular convergence rates of the estimator b to b were discussed. In 

the present research , our focus is on the problem of estimating the slope function 

b. Nevertheless , we will discuss shortly the prediction problem along with our 

results in Section 4.4. 

If we express X i and b in terms of the orthonormal basis 'I/J1 , 'ljJ2 , ... , then we 

have 
CX) 00 

xi = L foi, b = L Ej;j;j' (4.2) 

j = l j = l 

where fo J X i {h and bj J b ,(';;j denote the associated generalised Fourier 
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series of Xi and b, respectively. Then we can write ( 4.1) equivalently as 

00 

Yi= a+ L bj f;,ij + Ei. 

j=l 

A model equivalent to ( 4.1) is 

Y - µ = 1 b (X· - rn) + E· 1 < i < n 
i i 'I i' - - ' 

I 

(4.3) 

( 4.4) 

where r; = E(Xi) is a deterministic function on I and µ = E(Yi) = a + J b 17-

Define g(u) = E[(Y-µ){X(u)-r;(u)}], where (X, Y) represents a generic version 

of (Xi, 1~). Then b, g E L2 (I) can be expressed, respectively, as b = L;:1 Dj 1/Jj 

and g = L;:1 gj ?jJj ·where gj = Jg 7.pj and bj = J b 1/Jj. It can be seen that the 

slope function b( t;) is determined by solving the following equation: 

Kb= g, (4.5) 

·where K is the covariance operator. Consequently, gj = (g , 1./Ji) = 0j (b, 1/J1-) = 0j bj 

and 

00 00 

b(t;) = L b_11/Jj = L 0;1 
gj 1/J_j . (4 .6) 

j= l j= l 

Belmv \VC explain that for estimating the slope fun ction b, dimension reduction 

is mandatory. 

Theorem 15.4 of Kress (1999) points out t hat fo r t he two normed spaces H 1 

and 1-h if A : H 1 -----+ 1--h is a compact linear operator , then the equation A :r = f 

is ill-posed if H 1 is not of finite dimension; i.e. if H 1 is an infinite dimensional 

space then the inverse of A may not exist or it may not be bounded. Thus, 

in problem ( 4.5) \i\re are facing an ill-posed equation since K is compact and 
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H1 = L2 (I), which is of infinite dimension. Indeed, when the ej decay rapidly, 

estimation of b in ( 4.6) is problematic. To overcome the problems, one way is to 

proj ect the data on a finit e dimensional space. Alternatively, one may treat the 

problem like a ridge regression where for a > 0, the equation ( 4.4) is replaced 

by ( a I+ K)ba = g. The extra parameter a > 0 causes the operator a I+ K 

to be injective and its inverse, ( a I+ K)- 1
, to be bounded (Theorem 13.26 of 

Kress , 1999). For illustrations of the first approach, see for example, Ramsay and 

Silverman (1997, Chapter 10) and Cardot , Ferraty and Sarda (2003), and of the 

second, see Hall and Horowitz (2004) . 

Ramsay and Silverman (1997, Chapter 10) point out that expressing func

tional data in terms of a basis such as the Fourier basis or so on might be useful. 

The underlying idea is that although functional data are usually observed dis

cretely as a large number of points , each being regarded as a recording of t he 

curve X(t) at many points , there is not a large number of important modes of 

variation t here. Therefore , they can be expressed in a finite number of terms , 

NJ say, resulting in a smooth presentation of the curves. Similarly, in t he case 

of b, this causes reduction of the degree of freedom in t he model ( 4.3), and pro

viding an interpretable description of the influence of the covariate X ( t) on the 

outcome Y . In particular , Ramsay and Silverman (1997) illustrate the effect of 

regularization by truncating the basis by choosing a value r < M. 

Based on the same idea, dimension reduction through functional principal 

components analysis has become very popular. From previous works such as 

those of Rao (1958) who used it for growth curves, Besse and Ramsay (1986), 

Castro , Lawton and Sylvestre (1986), Brekey et al. (1991), Ramsay and Dalzell 

(1991), Rice and Silverman (1991) and Silverman (1995 , 1996) to the recent 

ones such as Brumback and Rice (1998), Cardot (2000), Girard (2000), James, 

Hastie and Sugar (2000), Boente and Fraiman (2000), He , Miiller and Wang 
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(2003) and Yao, Muller and Wang (2005) all make significant contributions to 

PCA. In particular, works on functional linear model, including those by Cardot, 

Ferraty and Sarda (1999, 2000, 2003), Hall and Horowitz (2004) , Cai and Hall 

(2004) and Hall and Hosseini-Nasab (2006), tackled infinite-dimensionality by 

employing PCA. Projecting observations onto the space spanned by the first r 

eigenfunctions of K leads to an optimal linear representation of X i with respect to 

the explained variance (Dauxois et al., 1982). In this way, the dominant modes of 

variation of random curves reduce the functional linear model to a conventional 

regression model with a finite set of functional principal component scores fo, 

j = 1, · · · , r as covariates. Then the unknown parameters can be estimated 

through conventional methods such as least squares methods. 

The trne value , ( a0
, b0

) say, of ( a, b) may be estimated by the least squares 

method through minimising 

n r 

>O"i - a - >b,; E11! 2, 
/ .....,..,,__....,J ;{~ • • • 

(4 .7) 

i.=l .i=i 

with respect to a, b1 , b2 , · · · , b,, and taking bj = 0 fo r j ~ r+ 1. Equation ( 4. 7) can 

Y1 1 61 6r 

be written as (Y -A *b*f (Y -A *b*) where Y = A * ) = 

\ Yn ) \ l ( n 1 • • • ( 11 r 

b* = (a, b1 , · · · , brf, and T denotes the transpose of the vector. Differentiating 

\vith respect to b* and equating to zero for the maximum , the results are 

where )I' 

r 

a=? - ~ bj, 
j=l 

-1 "\"' V t_ 
n ~ i 1 i, c.,, 1 

A A A A ----- 1 

b(,) = (b1) b2, ... ) br) = ~0·) _{}(r)) (4.8) 

n-1 L i fo, ~(,) is the r x r matrix with (j, k)th 
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component Jjk, 9 (r) = (§1, ... , 9r )T, 

CTJk = ¾ t (<;iJ - {J) (fo - {k) = 1 R (u, v) ;JJ(u) ;Jk(v) du dv = BJ OJk, 
i= l I 

1 ~ - -
gj = - L.)~ - Y)(fo - ~j)' 

n 
i = l 

and 5jk is the Kronecker delta. Therefore, t (r) = diag( 01 , · · · , §r), and by ( 4.8), 

for u E I , our est imator of b is 

T T 

b(u) = L 5j{i;j(u) = Let ?J/i(u) . 
j = l j = l 

Equivalent ly, in view of ( 4.5) , b can be obtained from a sample version of the 

equation when the Xi are proj ected into the space spanned by the eigenfunc

tions associat ed with the r greatest eigenvalues 0j, j = l , .. · , r . P ut g(t) = 

¾ L ~= l {Xi(t) - X (t)} (~ - Y ). T hen g = ~c;1 gj {i;j, where 

J --- l ~ - -
gj = g ?pj = -; ~ (~ - Y ) ( fo - ~j ) . 

i = l 

Hence, bj = 0;1 gj for j = l , · · · , r. 

The smoothing parameter r can be chosen by cross validation. In the context 

of functional data analysis, t he predictive cross-validation criterion is given by 

l n { ( ~ }2 
CV(r) = :;; 8 Y; - iLi;r - J.rb - i;r X (4.9) 

Here, ( CL i; r 1 
b_i:r) denotes the least-squares estimator of ( a: b) that is obtained by 

confining attent ion to the set Z i, say, of all data pairs (X j, 0) excluding the ith. 

and both CLi;r and b_i:r use the empirical Karhunen-Loeve expansion of length 

r computed from Z i . vVe choose r to minimise CV(r). Cross validation can be 
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used to select r when computing p(x) = a+ fr bx (see for example Cardot et al., 

2003). Surprisingly, cross-validation also works well when estimating b; the latter 

problem can be expected to require significantly more smoothing than prediction, 

as we explained earlier. See numerical results in Chapter 5. 

4.3 A symptotic Mean Integrated Square Error 

Approximation 

Let b0 = ~~ 1 b~ 11.Jj where b~ = J b0 ;J;j. Assume that the true value, b0
, of the 

function b is square-integrable. Then, 

A 02 A QA O A O O A O 0 

/

, r r 

(b-b) =(b-b,b-b)=()~(bj-bj)- L bj, L (be-bc)- L be) 
' j=l j=r+l f= l f=r+l 

r 

= },(b_7 - b~)2 + }, b_~
2

. (4.10) 

j=l j=r-J-1 

Hence, 
00 

- ~ 0 -
}~ - Y = 0 bj ( fo - ~J + fi - E, i = 1, · · · , n. 

j=l 

Multiplying both sides of the above equation by (fo - ( 7) and summing up over 

'i, \VC have 

00 00 

gj = L Cljk b~ + ')'j = L {Jj 5jk b~ + ')'j = {Jj b~ + 'Yj , 
k=l k=l 

where l'j = ¾ ~:~
1 

( Ei - E) ( fo - ( j) . Using the above result and defining b(,) = 

(lJ~, · · · , b~)I' , we deduce from the second formula in ( 4.8) that 

bA bo ~-1 " bo 
(r) - (r) = LJ (r) 9 (r) - (r) · 
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Hence, 

91 01 b~ 91 - 01 b~ 1'1 
A ,,....__ 0 

g (r ) - ~ (r ) b(r) = 

9r 0 b0 
T T 9r - 0T b0 

T 1'r 

and thus bj - bJ = 0-;1 i'j for j = l , · · · , r . Substituting this result into (4.10) 

gives us: 

J (b - b0)2 = t 0;2 ;;r; + L bJ2 . 

j = l j=r+l 

(4.11) 

Since 0j and ;j;j are functionals of X1 , · · · , X n, independent of c1 , · · · , En , and also 

(Xi, Ei) are independent of each other, 

E ( i}IX) = E{ [ ! i)c; - E)(fo - {J)J21X} = ~ t E{ (c; - E)2(fo - {J )2 IX} 
n n 

i=l i = l 

1~ ~ 2 [ - 2] 1~ - 22 1 
= 2 ~ ( fo - ~j) E ( Ei - E) IX = 2 ~ ( fo - ~j ) a ( 1 - - ) 

n n n 
i =l i=l 

1 1 2 A 

= - (1 - - ) a 0· . 
n n J 

Hence, by (4 .11 ), 

T CO ( )2 1 E{ (b - b
0 )21 X} = n -

1 
(1 - n -

1
) D"

2 
; 0; 1 

+ J~t j b
0 {h (4.12) 
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Moreover, 

f (J bo JJ = f [J bo ( 1PJ + ;jj - ;jj if 
J=r+l J=r+l 

= f [ (J b0
ipjr + {! b0

(Jj -1Pjif + 2 {/ b
0 ipj} {/ b0

(0j -1Pj)} l 
J=r+l 

= J
1 

(J b0
ipJr-2 t (J bo1PJ) (J b0

(0J-1PJ)) 

-t { J bo({fj -1PJ)} 2 + t { J bo({fj -1PJ)} 2 

+ 2 t ( J b0
1PJ) { J b0 

( 0J - 1PJ)} . 

Because [[b0
[[

2 
= L;:1 ( f b0 1PJ) 

2 

= L~1 ( f b
0 0j) 

2

, the last two terms above 

vanish, i.e. 

t (lb0

0J y 
'.' ;-=:- '!. -:- l ~ ,, 

f ( ( b0 
1PJ Y -2 t ( ( b0 

1PJ } ( / b
0 
(·1iJ - V)J) J 

:i-=== -:- ·f ! " .... / )=='I ' V / ' . , _/ 

T ( J }2 - ~ t b
0
(1jJ - 1PJ) (4.13) 

Thus, substituting (4. 13) into (4 .12) results in 

1' 00 • 2 1 E{ (/J - b0)\-Y} = n-
1 (1 - 11.-

1
) CT

2 ~ 0; 1 
\~

1 

(J Ii° 1PJ ) 

- 2 t (J b0 VJJ) (J b0
(0j -1PJ)) - t { / li°(0j -V)Jif 

(4 .1 4) 

Rrs11lt ( 4.12 ) suggests, but of course does not prove, that 

1 E(b - b
0 )2 ~ : t 0;1 + J

1 

(1 bo 1PJ ) 

2

, 
(4.15) 
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where "An rv En" means that the ratio of the random variables An and En 

converges to 1 as n -r oo. If (4.15) were correct then the first term on the 

right-hand side would denote the dominant contribution from error-about-the

mean to integrated squared error, and the second term would be the dominant 

contribution from squared bias. The right-hand side of ( 4.15) is reminiscent 

of familiar formulae for the mean integrated squared error of orthogonal series 

estimators; see , for example, Kronmal and Tarter (1968). 

In the following we state a result that implies (4.15). Let A = X - E(X), 

define b~ = JI b0 'lj)j, and consider the conditions: 

0j = j-a L(j) and lb~I = Fb NI(j), where b >a+½> ~ and L, M 

are slowly-varying functions; 0j -0j+l 2 const. j-a-1; the process 

X has all moments finite; for each integer T 2 1, e;r E(f A 'lj)j )2
r 

is bounded uniformly in j; the errors Ei in ( 4.1) are independent 

and identically distributed with all moments finite , zero mean 

and variance o-2
; and the frequency cut-off, T, is in the range 

1 ~ T ~ To , where To = To (n) satisfies To = O(n(l- 77)/
2

(a+
1

) ) for 

some O < r; < 1. 

( 4.16) 

Under these assumpt ions , To can be chosen so that it is an order of magnitude 

larger t han the value that minimises mean integrated squared error. 

Theorem 4.1. To eliminate pathologies arising from too-small values of iJj, 

replace bj by an arbit rary fL"'<ed constant if I bj I > c1 nc2
, for any given c1 , c2 > 0. 

Then , if (4 .1 6) holds, so too does (4.15), uniformly in 1 ~ T ~ To . 

The assumpt_ion 0j - ej+l 2 const . j - a- I fo r j 2 1, excludes cases where two 

or more of the eigenvalues 0j are close together , in particular where they are t ied . 

In general when using the weaker condit ion m~f}~~~·:,k) ~ C m,:~rr) for some C > 0 
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and all 1 ::;; j < k < oo (similar to what we assumed in the appendix), it holds , for 

sufficiently large j , when, for example, 0j = C1 j-
02

, where C1 > 0 and C2 > 2. 

Replacing bj by an arbitrary fixed constant if lbjl > c1 nc2 guarantees that the 

expect ed value on the left-hand side of ( 4. 15) is finite . See the Appendix for a 

proof and discussion about the constraint . 

Versions of Theorem 4.1 are available under more general conditions than 

(4.16); the coefficients 0j and bj need only be "polynomial-like ," and in particular 

need not be regularly varying functions of j. See the Appendix. 

Formula ( 4.15) can be used to construct a plug-in rule for choosing r to op

timise performance of b as an estimator of b. Assuming that the slowly varying 

functions L and M in ( 4.16) are asymptotically constant, the mean integrated 

squared error of b is asymptotic to C1 n-1 ra+l + C2 r
1

-
2

b , which is minimised by 

choosing r = C3 n
1/(a+

2b-l ), where C1 , C2 , C3 > 0 are constants . The result ing 

mean-square convergence rate is n-(2b-l )/(a+2b-l ) . 

A valid approximation to the first t erm on the right-hand side of ( 4.1 2) is t he 

fi rst term on the right-hand side of ( 4. 15), provided t hat 

"\-q: §-:-1 
L_,,J= l J 

"-q: e-:-1 
0.7=1 J 

------1 1 ) in probability. ( 4.17) 

Condition ( 4.1 7) can be established in many circumstances, as is explained in the 

A ppenclix . However, the second term on the right-hand side of ( 4.15) is not always 

appropriate. The properties of expansions of the basis functions '1/Jj discussed in 

Chapters 1 and 2, show that they depend on the spacings of the eigenvalues 0j, and 

particularly in that respect we should take care of the spacings, \\rhen treating 

the behaviour of the squared-bias approximation. Indeed: we will show in the 

following result that the approximation at ( 4.15) can fail in some circumstances. 

Theorem 4 .2. Under notation introduced before, if Xis a Gaussian process , 
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then, to first order , 

J;_
1 

Eu b0 
;j;j y = J;_

1 

(1b 0
1/;1 y + n-

1 t 01 k~j 0k(0j - 0k) -
2

(/3J - f3f) 

+ (higher-order terms) , (4 .18) 

where (3j = f1 b
0 'I/Jj· 

Proof: We first need the following Lemma. 

lemma 4.1: E(ajk) = 5 jk + O(n-1
), where ajk introduced in (1.11 ) and (1.12), 

and Jj k is the Kronecker delta. 

Proof of Lemma: In order to evaluate E ( aej) we need to compute 

T (u, v, w, z) = E{Z(u, v) Z (w, z )} = nE [ {i? (u, v) -K(u, v)} {i?(w, z) -K(w, z)}] . 

Put r; (u) = E{X(u)}, Y = X - r; , }"i = Xi - r; and 

1 n 1 n 

K (u, v) = - L {Xi(u) - r;(u)} {Xi(v) - r; (v)} = - L }"i(u) 1"i(v). 
n n 

i= l i = l 

Note t hat K (u, v) = K (u, v) - {X(u) - r;(u)} { X (v) - r;(v)}, whence it follows 

that 

T(u , v, w, z) = n E [ {K(u , v) - K (u, v)} {K (w, z) - K (w, z)}] 

- n E [ {X (u) - r; (u)} {X (v) - r; (v)} {K(w; z) - K (w, z)}] 

- n E [ {K(w, z) - K (w) z)} {X(u) - r;(u)} {X(v) - r;(v)}] 

+ n E [ {X(u) - r; (u)} {X(v) - r;(v)} {X(w) - r;(w)} {X(z) - r;(z)}] . 

(4 .19) 
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The second term on the right-hand side of ( 4.19) can be bounded as 

E[{x(u) - 77(u)} {X(v) - 77(v)} {K(w, z) - K(w, z)}] 

[ 

1 n n n ] 

= E n3 ~ki~Y;(u)Y;(v)(Yk(w)Yk(z) -K(w,z)) 

= :
3 
t E [ Y;( u) Y;( v) (Y;(w) Y;(z) - K(w, z)) ] = O(n-

2
), (4.20) 

where we have used independence of the Xi to obtain the second equality above. 

This is the case in the third term on the right-hand side of ( 4.19). Also, 

E[{X(u) - 17(u)} {X(v) - 17(v)}{X(w) - 17(w)} {X(z) - 77(z)}] 

l n n n n 

= E[4 LLLL)~(u)r';(v)Yk(w)Ye(z)] 
n 

f=l k=l j=l i=l 

1 { n 
= n 

4 
L E [}~ ( u) ~ ( v) ~-( w )}~. ( z)] + L E [}~ ( u) }~ ( v) Y3 ( w) Y_; ( z ) 

i=l i#j 

+ Y; ( u) 1,; ( w) 1j ( v) Y; ( z) + Y; ( u) 1~ ( z) 1j ( v) 1j ( w)] } 

= O(n- 2
). (4. 21 ) 

Combinin g (4 .19) , (4.20) and (4.21) results in 

T('ll,v,w,z) = n E [{K (u,v) -K(u,v) } {i< (w,z) - K (w,z)}] + O(n- 1
) 

l n l n 

= n E [- L }~ ( u) ~ ( v) - L l'j ( w) }J ( z )] - n J( ( u, v) K (w, z) + O (n- 1
) 

n n 
i= l j= l 

1 TI 1 . 

= ;;;, L E [ 1,; ( u) 1,; ( v p ,; ( w) Y; ( z)] + ;;;, L E [ Y; ( u) 1,; ( v)] E [ 1j ( w ))j ( z)] 
i=l i#j 

- nK(u, v) K (w, z) + O(n- 1
). 
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Consequently, 

T (u,v,w,z) =E{Y(u) Y (v) Y (w) Y (z) }- K (u,v) K (w,z)+ O(n- 1
). (4.22) 

We can write Y = L\~ 1 ~k ?/Jk, where the generalised Fourier coefficients ~k are 

uncorrelated , and have zero means. Recall that 

Z (u, v) = n 1
1

2 
[ ¾ t Wi(u, v) - Y (u) Y (v) ] , 

where Wi(u, v) = ~ (u) ~ (v) - K (u, v) . Thus, 

n . 

j Z 'lf!j 'lf!k = n -
112 L ~ij ~ ik - n

112 
{ 5ik E (~]) - [j [k} , 

i = l 

where [j = ~ ~ ~= l fo. Therefore , if k -/- j, then E [ J Z ?j)j ?/Jk] = 0. If X is a 

Gaussian process , the ~k's are independent Normal random variables with zero 

mean and respective variances ek . Therefore, by (1.52), 

E{Y(u) Y (v) Y (w) Y (z) } - K (u, v) K (w, z) 

00 

= L { E(~t) - (Ea)2
} ?/Jk(u) ?/Jk(v) ?/Jk(w) ?/Jk(z) 

k= l 

+LL E(~t) E(~kJ { ?/Jk 1 (u) ?/Jk1 (w) ?/Jk2 (v) ?/JkJz) 
k1=f=.k2 

+ ?/Jk 1 (u) ?/Jk1 (z) ?/Jk2 (v) ?/Jk2 (w) }. ( 4. 23) 
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Combining ( 4.22) and ( 4.23) we deduce that 

t(j1, ... ,j4) = E{ (; Z 1Pi, 1P12 ) (; Z 1P1, 1Pi4)} 

= j T(u, v, w, z) 1Pii (u) 1P12(v) 1P1, (w) 1Pj4 (z) du dv dw dz 

= { E(~JJ - (EeJ 2
} J(j1 = J2 = J3 = J4) 

+ E(~JJ E(~JJ {I(j1 = J3-/: J2 = j4) + I(j1 = j4 # J2 = j3)} + O(n-
1
). 

( 4.24) 

Result (4.24) implies that if I!,# j and k # j then t(j, j, j, k), t(j, £, k, £) equal O(n-1 
), 

and 

t (j, f, j, £) = E ( ~ J) E ( ~i) + 0 ( n - i) = 0 j 0 e + 0 ( n - 1
) . 

Hence, by (1.11) and (1.12), 

E(ajtJ = O(n-2
), if k # j , 

E(a .. ) = 1 - l n- 1 v (0 · - 0n)-'2 0· 0n-+ O(n- 2
) 

JJ 2 L ... A: t /.j J ~ J ~ · 

This finishes the proof of the lemma. • 

Writing 1} = L1,~~ 1 f3k 1/Jk, by (4.25 ), we have 

I 1 i = ( 1 b 
O V; i ) { 1 b 

O 
E ( {i;i - 1P i) } = /3 j t E ( a J k - 5 J k) /3 k 

I A nr \ 
\ · i . ..:. , 11 

= f3] E(ah - 1) + O(n-2
) = - n - 1 ½ ej f3] L (0j - 01,:)-

2 
ek-+ O(n-

2
) J 

k:k#-j 

(4 .26) 
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t2j =' E{ 1 b0 
(:(;;j - 1/Jj ) r = E{ t (ajk - Ojk) /Jk r 

= E{ t (ajk - Eajk) /Jk r + { t (Eajk - 01k) /Jk r 
= E{ f (ajk - Eajk) /Jk r + O(n-

2
). (4.27) 

k=l 

Also , by (1.11), (1.12) and (4.25), 

n E{ f (aJk - EaJk) /Jk}
2 

= E{ L. (0j - 0k)-
1 

( j Z 1/;J 1/Jk ) f3k}

2 

+ O(n-
1) 

k=l k: k:/=J 

= LL (0j - ek1)-l (0j - ek2)-l f3k1 f3k2 t(j, k1,j, k2) + O(n-1
) 

k1 ,k2 : k1 :/=j,k2:/=j 

= LL (ej - ekJ-
1 

(ej - ek2)-
1 

f3k1 f3k2 E(~J) E(~~J I(k1 -/- k2) 
k1 ,k2 : k1 :/=j,k2:/=j 

+ O(n-1
) 

= ej L 0k(0j - ek)-2 /Jk + O(n-1
). ( 4.28) 

k:k:/=j 

Combining ( 4.27) and ( 4.28) we deduce that 

t2j = n-l ej L 0k(0j - ek)-2 /Jl + O(n-2
). (4.29) 

k:k:/=j 

Results ( 4.26) and ( 4.29) imply that 

t1(r) = t ( 16° 1/;1) u b0 
E (:(;;1 - 1/;j) } 

r 

= - n-l ½ L ej /3] L (0j - ek)-2 ek + O(n-2
) ) 

j=l k: k:/=j 



128 CHAPTER 4. PROPERTIES OF LINEAR REGRESSION ESTIMATORS 

t2 (r) = t E{ 1 b0 
(;f;J - 1/JJ) r 

T' 

= n- 1 L ej L 0k(0j - ek)-2 /3~ + O(n-2
). 

j=l k: b/=j 

Hence, 

t ( r) = - 2 t 1 ( r) - t2 ( r) = n - l t 3 ( r) + 0 ( n - 2
) , ( 4.30) 

where 

t3(T) = t { 0j /3] k~ j (0j - 0kJ-
2 

0k - 0j k~ j 0k (0j - 0k)-
2 /3~ }. (4.31) 

We know from (4. 13) that the term in n-1 on the right-hand side of (4.18) 

should equal t(r) , plus terms of order n-2
. By (4.30), the coefficient of n-1 

must equal t3(r). Therefore , the form of the coefficient of n-1 on the right-hand 

side of (4 .18) follows from (4 .31 ). • 

11 1 ! If\ ..... -[1! !1 -, I l°r I,-, , •, :~ -

\•.l...l.'\..• I .J\..- '-. 1 \.-!. \..•,.1..J..'- -''---' V 1 j ' • • •' 

1 i ;-~-· t ' ~ ,· l i- i ... , 11·. \ :- t--, F--, - ~i 1 ;--, ,....,...,-~ 

\. • .l..t..l..l '-• \. I'-" \ 1 .1..J..l...l \.....• • \.. > J 1,1 1 -"'- " .. _,,,,__,'---' 

eigenvalues, then the te:.rm in n-1 on the right-hand side of ( 4.18) can make a 

non-negligible contribution, and the approximation at ( 4. 15 ) can fail. However , 

in other cases ( 4.15) is valid; see the Appendix. Less generally, if the /Jj 's decrease 

to zero very rapidly, and in particular if only a finite number of them are nonzero , 

then difficulties with spacings will be minor. 

Below ·we derive an asymptotic limit result for the deviation between. estimated 

sncl t rue slope function as dimension increases asymptotically; that is , as the 

numbC?.r of components in the model increases ·with sample size. 

Theorem 4 .3. If b0 E L2 (I) and f
7

E(X 4
) < oo, where the random function 

X has the sc1me:. distribution as the data X i; and if r = r(n) --+ oo as n--+ oo, in 
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such a manner that 
l T 

~ L 5;
2 

--+ o . 
j=l ' 

( 4.32) 

then 

1 E{(b- b
0

)
2 Ix}__, o ( 4.33) 

in probability as n --+ oo. In particular , if ( 4.32) holds then fr(b - b0
)

2 
--+ 0 in 

probability. 

Proof: For the last two terms in ( 4.14) we have: 

&Ub0
(;J;j-Wj)r ~ (j(b0

)
2)&11;J;j- Wj ll 2 

and 

{ & (! b0 Wi ) (! b0

(;j;j - Wj)) r ~ { & (f0 wJ} { & [J b0

(;j;J -wjif} 

~ { & (! b0 Wj n llb0 ll 2 & ll v7j - WJll2 

\ 

If, = ,(n) --+ oo as n --+ oo, these results, assumption b0 E L2(I) and (4.14) 

imply that ( 4.33) is correct, provided 

in probability. 

l T ~ 

- ~ 0~ 1 
--+ 0 and 

nLJ 
j =l 

T 

L ,,~j - 1/Jj 11
2 

--+ o 
j=l 

In the following we prove that a sufficient condition for (4.34) is (4.32). 

( 4.34) 

If (4.32) holds then n - 1
/

2 5;1 --+ 0, and so n 1
/

2 min(0j - 0;+1 )--+ oo . Hence , 

for each C > 0 and all sufficiently large n, 0j - 0j+l > C n- 1
/

2 uniformly in 

1 ~ j ~ , . Since Z = OP(n-
112

), the probability that 0j - 0j+l > 2 Z for all 

1 ~ j ~ , , converges to 1 as n --+ oo . Equivalently, 1 ~ r ~ J , by definition of J. 
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Result (2.17) of Theorem 2.4 now implies that 

i) ~axl0;10j -11 = 0;1 Z = Op(n-112 0;1) = op(l), 
JSr 

and 
r r r 

ii) L ll~j - 1/Jj 112 ~ L C o;-2 3.2 = Op(n-1 L o;-2). 
j=l j=l j=l 

Furthermore, (i) entails: 

r r r 

L 0;1 
= L 0;1 (0; 1

0j) = L e_;-1{1 + Op(l)} 
j=l j=l j=l 

Therefore , ~;=1 0;1 
rvp ~;=l e;-1 = Op(~;=l o;-2) , where we have used the fact 

that 0j 2:: oj. The first part of (4.34) follows from (4.32). Also, property (ii) 

and ( 4.32) imply the second part of ( 4.34) . • 

Condition ( 4.32) is based on spacings of eigenvalues, and is quite different 

from constraints imposed by Cardot et al. (1999) in a related problem. When 

the spacings 0j - 0j+l are decreasing , condition (H3) of Cardot et a l. · (1999) 

assumes the form (n O:t 1 
(~jSr 03

1
)

2 ~ 0, which is more restrictive than (4. 32) 

above. 

4.4 Prediction 

The prediction problem is that where, given a candidate value of .0 of X, vve wish 

to esUmate 

µ(x)c=E(YIX=x)= j bx. 

Our estimator is µCr) = J bx. An extra ingredient here is the smoothness of x 

with respect to the orthonormal basis w1 , 'lj;2 , · · · . A major difference in proper-
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ties, however, is that here , root-n consistency is possible. 

For the sake of simplicity we shall discuss this problem in the setting of The

orem 4.1, since then we can be relatively explicit about the rates at which the 

three Fourier coefficient sequences decrease. However, a more general account, 

paralleling that given in Theorem I.1 of the Appendix, is possible. 

Let us adjoin to condition ( 4.16) the assumption that x = ~;:1 Xj 1/Jj, where 

the real numbers Xj = fr x 1/Jj satisfy 

Xj = j-c P(j), with the function P slowly varying. 

The relationship among a, b and c needs to be a little different from before, in 

order to get root-n consistency: we need a > l, b > a + 2 and c > ½ ( a + ½). In 

other respects, ( 4.16) can be left essentially unchanged: 

ej = j-a L(j), lb~! = j-b Nl(j) and Xj = j-c P(j), where b > 

a+ 2 > 3, c > ½(a+½) and L , NI, Pare slowly-varying functions; 

ej - ej+l ~ const. j-a-l; the process X has all moments finite; for 

each integer r ~ l, e;r E(f A 1/Jj) 
2

r is bounded uniformly in j; the 

errors Ei in ( 4.1) are independent and identically distributed with 

all moments finite, zero mean and variance a 2
; and the frequency 

cut-off, r, is in the range nci ~ r ~ nc2
, where {2 (b + c- 1)}-1 < 

C1 < C2 < ( 2 a)- l. 

( 4.35) 

Under these assumptions, r0 can be chosen so that it is an order of magnitude 

larger than the value that minimises mean integrated squared error . 

Theorem 4.4. If (4.35 ) holds, then µ(x) = µ(x) + Op(n- 1!2
) as n---+ co. 

A proof of this result is similar to that of Theorem 4.1 , although at the same 

time it has features that are quite different (it is not a nonparametric problem). 

See Cai and Hall (2004). 





Chapter 5 

Numerical Properties 

5 .1 Introduction 

The simulation studies reported here provide a numerical assessment of conclu

sions reached by theoretical work. We first introduce the models used in the 

simulation studies in Section 5.2. In regard to the results given in Chapter 3, 

the coverage accuracy of bootstrap confidence intervals for both eigenvalues and 

eigenfunctions of the covariance operator has been obtained numerically. Sec

tion 5.3 presents the numerical results for eigenfunctions, including both simul

taneous and individual confidence intervals for 0j. In Section 5.4 the results 

corresponding to 'lj)j ( t), consisting of simultaneous confidence intervals in the ar

gument t, as well as confidence intervals obtained by the L2-norm, are presented. 

Section 5.5 contains numerical results for the case where the processes X are 

observed on a discrete grid of points. In Section 5.6 we explore cross-validation 

performance in functional regression numerically. Comparison of three cross

validation criteria is discussed in Section 5. 7. Then, we present the real data 

analysis in Section 5.8. In Section 5.9, we compare coverage levels obtained from 

the single bootstrap method with those resulting from calibrating the bands by 

133 
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the double bootstrap for both the Gaussian and Non-Gaussian processes. Two

sided , equal-tailed coverages of confidence intervals for ej and 'lpj are discussed 

numerically in Sections 5.10 and 5.11, respectively. A comparison of the cov

erages obtained from Gaussian and Non-Gaussian precesses is summarised in 

Section 5.12 . Finally, numerical results relating to smoothed PCA are presented 

in Setion 5.13. 

5.2 Models Used in Simulation Study 

In all the work reported here , ea.ch X i was distributed as X = L .> 1 ~ j '1/Jj and was 
J _ 

defined on I= [0, l], with 'lj) j(t) = 21
/

2 cos(j1rt) and the ~/s denoting independent 

variables with zero means and respective variances Bj = j- 2
1!., for I!, = 1, 2 or 3. 

The latter three cases will be referred to as models (i ), (ii) and (iii ), respectively. 

The distribut ions of the ~/ s were either normal N(0 , ej) or cent red exponential 

wit h t he same variance. \~Then treating the regression problem the errors Ei were 

normal N ( 0, 1) and we to ok a = 0 and b ( t ) = 7r '2 W - ½) = L .i ( - 1 )j 2 T '2 'ljJ j ( t) . 

·we know that { 'lj)0 (t) = 1, 'I/Jj(t) = 21
/

2 cos(j1rt); j = l , 2, · · · } is a complete 

and orthonornal basis in L2 (I ). Therefore, t he subspace created by 1/Jo = 1 is 

orthogonal to the su bspa.ce spanned by { '1/Jj ( t) = 21
/

2 cos(j1rt); j = 1, 2 · · · } . T he 

latter subspace consists of all functions whose integral on the interval [0, l] is 

zero. 

For numerical calculation we truncated the infinite series, defining X and b, 

at j = N = 20 . All coverages of confidence regions ·were computed by averag

ing over 1000 simulated datasets, i.e. the number of bootstrap replications was 

B = 1000. Also, in the case of t he double bootstrap the number of replica

tions drawn from each bootstrap dataset was C = 500. However , median values 

of integrated squa red error : discussed in Sect ion 5.6, were calculated from 5000 
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simulated samples. 

To estimate the eigenvalues and eigenfunctions, we need to solve the integral 

- -
equation K ¢ = >. ¢ for >. and ¢, where K is the empirical covariance operator. 

Therefore, the eigen-solution ( 0, :/;) satisfies R :/; = 0 :/;, and for each 1 ~ f, ~ N, 

(K :/;, 7/Je) = 0 (:/;, 7/Je) . (5.1) 

Assume that the Xi E span { 7/J1, · · · , 7/J N}. If fo = ,/0; Zij, where the Zij are iid 

from the Standard Normal distribution, then 

N N 

R ;f(u) = 1 R (u, v) ;f(v) dv =LL ,/0; Hjkj"{h ({f, 7/Je) 1/!i(u), (5.2) 

. I j=l k=l 

where Hjk = ~ L~=l (Zij - Zj) (Zik - Zk)-

We know that there is an isometric isomorphism between L2(I) and l2 (i.e. 

f --+ (!, ek) = c;k, where the sequence { c;k} satisfies Lk?:l /c;k/ 2 < oo; see Theo

rem 3.2.15 of Ash, 1972). Combining (5.1) and (5 .2) results in , for each 1 ~ /!, ~ 

N, 
N N N 

LL~ Hjk j"(h VgOjk = L ~ ·Jrh Hek 'Uk = 0ve, 
j=l k=l k=l 

where Vg = (:((;, 7/Je) . Equivalently, 

B NvN = fJvN, (5.3) 

where B N = ( B jk) is a N by N matrix with B jk = ,/0; Hjk .Je;, and vN = 

( v1, · · · , v N f . Therefore, :((; = ~ ;:1 Vj ?pj . Because H N = ( Hjk) is an N x 

N positive-definite matrix, B N = D N H N D N is also a positive-definite matrix, 

where D N = diag( ~' J(i;, · · · , Je;i) . Suppose that ~j = ,/0; ( Zij - Zj). Then, 
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Bjk = ¾ ~ ~=l ~j ~k, and if¾ ~~=l (Zij - Zj)
2 ~ C a.s., 

l n oo 1 n oo 

(v Bv) = - "'(v· Y -)2 < ~0 -- ~ (z .. - z-)2 < C ~0 - as ' n L..,; i' i - L..-, 1 n L..-, iJ 1 - L..,; 1 ' · · 

i=l j=l i=l j=l 

where Y i = (~1, ~2 , · · · f, vi = ( vi1, vi2, · · · f and B is a matrix with elements 

Bjk. Suppose that V1;i = ( vil, · · · , ViN f, Y l;i = (~1, · · · , ~N f and V2;i = 

(i1i;N+1, · · · f, Y2;i = (~;N+l, · · · f corresponding to areas (1) and (2) in the 

matrix 

(1) X 

B= 

X (2) 

respectively. The partition (1) of the matrix is EN. If we ignore the two areas 

marked with crosses, then 

(vi, Y i) ~ (v1;i, Yl;i) + (v2;i, Y2;i), 

and 

1 71 1 n l n l n 

- ' (vi, Y i)2 ~ - "' (v1·i, Y1 -i) 2 + - ' (v2-i, Y2-Y + 2 - "'(vh, Y1 -i) (v2-1:, Y2-i) . n G n G , , n ,!__, , , n G , , , , 
i=l i =l i=l 1:=l 

(5.4) 

·we have: 

1 n oo 

-L(v2J, Y2;i)
2

:s;c L ej, 
n 

i=l j=N+l 

1 

71 

~~ oo ; L. (v1;i, Y 1;i) (v2;i, Y 2;i) :s; c L ej c L ej. 
i=1 j=l j=N+l 

Let X be a Banach space with the norm 11-llx, and let II BII := IIBIIL(,-Y) be 
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the op erator norm relative to 11 - llx, where L( X) denotes the space of all bounded 

linear operators from X to itself. This means that there exists a smallest constant 

C1 such that II Bxll ,,y ~ C 1 llxllx for each x E X. Therefore, by (5.4), 

l[ .0.B II = II B ~ BNII :S 3 C canst . ~ Jt._I 0J . 

Furthermore, 

CX) 

(B - 6B)-1 
= (J - B-1 6B)-1 B-1 

= L (B-1 6Bl B-1
' (5 .5) 

and t hen , 

Let 

k=O 

IIB-l - (B - 6B)-1 II = II (I - (I - B-1 6B)-1
) B-1

11 

CX) 

= II 2_)B-l 6Bl B-1
11 

k= l 

IIB-1 ll 2 ll 6B II 
<---
- l - llB-1 ll ll6BII. 

I = { A : X ---+ X such that A is invertable} . 

We have I ~ L( X). Furthermore, I is open, and the "inverting" mapping f : 

B ---+ B-1 is continuous and differentiable at any point of I. In the following we 

prove that f is differentiable and its derivative at the point B , D J(B) E L(L(X)), 

maps H to - B-1 H B-1 (H = 6B) . 

We have, by (5 .5 ), 

co 

J(B-H)- J(B )+DJ(B )H = (B-I-I)- 1 - B-1 - B-1 H B-l = L (B-l H )i B-l. 

i= 2 
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Therefore , for !IHI! ~ 
11
1-=1

11 
(a vicinity of 0 in L(X )), 

II J(B - H ) - J(B ) + DJ(B)HII < ~ IIB-l H lli IIB-111 < II Hll2 II B-1113 
-~ -1-11B-11!IIHII 

~ C(E) IIHll2. 

This means t hat f has the Gatoux derivative at the point B , which is a linear op

erator on L(X). Moreover, DJ(B) maps H to -B-1 H B-1
. In a computational 

sense , it shmi\rs that computing B-1 from B is stable. 

5.3 Numerical Results Connected to Eigenval-

ues 

As vve have seen in Chapter 3, v._re can construct confidence statements about the 

size of 0j - 0j . To do t hat , one can use percentile bootstrap confidence intervals 

~ ~ ~ 
/\ . . ,,.. , , , . ., . , . , 

-: t'. -: · I ,' : ~ ~ · -: : '\ ;· ! 1 ,'-/ ':: ~T ~-:-\ -p ~~r1r~; · :..:1t.:•......: ·~~!,. -:- ,1·~~! {~l~J(';~•\r!;l11(H...: 1~1 1;il1!1 ;.;11(,("ll~(~, ... , 
- - J ·- -- . . . ·- . - - -u - - - , , 

In this section , v.re first discuss numerical results fo r simultaneous confidence in

tervals fo r eigenvalues, and then treat t hose for confidence intervals fo r individual 

eigenvalues . 

5.3.1 Sin1ultaneous Confidence Interval for Eigenvalues 

Figure 5.1 presents coverages of the simultaneous, bootstrap, t-wo-sided confidence 

intervals for 0j, introduced in Chapter 3, for two different simulated X(t). The 

clnshecl lines shmv the coverages ·when simulating from the Gaussian process , 

c1ncl the clotted lines reveal coverages when simulating from the Non-Gaussian 

procrss. Furthermore, the sample sizes ·were n = 20, 50, 100, '.200, 500 and 1000 

mid we simulated from models (i)- (iii ) introduced in Section 5.2. 
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Figure 5.1: Comparison of coverages of two-sided, simultaneous, bootstrap confidence 

bands for 0j, when X(t) is generated from a Gaussian or Non-Gaussian process with the 

nominal coverage 1 - a= 0.95. The dashed lines show the coverages when simulating 

from the Gaussian process, and the dotted lines reveal coverages when simulating from 

the Non-Gaussian process. The panels from left to right show the results obtained 

when generating under models (i)-(iii), respectively. 

In the case of the Gaussian simulation, coverages tend to be slightly conserv

ative (i.e . have coverage greater than the nominal level) for sample sizes greater 

than 50 in model (i), and tend to be anti-conservative for small sample sizes in 

the other two models. In regard to model (i), it can be seen that it has good 

performance for relatively small samples; especially when n = 50, it has actual 

coverage 0.95. By way of contrast, for the same sample size, coverage is only 

0.90 and 0.91 in models (ii) and (iii). Furthermore, when moving from model (i) 

to (iii), coverage accuracy deteriorates, becoming anti-conservative. However, 

coverage accuracy under the two models (ii) and . (iii) converges exactly to the 

nominal coverage accuracy, 0.95 , for n 2 500. 

As regards the Non-Gaussian case, it seems that generally coverage accuracy 

tends to become worse compared to the Gaussian case. Moreover, here also 

coverage accuracy is anti-conservative for small sample sizes, and improves as n 

increases. Furthermore, similarly to the results obtained in the Gaussian case , 

for all sample sizes, model (i) enjoys better performance compared with the other 
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Figure 5.2: Comparison of coverages of two-sided single bootstrap confidence bands 

for 0j, v,,rhen generating X(t) from a Gaussian or Non-Gaussian process. The dashed 

lines show the coverages when simulating from the Gaussian process , and the dotted 

lines reveal coverages when simulating from the Non-Gaussian process. We simulated 

from model (i) and the nominal coverage was 1 - a= 0.95. 

bvo models . Specifically, it h as actual coverage for n = 500, while coverage is 0.93 

u.uu Ci.:J~ 111 111uuci:::. (11) d uu (iii), H~01JeCL,lVely . Lite die Gc1ub;:;1a11 ec1;:;c, .cuvcru.gc 

accuracy is reduced when moving from model (i) to (iii ). 

5.3.2 Confidence Intervals for Individual Eigenvalues 

Figures 5.2-5 .4 sho-w coverage levels of two-sided, nominal 95 percent, single boot

strap interval for the first five ej, for models (i)-( iii ) and for both the Gaussian 

and Non-Gaussian processes. The dashed and dotted lines present the cover

c1ge of the confidence intervals obtained by generating from t he Gaussian and 

I\'on-Gaussian process: respectivel) . 
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Figure 5.3: Comparison of coverages of two-sided single bootstrap confidence bands 

for 0j , when generating X (t) from a Gaussian or Non-Gaussian process. The dashed 

lines show the coverages when simulating from the Gaussian process, and the dotted 

lines reveal coverages when simulating from the Non-Gaussian process. We simulated 

from model (ii) and the nominal coverage was 1 - CY= 0.95. 
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Figure 5.4: Comparison of coverages of two-sided single bootstrap confidence bands 

for 0j, when generating X (t ) from a Gaussian or Non-Gaussian process. The dashed 

lines show the coverages when simulating from the Gaussian process, and the dotted 

lines reveal coverages when simulating from the Non-Gaussian process. We simulated 

from model (iii) and the nominal coverage was 1 - CY= 0.95. 
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It can be seen that generally in all cases, and for each eigenvalue, coverage 

accuracy improves as n increases. Moreover, when applying model (i), we obtain 

slightly higher coverage levels compared with the other two models. Besides, 

under model (i) there is an increasing trend of coverage as order of eigenvalue 

increases, except for n = 20. The trend tends to fluctuate or decrease from 

model (i) to (iii). In the case of the Non-Gaussian model , however, as the graphs 

reveal, coverage accuracy deteriorates. Furthermore, as n increases, coverage ac

curacy improves and the gap between the coverage resulting from the Gaussian 

and Non-Gaussian case becomes smaller. For example, coverage levels for 01 

under the Gaussian process is 0.88, 0.91, 0.92, 0.93, 0.94 and 0.96, respectively 

for sample sizes n = 20, 50,100,200,500 and 1000. However, when altering the 

distribution of ~j to centred exponential , coverages decline to 0. 75 , 0.82, 0.86 , 

0. 87, 0.93 and 0.93, respectively, for those sample sizes. Moreover , coverage lev-

, _ r __ 1 1 - -- , n n ~ n n--t r'\ n--1 n n <"" , ,...... ,...... _ ,.. ., • 

~J _t~ l~)! t _tJ',-~ ~t~t:!J!lt! t!{-\ 1:--: t! _t' :. ~! _\J! ?: ~:! !! '!.---. :1;:r: t! \: :~ 1r-... r ,~~11rt_;1:r· '~ ~'7 P'...: 

n = 20, 50, 100 , 200 and 500 when simulating from the Gaussian process . How

ever , changing the distribution of ~j from normal to centred exponential reduces 

coverages to 0.77 , 0. 85, 0.86, 0.90 and 0.92 , respectively for t hose sample sizes . 

5.4 Numerical Results Connected to Eigenfunc

tions 

\Ne discuss numerical results related to confidence statements about the sizes 

of sup 1 l7µj ( t) - 1/Jj ( t) I and 11-J;j - 1/Jj II- Using the fo rmer we obtain simultaneous 

bootstrap confidence bands for 1/Jj; and using the latter we get confidence intervals 

for the L'2 distance of ,J;j from 'I.Vj. 
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Figure 5.5: Comparison of coverages of two-sided bootstrap confidence bands for '1/Jj, 

when generating X (t) from a Gaussian or Non-Gaussian process. The dashed lines 

show the coverages when simulating from the Gaussian process , and the dotted lines 

reveal coverages when simulating from the Non-Gaussian process. The bands were 

simultaneous in t, but not in j. We simulated from model (i) and the nominal coverage 

was 1 - a = 0. 95. 

5.4.1 Simultaneous Confidence Intervals for VJj Using Sup-

norm 

Figures 5.5-5.7 present coverage levels of two-sided, single-bootstrap bands for 

the first five eigenfunctions '1/Jj, models (i)-(iii) and for both Gaussian and Non

Gaussian processes. Since each band is interpreted as covering '1/Jj for all t E 

I = [O, 1], the bands are called simultaneous. Here also we compare the results 

obtained from the two different simulated X ( t). 
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Figure 5. 6: Comparison of coverages of two-sided bootstrap confidence bands for VJj, 

when generating X (t) from a Gaussian or Non-Gaussian process. The dashed lines 

show the coverages when simulating from the Gaussian process> and the dotted lines 

reveal coverages when simulating from the Non-Gaussian process. The bands were 

simultaneous in t, but not in j . 'lve simulated from model (ii) and the nominal coverage 

vms 1 - a= 0.95. 
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figure 5. 7: Comparison of coverages of two-sided bootstrap confidence bands for Wj; 

,,. hen generating X ( t) from a Gaussian or ~ on-Gaussian process. The dashed lines 

sl10,,· the co,·erages when simulating from the Gaussian process, and the dotted lines 

rcn~al coYcragcs ,,:hen simulating from the ~on-Gaussian process. The bands were 

simultaneous int . but not in j. Vle simulated from model (iii ) and the nominal coverage 

,ms 1 - o: = 0.9.5. 
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As the graphs reveal, in the Gaussian case, for each of the three models cover

age accuracy almost always increases as the order of the eigenfunction increases, 

except for model (i) when n = 20. This is the case in the Non-Gaussian situation 

for n 2:: 100, and it fluctuates for n < 100. While in the case of the Gaussian 

process , model (i) gives higher coverage accuracy compared with the other two 

models , followed by model (iii), for the Non-Gaussian process only coverage of 

the first eigenfunction performs similarly. For the eigenfunctions with higher or

der, however , coverage accuracy becomes more anti-conservative from model (i) 

to (iii); especially for 01 . Moreover, when moving from model (i) to (iii), the gap 

between the coverage obtained in the Gaussian and Non-Gaussian cases becomes 

smaller as n increases , except for model (ii) when n :::; 100. Specifically, there is a 

perfect match between coverages resulting from the Gaussian and Non-Gaussian 

situations under model (iii) when n = 200. 

5.4.2 Confidence Intervals for 1/Jj Using L 2-norm 

As graphs 5. 8-5 .10 show, the single bootstrap coverage accuracies obtained by 

using the L2 norm, follow almost the same trends as those obtained by using the 

sup-norm. However, using the Lrnorm, in both the Gaussian and Non-Gaussian 

cases the coverage accuracy is dominated by its counterpart when using the sup

norm, due to domination of the L2-norm by the sup-norm. Moreover, the gap 

between coverages obtained in the Gaussian and Non-Gaussian cases becomes 

smaller as n increases; especially, it vanishes for all j when n = 500 and applying 

model (ii). 
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Figure 5.8: Comparison of coverages of two-sided bootstrap confidence bands for '1/Jj, 

·when generating X (t) from a Gaussian or Non-G aussian process . The dashed lines show 

the coverages when simulating from the Gaussian process, and the dotted lines reveal 

coverages when simulating from the Non-Gaussian process . The bands were obtained 

by using the 1 2 distance of {;j from '1/Jj • We simulated from model (i) and the nominal 

coverage was 1 - a= 0.95. 
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Figure 5. 9: Comparison of coverages of two-sided bootstrap confidence bands for '1/Jj 

when generating X(t) from a Gaussian or Non-Gaussian process. The dashed lines show 

the con~rages when simulating from the Gaussian process . and the dotted lines reveal 

coYerages ·when simulating from the I\on-Gaussian process. The bands were obtained 

by using the 1 2 distance of 'lbj from Wj - We simulated from model (ii) and the nominal 

COYerage \\'clS 1 - a = 0.95. 
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Figure 5.10: Comparison of coverages of two-sided bootstrap confidence bands for '1/J j, 

when generating X(t) from a Gaussian or Non-Gaussian process. The dashed lines 

show the coverages when simulating from the Gaussian process, and the dotted lines 

reveal coverages when simulating from the Non-Gaussian process. The bands were 

obtained by using the L2 distance of {;j from '1/Jj . We simulated from model (iii) and 

the nominal coverage was 1 - a= 0.95. 

5.5 Effect of Discrete Observation on Coverage 

Accuracy of Confidence Intervals for Eigen-

values and Eigenfunctions 

We also explored the case where each Xi was observed discretely on a grid, with 

additive error, in particular Wij = Xi(j / 20) + 5ij, where 1 :S; j :S; 20 and 51j 

was normal N(O, o-2
) . We passed a conventional local-linear smoother through 

these data, using the Sheather-Jones method to choose bandwidth, thereby con-

~ 
~ 

structing an estimator X i of X i; and then we applied our methods as though X i 

were X i. vVe took o-2 = 0.025, 0.05 and 0.1 , and calculated the usual empirical 

approximations to coverage of confidence regions for 0j and ·lj)j, when n = 20 , 50 

and 100. Interestingly, coverage accuracy of confidence intervals for 0j is almost 
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always improved by discretising and adding noise, the extent of improvement 

generally decreasing with increasing sample size and with decreasing error vari

ance. The coverage accuracy of confidence bands for 'lj)j is hardly affected. (This 

phenomenon also occurs in related contexts, and so is not unexpected. It arises 

from the effects of smoothing, including the smoothing associated with adding 

noise. See Cai and Hall , (2004). 

n 0"'2 01 02 83 84 0s 

20 0.88 0.87 0.85 0.82 0.80 

20 0.025 0.88 0.88 0.86 0.83 0.80 

20 0.05 0.88 0.88 0.87 0.84 0.83 

20 0.1 0.88 0.88 0.88 0.85 0.84 

50 0.91 0.91 0.93 0.97 0.99 

50 0.025 0.92 0.91 0.94 0.96 0.99 

50 0.05 0.91 0.92 0.93 0.96 0.99 

50 0.1 0.92 0.92 0.94 0.96 0.98 

100 0.92 0.92 0.93 0.97 0.99 

100 0.025 0.92 0.93 0.94 0.96 0.99 

100 0.05 0.92 0.94 0.95 0.96 0.99 

100 0.1 0.93 0.93 0.94 0.96 0.98 

T~_1)1f? S l : ~ 0' 'f?l'9 .. ~i::~ of b00t=tr 9.,p =:'.'Yn.l-n.etric co!l:ficle!lce be.l1ds for 0_; 1.2l10. 0 l' the 

Gaussian process and model (i) when the process X(t) is observed at the discrete 

grid of 20 points. In the table we denote variance of error with CJ
2

. 

5.6 Cross-validation in Regression 

We simulated data from the regression models discussed in Section 5.2. For 

ea.ch sample we calculated the value of li b - bll 2
, representing integrated squared 

error (ISE), and analysed, by simulation, the distribu tion of this quantity. In 

particular, we calculated median, med(r), say, of the distribution, and found the 

value , r 0 , of r that minimised the median ( see Figure 5 .11) . 
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n (72 01 02 03 04 05 

20 0.86 0.84 0.80 0.75 0.70 

20 0.025 0.86 0.85 0.82 0.82 0.80 

20 0.05 0.87 0.87 0.86 0.84 0.80 

20 0.1 0.87 0.89 0.85 0.83 0.76 

50 0.90 0.90 0.86 0.85 0.85 

50 0.025 0.90 0.91 0.90 0.91 0.93 

50 0.05 0.90 0.91 0.90 0.90 0.85 

50 0.1 0.90 0.92 0.92 0.93 0.91 

100 0.92 0.92 0.90 0.90 0.91 

100 0.025 0.92 0.92 0.93 0.95 0.92 

100 0.05 0.92 0.92 0.92 0.94 0.91 

100 0.1 0.93 0.93 0.94 0.95 0.92 

Table 5.2: Coverages of bootstrap symmetric confidence bands for 0j under the 

Gaussian process and model (ii) when the process X(t) is observed at the discrete 

grid of 20 points. In the table we denote variance of error with a-2
. 

n (72 01 02 03 04 0s 

20 0.86 0.83 0.79 0.73 0.68 

20 0.025 0.87 0.83 0.83 0.78 0.73 

20 0.05 0.86 0.85 0.87 0.80 0.70 

20 0.1 0.86 0.89 0.89 0.82 0.73 

50 0.90 0.89 0.87 0.87 0.84 

50 0.025 0.90 0.90 0.87 0.88 0.85 

50 0.05 0.89 0.92 0.89 0.89 0.84 

50 0.1 0.91 0.93 0.90 0.91 0.86 

100 0.92 0.92 0.91 0.89 0.88 

100 0.025 0.92 0.92 0.92 0.90 0.90 

100 0.05 0.92 0.91 0.92 0.90 0.88 

100 0.1 0.93 0.91 0.91 0.90 0.89 

Table 5.3: Coverages of bootstrap symmetric confidence bands for 0j under the 

Gaussian process and model (iii) when the process X(t) is observed at the discrete 

grid of 20 points. In the table we denote variance of error with a-2
. 

Using the values r 0 , we obtained the first quartiles (25th percentile), median 

or second quartile and third quartile (75th percentile) of the distribution ISK 

The solid lines in Figure 5.12 indicate the quartiles. 
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Figure 5.11: The values, ro, of r that minimised the median of lib- bll 2
. We took three 

different models 0j = r 2
f, for ,e = 1, 2 and 3, and denote them by (i)- (iii) . 

We also computed the smallest value of r, f say, that produced a local min

imum of CV(r), and calculated the first quartiles (25th percentile), Median or 

second quartile and third quartile (75th percentile) of the distribution of II b- bJJ
2 

when b is computed with r = f. The dashed lines in Figure 5.12 represent the 

values of these quartiles. 

In some instances there is more than one value of r for which the cross

validation criterion CV ( r), at ( 4. 9), is minimised. Our numerical experience sug

gests that a good way of selecting among these local minimisers is to choose the 

:-.; w ai1c:-:-.;L, , Tlrn) 1:-:-.; 111 foic wiU1 r e::cu111rneuucu pn.1cLicc lll murc CUll \/CllLiu1mi u,ppli-

cations of cross-validation for bandwidth choice, where the smoothing parameter 

which gives a local minimum and also confers most smoothing (i. e. the largest 

locally-minimising bandwidth , here equivalent to the small est r) is select ed . See, 

fo r exampl e, P ark and Marron (1990) and Hall and Marron (1991). 

It can be seen fr om the figure that , for model (i), t he median perfo rm ance of 

the estimator of b, computed using cross-validation to choose r, lies only a little 

below that when r is selected optimally. This is t rue even fo r srnall sample sizes . 

In the case of model (ii ), cross-validation experiences difficul ty ·with smo.J l sam

ples; note that t he dashed and solid lines are well separated there. Nevertheless, 

for large samples, the perfo rmance of cross-validation is not far from optimal. 
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Figure 5.12: Performance of integrated squared error (ISE), when r was chosen opti

mally or by cross-validation, and X(t) was generated from the Gaussian process. The 

solid lines graph the three quartiles (25, 50 and 75th percentile) ISE when r = ,a 

was chosen to minimise the median, and the dashed lines graph those quartiles when 

r was selected by cross-validation. The value of sample size, n, was graphed on the 

horizontal axis, and the quartiles integrated squared error were shown on the vertical 

axis. The first, second and third row represent the results for models (i), (ii) and (iii), 

respectively. 
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However, the case of model (iii), which represents a relatively high-dimensional 

setting, causes greater difficulty, and only when n is approximately 1000 does 

cross-validation give good median performance there. Moreover, in the third 

quartile, the dashed and solid lines are distinctly separate under this model even 

for large samples . These properties are closely reflected in performance at quar

tiles of the distribution of the D = ✓ lib - bjj 2 + la - aj 2
. We obtained median 

performance of D in the same way as for the ISE (see Figure 5.13). The panels 

reflect almost similar features as in the case of the ISE. Furthermore, it can be 

seen that estimating the slope function b( t) in the functional regression model is 

much more important than estimating the intercept a, due to difficulties brought 

from its high-dimensionality. 

We also found that there is no deterioration in the result connected to cross

validation performance in functional linear regression when changing the distrib

ution of ~j from normal to centred exponential. 

Following the work on exploring the performance of the cross-validation ( CV) 

criterion , in functional linear regression model ( 4.1) , there a.re tvw sources of 

variability: variability brought to response variable by functional regres~ion co

efficient , and variability of noise ( c:i). The effect of controlling these two sources 

of variability with respect to each other in performance of CV was investi gated. 

In t he simulations , we took X considered to be the Gaussian process with 

0j = j-2
, and the Ei were generated from N(0, 1) . The functional coefficient 

defin ed on [0, 1] was 

1 
00 

1 
b(t) = C1 (t

2 
- t + - ) = C2 L ~ ?/).1U), 

3 j=l J . 

·where C1 and C2 a.re constant. Furt hermore , in the model ( 4.1 ), a 

chosen. 

0 ,,,-vas 



5. 6. CROSS-VALIDATION IN REGRESSION 

I[) 

0 c:i 
C 

i "St 
Q) 0 

~ 

('") 

c:i 

0J 

c:i 

\ 

G 

'Cl-

200 400 600 800 

Sample Size (n) 

(i) 

OJ,~ 
o b 

r---
c:i 

0 
CW 

i O ~ "\ ~ ci G-

"<t" 

c:i 
- - - €) 

200 400 600 800 

Sample Size (n) 

(ii) 

OJ 
c:i 

0 rs-: 
C 0 

ct! 
'6 w 
Q) • 

~o 

I[) 

c:i 

"<t" 

c:i 

' 
' 

'o, 

200 400 600 800 

Sample Size (n) 

(iii) 

153 

Figure 5.13: Median performance of D, when r was chosen optimally or by cross

validation, and X (t ) was generated from the Non-Gaussian process.The solid line graphs 

the median value of D when r = ro is chosen to minimise the median, and the dashed 

line graphs the median when r was selected by cross-validation. The value of sample 

size, n, was graphed on the horizontal axis, and median D was shown on the vertical 

axis. The first , second and third panels represent models (i), (ii) and (iii) , respectively. 

Choosing different values of C1 affects the amount of variability due to the 

explanatory variables. We took five different values for the ratio of R = var( <b(,X>) 
var E 

as follows: (a) 0.02, (b) 0.5 , (c) 2, (d) 10 , (e) 20. We obtained the value of r, f 

say, that produced a global minimum of CV(r), and calculated the median of 

the distribution of jjb - blj 2 when b is computed with r = f. The dashed lines 

in Figure 5.15 , created from 500 generated synthet ic samples from the model , 

represent the values of this median. 

By simulation, the median of the distribution of lib - bll 2
, med (r) say, was 

analysed, and the value, r0 , of r that minimised the median was obtained (Fig

ure 5.14). Furthermore, the solid lines in Figure 5.15, created from 5000 synthetic 

samples from the model, indicate med( r0 ). 

It can be seen from Figure 5.15 that, in relation to the performance of the 

estimation of b, the relative differences between the two lines are improved in all 

sample sizes, when R increases. 
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Figure 5.14: The values, ro, of r that minimised the median of Jib - b JJ
2

. We have 

obtained these values by simulation over 5000 datasets . On the graphs, cases (a)-( e) 

refer to R = 0.02 , 0.5 , 2, 10 and 20 , respectively. 
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Figure 5.15 : Median performance of integrated squared error (ISE), when r was chosen 

optimally or by cross-validation, and X(t) was generated from the Gaussian process. 

The solid lines graph the median value of the ISE when r = ro was chosen to minimise 

the median , and the dashed line graphs the median of ISE when r wa.s selected by cross

validation. The value of sample size, n, was graphed on the horizontal axis, and median 

of the ISE on the ver t ical axis. On the graphs , cases (a)-(e) refer to R = 0.02 , 0.5 , 2. 10 

and 20, r espectively. 
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5. 7 Comparison of Three Cross-validation Cri-

teria 

The purpose of this simulation study is to compare the performances of three 

cross-validation criteria for choosing the smoothing parameter in functional re

gression slope estimation, in a functional linear regression model. Assume that 

the functional linear regression model 

Y; =a+ 1 bXi + Ei =a+ (b, Xi)+ Ei, 1 <:'. i <:'. n. 

In the simulation here we chose X to be the Gaussian process introduced 

m Section 5.2. Furthermore, the errors Ei were Normal N(0, 1) and we took 

models (i)-(iii), a= 0 and b(t) introduced in Section 5.2. All estimated quantities, 

shown by the graphs later , were computed over 1000 simulated datasets . The 

three cross-validation criteria were: 

1. 

CV1(r) = ~ t {Y; - a,(-i ;r) -1 b(- i;r ) xi}2 
i=l I 

(5.6) 

Here, (&,(-i;r), b(-i;r)) denotes the least-squares estimator of (a, b) that is 

obtained by confining attention to the set Z i, say, of all data pairs ( Xj, Yj) 

excluding the ith; and both &,( - i ;r) and b(-i;r) use the empirical Karhunen-

Loeve expansion of length r computed from Z i . vVe also show every quan

tity, obtained by all data pairs except excluding the ith, with index ( - i) . 

- -
2. If we can write Yn xl = HYnxl , where Y denotes the predictor of Y , then 

we are able to use 

CV
2
(r ) = ]:_ t (Y; -1-7;)2 

n · (l - H .. \ 0 
' 

i=l n 

(5.7) 
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where Hii is the ith diagonal element of the n x n matrix H . This cross

validation criterion is easy to compute since we do not need to calculate 

the integral in CV 1 . It is clear that these two are not the same, since in 

computing CV 1 , when excluding the ith observation, we have to obtain 

?fj with only n - l other observations , and then get the coefficients fo by 

using the current estimated eigenfunctions . This is not the case for CV2 . 

Hmvever , when computing CV1 , if we neglect that, these two are the same. 

If we truncate the two series b( t) and X i ( t ) in N , then we have the linear 

model Y = A*0 + E, where 

a 

Y1 \ / 1 ~11 

6N I , 
0 

= 
I / E1 

b1 

Y= I J,A*= I I 'E = 

Yn \ l ~111 ( nN / I I \ En 

bN 

;~ .r~ t.1--:~ "v"~~t,(;~"' 
~ f -- ~~~ ~ ~~- --~-- - ~ l- 1 -
\ _, _, J... ; _-1-.. !-' '--'.!.l i.:.' ' ..., , t·..!.. ! c~ 1 _1 .~ 1 • .: . 

./- 1-- -- -~ L_ . : _ _ _ I' - --·~·· '. - 1 -- 1 1 . 
t: .!...!. '~· .!. ! l C~l:ll -·- 1...)1 '-~ ~_J\'tt.l! Ctt~ -•~ - l !tt~ '. 't-'t"! , t,'J 

of parameters, t he vector of errors, respectively, and (ij = .f xi 1/Jj. We 

obtained t hat 0 = (A *TA *) - 1 A s Y , where A s denotes the transpose of 

matrix A*. To emphasize t runcation of t he two series in N, we use the index 

N fo r the vectors and matrices obtained by those N terms . We assume that 

Y * - (',r . . . , ,7 t* g~(-i ;N) V . . . v )T 
- 1 l , , 1 1. - l , Si , 1 i.+ l , , 1 n , 

where t*. = (l c. . . . t . )T and §(-i;N) = (oJ-i;N) 6(-i;N) . . . 6(-i;N ))T 
':i i , Sil, , SiN · , J , , N · 

Here, {J(-i;N) denotes the estimator of e (N) with all data except excluding 

the i th observation. Vie have: 
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n n 

(Y* - A* 0f (Y* - A* 0) = I)23* - ~;r 0 (N ) )2 ~ L (23* - ~;r 0 (N ) )2 

j=l j :j-/:i 

n n 

~ L (23* - ~;re(-i;N))2 ~ LCr/ - ~;re(-i;N) )2. 

j:ji'i j=l 

(5.8) 

Thus, §(-i;N) is the minimizer of the left hand-side term in (5.8) with respect 

to 0. On the other hand, differentiating this term with respect to 0 results 

in §(-i;N) = (A* TA* )-1 A* Ty* Therefore y(-i;N) = H(N) Y* where 
(N) (N) (N) · , , 

H (N) A* (A* TA* )-1A* T w h . = (N) (N) (N) (N) . e ave. 

n 

,;_,r: - y----- (- i ;N) - ·v - c*T 0~(-i;N) - ,;_,r: - '"' H(N)y. - H(N)y* 
Li i - Li '-:,j - Li ~ ij J ii i 

#i 

= y: _ '°"' H V!)y. _ H~!'f) c~T §(-i;N) 
?, ~ 1,J J 1,1, '-:,J 

# i 
n 

= Y:i· - H ~!'f)y:i. - '°"' H(f! )yJ. - H ~!'f ) c~T §(-i; N ) + H (!'f )y:i. 
1, 1, ~ 1,J 1,1, ½,J 1,1, 

#i 
n 

= ~ - L Ht)0 +Ht)(~ - ~;Te(-i;N)) 

j=l 

= y: - y (N) + H (!'f) (Y: - y (- i; N )) 
1, 1, 1,1, ?, 1, • 

Hence, ~ - ~ (- i) = "½-~) , and we can write CV1 as follows: 
l-Hii 

CV1 (r ) = ¾ t { Y; - a (- i;r ) - 1 b(- i; r ) x i r 
n ( T )2 "" ¾ L Y; - a (- i;r ) - L ~iJti;r ) 

i=l j = l 

(5.9 ) 

n n ( "' (r ) )2 

= ~ '°"' (I'i - y (-i ;r ) )2 = ~"' 1'i - ~ . (5. 10) 
n ~ i n ~ (1 _ H~!'1 ))2 

i= l i=l ii 

Note t hat the approximated quant ity in (5.10) ,;vas obtained by applying 
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_ "\"'"' r .,..__ "(- i-r) _ r (-i; r ) -----(- i) • • -----(-i) 
X i - L-j=l ~ijVJj and b ' - ~ j=l bj 1/Jj , m which the 1/Jj are 

computed by excluding the ith observation. Moreover, there we have used 

the approximation ( ;f;j-i), ;/;k) ~ Jjk, where Jjk is the Kronecker delta. If we 

define A* (N) = [ 1, A (N) ], where 

~11 6N 1 

A (N) = , l nxl 

~nl ~nN 1 

then we can get y (N) as follows: 

- 1 ,,.___ 1( T T -) 
Y - -:;:; 1 A (N) :E- A (N) Y - A (N) 1 Y 

y (N) = A (N)§(N) = [1, A (N)] 

,,.___ ( T T - ) 
:E- 1 A (N) y - A (N) 1 y 

1 T 1 T ,,.___ -l T ( 1 T) 
-1 - - 1 A (N) :E A (N) I - - 11 
n n n 

y (N) = [1 , A (N) ] Y , 

~-l A (N{ (I - ¾ 11T) 

and finally, 

,,__ (N) [ 1 T l T ,,.___ -1 T ( 1 T) ,,__ -1 . T ( 1 T)] 
Y = -11 - - 11 A (N) :E A (N) I - - 11 + A :E A (N) I - -11 Y 

n n n n 

[ 
1 T ( 1 T) ,,.___ -1 T ( 1 T)] = - 11 + I - - 11 A (N) :E A (N) I - -11 Y , 
n n n 
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where 

.,..._ T ( 1 T 
:E = A(N) I - -11 ) A(N) 

n 

= ndiag(01, · .. , 0N) . (5.11) 

Consequently, H (N) = [ ¼ 11 T + (I - ¼ 11 T) A(N) f;- 1 
A(N) T (I - ¼ 11 T)] . 

3. The third cross-validation criterion is a generalized cross-validation, ob

tained by substituting the average of the diagonal elements of H for the 

denominator of CV 2 , instead of the i th diagonal element. It is: 

l n (Y; - ~)2 
CV3(,) = ~ L (1 - l tr(H" - · 

i=l n 

(5 .12) 

Where tr(H) in GCV2 (,) denotes trace of matrix H. 

There are three different kinds of lines seen on each graph in the panels. The 

solid lines graph the first quartile ( 25th percentile) , median or second quartile 

and third quartile (75th percentile) of the distributions of lib - bll 2 and la - ell 

when band a are computed with,= f, producing the minimum of CVi(r). The 

three quartiles (25, 50 and 75th percentile) of the distribution of lib- bjj 2 denoted 

by ISE, were plotted in the first row of the panels for each case (i), (ii) and (iii) 

separately, and of the latter were graphed in the second row. For computing the 

dashed lines, the procedure was the same as the solid lines, except for the value of 

r = f chosen by CV 2 (,). For the dotted lines, however, the minimizer of GCV 2 ( r) 

was considered as the value of , = f. 

When considering model (i) and the first quartile of ISE, as the graphs show, 

there are no significant differences among the three lines obtained by the three 

cross-validation criteria. With the second quartile, however , GCV 2 and then , CV2 

have slightly better performance when sample size is small . Regarding the third 
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quartile, we also see a better performance of CV 2 and GCV 2 than CV 1 . When 

n = 50, for example, CV2 works as well as GCV2 but for n = 100, GCV2 does 

a better job compared with CV 2 . Furthermore, there is no significant difference 

between the performances of the three cross-validation criteria in estimation of 

la - a1 . However, CV 1 in the first quartile of la - al tends to have slightly better 

performance when n :s; 200. 

For model (ii), in the first quartile, GCV 2 works better. Moreover , the solid 

and dashed lines obtained by CV 1 and CV 2 tend to coincide with each other. 

\i\Tith the median , GCV 2 has slightly better performance for all sample sizes. In 

regard to the third quartile, however, for n = 50, GCV2 and then CV2 works 

better than CV 1 . When n = 100, CV 1 gives a smaller value of ISE compared to 

the other two criteria. Furthermore, when n is large, GCV 2 is the best . Besides, 

as the graphs show, there is no significant difference among the performance of 

the t hree CV criteria in the case of distribution of 1a - al. 

Under model (iii ), t here are no significant differences among the performance 

of the three CV criteria from the viewpoint of the first and second quartile of ISE. 

But GCV 2 tends to have slightly better performance on the median of ISE when 

sample size is very large. As regards the third quartile, GCV 2 performed better 

than the other two for all sample sizes, except for n = 100 and 500, where the 

other two perform better. Moreover, the solid and dashed lines, corresponding 

to CV 1 and CV 2 , tend to coincide with each other. \ i\lhen considering la - &I, we 

do not see any significant differences among the performances of CV 1 , CV 2 and 

GC\12. 
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Figure 5.16: Performance of the distribution of integrated squared error (ISE) and of 

estimators of a , when , is chosen by cross-validation. The solid lines graph the three 

quartiles (25 , 50 and 75th percentile) the distribution of li b - bjj 2 and ja - aj when b 
and a are computed by,= f, producing the minimum value of CV1 (,). The dashed 

and dotted lines graph the three quartiles when , = f is selected by cross-validation 

CV2(,) and GCV2 (r), respectively. The sample sizes were n = 50 , 100 , 200,500 and 

1000 , and the undertaken model was model (i) . 
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Figure 5 .17: P erformance of the distribution of integrated squared error (ISE) and of 

estimators of a, when r is chosen by cross-validation. The solid line graphs t he t hree 

quartiles (25 : 50 and 75th percentile) the distribution of jjb - b.j j2 and ja - aj when b 
and a are computed by r = r, producing the minimum value of CV1 (r ) . The dashed 

and dotted lines graph the the three quartiles when r = r is selected by cross-validation 

CV2 (r) and GCV] (r ), respectively. The sample sizes were n = 50 . 100\ 200,500 and 

1000, and the undertaken model was model (ii). 
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Figure 5 .18: Performance of the distribution of integrated squared error (ISE) and of 

estimators of a, when r is chosen by cross-validation. The solid lines graph the three 

quartiles (25, 50 and 75th percentile) the distribution of llb - bll 2 and la - aj when b 

and a are computed by r = r, producing the minimum value of CV i(r). The dashed 

and dotted lines graph the three quartiles when r = r is selected by cross-validation 

CV2(r ) and GCV2(r), respectively. The sample sizes were n = 50 , 100,200, 500 and 

1000, and the undertaken model was model (iii). 

5.8 Numerical Results Connected to the Real 

_;_; ct ~ctti e~ ( C a.u.ct.~~ct.H rl \::a..u.pt1. Cl ~ U _i_ t ) 

Our real data consist of recorded temperatures at 35 Canadian weather-stations 

for a certain year ( 1982). The original data were in the form of 12 points for 

each ~tation, representing monthly averages of Canadian temperature, associated 

,;vith the midcl ]e of each month. Because temperature is periodic, we should use 

a basis ,vhich represents this fact. Hence, we have 

X (t;) = 6 + 6 sin(wt) + 6 cos(wt) + (4 sin(2wt) + (5 cos('.2wt) + · · · , (5.13) 

where : is equal to 12, the length of the interval I = [O, 12] on which the tern-

perntme functions is defined, i.e w = i · Because the original data were recorded 

on a discrete grid (in the middle of every month), they m ay be contaminated ·with 
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errors. However , the error in our data, resulting from measuring temperature, is 

very small, compared to the variation in actual temperature. Nevertheless, it is 

better to remove the error by taking smoothing into account rather than inter

polating, as the error may cause a degree of roughness. Because taking a finite 

number of the t erms in the series in (5.13) causes some degree of smoothness 

to the functions , we expanded the data by using N = 13 terms through "the 

least squares fitting of basis expansions". Meanwhile, we controlled roughness by 

adding a small roughness penalty, as follows: 

L {Yi - X (ti)}
2 + PEN(x) = IIY - w~11 2 + ,\ ~r RC (5.14) 

where PEN denotes the roughness penalty, the 12-vector y shows the original 

discrete data, observed in the middle of the 12 months , the n x N matrix '¥ 

has elements Wij = 'lj)j( t i), 'lj)j(ti) is the value of the jth term of the basis at 

point ti, the N X N matrix R has elements Rj = fo12 'I/Jr ( t) '1/JJ ( t) dt, in which 

'1/JJ denotes t he second derivative of 'lj)j, and the N-vector ~ denotes the Fourier 

coefficient. There, the amount of smoothness can be controlled by ,\. We chose ,\ 

very small and minimised (5 .14) with respect to~' leading to the optimal solut ion 

~ = (wTw + ,\ R)-1 wT y. Therefore, the data were registered as 35 functions by 

expanding the temperature curves in the first 13 terms of the Fourier basis, and 

setting them up with the discrete temperature data to create smooth curves Xi ( t) 

from the original discrete data. Figure 5.19 presents t he 35 registered functions. 

After subtracting mean from the data, we obtained the estimated eigenval

ues and eigenfunct ions. As Figure 5.20 reveals , t he value of 01 shows a strong 

domination of its associated variation on all other kinds . Furthermore, the first 

four eigenvalues explained more than 99% of the total variation, in which their 

contributions individually were 89.3 , 8.3, 1.6 and 0.5 percent, respectively. Con-
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tributions from others, however, were less than 0.5 percent. Thus, this drew 

our attention to the first four kinds of variation rather than the whole. As Fig

ure 5.21 presents, the first estimated principal component (PC) curve shows that 

the majority of variability (89%) among the data can be attributed to differences 

between summer and winter temperatures. 

The second PC shows regularity of temperature when moving from winter 

to summer. In other words, it reflects the variation from the average of the 

difference between the winter and summer temperatures. It contributes positively 

for winter, and negatively for summer. Therefore, it gives a high positive score 

to the area for which the difference between winter and summer temperature is 

small. In contrast, a large negative score is allocated to the areas which are hot 

in summer and cold in winter. The third PC corresponds to a time shift effect 

which is accompanied by a slight overall increase in both temperature and range 

between winter and summer. The fourth PC is due to an effect causing spring to 

start later and autumn to end earlier. 

As a practical illustration we show 95% bootstrap confidence bands, calibrated 

using the double bootstrap, for the first four principal components in t he case 

of J.O. Ramsay's Canadian weather-station temperature dataset. The extreme 

closeness of single- and double-bootstrap bands reflects the high degree of accu

racy of t he uncalibrated bands. This results was confirmed by the simulation 

study since the coverages from the single and the double bootf:ltrap were almost 

close to each other. 

Table 5.4 reveals a 95% bootstrap confidence intervals for 0j obtained from 

Canadian temperature data. \Ve used two different rn_ethods of constructions 

( equal-tailed and symmetric confidence intervals), and for each we applied single

and double-bootstrap methods. The results show that in all cases, as t he order 

of the eigenvalues decreases, the length of the confidence intervals shrinks. The 
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Figure 5.19: Monthly mean of temperature for the Canadian weather stations. 

more they are important in view of having a larger proportion of total variation, 

the more their corresponding confidence intervals are longer. 

Regarding the simultaneous bootstrap confidence interval for 0j, we estimated 

.6.upp = 259 from the 95% upper level of t he distribution of .6. * = I/ K* - Kl/, i.e. 

P(supj~l l0j - 0jl ~ 259) ~ 0.95, which means that with probability nearly 0.95, 

for each 1 ~ j ~ 12 the distance between 0j and 0j does not exceed 259. 

We were interested in explaining variation in the total annual precipitation 

by using the temperature variation pattern through the year. Considering the 

linear regression model, Yi = fr b(t) Xi(t) dt+Ei, we took Y to be the total annual 

precipitation and X ( t) to be temperature. Because the total annual precipitation 

was distributed across the four different areas, Atlantic, Continental, Pacific and 

Arctic, it was highly variable from one weather station to another. Thus , we 

decided to use its logarithm as the dependent variable. Specifically. we regarded 
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Figure 5.20: The estimated eigenvalues for the Canadian temperature data. 

The amounts of total variation accounted for by the first four eigenvalues 

are 89.3, 8.3, 1.6, and 0.5 percent, respectively. 

l\'l\..:l,UUU .LJ\.-1 Llc.~l \JUll'-• \.l 
. · .; · ·· .J ·· ·_· · , · , . . 

Eigenvalue SB DB SB DB 

01 (246 .26, 737.35) (254 .28, 848 .07) (260 .12 , 749.97) (1 75.24 , 834.86) 

02 (30.019, 71.35) (28.72 , 86.13) (24.65, 69.61) (12.05, 82.21) 

0.3 (6 .57 , 12.99) (5 .95, 14.71) (5.58, 12.58) (4 .35, 13.82) 

04 (0.99, 4.49) (0.54, 6.15) (0. 73, 4.44) (0, 5.93) 

(-Js (0.30, 0.65) (0.26, 0.71) (0 .30 , 0.65) (0.28, 0.G7) 

OG (0.38, 0.66) (0.38, 0.81) (0.19, 0.63) (0.062, 0. 76) 

07 (0.11, 0.25) (0.082, 0.32) (0.059, 0.24) (0,0.31) 

0s (0.094, 0.17) (0.089, 0.23) (0.033, 0.17) (0, 0.22) 

09 (0.049, 0.091) (0.043, 0.12) (0.019, 0.089 (0,0 .11) 

0rn (0.026, 0.048) (0 .022 , 0.059) (0 .010 , 0.047 (0, 0.057) 

011 (0.022, 0.037) (0.021, 0.049) (0.0048, 0.036) (0,·0.048) 

012 (0.0093, 0.015) (0.0092, 0.021) (0.0014, 0.01 5) (0,0.021) 

Table 5.4: The bootstrap confidence intervals for 0j obtained from the Canadian 

temperature data. The nominal coverage was 1 - a = 0.95, and B = 5000 resamples 

were drawn. Then each of them was sampled C = 500 times with replacement. In the 

table, SB and DB denote single- and double-bootstrap confidence intervc1.ls, respectively. 

" 
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Figure 5.21: First four eigenfunctions with their single and double bootstrap bands, 

obtained from Ramsay's Canadian weather stations dataset. The dashed line shows 

single bootstrap bands, the dotted Jine shows double bootstrap bands, and the unbroken 

line shows the function estimate 'ljJ1 . 
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Method Symmetric Equal - tailed 

Eigenfunction zo.os zo.02s zo.91s 

1/J1 0.087 -0.0005 0.0210 

1/J2 0.16 -0.0137 0.0115 

1/J3 0.18 -0.0004 -0.0119 

1/J4 0.32 0.00131 -0.0474 

1/Js 0.89 0.0003 0.2540 

1/JG 1.27 -0.4749 0.4872 

1/J1 0.85 -0.0056 -0.0445 

1/Js 1.35 -0.0511 0.6635 

1/Jg 1.11 -0.0090 0.3073 

1/J10 0.90 -0.0473 0.0289 

1/J11 1.25 0.0016 0.4375 

1/J12 1.41 -0.0122 0.5961 

Table 5.5: The single bootstrap confidence statements for '1/Jj obtained from the Cana

dian temperature data. The nominal coverage was 1 - a = 0.95 , and B = 5000 re

samples were drawn. Here, the confidence statements should be interpreted as regions 

{ (t,u) : l~(t)-ul ~ zo.os andt EI= [0,12] }. 

Method Equal - tailed Symmetric 

Eigenfunction zo.02s zo.975 ~* 
zo.os 

7/Ji 0.0080 0.11 0.097 

1/J2 -0.013 0.15 0.15 
! 

·</J3 
I 

0.027 . 0. i7 O.i6 
I! 

1/J4 0.041 0.29 0.27 

'lj)5 0.078 1.19 1.12 

'lj)G -0.36 1.64 1.82 

1/J1 0.11 0.65 0.96 

1/Js 0.037 2.22 1.89 

'lj)g 0.14 1.46 1.34 

'lj)10 0.091 0.92 0.89 

1/J11 0.14 1. 71 1.65 

'lj)12 0.071 1.99 2.052 

Table 5.6: The double bootstrap confidence statements for '1/Jj obtained from the Cana

dian temperature data. The nominal coverage was 1 - a= 0.95, and B = 5000 resam

ples were drawn. Then each of them was sampled C = 500 times with replacement. 

Here, the confidence statements should be interpreted as regions { (t, u) : 20_025 ~ 

1~(t)-11, :S ,zo.975 and t EI= [0, 12)} and { (t, u): /j(t)-ul :S zo.os and t EI= [0, 12)} 
for equal-tailed and symmetric construction , respectively. 
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Figure 5.22: The estimated regression slope when taking the log total annual precipi

tation as the dependent variable. The smoothing parameter , chosen by cross-validation 

was f = 2. The estimated intercept was also a = -0 .2413092. 

the dependent variable Y as }"i = log10 (2=}:1 precij) - }5 L ;:1 log10(L }:1 precij), 

where precij denotes t he amount of precipitation reported by station i during 

month j . Then we estimated the slope b and intercept a from the data using the 

estimators proposed in ( 4. 8). To estimate t he smoothing parameter r, we used 

the cross-validation criterion 

l n ( - - 2 

CV
2
(r) = _ ~ Yi - Y; ) 

n . (1 - H ··\') ' 
i = l ii 

(5 .15) 

where the matrL"X H can be determined from Y =HY, and H ii is the ith diagonal 

element of the n x n matri,-x H . We obtained b and a with f = 2 chosen by CV 2 

(see Figure 5.22) . 

As Figure 5. 22 shows , the estimated slope of the functional linear regression 

gives larger weights to the winter months as well as the second half of autumn. 

Furthermore, lowest weights corresponds to summer and then at the middle of 

spnng. 
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5.9 Comparison of Single and Double Bootstrap 

Coverages for 0j 

5.9.1 Simultaneous Confidence Intervals for 0j 

Figure 5.23 shows coverage of the simultaneous bootstrap confidence interval for 

0j when the nominal coverage level is 95% and X is Gaussian. The dashed 

and dotted lines show coverage levels when applying single and double bootstrap 

methods , respectively. For both the single and the double bootstrap , model (i) 

enjoys good performance compared with the other two models. Furthermore, 

use of the double bootstrap to calibrate confidence intervals improves coverage 

accuracy, especially for small sample sizes. It reduces the deficit in the coverage 

levels from 0.10, resulting from applying the single bootstrap method, to just 

0.03. While we have coverage level 0.93 for model (i) and n = 20 , and under 

models (ii) and (iii) is 0.90 and 0.91 for n = 50, double-bootstrap calibration 

I'u1 l,11\::; .::ic; ;-ja,1111-'lc siLJc:u Pi' C,"\; iJes a, guuJ. il11l.Ji"u-,;t.:ii1ei1t Oil \...,U\; L;lGLbC c..l,\...,\...,Ui' c,1,\...,.)' i\,-.iLl1 

actual coverage 0.95 under each of the three models. As n increases, confidence 

intervals obtained by applying the double bootstrap method become conservative 

(having coverages grater than the nominal level). 

Figure 5.24 shows coverage of simultaneous bootstrap confidence interval for 

0.i ·when the nominal coverage level is 95% and X is t he Non-Gaussian process. 

Here , as with the Gaussian case, double-bootstrap calibration improves cover

age accuracy. In both situations, model (i) has a better performance · compared 

·with models (ii) and (iii). For example, when constructing confidence intervals 

by single-bootstrap method for n = 20, the coverages are 0.80, 0. 72 and 0. 70, 

respectively under models (i) , (ii ) and (iii). However, they are 0.84 , 0. 80 and 0.80 
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bands for 0j, when generating X (t ) from the Gaussian process. The dashed lines show 

the coverages obtained from the single bootstrap , and the dotted lines reveal coverages 

from the double bootstrap. The nominal coverage was 1 - a = 0.95. 
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for those three models when calibrating confidence intervals using the double 

boot strap. It can also be seen that the amount of improvement , resulting from 

this calibration , is lower under model (i) compared with the other two models. 

5.9.2 Confidence Intervals for Individual ej 

Figures 5.25- 5.27 show coverage levels of two-sided symmetric , nominal 95% con

fidence intervals for 0j individually, when X is simulated from the Gaussian 

process under models (i)- (iii) . The dashed lines show coverages when confi

dence intervals a.re constructed by the single bootstrap method , and the dotted 

lines show coverage levels when calibrating the confidence bounds by t he double 

bootstrap. 

Considering model (i) , as the panels reveal , generally, using double-bootstrap 

calibration improves coverage accuracy, especially since it offers better perfor

mance for small sample sizes. T he a.mount of improvement decreases as j in

creases, except fo r n = 20, and t his amount is tending to zero fo r the last eigen

valu e. While coverages obtained by applying single-bootstrap arc 0.88, 0.91 and 

0.92 for sample sizes 20, 50 and 100, respectively, t hey are 0.91 , 0.94 and 0.95 

when using double-bootstrap calibration fo r those sample sizes. Moreover, a.part 

from the last two eigenvalues, which in both situations give conservative coverage 

levels, use of double-bootstrap calibration reduces the deficit from 0 .. 02-0. lG to 

0.00-0.07. Fmthermore , the gap between the dotted and dasbcxl lines clecea.ses 

a.s n increases; meaning that double-bootstrap calibration lrns littl e impact on 

coverages as sample size increases. 

Regarding model (ii), here also coverage levels have the same features as those 

cliscusse?d under model (i). Use of double-bootstrap calibration in constrncting 
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confidence intervals, for n :S 200, reduces the deficit 0.01-0.25, resulting from 

applying the single bootstrap method, to 0.01-0.11. Specifically, we have actual 

coverage level 95% for the first four eigenvalues when n = 200. 

Considering model (iii) when n :S 200 , use of double-bootstrap calibration 

reduces the deficit 0.01-0.27, resulting from single-bootstrap method , to 0.00-

0.08. This means that double-bootstrap calibration removes about two thirds of 

the deficit; specifically, under the single bootstrap coverage level for 01 is 0.86 , 

0.90 and 0.92 , respectively for n = 20, 50 and 100. However, after calibrating 

confidence bounds by using the double bootstrap , they are 0.92 , 0.93 and 0.95 

for these sample sizes. 

Altering the distribution of fo to the centered exponential causes coverage 

accuracy of confidence intervals for 0j decline (see Figures 5.28-5.30). However , 

a coverage-correction can be achieved by using double-bootstrap method. The 

coverage level features here, are similar to those in the case of the Gaussian 

process. The deficit for n :S 200 and the first three eigenvalues caused by applying 

single-bootstrap, is 0.04-0.20, 0.06-0.30 and 0.04-0.29 for models (i), (ii) and (iii), 

respectively, and reduce to 0.03-0.16, 0.02-0 .20 and 0.02-0.21 for the three models 

after double-bootstrap calibration . For example, for sample sizes 20 , 50 and 100, 

coverage levels of confidence intervals for the three eigenvalues constructed by 

single-bootstrap , under model (i) are 0.75 , 0.80, 0.86 , under model (ii) are 0.68 , 

0.81 , 0.86 , and under model (iii) are 0.71 , 0.81 , 0.84 ; respectively. However , the) 

increase to 0.79 : 0.85 , 0.90 under model (i), to 0.78 , 0.87 , 0.90 under model (ii ) 

and to 0.80 , 0.86 , 0.88 under model (iii ) for these sample sizes. 
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Figure 5.28: Comparison of coverages of two-sided; symmetric bootstrap confidence 

bands for Bj, when generating X (t ) from the Non-Gaussian process under model (i) . 

The dashed lines show the coverages obtained from the single bootstrap , and the do t ted 

lines reveal coverages from t he double bootstrap . The nominal coverage was 1 - a = 

0.95. 
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Figure 5.29: Comparison of coverages of two-sided, symmetric bootstrap confidence 

bands for 0j, when generating X(t) from the Non-Gaussian process under model (ii). 

The dashed lines show the coverages obtained from the single bootstrap , and the dotted 

lines reveal coverages from the double bootstrap. The nominal coverage was 1 - a = 

0.95. 
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Figure 5.30: Comparison of coverages of two-sided, symmetric bootstrap confidence 

bm1ds for 0j, when generating X(t) fr om t he Non-Gaussian process under model (iii ). 

The clctshed lines show the coverages obtained from the single bootstrap, and t he dotted 

lines rnveal coverages from the double bootstrap. T he nominal coverage was 1 - a 

0.95. 
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5.10 Two-sided, Equal-tailed Confidence Inter

val for ej, Gaussian 

Equal-tailed confidence intervals are appropriate in many circumstances. The 

asymmetry of an equal-tailed confidence interval can convey important informa

tion about our uncertainty as to the location of the true parameter value , and it 

is not prudent to ignore that information . 

Figures 5.31-5.33 show coverage of bootstrap two-sided , equal-tailed confi

dence intervals for the first three 0j individually, when the nominal coverage level 

is 95% and X is Gaussian. The dashed lines show coverage levels when applying 

the single bootstrap for constructing confidence intervals for the first three eigen

values and the dotted lines reveal them after considering a coverage-correction on 

the confidence bands when double-bootstrap calibration is used. In both simula

tions we took sample sizes n = 20 , 50 , 100, 200 and 500 , and obtained coverages 

for those sample size under t he three models (i), (ii) and (iii) . 

Generally, confidence bands for each 0j are anti-conservative (have coverage 

smaller than the nominal level) for small sample sizes, and coverage accuracy 

of the confidence intervals almost always decreases as j increases . However, it 

improves as n increases, and enjoy even further improvement after using the 

double bootstrap . Although the gap between the two lines becomes smaller as n 

increases, coverage accuracy is improved by calibrating the bands by the double 

bootstrap. 

Under model (i), while the single bootstrap coverage of 01 is 0.80; 0.89 and 

0.9L respectively for sample sizes 20 , 50 and 100, coverage-correction using the 

double bootstrap substantially increases them to 0.90 . 0.93 and 0.95 for those 

sample sizes. Moreover. one can see that coverages of the three eigenvalues is 0.95 

when n = 200 : something which could not be obtained from the single bootstrap 
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even for n = 500. Using the single bootstrap for n ~ 200 causes coverage error 

0.01-0.18; however more than half of the deficit in the coverage is removed by 

double-bootstrap calibration, decreasing the error to 0.00-0.08. 

Considering model (ii), double-bootstrap calibration also causes coverages to 

move towards the nominal level, 0.95. It removes about two thirds of the error 

0.00-0.17, obtained by applying single-bootstrap, reducing the error to 0.00- 0.06. 

For example, coverage of 02 interval for sample sizes 20, 50 and 100 are 0.80 , 0.90 

and 0.91, respectively, in the case of single-bootstrap application. However , they 

increase to 0.89, 0.95 and 0.95 after being calibrated by the double bootstrap. 

With model (iii), when n ~ 200 , constructing confidence bands of ej using 

the single bootstrap causes a coverage error 0.01-0.16, but it decreases to 0.00-

0.05 after double-bootstrap calibration on the bands. For example , ·while single

bootstrap coverage levels of 01 and 02 intervals are 0.89 for n = 50 and 0.91 

for n = 100 , they are 0.93 and 0.95 after double-bootstrap calibration of the 

confidence bands. 

5.11 Two sided Equal-tailed Confidence Inter

val for ej, Non-Gaussian 

Graphs 5.34-5.36 show coverage of bootstrap two sided, equal-tailed confidence 

intervals for the first three 0j when the nominal coverage level is 1- a = .0.95, and 

X is generated from the Non-Gaussian process. The dashed lines slmw coverages 

of confidence intervals constructed by the single bootstrc;tp, and dotted lines re

veal those calibrated by the double bootstrap methods. General features of the 

resul ts are as follows: 

Coverages are anti-conservative, i.e. they fall below 0.95, the nominal level, but 
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move towards it as n increases. Furthermore, coverages obtained from the single 

bootstrap are dominated by their counterparts, resulting from the double boot

strap calibration of bands; the gap between the two, however, becomes smaller 

as n increases; and both usually decline as j increases . 

Simulating from the Non-Gaussian process under model (i) causes a coverage 

error 0.04-0.35 when constructing confidence intervals by the single bootstrap. 

However, coverage-correction using the double bootstrap removes about half of 

the deficit in the coverage, decreasing the error to 0.00- 0.20. This means that 

using double-bootstrap calibration substantially improves performance. For ex

ample, coverage level of the single bootstrap confidence intervals for 01 when 

n = 50 is 0. 79 , whereas it is 0.87 after double-bootstrap calibration. It is also 

0.90 when n = 100 for the double bootstrap construction of confidence intervals 

for 01 , but only 0.82 for its single-bootstrap one. 

In the model (ii), using double-bootstrap calibration decreases the coverage 

error from 0.02- 0.35 to 0.00-0.21. Specifically, coverage of single-bootstrap confi

dence intervals for 02 is 0.80 when n = 50, but improves to 0.89 after calibrating 

bands by double-bootstrap. This is the case when n = 100, increasing it from 

0.85 to 0.92. 

Regarding model (iii), coverage error from single-bootstrap usage is 0.03-0.31 

but declines to 0.00-0.21 by using double-bootstrap calibration of the confidence 

intervals. While coverage of single-bootstrap bands for 01 , 02 , 03 are, respectively, 

0.82, 0.83 , 0.82 when n = 100 , they are 0.90 for the three eigenvalues after 

calibrating the confidence intervals by t he double bootstrap. 
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5.12 Comparison of coverages of two sided equal

tailed confidence interval for ej, for the Gaussian 

and Non-Gaussian process 

Graphs 5.37-5 .39 show coverage levels of two sided, equal tailed confidence inter

vals for 0j when the nominal level is 95 %. These were obtained for the first three 

eigenvalues , under models (i), (ii) and (iii ), and for sample sizes 20 ,50,100 ,200 and 

500 , when X is simulated from a Gaussian or Non-Gaussian process. For each 

model , each 0j and sample size, the dashed lines show coverage levels obtained 

from the Non-Gaussian, and the dotted lines reveal coverages when simulating 

from the Gaussian process . 

As the panels show, generally, the coverages for small sample sizes fall below 

the nominal coverage level, 95%, ·wit h both Gaussian and Non-Gaussian. For each 

sample size, coverages obtained by the Non-Gaussian process are dominated by 

their Gaussian counterparts although the gap between the two becomes smaller 

as n increases. Furthermore, although in both situations , coverage accuracy im

proves as n increases , coverages resulting from the Non-Gaussian process , are still 

below 95% (the nominal level) even for large sample sizes . It can also been seen 

that for both situations , coverage accuracy almost always declines as j increases. 

Under model (i) and the Gaussian process, coverage level of confidence interval 

for 01 is 0.80, 0.89 and 0.91 , respectively, for n = 20 , 50 and 100, but if we alter 

the distribution of f;j to the centered exponential, then its coverage level declines 

to 0. 70: 0. 79 and 0.82 for those sample sizes. 

Regarding model (ii ), it can be seen that coverage level for 01 is 0.84, 0.91 and 

0.92: respectively: for sample sizes 20 , 50 and 100 when the Gaussian process is 

considered. However ) they decrease under the Non-Gaussian process to 0.68. 0.80 
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Figure 5.37: Comparison of coverages of two sided, equal-tailed, bootstrap confidence 

bands for 0j when generating X(t) from a Gaussian or Non-Gaussian processes under 

model (i). The dashed lines show the coverages for the Gaussian process, and the 

dotted lines reveal coverages for the Non-Gaussian process. The nominal coverage was 

1 - a= 0.95. 

and 0.84 for those sample sizes . For the Non-Gaussian situation, the coverages for 

&2 are U.bb, U.8U and U.85, respectively, for n = 20, 50 and 100, but they increase 

to 0.80, 0.90 and 0.91 for these sample sizes when altering the distribution to the 

Gaussian. 

Considering model (iii), we see that under the Gaussian situation, coverages 

for 01 are 0.84, 0.89, 0.91 and 0.95 for n = 20 , 50,100 and 200, respectively. 

However, like the two models (i) and (ii), it declines under the Non-Gaussian 

process to 0.72, 0.78, 0.82 and 0.89 for these sample sizes. For fh also coverages 

obtained from the Gaussian situation , continue to dominate their counterpart, 

resulting from the Non-Gaussian process. For example, fo r the former they are 

0.81, 0.89 and 0.91 for n = 20, 50,100 respectively, and for the latter only 0.67, 

0.80 and 0.83 for these sample sizes, respectively. 
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5.13 

CHAPTER 5. NUMERICAL PROPERTIES 

Numerical Results Related to Smoothed 

FPCA 

5.13.1 Introduction 

In this Section we investigate the performance of functional principal component 

analysis (FPCA) when considering smoothing. We propose a new method of 

smoothing and study its consistency under suitable conditions. We also com

pare the effectiveness of the new method for estimating eigenfunctions with that 

of the non-smoothing method as well as another existing method of smoothing 

in terms of the mean integrated squared error (MISE). The new idea is based 

on considering another parameter with the smoothing parameter proposed by 

Silverman (1996). The numerical results show that adding the new parameter 

improves the performance of the estimator considerably towards having smaller 

error , compared with the situation in which v1re only consider the smoothing pa

rameter itself. 

Silverman (1996) proposed an approach, in which the roughness penalty is 

incorporated in the orthonormality constraints imposed by the Sobolev norm. 

Let S be the space of functions with square-integrable second derivative on I , 

and D 2 be the differential operator of order two on S. We define the bilinear form 

[f , g] = (D 2 .f , D 2 g) = JI.f"g" for each f, g E S (recall that(., .) is the usual 

L2 norm). Here , t he roughness p enalty is incorporated in the orthonormality 

constraint, instead of penalizing the sample variance of a principal component. 

This can be done t hrough defining the new inner product 

(f ,g) o: = (f ,g) + a [f,g] ' (5. 16) 
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where a ~ 0. The inner product (., .)a is a "slight generalisation" of standard 

Sobolov inner products (Adams , 1975) with corresponding squared norm //. II~ = 

(., .)a. Then the problem is to find a maximum of: 

JJ
7

2 K(u , v) ¢(u) ¢(v) dudv 

11¢/1 2 + al/D2¢1/ 2 
(5.17) 

Silverman (1996) showed that under appropriate conditions the estimates Bj 

- ~ -
and VJj are consistent. Using the asymptotic expansions for 0j and VJj, the author 

investigated the advantages of the smoothed estimates in terms of the MISE. 

Furthermore, the choice of smoothing parameter by cross-validation was discussed 

by Silverman (1996) . 

5.13.2 Smoothing by Two Parameters; a Generalisation 

of Silverman's Method 

In this Section we first introduce our new idea, and then investigate some prop

erties of smoothed FPCA obtained by using this method. Our new idea is to 

maximize: 

JJ
7
2K (u,v)¢(u)¢(v) dudv +a0 (¢,¢) 

l/¢// 2 + a1 1! D2¢ll 2 
(5.18) 

where a 1 is the smoothing parameter introduced in the previous Section, and a0 

is a positive real number. 

5.13.3 Consistency of eigenvalues and eigenfunctions es

timators 

Define VJe = 11j:11 for each I!, 2 1, and P1P x = (?/J:1/J) -
1

(?/J, x)t/J as the project ion 

onto t he subspace generated by ·z/J. 

Assume that : 
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• 81 ~ 02 ~ · · · > 0, i.e. the covariance operator K is strictly positive-definite, 

and J K(t, t) = ~ i=l 0i < oo. Without loss of generality, we assume that 

the eigenvalues Be have multiplicity one, which means, 01 > 02 > · · · > 0. 

• Each of the eigenfunctions '1/Je belongs to S , the space of smooth functions , 

in which J ( 'lj)'j_) 
2 

< oo. 

• a0 and a 1 -* 0 as n ~ oo 

Theorem 5.1. Under the above assumptions, for each .e ~ l and with probability 

1 ( almost surely), 

0 R ~ 0 R as n ~ oo (5 .19) 

and 

('1/Jl, '1j;R)2 ~ 1 as n ~ oo ( 5.20) 

Equivalently, we can write result (5 .20) as 

111/J; -1/JRll 2 = 2 (1 - ('1/Jl ,'I/JR)) ~ 0 as n ~ oo , (5 .21 ) 

if we choose the sign of the 1/J* properly. This also results in 

II PJc - P.;Jc II 2 
--+ 0 , with probability 1 as n -, oo , ( 5.22) 

Proof: The proof is similar t o t he proof given by T heorem 1 of Silver

man (1996), and it is done by induction . All v._re need is to replace J( and R 

by o,0 I + J( and a 0 I + R, respectively, in t he Silverman 's proof. 
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5.13.4 Advantages of the New Idea for Smoothing 

Now we are going to investigate the effect of using a 0 with a 1 . Let R be the 

differential operator of order two defined on the space S, i.e R = D2
. The 

operator R is self-adjoint subject to some periodic boundary conditions. Let V 

be the space of functions g such that g and its first three derivatives are absolutely 

continuous on I , and its fourth derivative belongs to L2 (I). We call V the space 

of "very smooth function". Define the fourth-derivative operator Q = R2 in 

the space V, then we have [J, g] = (R J, R g) = (!, Q g), for each f E S and 

g E V. The periodic boundary conditions needed are those by which we can have 

JI J" g11 = JI f g'"', where g"" denotes the fourth derivative of g. It should be 

mentioned that in the case of non-periodic functions , the space V can be defined 

as the space of functions g such that g has square-integrable fourth derivative and 

its second and third derivatives are zero at the boundaries, by which we still have 

JI f" g11 = JI f g"". We assume that all eigenfunctions of covariance operator K 

fall in the space of "very smooth" functions V. Therefore, (5.18) is equivalent to 

the equation: 

1 (k (u, v) + CYo I (u , v)) ;/i (u) du = iJ (I+ CYi D
4

) 'ifJ, (5.23) 

where 0 is the maximum value of the ratio in (5.18) obtained when ¢ = ;/J . The 

problem is reduced to seeking the extremum of the Lagrangian function: 

j L ( k (u , v) + CYo I (u, v) ) ¢e(u) r/Jg(v) du dv + >.0 ( (¢e, ¢e) + CY1 [¢£, ¢£] ~ 1) 

+ 2 t t Ar, { j r/Jr ¢, + CY1 [r/Jr, ¢,) } , 

(5.24) 
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where ;\0 and Ars are Lagrange multipliers . Inserting ¢e = ~ ~ 1 a ej '1/)j into the 

above equation results in: 

t ( a;j (0j + ao) +Ao) - Ao + t t [ Ao a1 / 1PJ1/!i + n-
1
/
2 
(/ Z Mk)] 

.e r-1 [ oo oo oo ( ) ] 

+ 2 ~ ; Ar, ~ arj a,j + a1 ~ ~ arj a,j j 1/JJ1/Ji , (5. 25) 

where Z = n- 1
/

2 (K - K) and ?jJ'j is the second derivative of '1/J j· Differentiating 

with respect to a f!.j and equating to zero for an extremum, we obtain that 

aej (0j + ao+Ao) + t aek [ Ao a1 / 1/JJ1Pi + n-
112 

( / Z 1/Jj 1/Jk)] 

+ t A es [ a,j + a1 t a,j (/ 1/JJ 1/J{)] = 0 . (5.26) 

Also, 

I I' \ 
; ,' ,- , - ' .' -; ', / ; - - \ /1"":,'\ 

a.· = (). · + Tl, "!~ I l - c) ·) C'"/ + 0'.1 \ I l - () ·) c,-) 
1 J 1 J \ TJ rj \ \ TJ rj Drj \½J j (',µd ) 

+ n-1 / 2a a(~l) + n- 1/2 a a(l.2) + a a a(02) + n-1 a(1_1) + a2 a(~2 ) 
0 TJ l TJ O l TJ 1') l 7'J 

0 ( -3/2 2 -1/2 2 -1/2 2 2 3) 
+ P n , O!o n , 0!1 n , ao a1, ao 0 '1 , ao · ( G.27) 

After doing the algebraic calculations, the results are: 

c)~l = (0c - 0j )-
1 

( / Z1/;j 1/Je ), cg1 = (0j - 0e)~
1 e{f 'lf;J1/Jj) , 

a. )~
1
) = ( ee - 0x 2 

[ - ee ( / 1P;1/Jl) - ( / z 1/Jj 1/Je)] , 
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ai~2
)= (Be-BJ- 1

{(- j Z1Pe1Pe) (! 1P]1P!) 

+Be L (Bk - Be)-1 
( j Z 1Pk 1Pe) ( j 1PNZ) 

k : k#f 

+ \ 'fYk - Bet
1 (! Z 1Pk 1Pe) (! 1P!1PZ) - ½ (! Z Me)(! (1P!)

2

) 

+ (Be - B1t
1 
Be [ (j Z 1Pe 1Pe) (! 1P]1P!) + (! Z M e)(! (1P!)2

)} 

ai~2
l = - (Be - BJ) - 1 

( j 1P]1P!) , 

ai~1
J = (Be - BJ) -

1 
C;/ Be - Bk) -

1 
( j Z 1Pk 1Pe) ( j Z 1PJ 1Pk) 

- (Be-BJ) -
1
(! Z1PJ1Pe) (! Z1Pe1Pe)} , 

ai~2
l = (Be - BJ) -1 

{ Bi L (Be - Bk)-1 (J 1PZ1P!) (J 1PNZ) 
k:k#f 

+ ½ Be (J (1P!)2
) (J 1P]1P!) }- (Be - BJ)-

1 e; (J (1P!J2) (J 1P]1P!) }-

Therefore, aej can be obtained by substituting the above terms into (5 .27). 

As a result , we have: 

;/;e _ VJ£ = n-1; 2 cp( l ) + a i cp(2) + n -1 / 2 ao cp(o1 ) + n-1 / 2 a i cp(12) + ao a i cp(o2) 

+ n -1 11p 1) + 0:2 1n (22) + 0 (n-3/ 2 0:2 n-1/ 2 0:2 n - 1/ 2 0:2 a a 0:2 3) 
r l r p , o , l , o 1 , O 1 , O:o , 

(5.28) 

where where, 

<p(l ) = L (01 - 0j )-l ( J Z 1P11P1 ) 1P1, 

J: J# f 

<p(
2
) = { 01 L (0j - 01) -

1 (! 1PN~) 1Pj - ½ (j(1P!l 2
) 1P1} ' 

J : J#f 
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'P(n) = C~o~e (0e - 0J)-
1 

(0e - 0k)-
1

'1/JJ ( j Z 1Pk '1/Je ) ( j Z '1/Jk '1/JJ) 

-½'1/Je L (0e-0J)-
2 (J Z'if;J'if;} 

J :rf-P 

- L (0e - 0J)-
2

'1/JJ (J Z Me) (J Z Me) }, (5.29) 

J: rl-e 

cp(
01

) = { - 0e L (0J - 0e)-
2 (J 'if;j'if;j ) '1/JJ - L (0e - eJ)-

2 (J Z '1/JJ '1/Je) '1/JJ } , 
J :rl-e J :rf-P 

cp(
02

l = { (J ('if;7)
2

) 1/Je - L (0e - 0Jt
1 (J 1PJ'if;7) '1/JJ } , (5.30) 

J :r/P 

cpU
2

) = { ½ ( J (1/Jj)
2

) LJ 11e ( eJ - 0e)-
1 

( J Z 1/JJ '1/Je) 1/JJ 

+ 0p_ _L L (0p_ - eJ- 1 
(Bk - Bct

1
1./)k [(j Z'l/J,;'1/h) (j 'if;j 'l/;;'.) 

J :r/.f k : k# 

I ( r '7 nl , . nl , \ ( r nf.ll nfJI\ l 
! \ F / J l' / 1~ 1 1 ',, ) I 1' 1 1 .' • I / I I I I 

\ j " ·') \ j . :: . ) J 

+0e L (0e - 0J)-
2

'1/JJ (J Z ·,/Je'l/Je ) (J 1/JNj) 
J:rf-P 

- ,;~ e (01 - 0J)-
1 

'I/JJ (/ Z '1/Je 1/Je ) (J 1/;j'lj;j) 

- ;~ e (0e - 0x
1

1/Je ( J Z 'lpj '1/Je ) ( J -ij;f 1/Jj) 

+ Be _L (0c - 0j t 2
1./Jj ( j Z '1/JJ '1/Je ) ( j (1j;f)2 ) 

J: r/.C 

+1/Je 01 L ( 01 - 0J t 2 ( j Z 1/JJ 1(;1) ( /7;;j1/;j) } , (5.31) 

.7. J=/-f. 
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(
22

) - { 10 (! ( 1")
2

) ~ (0 - 0-)-
1 I· (! 111 I") cp - 2 e '1/Je G e 1 'I/J1 '1/Je '1/Jj 

j : j-:/f. 

+ eJ j~)~~e (0e - ej)-
1 

(0e - ek)-
1

1/Jj (J 1Pl1PZ) (J 1PZ1PJ) 

+ ¾ 1/Je (j (1/J/)2 r +ee 1/Je j~ e (ee - ej)-
1 (j 1/JNJ r 

- eJ j~ e (0e - ej)-
2

1/Jj ( j (1f;i)
2

) ( j 1Pl1PJ) 

- ½0; ?/Je _L (0e - 0j)-
2 (! 1PNJ)

2

} . 

J: J-:/E 

(5 .32) 

It can be seen that 

0e - 0e = n -
1

/
2 

( j Z 1/Je1Pe) + ao + a1 ( - 0e j (1j;i)
2

) - n -
112

ao { ½ j (1j;/)2} 

-a0 a 1 (J (1/;!)
2

) - n-
1
l
2

a 1 { (J (¢j)2) (J Z Me) 

+ 20e k~e (0e - 0k) -
1 (J Z 1/Jk1Pe ) (J 1Pl1PZ)} 

+ ai { 01 (J (¢!)
2 r -ej k~ (0e - 0k) - ! (J 1PZ1Pl n 

+ n -l k~ (0e - 0k )-! (! Z 1/Jk1/Jer 

_l_o (n- 3
/

2 o?n- 1!2 c?n- 1!2 cia a a 2 a 3
) 

I p ) Q l 1 ) Q 1, Q ll Q ' (5.33) 

Define S = (I+ a 1DJ) - 112
. If we take , for example , any of the following ortho

normal bases 

{l ,cos (7rt), cos (27rt), · · · }, { sin (11t), sin (211t): ···}and 

{Lsin(7rt), cos (7rt), sin (27rt), cos (21tt): · · ·} (5.34) 

as a basis , the operator D4 is not bounded: since II D4 II ~ supi21 di = oo , where the 
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di are the D 4 's eigenvalues. However, Sis a compact and bounded operator. If we 

substitute S into the above equation, the result is s(R + ao I)s s- 1,J; = 0 s-1 ,J; . 

Now let u = s-1,J;, and substitute this term into the previous equation. We 

have s ( R + ao I) s u = e u. Consequently, it is now clear that e and u are the 

eigenvalue and eigenfunction of the operator S ( R + a 0 I) S. As a result , ~ is 

the maximizer of (5.18), and 0 is the maximum value. Furthermore , ;/; can be 

computed from ;/; = Su. 

Our idea has two advantages: 

• In solving equations, say Ax = 0, computation is done in such a way that 

A is changed to a stepwise matrix, called the Reduced Echelon form of A. 

If the elements of A satisfy 

laii l > :z= 1%1 , 
#i 

(5.35) 

then computation towards obtainin g its Reduced Echelon form will be 

fas t er. Since in numerical work we have t o t runcate t he series involved 

in calculating R, -YVC will have S(V + o:01)8 jf we take o:0 into account. 

For a positive o:0 the diagonal elements of S(V + 0 '.0 1)8 are greater than 

those of SVS, which is obtained without considering o:0 . This wi11 sn,tisfy 

cond ition ( 5.35). Apart fro m this computational point , adding an adequate 

et0 causes J( to be more stable . So , the results might be improved. 

I 
. . . f l t· f{y2 R(u.,v) c/>(n) r/>(v) cl11rlv dd' } . l f 

• n ma.x1n11zat10n o t 1e ra 10 · · 1u.112, ~· - 11 n'.2 ✓ 1 .112 , a mg a n1u tip e o 

term (c/J, ¢), \vhich is well controlled computationally, to t he numerator has 

very good effect in computation, especially when R is not a good operator . 
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We have 

E ;/Je = 7/Je + a1 cp(
2

) + n- 112 ao { - 0e _L (0j - 0e) -
2 

( / VJJ7Pl ) '1/)j } + ao a1 cp(
02

) 

J :rP-

+ n-1 
{ - ½ 0e VJ\2;} 0e - 0jt

2 
0j } + ai ,/ 22

) 

+ 0 (n- 3/ 2 o? n - 1/ 2 a 2 n -
1/

2 a
2 a a a

2 a 3
) 

p , 0 , l , 0 1 , 0 1 , 0 · (5.36) 

Hence 

Bias(aa , a1) = II E ?.be - 1/Jell
2 ~ ai { ¼ ( / ( 1/Ji)

2
) 

2 

+ 0} J~ (0e - 0J J- 2 
( / VJlVJJ) 

2

} 

+ aaar { - ( / (VJi)
2 r + 2 0e L j jf'l (01 - 0j) -

2 
( HIVJJ r} 

+ n-
112

aaa1 { 2 0J L j j,'£ ( 0e - 0j i-3 
( J 1/JJVJJ) 

2

} 

+ n -
1
a1 { ½ 0e (/ ( VJ;J

2
) J"f} 0e - 0J i-

2 
0J } 

- 1 2 2 - 4 I I I I 

{ (/ )2} 
+ n °'a 0e j; I (0e - 0j ) 1/Je1/Jj 

+ a6 ai { (/ ( VJi)
2

) 

2 

+ J; e ( 0e - 01 J-
2 
(/ 1/JJVJJ) 

2

} . 

(5.37) 

Taking either of the bases in (5.34) as a basis , causes ( J 1/JNJ) = 0 for j cf ,, 

In this case . differentiation of the above bias approximation with respect to a0 , 

and equating to zero for the minimum. results in Bias (½. a 1 ) ::; Bias (O . ai) . for 

all values of o:1 . 
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As regards variance of the estimator we have that 

Var(ao, a1) = Ell~e - E~ell 2 ""Elln-112 L (0e - 0J)-
1 

( / Z 1/JJ 1/Je ) 1/;1 

J :rf..e 

- n-
112

aa { I: (0e - 0jr
2 

( / z 1/;j 1/Je ) '1/J1 } 11

2 

1:rf-1!, 

= n-
1 

ee{ L (0e - 0j)- 2 01 - 2 °'O I: (0e - 0j)-3 0J 
j : Ji=.1!, j : Ji=f 

+ a6 I: (0e - 01t 4 0J } . (5.38) 
j: j=f-1!, 

This approximation does not depend on the amount of smoothing ( a 1) applied. 

This effect on the variance can be seen in the next terms. Differentiating the 

above variance approximation with respect to a0 , we obtain the optimal values of 

* ( Lj: jt-e (ee-ej )-
3

ej 0) C tl V ( * ) < V (0 ) Tl . a O, a O = 1nax "' . ·. (
0 

_
0 

. )_ 40 ., . onsequen y, ar a O, a 1 _ ar , a 1 . 11s 
DJ:nt:e e 1 1 

means that applying some degree of a 0 results in smaller variance than when 

we consider only some degree of a 1. To see the effect of a 0 on the MISE of the 

. , 

'---,::3-;:,1111u:L,vi·, \1'0 lice\•· (:; . 

IvII SE ( ao , a 1) = E 11 ~ e - ~ e II 
2 

~ E lln -1 /2 <p( l) + O'. i <p(2) + n-1 /2 0 ,0 <p( o1 ) + n - 1/20'.
1 

<p(12) + ao O'. J <p(o2) ll 2, 

(5. 39) 

where <p(J), <p(2) i <p(OJ), <p( 12), <p(02) introduced in (5 .29)-(5 .32) and (5 .30). Vv e can 

write the !vIISE as follows: 

rvIISE (a0, a 1 ) = MISE(O . al)+ f(aol 0'.1). ( 5 .40) 
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where 

MISE(O, a1) ""n-10e L ( 0e - 0j i-2 0j - n -l°'l { ( / ( 1/;l)2
) 0e L ( 0e - 0j )-2 0j 

j : #I!. j : #I!. 

+ 2 0J I:kfl I:j jfl (0e - 0k)-
2 

(0e - 0j)-
1 

0j ( J 1/J'NZ) 

-20J(f(1Pll2) I:jjp' (0e-0jJ-
3
0j} 

+ ai { ¼ ( f(1Pl)
2Y +eJ I:j jfl (0e - 0JJ-

2 
( N11PJ) l 

(5.41) 

and, 

f(ao, a1) = -2 n- 1 ao 0p Lj :J:/=I!. (01!. - 0j)- 3 0j 

+ 2 n -l/
2 

°'D °'1 0J I:j jfl ( 0e - 0j J-3 
( J 1/Jj 1/Jl ) 

2 

+ ao ai { 20e I:j jp' (0e - 0j)-
2 

( NJ1Pl r -( f (1Pll2Y} 
+ n-

1 
a6 { 0; L (0e - 0j)-

4 
( / 1/J;"if;l r +ee L (0e - 0j)-

4 
0j} 

J:;-:j=I!. JT/-1!. 

+ 2n-
1

aoa1 { ½ ( f( 1j;l)2)0e I;J Jfe (0e - 0i)-3 0j 

+ 0] L L (0e - 0k)-
3 

(0e - 0jJ-
1 

0j ( / 1/J;"if;{) 
kfl!. j:j:/=I!. 

+eJ L (0e -0kJ-
4

0i (f 1PNl)+ee L (01-0j)-
3
0i(f 1PN1) 

J: Jfl!. J: Jfl!. 

+ei (/ (1/;1)
2

) L (0e - 0i)-
4 
0j} 

J : Jfl!. 

+2n-
1
l

2
a6a1 {0e I:i ifl (01 -0J)-

3 (! 1PJ1/Jlr} 

+ a6 ai { (/ (1Pl)
2r + L (01 - 0x

2 (I 1/J;"if;l) l 
J: Jfl!. 

(5.42) 
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If we ignore the term of n-1 
o,0 o,1 in (5.40), then in our case in which ( J 'lj;j 1/J'j) 

0 for j ¥-£, minimising with respect to a 0 , results in , 

* n~ 1 
0e L1 # £ (0e - 01J-

3 
01 + ½ ai ( f (1/;j)2 r 

O'.o = 2 

ai ( f (1/;1)2
) + n-1 0e '2:,1 #£ (0e - 01 )- 4 01 

( 5.43) 

f( a 0 , a 1 J is decreasing with respect to a 0 , when it is between 0 and a 0. Thus, it 
is beneficial to apply some degree of a 0 if a0 ~ 0. Only in this case do we have 

MISE(a0, a 1) ~ MISE(0 , a 1). It can be seen that a0 t ends to ½ when n is large 

enough ( compared with the two sums in the ratio ) for fixed a 1 or when a 1 --+ oo 

for fixed n. However , in (5.40) if we take the term n- 1 a 0 a 1 into account , then 
minimise it with respect to a 0 , we obtain , 

n -1 o£ J - ½ c:q .f (..;,~')2 LJ . j,f.£ (0e - ej ) - 3 oj+o: 1 I (1,/J/)2 Oc Lj: j,f.C (Oc-oj ) - 4 oj + ½ o.f J (,f,~')2 

°'a= __ __,_,__ _____ L__ _____ ~--'----'--- -------'---_,__ _ ___,__ 

of (1cv,~')2) +n-lec Lj:j,f.C (Oc-Oj)- 4 oj 

(5.44) 

Here also it can be seen t hat a0 tends to ½ when n is large enough ( compared 

wit h t he two sums , multiplied t o it ) for fixed a 1 or when a 1 --+ oo for fixed n. 

1\L . ,,,..,,..., , ,; ,...~1 n,,..,, .1- rn-, fr::, ;1;1\ ~ l.,,...._ ... ,...,;J + l-,~ + f ,...._~ ~ ~ --,-,~ ll --~:1..: __ _ _ , ,_ : __ _ £ - ___ , , : _ ,_ 
, \ IJIIJ\ I I\ { , ,I -,... , \JI i\ 'Ill \!_J.---t---:!_,I •:>l..!.. I_J \<VI ~~. , t l_•.!...!..CI_I_• l '~ 'l C,I_ D.!...!.!C.~ll -~-_! l..).':'.:'ll:!' ' ' -· ' . .!..!\ .. )! ' ...... '.. ... - •_} !. I _~-:' ':"~·.!. .!_.!I_ .!._.!_ 

depe11Cls on the rate of decay of the 0j, a 0 quickly converges to ½ for all I!, ~ 1. 

Hence , these all support t hat applying some value of a 0 might be usefu l when 

some degree of smoothing ( ai) is used . Our simulation result also confirms this 

result. Hmvever , if we have a 1 = 0, applying any degree of O'.o to (5. 18) is useless, 

because the ratio is changed to maximizing of 

f J
1

2 K (u, v) </J(u) cp(v) duclv 
11¢11 2 + o:o · 

(5 .45) 

This shows that any amount of o:0 does not affect the maximization problem. See 

the numerical results at the end of th is Section. 

It should be noted that without any problem, the above calculations can be 

gcncrnliscd to the case in which Pjk = [?j;j i 7Pk] = (R'l/Jj: Rwk) = (wj, Q1bk) is 
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replaced by J 1)/J</Ji, where Q = R* Rand R* denotes the adjoint of R. 

5.13.5 How to Choose Appropriate Values of the Smooth

ing Parameters? 

Without considering a 0 in the problem, Ramsay and Silverman (1997) pointed 

out that the smoothing parameter a 1 in many circumstances can be adequately 

chosen subjectively. However , one may use a usual cross-validation paradigm for 

an automatic choice of the smoothing parameter. In our case, in which we have 

the two smoothing parameters a 0 and a 1 , we may also use the cross-validation 

criterion proposed by Silverman ( 1996) with the two parameters a0 and a 1 . 

In each case, Gaussian and Non-Gaussian, and each model, the quartiles of the 

integrated squared error (ISE= JJ-0' - </J 11
2 

) were computed by using 500 simulated 

datasets. The series related to X was truncated at j = N = 20, and the first 

20 eigenfunctions were estimated. We computed the three quartiles of the ISE 

for the original estimations of the eigenfunctions ( without applying a 0 and a 1), 

using only a 1, and applying both a 0 and a 1 . On the graphs, these are shown 

with "o" lines , "+" lines , and "*" lines, respectively. 

Furthermore, the horizontal axes show the order of the eigenfunctions, enu

merated from 1 to 20. As "o" lines on the graphs show, the ISE is increasing 

as t he order of the eigenfunction increases. This error might be due to increased 

roughness, which is increasing as the order of the eigenfunction increases. This 

situation has been reported by others, such as Pezzulli and Silverman (1993). 

Although applying some degree of smoothing ( a 1 ) improves the estimations , the 

ISE of the smoothed eigenfunctions increases when the order of the eigenfunc

tion increases. This error, however , can be decreased considerably( even for small 

sample sizes) by applying some degree of a 0 with a 1 . 
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Figure 5. 40: First four smoothed eigenfunctions obtained from Ramsay>s Canadian 
weather stations dataset. The smoothing parameters ao and a1 were chosen by cross
validation. 
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Figure 5.~l: First four smoothed eigenfunctions obtained from Ramsay 's Canadian 
weather stations dataset. \Ve chose the smoothing parameters ao = 0.01 and 0:1 = 
0.001. 
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Figure 5 .42 : Performance of integrated squared error (ISE), when applying a 0 and 

a1), using only a1, and without applying ao and a 1. On the graphs, the latter cases 
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Con cl us ions 

We have shown how to develop stochastic "Taylor expansions" of estimators of 

eigenvalues and eigenfunctions in functional principal components analysis, and 

provided a theoretical account of the accuracy of those expansions. We have 

seen that eigenvalue spacings have only a second-order effect on properties of 

eigenvalue estimators, but a first-order effect on properties of eigenfunction esti

mators . We have also shown that the stochastic expansions not only are valid for 

any finite number of principal components, but they are available uniformly in 

increasingly many components. The expansions themselves, or the methods used 

to derive them, can be used as the basis for an extensive theory of properties 

of functional principal components analysis , including the bootstrap. It should 

be mentioned that first order stochastic expansions of estimators of eigenvalues 

and eigenfunctions were given by Bosq (2000). vVe have addressed higher order 

stochastic expansions of t he estimators, in particular those of order n-3
/

2
. 

We have shown how stochastic, bootstrapped versions of uniform bounds that 

are obtainable via the mathematical theory of infinite-dimensional operators can 

be used to construct simultaneous confidence regions for literally all eigenvalue 

estimates, and for increasing numbers of eigenfunction estimates. The nature of 

205 
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these regions means that their coverage accuracy errs on the side of conservatism. 

In the case of simultaneous confidence regions for eigenvalues the degree of con

servatism is small, and the bootstrap confidence regions are attractive practical 

tools. We have also addressed the problem of bootstrap confidence regions for 

individual, or relatively small numbers of, eigenvalues and eigenfunctions. These 

regions have been described theoretically and numerically. 

In regard to smoothing in principal component analysis (PCA) for Functional 

Data, the effect of the smoothing parameter has been discussed theoretically and 

numerically. 

Also, the impact of eigenvalue spacings on properties of functional linear re

gression has been addressed. We have explored the validity of simple accounts of 

the performance of functional linear regression. It has been observed that those 

accounts are valid if eigenvalues are reasonably well separated, but not necessar

ily otherwise. However, the expansions have implications beyond that setting. 

For example, they can be used to describe properties of functional-data methods 

applied to classification and clustering. 



Appendix I 

Generalisation and Proof of 

Theorem 4.1 

I.l. Generalisation. Theorem 4.1 as a rigorous version of (4.15) can be gener

alised. A version of Theorem 4.1 is available under more general conditions than 

( 4.16). In the present Section we develop and state the general theorem under 

explicit regularity conditions, and in Section (I.2) we derive the theorem in that 

general form. 

For brevity, write simply b for b0
. One way in which we generalise ( 4.16) 

is through assuming that 0j and bj satisfy only Cesaro-summability conditions , 

rather than being constrained to equal regularly varying functions: 

207 
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for each p, q and r with p 2:: 0, it is true that for all j 2:: 1 and 

all r; > 0, 

j 

L lbkjP0fkr ~ const . (1 + lbjlP0J r+l+ 77 ), 

k=l 

·where t he constant depends on p, q, r and r;; and, if the infinite (I.l ) 

series converges , for all j 2:: 1 and all r; > 0, 

(X) 

L lbklp 0% kr ~ const. lbjlP0J r+1+ 77
. 

k=j 

Also , v,re ,vork with ,veaker conditions on spacings than are given in ( 4.1 6): 

f 
. 11 · k max (0j ,0k) max (j,k) 

01 8. 1 ~ J < . < 00, lna - f-l, I ~ COnSt . 7T-=kl. 

Vie also ask that: 

fo r some 7J > 0, o; 852 j1+77 --+ 0 as j -+ oo; and 07 0-;2 j is ulti

mately decreasing in j; 

·he process X has all moments finite, and defining A= X -E(X ), 

(I. 2) 

(I.3 ) 

\H: hm·e E(f k wJ 2
T ~ C, {E(f Awj)2Y fo r all integers r 2:: 1) (I.4) 

where C, depends only on r, not on j . 

£ ( E ;·) < x for all r > 0. E (E) = 0. and £ (E2
) = ~

2
· (I.5 ) 

~or some n > 0. n - 1+ 11 r0
2 9~2 

- 0. 
. •O 

(I.6) 
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Define 
l n -

W(t) = - L {Xi(t) - X (t)}(ci - l ), 
n 

i=l 

(I. 7) 

where E = n-
1 L ~=l Ei, and put 

S (r) = t 0j
2 

{ 1 W(t )c/!j(t) dt } 

2 

(I. 8) 

Assumption (4.16) implies (I.1 )-(I.6). Moreover , we have the following result, of 

which Theorem 4. 1 is a corollary: 

Theorem I. 1. Assume (I.1 )- (I. 6) . To eliminate pathologies arising from too 

small values of ej, replace bj by an arbitrary fixed constant if lbjl > C1nc2
, for 

any given c1 , c2 > 0. T hen for some r; > 0 we have, with probability 1 fo r all 

1 S r S ro, 

11 (ii - b) 2 
- S(r) - Jf;_l bJ I ::: const. n- ~ r (n-

1
0;

1 + b;) A(n), 

where A(n) denotes a posit ive random variables which satisfies supn21 E{A(n) 3
} < 

oo for each integer s ~ l , and the constant does not depend on n and r. Addi

t ionally, for each r ~ l , 

1 1 r 

E{S(r)} = - (1 - - )a2 L 0;1 . 
n n 

j = l 

I.2. Prnof of Theo,em I. 1. The proof has similarities to the arguments in Chap

ter 2, in that it proceeds by developing "Taylor approximations" ( analogues of 

those at (1.11 ), (1.12), (1.32) and (1.33)) . However , in order to make the reg

ularity conditions relatively weak it is advantageous to go back to the methods 

used to derive Theorem 2. L rather than use Theorem 2.1 itself as the basis for a 

proof of Theorem I.1. 
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I.2.1. Preliminaries. Note that by (I.2 ), 

-1 _ I 

1 

_ 1 { max (j, k) } _ 1 . Pj = m a~ ej - ek ::;; const. ma~ I . _ kl (0 . e ) ::;; const. ej J. (I.9 ) 
k: k;/=J k : k-:;t= J J max J ' k 

Define bj = J b ;j;j . Then b = L~ 1 bj ;j;j, and also b = L;=l bj ;j;j, where bj 

fr;1 [}j and f/ j = Jg ;j;j · Therefore, 

j (b-b)2= fY j-bj)2+ f bJ 
j=l j=r+l 

(I.10) 

In the proof below , if W is a symmetric function of two variables and 'lj)1 and 'l/J2 

are both functions of a single variable , then we shall write J W 'lj)1 'lj)2 and J W 'lj)1 

to denote, respectively, the scalar J JI2 W ( u, v) 'lj)1 ( u) 'lj)2 ( v) du dv and the function 

of ·which t he value at u is JI w(u, v) 'l/J1(v) dv. 

Lemma I.l. Let S (ro ) be as introduced in (I. 8), and bj be replaced by an 

orbitrary fixed constant if its absolute value exceeds c1nc2
, for some c1 , c2 > 0. 

1'11811, uwre exists cl > U such that fo r each s 2:: 1, 

E( max llblls) + E {S(ro)5}::;; const . nds, 
rS,ro 

where the constant depends on r but not on n . 

(Note t lrnt this is the only part of the proof of Theorem I.1 where we use this 

assump tion .) 

Proof of Lemma: 



So, 

T T 

Ellblls =E ll ~ bj,J;j11s ~ rs E[ m~x (bj 11,J;j11 )r ~ rs LElbjls 
~ l~J~T 
j =l j=l 

S Ts t E [ibJ/
5 
I (/bJ/ S CJ nc') + cs I (/bJ/ > C1 nc')] 

= Ts t [ E{ /bJ/s I (/bJ/ S CJ nc')} + C" P(/bJ/ :;, c1 nc')] 

= ,s t [ E [/0; 1 
§J Is {I ( ej s ½ ej) +I( ej > ½ 0j)} I (/bj I s CJ nc') l 

+ cs P(/bJ/ :;, CJ nc')] . 

211 

E//b //' s T8 t [E[(½ ej)- 1 §j]' + (c1 nc')' P(0j s ½ ej) + cs] 

s ,s t [(2/ ej )s 2s-1{/gJ/' + E/§J - gj/'} + (c1 nc')' P(0j s ½ ej ) + cs] 

s ,s t [ (2/0J )' 2s-1{/gj I' + E /§J - gj I'} + ( CJ nc')' P(/0J - ej I :;, ½ ej ) + C'] 

s ,s & [(2/eJ)' 2'-1{/gJ/s + E/§J - gj/'} + (c1 nc')s (2/0J)k E /0j - 0J/k + cs] 

S Ts & [ (2/ 0j )s 2s-l {/gj /' + E /§J - gj /'} + ( CJ nc' )' (2/0j t E (Z k) + C'] , 

(I.11) 

where we have used Markov's inequality for some k > 0, and the fact that j0j -

0j I :S 6. to obtain the last two inequalities above, respectively. 

We also have: 

/§J - gj/ = I j g;j;j - j gVJJI = j (g - g) i/JJ + j (g - g) (;j;j - VJJl +jg (;j;j - 1/Jj), 
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Hence, 

l9j - gjls = { j (9 - g) 7h + j (9 - g) (Jj - '1/Jjl +jg (Jj - '1/Jj) r 
~ cs { 119 - 9ll s + 119 - 9ll s IIJj - '1/Jjlls + llglls IIJj - '1/Jjlls } , 

and then, 

El§1 - 9jls ~ cs { Ell§ - glls + E[II§ - 9lls 11Jj - '1/Jj 11s] + ll9lls EIIJj - '1/J1lls } . 

(I.12) 

Also , we shall prove in (I.42) that E { f (§ - g) '1/Ji r s = 0 ( { n-1 0Js). Thus, this 

result leads us to: 

Ell§ - 9ll 2s = E(II§ - 9ll 2)s = E( t { J (§ - g) '1/Jj} 
2

) s 

I ~ ' ( r i 2s7 1/s\ s 

c; \ ?:d Lu (ii - y j Vi j j ) 

~ ( t [(0j !n)8J11')' 

= n - s ( f ei) s = O(n-s) . (I.13 ) 

J= 1 

Also, in Section (I.2. 8) we shall prove that ll'0j - 1/Jjll
2 :S n-

1 
j

2 
max1:::;j:::;r0 Clj 

where £ ( l118.X1 :::;j:::;ro Clj r :S ro m a x 1:s;j:Sro E ( aJ) :S const . ro, in which the constant 

does not depend on n or To. Therefore, fo r 1 :S j :S To, 

Ell l;j - U'j ll'.2s :s; n-s /2s E[ max aj] 5 :s; n-s j 25 COnst. 1·0 :s; const. n-s r5s+l i 

1 :::;J Sro 
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and as a result , 

E [ (1+ 11 1j7j - VIJ Ii') II§ - gll'] <:'.: ( E[l+ 111j7j - 1PJll'J2 f 2 

( Ell§ - gll 2'f2 

S const. (1 + n-s ,5s+l )1/2 n-s/2 

s+ 1. 
S const . n-s,

0 
2 (I.14) 

Substituting results (I.13) and (I.14) into (I.12) gives: 

1 

El§j - gjls S Cs { n-s/2 + n-s ,~+ 2 + n-s/2 ,t+l} 

1 

< C n-s/2 {1 + n-s/2 /+ 2 + ,s+l} 
- s O 0 

< C -s/2 s+l 
- s n 'O . 

Therefore, we have from (I.11 ) that for s 2:: 1, 

E llblls s const . ,s{, + (e;l ,2 n- l)s/2 ,2 

+ C1 nc2 s (r 0;1 n- 1/2t +cs}. 

This also implies that 

TQ 

E( max llbll8) SL Ellblls 
,~TO 

r=l 

<const 1 s+l{, + (e-1,2n- l)s/2 1 2+c nc2s(, 9- ln- 1/2)k+Cs} 
- ' Q Q TQ Q O 1 Q TQ 

S c~ nds, (1.15) 

where er depends on T but not n, and d is positive. Furthermore, we have 

used (I. 6) to obtain the last inequality. We see that 
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E{ S(r0 )8} = E [ t 0j
2 

{ 1 W(t) 1/;j dt } 

2

] ' 

[ 

ro { l n } 2] s 

= E ~ 0j
2 

;;;, "[; hxi(t) - X(t) ) 1/;j(t) dt (ci - E) 

[ 

ro { l n } 2] s 

= E L e;-2 
;;: L (fo - (j) (Ei - E) 

J=l i=l 

ro [ l n _ ] 2s 

:':'. ri- 1 
~ 0j

2
' E ;;;_ "[;(fo - ~j) (ci - E) (I.16) 

By using independence of the (Xi, Ei) and of Xi from Ei, and then applying the 

R osenthal's inequality, v..,re have: 

[ 
1 

71 

] 2s [ n 
E ;, L (fo - (j) (Ei - E) ~ n-

2
s Cs L E{ (fo - {J 28 

(Ei - E°)
28

} 

1.=l i=l 

+ ( t E{ (fo - (j)
2 

(Ei - E)
2

} )'] 

; ~ 

= n - 2s C, l 8 E { ( fo - (j)} ls E { ( Ei - E)} Js } 

+ ( t E{ (fo - {J)
2

} E{ (Ei - E)2 } )'] . 

Thus; by (I.4) 1 

[ 
l 

71 l 2s [ n 
E ;;;, 8 ( fo - ( j) ( Ei - E) :':'. n -

2
' C, "f E { ( fo - (j) 

2
' } E { ( Ei - E)2 s} 

+ ( t E{ (fo - {J)
2

} E{ (c; - E)2}) '] 

:':'. n-
2

s C, [ t 0j E{ (c; - E)
2
'} + (eJ t E{ (ci - E)2} ) '] 

~ C1 (s) (n- 1 Bj)5. 
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Therefore, substituting the above result into (I.16) we deduce that 

TQ 

E{s( )s} < s-l "e-:-s -s < s -s e-s 
r 0 _ r 0 L, J n _ r 0 n ro . (I.1 7) 

j=l 

Combining (I.15) and (I.17) finishes the proof. • 

In view of Lemma I.1, noting particulary that C in (I.18) below is arbitrarily 

large, Theorem I.1 will follow if we derive the following result. Recall that 6. = 

IIIK-KIII-

Proposition I.1. Assume (I.1)-(I.6). Given c > 0, let Q denote the event that 

E ~ C ro1 era. Then, for each choice of c, 

1 - P(Q) = O(n-c) as n-+ oo, for each C > 0. (I.18 ) 

Moreover, if c is sufficiently small then for some T/ > 0 we have, for all 1 :s; r :s; r0 , 

provided Q holds , 

11 (b - b) 2 
- S(r) - f b]I ::; const. n-~ r (n-1 0; 1 + b;) A.(n), (I.19) 

I J=r+l 

where A(n) denotes a positive random variable which satisfies supn~l E{A(n) 8
} < 

oo for each s ~ l , and the constant does not depend on n and r. Additionally, 

for each r ~ l, 
1 1 r 

E{S(r)} = - (1 - - ) o-
2 L 0;1

. 

n n 
(I. 20) 

j=l 

I.2.2. Apprnximation to first term on right-hand side of (I. 10). Write 
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b · - b · = 0~ 1 J gA ::i: . - J b ;j; . J J J lf-lJ I J 

= ir;1 j (§ - g)(;f;J - 1/JJ) - j b (;f;J - 1/JJ) 

A 1/ .,....._ A 1/ / + e; 9 ( ?/Jj - ?/Jj) + e; 9 ?/Jj - b ?/Jj 

= iJ-;1 J (§ - g) ( ;j;J - 1/JJ) - J b ( ;j;J - 1/JJ) + ( {r;1 - 0;1) J g ( ;j;J - 1/JJ) 

+ 0;1 J (§ - g) 1/JJ - J b'I/JJ + 0;1 J g (;f;J - 1/JJ) + 0;1 j g'I/JJ 

= {r; 1 j (§ - g) (;f;J - 1/JJ) - j b (;f;J - 1/JJ) + 0;1 j (§ - g) 1/J1 

+ ( {j ;1 - 0 ;1) { J (§ - g) 1/J j + J g ( ;;;j - 1/J j) } 

- J b 1/J j + 0; l J g 1/J j + 0; l J g ( ;;;j - 1/J j) . 

Therefore , 

b J - b J = 0 j 1 
/ ( § - g) 1/J J + j ( 0 j 1 g - b) ( ;;;j - 1/J J) - b J 0 ;1 ( 0 J - 0 J) 

. ;;_, r I A / ~ • \ / ~-, ,,_, , r r, ~ , . r , ~ , , 
- ~ I,' J j '. ,{,' - ' ': • . ·- -:_ •J ; ' '\ '\ . /-; j ; \ j I\ :; - :; ) ;;• •j ~ j :./ -~ './ 'j - '•• . .} ; j 

-1· b 1 1; · + 0~ 1 
/ g w -+ b -0 ~ 1 (0 -- 0 -) 't ] J , ] J J J J 

= T 1j + T2j 

\\·here 

T11 = 0 ;1 J ( § - g) 'ljJ J + J ( 0j 
1 g - b) ( ;j;J - 1b J) - b J 0 ;1 ( iJ J - 0 J) , 

T2J =6; 1 J (§ - g) (;f;J - 1/JJ) + (0;1 - 0;1) { J (§ - g) 1/JJ + J (g (1i,J - 1/JJ) } 

I e- 1 0~- 1 J, (0~ 0 )2 
T j j Uj j - j . 
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Here we have used the fact that gj = 0j bj. Note too that 

I 
{ 

T } 1/2 ( T ) 1/ 21 ( T ) 1/2 
~(bj - bj)

2 
- ~T{j S ~Tij , (I. 21 ) 

T T { }2 T { }2 
¼ ~ TiJ S ~ 0;-2 J (§ - g) (;f;J - '1/JJ) + ~(0;-1 - B;-1)

2 J (§ - g) '1/JJ 

T { }2 T 

+ ~(0;-1 - B;-1)
2 jg (;f;J - '1/JJ) + ~ bJ Bj

2 
0j

2 
(0J - BJ)

4
. 

(I. 22) 

By (2.17) we have , 

sup l0j - 0 ·I ~ 6.. 
j~l J 

(I. 23 ) 

Provided 

....-.. 1 

6 ~ 2 Pro , (I. 24) 

it follows from (I.22), (I.23) and the bound Pro ~ 0r
0

, that for all 1 ~ , ~ , 0 , 

T T { }2 
/6 ~;=1 T:jj s II§ - g//

2 ~ e;-2 II JJ - '1/JJl l2 + Z2 ~ Bj
4 j (g - g) '1/Jj 

....-.. 2 - 4 ,,...._ __..._ 4 2 - 4 T { }2 T 

+ t:. ~ ej jg ('1/Jj - '1/JJ) + t:. ~ bj ej . _ (I. 25) 

Let Q denote the event that 6. ~ c , 0
1 0r

0
, where c > 0 is chosen so small that 

CTo
1 

ero ~ ½ ()To for all n . Result (I.9) implies that such a c exists. From Theorem 

2. 5 we have t hat for each s 2 1, E (6.25
) = O(n- 5

) . Then , 

. ,,...._ -1 £ (6.2s ) n - s 

1 - P(Q ) = P(6 ~ c,0 0r0 ) ~ ( _ 1 )s ~ Const . -( _1 )s 
C 'O eTO CTo eTO 

< const . (n-1+77 r 0- 1
)

5 n- 517 < Const. n-C 
- Q T Q - ) 



218 APPENDIX I. GENERALISATION AND PROOF OF THEOREM 4.1 

where C = s r;, and we have used Markov's inequality to obtain the first inequality 

and (I.6 ) to get the last one. So , (1.18) has proved. Moreover, if Q holds , then in 

view of our choice of c, so too does (1.24), and hence (1.25) is valid for 1 ::; r::; r 0 . 

I.2.3. Apprnximation to ~;=1 T'fj• Write 6 9 = g - g and define 'fi j(t) and 5j by 

:(;;j(t) = 1/J;(t) + L (0j - 0k)-1'1/h(t) J (R - K ) ,jy1/Jk + 'ii j(t), (I.26) 
k:k-/=j 

e. - e. -+- J (R - K ) w. 1h. -+- i . J - J I I J YJ ' J . 

Note that W(t) = 6
9
(t) - f (K - K )(t, v) b(v) dv. Put 

T3j =0;1 J6 91/Jj + L (0j - 0k)-l (0j
1 

9k - bh) J (R - K) 1/Jj 1/Jk 
k: k-/=j 

- e-: b · (K - K ) w · w · 1 ;----
J J I J I J 

=e-: 1 j (E - j(R -K ) b) w· = 0-: 1 j w c0- . J g ) , ] J , ] , (I. 27) 

m ( ,~-1 ~ c - ~ ;: :~ 
"•• J J v J J 

Then . 

r r ( ) ? 

;T:fJ = ~ 0j' J l\il,JJ -

t n1 ::C: 2 t 0j" [ { j (g - 0Jb) .6.J r + (bJ J;/] . II 2 

, ( r ) 1/'2 ( r ) 1/2 ( 1· ) i / 2 L T?j - L Tffj ::; r; T.~,; . (I.20 _) 
I J = l J = l I ]= ' 

I '> 1 B i f' "' r T ~ . _. --±. mm (tS Jo r __J J = 1 -U. 
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Lemma I.2. The following results hold: 

;J;}(t) - 1/Ji(t) = L (Bj - 0k)-) '1/Jk(t) j(R - K) ;;;j '1/Jd '1/)j J (;j;j - '1/)j) '1/)j' 
k:k-/=j 

(I.30) 

/ej - 0j - J (R - K) '1/JJ '1/)j I S llij - '1/)j II (I ej - 0j I + L ui) , (I.31 ) 

where ~(j) = II J (K - K) ?pj II -

Proof of Lemma: Result (I.30) follows from (2 .9) on using 0j and i instead 

of Aj and ¢j• To prove (I.31), by (2.20), we have 

/ ej - ej - j(R - K) '1/Jj 'I/Jj/ s / j(R - K ) (ij - '1/Jjl '1/Jj/ + 10j - 0j1 / J liJ - '1/Jj l '1/Jj/ 

S II j(R -K ) '1/Jjl l llij - 'I/Jill+ 10j - 0jl II~ - '1/)J II 

= Iii - 1/Jj ll (Jej - ejJ + ~u)). • 

From (I.30) it follows t hat 

z j = L { (BJ - 0ki -
1 

- (ej - 0ki -
1

} '1/Jk j (R - KJij'I/Jk 
k : k-/=j 

+ L (0j - 0k )- 1 '1/Jk j (R - K ) (ij - '1/)J) '1/Jk + '1/)j j (ij - '1/)J) '1/)J 
k :k=/:j 

Therefore, using (I. 23), 
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I/ -12 1,{r 0--0·)-1 } 1- -(ej b - gj) L j = 6 . 1 1 + / _ 
0
: - 1 bk (K - K ) ?/Jj ?/Jk 

k: ki=J \ J 

+ L bk J (R - K) ({/;j - 1/Jj) 'if;{ 
k:k-=j:=j 

::; 8.6.2
{ L . 1(0j -0k)-

1
bk j (R-K){f;j'l/Jkl}

2 

k:ki=J 

+ {~j \bk J (R - K) (;fj - 1/JJ) 'ifJk ir 

s; szt~j bWj - ek)-
2
} \\ Jo? -K) ;fj\\

2 

+ 2 (/ b2) II j(R - K) ( ;;j - 1/Jj) 112 

-4 ' 2 -2 -211- 2 / 2 ::; s L 6 bk ( ej - ek) + 2 L '1/Jj - 1h II b , 

k:ki=j 

(I.32) 

where the first identity always holds, but the three inequalities are predicated on 

Q obtaining and 1 :S; j :S; ro. 

T r I T r,\ , r ' ' ' , ,. 
!J\ '.1 :t'\\' tJ.t !l.L} \'\ ' {·' r1;t\'(~ t(!t· ;-l ('{Jf:~:1 .:l.1ll 11(~1 . (lf '})f)11(1 ·1·r:f, ( !~1 

·_ , 2 -2 _ , 2 { max(j ,k) }
2

- _ . 
s(J) = L-1 bk (ej - ek) ::;; const . L-1 bk I . - ~1 (0 · e ) = const. t(J)) 

J k max 1 , k 
k:k-=j:=j k :k-=j:=j 

say. Using; the first part of (I .3) to bound bk e--;; 2 we can show that for some 17 > 0, 

i;(j) s:: const. { L b~ 0-;;
2 + j2 L bl 0-;;_

2 
(.j - kt 2

} 

k'5cj /2, k>2j j /2<k9j 

Therefore, 

S:: const. { 1 + j 1
-'1 L (j - k )-2

} S:: const. j1-'1 

j /2<k5c2j 

s(j) = L b~ (ej - ekt2 ::;; const.j
1

-
11

. 

k: k.-=j:=j 

(I.33) 

Combining (I.32 ) and (I.33 ) ,ve deduce that if Q holds and 1 :S; j :S; r0 , vle have 
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for some r; > 0: 

I J ( Bjb - g) z j /

2 

~ canst. z 
4 
j1-~ + 2 Z2 11~j - 1/JJ 2 J b2

. (I.34) 

More simply, by (I.23) and (I.31) , l5jl :s; 2.6. lljj - ?fljl l, whence by (I.1 ), (I.28) 

and (I. 34), if 9 holds and 1 :s; T :s; To, then 

T T 

LT;j :s; const . .6.
2 L 0;

2 
(.6.

2 j1- 77 + 11 jj - ?fljl l2 ) 

j=l j=l 

r 

:s; const . .6.
4 0;2 

T
2 + const . .6.

2 L 0;2 11 jj - ?fljll 2
. (I.35) 

j=l 

We shall prove in Section (I.2.8) that for each r; > 0, 

if g holds t hen for all 1 :s; T :s; To, ~;=1 0;2 11jj - ?flj 112 < 

const . n-1+77 T
3 0;2 111 ( n, r;), where the random variable 111 ( n, r;) (I. 36) 

satisfies supn2:l E{A1(n , TJ) 3
} < oo for each s 2 1. 

It therefore follows from (I. 35) that for each r; > 0, 

if g holds , then for all 1 :s; T :s; r0 , ~;=1 T;j :s; const . n-2+77 T
3 0;2 

x A(n, r;), where A(n, r;) satisfies supn2:l E{A(n, TJ) 3
} < oo for (I.37) 

each s 2 1. 

The factor n - 2+77 T
3 0;2 on the right-hand side of (I. 37) can equivalently be writ

ten as n-1T0;1.n-1+77 T20;1. By (I.6), fo r some r/ > 0, we have n-1+77 ' T50;;1
----+ 

0. Put Ar(n) = n-1+ 277 
T

2 0; 1 A(n, r;). Then, for r; = ½ r;', we have A-r(n) < 

const. A ( n, 'TJ) , for each 1 :s; T :s; To . Therefore, for some r; > 0, 

if 9 holds then for all 1 ~ T ~ To, L;=1 T4~ ~ const. ( n- 1T0; 1
) x 

(n-1+ 77 ,
20;1) A(n, r; ) ~ const. n-1- 77 T 0;1 A(n), where A(n) = (I. 38) 

max1:s;r:Sro A-r(n) satisfies supn?':l E{A(n)3
} < oo for each s ~ l. 
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I.2.5. Bound for L;=l T:k We shall bound successive terms on the right-hand 

side of (I.25). Denote the series components of those terms by 

r r { }2 
S1 = ~ 0j

2 
ll'lj7J - V'Jil 2, S2 = ~ 0j

4 j (!j - g )V,3 , 

r { }2 r 

S3 = ~ 0;4 j g ( 'lj7J - 1/,3) , S4 = ~ 0j
4 

bJ, 

so that, by (I.25), if Q holds and 1 :::; r:::; r 0 , 

ft ~;=1 T:fj :::; II§ - gJl 2 S1 + Z.2 (S2 + S3) + L 4 S4. (I.39) 

A bound to S1 is given at (I.36), which, in view of (I.6), implies that for some 

'rJ > 0, 

if Q holds for all 1 :::; r :::; r 0 , S1 :::; const. (n-1+ 1
1 r 2 0;.1

) x 

(0; 1 r)A. 1 (n, r;) :::; const. n- 11 r 0; 1 A(n), where A(n) satisfies (I.40) 

('l"I~> ,__, I /tf.>")\ ,'::-t ~• ..-..._,,.-. +•,,--,'", r,r-.r-.'!.-~ f", ....... __ •; 

''"l'n21 _,J L-'~\ ' 1' ) J vv 1.v1. 0 u ,v1.1. 0 ::::...... .1.. 

A bound for 84 is available via (I.1): for all r; > 0, 84 = L;=1 03
4 

b; :::; const . (1 + 

u; 0;4 rl+ 17
) :::; const. n 17 (1 + b; 0;4 r). Hence, by (I.6 ), we have fo r some 17 > 0, 

for al] 1 :::; r :::; To, n-2 S4 :::; const. (n-2+ 77 + n- 2+77 e;tj u;. r) 

::::; const. ( n-1 +(n-1+'10;2)2 n- 11 b;. r) 

:::; const . (n- 1 + n- 77 b; r) . (I.41) 

Next we bound S2 . Assume, ·without loss of generality, that 17 = E(X) = 0. Put 

fo = J X i ,/Jj and (j = n-1 L:~1 fo, and recall the notation from Chapter 4. In 
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this notation, 

j (§ - g) 1/;j =ju~?,; -Y){Xi( u) - X(u)} - E [(Y - µ) X(u)]} 1/;J 

= n-
1 t { fo J bXi - [j J bX - E(~ij J bxi)} 

n 

+ n-l ~(foEi - [/E), 
i=l 

from which, using (I.4) and Rosenthal's inequality, for each integer s > l, we 

deduce that 

E{ j (§ - g)1/JJ} Zs <c'. const. [ n-s { var ( 6J j bX1) + var(fo)} s 

+ nl-Zs ( El6j J bXr + Elfol
28

)] 

:S const. (0j/n)3, 

where the constants depend on s but not on j or n. Define 

U = U(n) = m_ax n 0;1 { j (g - g)7/Jj }
2 

1 :SJ :Sro 

Result (I.42) implies that, for each s ~ l , 

(I.42) 

E(U•) <c'. t E [n0;1 { j (§ - g) 1/;j} 
2

] s <c'. const r-0 , (1.43) 

where the constants depends on s but not on n . Hence, for each 77 > 0 and all 



224 APPENDIX I. GENERALISATION AND PROOF OF THEOREM 4.1 

1 s;; r s;; ro, 

S2 = t0;4{J(§ -g)1j;jr = t 0j3 n-1 [n0;1 {J(§-g)1j;jn 
T 

s;; n-1 U(n) L e-;3 s;; const . n-1+77 r e;3 A(n, r;), 
j=l 

where A(n, r;) = n- 17 U(n) satisfies, fort> s 2: 1, 

(I.44) 

( ) 

s/t 
E{A(n,r;)5} = n-17 s E[O(n)5] s;; n- 17 s E[U(nl] < Cs,tn-175 (ro)5ft. 

Furthermore we have s (l- 77 ) < n s for large values oft and then (r0 )sft, < n17 s. 
' 2 t ( a+ l) - 't ' ' -

Thus, supn~l E{A(n, TJ) 5
} < oo for s 2: 1, and we deduce from (I.44) that for 

each r; > 0, 

for all 1 s;; r s;; r0 , S2 s;; const. n-1+ 77 r B:;3 A( n, 17), where 

A(n, r;) satisfi es supn~l E{A(n, 17) 5
} < oo for each s 2: 1. 

(I.45 ) 

By (I.6 ) we have n-1+77 ' 0;/ -t 0. Put Ar(n) = n-1+ 277 0;2 A(n, r;). Then, for 

77 = ½ 17', we have Ar(n) s;; const . A(n, 77 ), for each 1 s;; r s;; r0. Thus , (I. 45) 

implies that for some r; > 0, 

fo r all 1 s;; r s;; r 0 , S2 s;; const. n- 11 r 0
1
--:

1 A(n), where .A(n) 

max1::;r::;1·o A.(n) satisfies supn~l E{A(n)5} < oo for each s 2: 1. 

Next ,ve bound /:hi noting first that 

j / q({f;j - 1/JJlj ::; Uu + ej U2J + u3j + ej u"J, 

(I.4 6) 

(I.47) 
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where, using (I.26) , 

U1j = J L bk j (R - K) 'l/Jj 'l/Jk J, U2j = J L (01 - ek)-
1 

bk j (R - K) 'l/Jj 'l/Jkj, 
k : k=/=j k : k=/=j 

U3j =I/ (g - ej b) 6.j [ and u4j = [ / b 6.l 

Now, 

ufj :c; 2 i jtR - K) b'l/J{ + 2 bJI j (R - K) 'l/Jj 'l/J{ :c; 4 ( / b
2

) b.}j). (I.48) 

Recall that 

t.(j) = II/ (R - K) 'l/JJ 11
2 

= t { J (R - K) 'lj;j 'l/Jk } 

2 

By Lemma 2.5 we have E{ J (R - K) 'lj;j 'l/Jk rs= 0( (n-1 ej 0k)8). Therefore, 

E[t.u1] 2
s :C:: ( t [ E{ j (R - K) Mk} zsr) s 

:::; (csn-1 01 f ek)s = O((n-1 0j) 8
). 

k=l 

An argument similar to that used to derive (I.43) can be employed to prove that, 

• A -1 2 
definmg V = max1:::;j:::;ro n 0j 6.U), we have 

E(V 8
) :::; canst . To. (I.49) 
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for each s 2:: 1, the constant not depending on n. Moreover, using (I.48) , 

r r 

L 0;4ufj :S const. n- 1 L e;-3 (n 0; 1 6-(j)) 
j=l j=l 

:S const. n-
1 

( m_ax n 0;1 6(j)) t 0j
3 

1 < 1< ro 
- - j= l 

r 

:S const . n-l+?J L e;:3 A(n , r;) , 
j=l 

where .A(n, r;) = n- 11 V(n) satisfies supn~l E{A(n, r;)8} < oo for each s 2:: 1. This 

leads to the following analogue of (I.45): for each r; > 0, 

for all 1 < r < r 0 ~~ 0--:4U2. < const n- 1+77 ~~ 0- 3 .A(n r;) 
- - , UJ = l J lJ - · UJ= l r , , 

where A.(n, r;) satisfies supn2:'. l E{A(n, 17) 3
} < oo, for each s 2:: 1. 

\i\Ti t h s(.j ) as at (I.33) we have, for some 17 > 0, 

Ui; = I L (0j - 0iY
1 
bk ( (R - I< ) 'i/Jj 'i/Jkl

2 

! f .. :!:f.,· ,; ' 

~ (,,~/ ej - eki-
2 

b~ )C ~ j {J u< -K ) 'i/Jj v}{) 

~ s(.i) f ( j (R - I< ) 1/J.i 'i/Jk) 

2 

k = l 

( 
· ) /1. 2 < t · 1 - 17 J\ 2 = s J u (j) _ cons . .7 u (j) , 

(I. 5O) 

where t he lct'-it inequality used (I.33) . The argument employed to obtain (I. 4 7) 
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now implies that for each 'TJ > 0, 

for all 1 ~ r ~ , 0 , ~;=1 0;2 uJj ~ const . n- 1 ~;=1 0;1 { n 0;1 x 

I 

J\ 2 } . 1 -77 < t -1 { 0- 1 J\ 2 } '\""' I 0- 1 . l - 77 < 
Ll. (j) J _ cons . n max:1::;j::;,0 n j D (j) 0 j = l j J _ 

const . n- 1+77 n- 17 V(n)(,1- 17 0;1 r) ~ const . n- 1+77 ,
2 0;1 A(n, 'TJ), (I.5 1) 

where A(n, rJ) = n- 17 V(n) satisfies supn~l E{A(n, rJ )8
} < co for 

each s 2:: 1. 

Using the bound (I.34) and the argument leading t o (I. 36) we have 

t 0;4 u;j ::=; const. t 0;4 (6.4 
k;;;j bU0j - 0k) -

2 + E
2

11Jj - 1/'j 11
2 

/ b
2

) 

~ const . n - 2+77 ,
3 0;4 A(n, rJ), 

where A(n, rJ) satisfies supn~l E{A(n , rJ) 8
} < co fo r each s 2:: 1. Therefore, for 

'TJ > 0, 

if Q holds for all 1 ~ r ~ , 0 , ~;=1 0;4UL ~ const . n - 2+71 ,
30;4 

x A(n, rJ ), where A(n, rJ ) satisfies supn~l E{A(n, rJ )8
} < co for (I.52) 

each s 2:: 1. 

Combining (I.50)-(I.52), we deduce that for each 'TJ > 0, 

r 

~ {0-:-4 (U2
- ...L U2

-) ...L e-:-2 U:2 -} < canst (n- 1+77 T e-3 
...L n-2+77 r3 e-4 

...L n-1+71 r2 e- 1 )AA(n TJ ) 
~ J lJ 1 3J I J 2J - · r I r I r , 

j =l 

:S canst . [(n- l+lJ 0;2)(r 0; 1
) + (n - l+-77 r 2 0; 2

) (n -l 0; 1) r 0;1 

+ (n- l+1Jr ) re; 1
] A(n,17 ) . 
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Thus, by (I.6), for some 'TJ > 0, 

if Q holds for all 1 ~ r ~ r0 , ~;=1 {0; 4 (U{j + U}j) + 0; 2 u:j:J ~ 

const. n-rJ r 0;1 A(n) where A(n) satisfies supn~l E{A(n) 5
} < oo (I.53) 

for each s ~ 1. 

To bound U4j we first use the argument leading to (I. 33) to show that, for some 

'TJ > 0, 

u(j) = L . bk(ej - ekt4 ~ const . L ui { . _ ~ax(j , k) }
4 

k:k:l=J k : ki=j IJ kl max(ej, 0k) 

~ const. e-: 2 , b2 { (B · e )}-2 (max(j , k))
4 

1 0 k max J, k - .--

k: k=fj IJ - kl 

S: const. 0j
2 

{ L b% 0k
2 + j4 L b% 0k

2 
(j - kf4

} 

k5:_j /2, k>2j j /2<k5:_2j 

< 0-:2 (i + ,,2 0-2 .4) 
- J u[j /2] [j/2] J , (I. 54) 

·wlwrP [_j/?l rlPnnt.(:' .'3 thf:' ir1t1?g:er p9.l't of j/2 . Nfl:::t '.~.rr2 2l';!ll9 as irl Sec: tion n.~.~). 

obtaining, provided Q holds and 1 ~ j ~ , 0 : 

2 I , { ( ej - ej )-
1 

} uk j - -utJ j = 0 1 + 
0 

__ e, - 1 
0 

__ 
0

. (I< - I<) 'l/yt/h 
k: k=/=j J k J k 

' b;,. I .---.. .---.. j' .---.. 12 + k~j 0 j - 0 k , ( I{ - I{ ) ( 1/; j - 1/J j) 1/J,. + /J j ( 1/J j - 1/ij) '1/J j , 

and then, 

u,;, s: 12 {.~ ·bl (0j - 0kr
1

} Z
2 

II /u< -K)°01f 
/,. A-rJ 

II 11

2 
2 2 .---.. .,....__ · 0 .---.. 2 

+ 3 { L !Jd01 - 0,r } / (I( - I< )(1/J1 - 1/J1) + 3 u; ll1P1 - 1/;111 
k: h=/=J 

~ n u(.J) Z2 (Z2 11-0j - <Pjll 2 + ~(j)) + 3 { s(j) Z2 + u;} ll1ij - ?/ijll 2
. (I.55 ) 
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In Section (I.2.8) we shall show that (I.55) implies that for each r; > 0, 

r r 

L e-;2u;j s const. n 77 A1(n, r;) L 0;
2

{ 0;
2

(1 + b[j/ 2] BiJ}21 l)(n-
3 

j2 + n-
2 ej) 

j=l j=l 

+n-2j3+n-1b}j2} 

r 

S const . n77 A.1 (n, r;) { 0;
2
(n-

3 
r
2 

+ n-
2 

Br) L 0;
2 

(1 + b[j/2] BiJ}21 j4) 
j=l 

+ r (n-
2 r3 + n- 1 b; r 2

)} 

S const. n 77 A1(n, r;) rl+77 { 0;4 (1 + b; 0;2 
r

4
) (n-3 

r
2 + n-2 Br) 

+r(n-2r3 +n-1 b;r2)} 

S const. n 277 A.1(n, r;) r { 0;4 (1 + b; 0;2 r4) (n- 3 r 2 + n-2 Br) 

+ 0-2 (n -2 r3 + n-1 b2 r2)} 
r , r , 

where the random variable A1 (n,r;) satisfies SUPn2: 1 E{A.1 (n,r;) 3
} < oo for each 

s ~ l. Hence, 

n-1 ~ e--:-2 u2. < Const n-1+77 A_ (n 'n) T e-1 {n-3+77 r 2 e-3 + n-2+77 e-2 

~ J 4J - · 1 , '/ r r r 

j=l 

+ n-3+77 r6 e-5 b2 + e-4 n-2+77 b2 r4 + e-l n-2+77 r3 + e-1 n-1+77 b2 r2} 
r r r r r r r · 

Therefore , 

n -l ~0--:-2 U2- < Const n-l-77 A_ (n TI)r e-1{ (n-l+271 r 20-2)(n- 2+77 0-l ) + n- 2+371 0-2 
L_,; J 4J - · 1 , '/ r r r r 

j =l 

+ (n-1+77 r 0; 1
) (r b; 0;2)( n- 1+277 r2 0; 1 )2 + (r b2 0; 2) ( n - 1+277 0; 2 r2) (n- 1+77 r) 

+ (n- l+2ry r20; 1) ( n - l+ry T) + (n-1+3ry r0; 1 )(b: T) } . (I. 56) 

Using (I.3) and (I. 6) in conjunction wit h (I. 56) we deduce that for some r; > 0, 
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for all 1 :::; r :::; ro, n- 1 L ;=l 03
4 Ufj :::; const. n - 1

- 77 r 0;1 .A( n), where 

.A. (n) satisfies supn2:l E{A(n) 8
} < oo for each s 2:: 1. 

Combining this result with (I. 4 7) and (1.53), we conclude that for some ,; > O, 

r { }2 r 

S3 = ~ 0;
4 j g(;(i;j - '1/Jj) :s: ~ 0;4 {U1j + 0j U2j + u3j + 0j u4j} 

2 

T 

< 2" e-:- 4 {U12
• + e~ U2

2
• + U3

2
· + 0~ U4

2
· } - L.__,;. J J J J J J J 

j=l 

{ 

r r r r } 

= 2 ~ 0;4 ufj + ~ 0;2 
uij + ~ 0;4 u'fj + ~ 0; 2 

u}1 

:::; const. { n- 77 r e; 1 A(n) + n- 1
- 17 r e; 1 A(n) }. 

Consequently, for some ,; > 0, 

if Q holds for all 1 :::; r :::; r 0 , S3 :::; const . n - 11 r 0; 1 A(n) , whern 

A(n) satisfies supn2:l E{.A.(n)5
} < oo fo r each s 2:: 1. 

Define 11- 11s = [E( .)s]1/s for s 2:: 1. Then from (I. 42) we obtain: 

Ell ii - gll 2
s = E( ll.9 - gll 2)5 = E [ t { J (ii - g) 1/Jj rr 

:S: (t 11 {/(i)-g)1hjr ll} 

= (t [Eu(g -g)1br r1 
:S: canst ( t [(0j/n)sJ1

15}' 

( 

co ) s 

= const . n- s L ej = O(n-s ) . 

J= l 

(I. 57) 

Since by Theorem ~. 5. we hm'e £3 2
s O(n- s): now ,ve conclude that Elln -



gll 2
s + Efi 2

s = O(n-s) . Hence, noting (I.39)-(I.41 ), (I.46) and (I.57) lead to 

tTiJ :S canst. (11§ - gll 2 
S1 + 6.2(S2 + S3) + 6.4 

S4) 

:S canst { ( n-~ r 0;1 A( n)) (II§ - gll 2 + 6.2
) + ( n-

2 S4 ) n
2 6. 4 } 

:S canst. { ( n-~ r 0; 1 A( n)) (II§ - gll 2 + 6.2
) + ( n-9 r b;) n2 6. 4 } 

~ const. n-77 r{ n-1 e;1 + b;} A1(n), 
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where A1 (n) satisfies supn2:l E{A1(n) 8
} < oo, for each s ~ 1, and the last inequal

ity was obtained by using the fact that Ell§- gll 2
s + EL 25 = O(n- 5

). Therefore, 

if g holds for all 1 ~ r ~ r 0 , I:;=1 T2~ ~ const. n- 77 T (n- 1 0; 1 + 

b;) A(n), where A(n) satisfies supn2:l E{A(n) 5
} < oo for each (I. 58) 

s ~ l. 

I.2.6. Approximation to second teTm on right-hand side of (I.10). Define 

U- = J b (;/;- - ,, i, ·) 
J , J lf/J ' 

in which notation b j = bj + Uj. Therefore, 

oo oo r r r r 

"' 2 ~ -2 "' -2 "' 2 ~ 2 "' ~ bj - ~ bj = ~ bj - G bj = ~ u j + 2 G bj u j. (I. 59) 

j =r+l j=r+l j=l j = l j=l j =l 

Note that , by (I.30), U j U 1j + · · · + U 41, where , redefining t he Ujk 's from 
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Section (I.2.5), 

U1j = L bk (0j - ek)-1 J (R - K) 1/Jj 1/Jk, 
k:k-::/=j 

U2j = L bk{ (0j - ek)-1 - (0j - ek)-1} J (R - K) 1/Jj 1/Jk, 
k : ki=j 

U1j = L bk (0j - 0kt1 J (R - K) (;J;j - 1/Jj) 1/Jk 
k:k-::/=j 

U4J = bJ j (;J;J - 1/JJ) 1/JJ 

We shall develop bounds for ½m = I:;=l U[j and VVem = I ~;=l bjUej 1- In view 

of (I.59), 

I 

CX) CX) I 4 

J~l bJ - J~l bJ :S 4 ~(½J + W eJ) . 
(I. 60) 

First -Yve bound terms involving Uij • With s(j) defined as at (I.33 ), we have: 

u;j :S s(j) f (/ (R - K ) 1/Jj 1/Jk r = s(j) / { l (I{ - K )( 1l, v) 1/J;( v) dv r du 

Therefore, using (I.33) , ,ve obtain for some 17 > 0: 

r 2 

1'1, :S canst. ~ 71
-

11 j { j (R - I< )( 11. , v) 1/JJ( v) dv } du 

:S T
1
-~ t j { j (R - K)(u, v) 1/JJ(v) dv } 

2 

dn 

= Const . Tl-
7

) 6 2 . (I.Gl) 

Note that by Parseval's identity 62 = ~ ~1 Z_;, by ·which we have obtained the 

lc1,':lt identity above. Also , if Ajk = bj bk (0j - et.:)- 1 J (K - J<) 7/J:i 1/Jk, then because 
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Ajk = -Akj, by antisymmetry and thence (I.5 ), for some integer m > 0 we have 

Wir =It kf_l bj bk (0j - 0k)-l j(R -K) 1/Jj 1/Jk l 

::; It kt) bj bk { (0j - ek )-
1 

- 0-;1} / (R - K) 1/Jj 1/Jk l 

+ f tf yke-;1 j(R - K) VJji/Jkl 

::; canst. {Z W1(r) + W2(r)}, 

where , using (I.1) , 

W1(r)= t f fbJbk[0j
2
0k= (I t lbJf0;2

)( f [bk[ek) 

J=l k=m+l J =l k=m+l 

::; canst . (1 + lbrl 0;
2 

r) lbrl er rTl, 

W2(r) = I/ (R - K) ( t bi 0j
1

1/Ji ) Cf 1 bk 1/Jk) I 
( [ { 

r } 2 ] ) 1/ 2 ( co ) 1/ 2 

::; j j (R-K)(u,v) 'f?j0;1VJh)du dv j~/~ 

( 

r ) 1/ 2 ( co ) 1/2 ( CXJ ) 1/ 2 

::; Z L b} 0;2 _L b~ ::; canst. Z _L b~ 
J=l J =r+l J =r+l 

::; canst. 6 I br I , 1
/

2+77 . 

where we have used (I.3) to obtain the second-last inequality. Therefore , for all 

r; > 0, 

W1r ::; Const. 6. ( I br 1,112 + I br I 0r + b; e; 1 
') Try. (I. 62) 
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To bound terms involving U2j, observe that if Q holds and r ~ r0 then 

2 { " 2 (ej - e;)
2 
~ (; - ) 

2 
- 2 

U2j <:; 4 k ~j bk ( ej - 0k)4 8 ( K - K) 'l/JJ 'l/Jk <:; 4 u(j) 6. 6.u) , (I.63) 

where u(j) is as at (I.54). In view of (I.1) and (I.54), 

r r 

L u(j) ej ~ canst . L e-;
1 

(1 + b[j/2] eb%1 j4) 
j=l j=l 

2, 

~ canst. e;1 (r + L b[j /2l 8G}21 j4) ~ canst. r1+
17 e; 1 

(1 + b; 0;2 
r

4
) 

j=l 

~ canst. n 77 e; 1 (1 + b; e; 2 
r

4
) r, 

r r 

L lbjl u(j) 112 ej 12 ~ canst. L lbjl 0;1 12 (1 + lb[j/2] 1 eb/2] /) 
j=1 j=l 

r 

~ canst. L lbjl 0;1 12 
j u-l + lbu;2il 0b/2] j)) 

j=1 

and then , 

7' ( r ) ] /2 ( 7" ) ] /2 
~ lbj I 11,(j)

112 et <:; const. ~ bJ 0;1 j2 ~ u-l + lb1,12il 0u}21 ,i)2 

2 -1 ·2 ·-2 2 -2 ·2 

( 

r ) 1 /2 ( 7' ) ] /2 

<:; const. ~ bi e, .J 2 ~ (1 + blJ/21 Ou121 l ) 

r ] /2 ( 2r ) l /2 

<:; const (; bJ 0j
1 j2) 1+ ~ b[i/2101JJ21 j2 . 



Thus, 

r 

L Jbjl u(j) 112 0]12 s const. (1 + b; 0;1 
,

2+1+77 )
1

/
2 (1 + b; 0;2 

,
2+1+11) 112 

j=l 

s const . , 77 (1 + lbrl 0;112 ,)(1 + lbrl 0;1 
,) T 

S const . n 77 (1 + lbr I 0;112 
T + lbr I e;1 

T + b; 0;3
!

2 
,

2
) T 

S const . n 77 (1 + lbrl 0;
1 

T + lbrl e;1 
T + b; 0;3

!
2 

,
2

) T 

S const. n 77 (1 + lbrl 0;
1 

T + b; 0;3
!

2 
,

2
) T, 
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where r; > 0 is arbitrary and, in each string of inequalities, the last constant 

depends on r;. From these results, (I.63) and (I.49), we deduce that for each 

'TJ > 0, 

for all 1 S, S To, Vim S const. n-2+77 0;1 (l+b; 0;2 r 4
) r A(n, r;), 

W2m S const . n-1+77 (1 + lbrl 0;1 
T + b; 0;312 

r 2) T A2(n, r; ), where 

the random variable Aj(n, r;) satisfies supn21 E{Aj(n, 'TJ)
8

} < co 

for each s ~ l. 

(I. 64) 

Next we bound terms involving U3j. If() holds then, noting that s(j) is defined 

at (I. 33), we have: 

IU3jl :s: const. k~ j lbkl 10j - ek r-l I j(R - K ) (:(fj - 1,Uj) 1,Ukl 

:S: const. s(j)
112 II j (R - K ) (:(fj - 1,Uj)II :S: const. E 11:(;;i - 1,01 11 s(j) 112

. 

Hence , using (I.33), we obtain: 

1/2 ,,..__ ,,..__ 

IU3jl :s; const . J /:::,. llwj - wjll - (I. 65) 
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We shall prove in Section (I.2.8) that this result implies that for each 'TJ > 0, 

if Q holds then for all 1::; r::; r 0 , Vir ::; const . n-2+'T/ r 4 .A.1 (n, TJ), 

and vV3r::; const. n-1+'T/(l+lbrlr512).A.2(n,TJ), where random vari- (I.66) 

able Aj(n, TJ) satisfies supn2:l E{Aj(n, TJ)
8

} < oo for each s 2:: 1. 

Also in Section (I.2.8) we shall show that for each 'TJ > 0, 

if Q holds then for all 1 :s; r :s; r0 , Vij :s; const. n-2+77 (1 + 

b; r 5
) .A. 1 (n, 'TJ), and VV4j :S: const. n-l+'T/(1 + lb; I r 3

) .A.2 ( n , 'TJ) , where 

random variable Aj(n, r;) satisfies supn2:l E{Aj(n, TJ) 8
} < oo for 

each s 2:: 1. 

(I. 67) 

Combining (I.60)- (I.62), (I.64), (I.66) and (I.67), and using (I.3) and (I.6) to 

simplify the right-hand sides of these formulae, ,ve conclude that , for some 17 > 0, 

if Q holds then for all 1 :S: r :S: ro, I L j>r ( b7 - b7) I :S: 

coust. n - 77 r (n- 1 0; 1 +b;) A(n), where sup,,12 1 E{A(n) 8
} < oo for (I.68) 

each s 2:: 1. 

I.2. 7. Combining earlier res'U,lts. First we develop an approximation to L~·=J T.fr 

Note, from Uw definition of 1V at (I.7) and from (I. 27) tlrn.t T 3_7 = 0;1 Zj, where 

l n -

zj = - I)fo - ~j)(ci - E) 
n 

i=l 

and ~17 ,c.1,l1
· and E are as in Section (I.2. 5). Defining W max1 <1-<r0 .n 0-:-

1 z,2, 
. - - J ] 

we have: 
T T 

L T]j :S: n-
1 W L e;-1 :S: const. n-

1 
T 0; 1 W. (I.69) 

j=l j=l 

Using au argument similar to that leading to (I.43), it can be shown Lhat fo r 

coch s 2:: 1. E( 1,V<;) :s; const . r0 , the constant not depending on n . Nevertheless, 
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we prove it as follows . We have ws = ( max1::;j:Sro n 0; 1 ZJ) s ~ z;:l n3 e;s zJs, 

and then 

TQ 

E[ws] ~ L nse;s E[z]3]. 
j=l 

Also, 

[ 
2s] [ 1 ~ - -J 2s 

E zj = E -:;;, ~ fo Ci - (j r: 

i=l 

:c; Cs { E[I ~ t fo Eil
28

] + El(j t,i28 } • (I. 70) 

Using Rosenthal's inequality for the first term on the right-hand side of (I.70), 

and noting (I.4), give: 

E[I~ t~ij Eil2

s] :c; n-
2

s C1s { t Elfo Eil 28 
+ ( tElfo Ei1

2
) 

8

} 

= n -
2

s C1s { tElfol 2s Elcil 2s + ( t E[~[J E[c;] n 
< G2s n-s 8~ 
- J' 

(I. 71) 

where C1s and C2s are constants which depend only on s. The second term on 

the right-hand side of (I. 70) leads to: 

El(j El
28 

= El(jl
28 EIEl

2

s :c; [n- 25 
C1s{ t Elfol

28 + ( t Elfol 2 
)'}] X 

[n-2
sc2s{ tElcil

2
s+ (tElci1

2nJ 
< C -s es C -s 
_ 3s n j X 4s n 

< C n - 2
s 8~ 

_ 5s J , 
(I. 72) 
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where C1s, C2s, C3s, C4s and Css are constants which depend only on s. If we 

combine the results (I.70)-(I.72), we deduce that for each s ~ l , E[ZJ8] :::;; 

const . (0j n- 1 
)

8
. Therefore, for each s ~ l , E(W 8

) :::;; const. r0 , where the constant 

does not depend on n . Hence, by (I. 69), for each TJ > 0, 

for all 1 :::;; r :::;; ro, L ;=l T}j :::;; const. n-l+rJ r 0:; 1 A( n, TJ), where 

random variable .A(n , TJ) satisfies supn2:l E{A(n, TJ )8
} < oo for (I.73 ) 

each s ~ l . 

From (I.29 ) we have: 

r r r r r 

I L T{j 11 /2 - I L T}j 11 /2 ~ I ( L T12j ) 1 /2 - ( L T}j) 1 /21 ~ I L T;j 11 /2 ) 

j=l j=l j=l j=l j=l 

which by (I.37) and (I.73) implies that, for each TJ > 0, 

r r 2 r r 2 r r 

~ Tl> (1 ~Ti2i12
) ~ (1 ~Til12 

+ I ~T]l12
) ~ 2( ~ Tij + ~TJj) 

~ const. n-1+17 r e; 1 A(n , 17) + const. n-'2+17 r:1 0
1
~'2 A(n, r; ) . (I.74) 

Thus, combining (I.73 ) ·with the above result , and using (I.6 ), we dedu ce t hat for 

some ?] > 0 VlC h ave: 

fo r all 1 ~ r ~ r0 , L;= 1 (T;j - T]j) ~ const. n- 1
-

17 r e:; 1 A(n), 

where t he random variable A(n) satisfi es su1\
1

2: 1 E{A(n) 8
} < oo (I.75) 

fo r each s ~ l . 

Combining (I. '.21), (I. 58): (I.74) and the above result we sec that, for some 

!J > 0. 
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r r r r 

I I )bj - bj)2 - L T1~I ~ I L (bj - bj)21 + L T12j 

j=l j=l j=l j=l 

~ const . n- TJ r (n-1 0;1 + b;) A(n) + const. n- 1- TJ r 0;1 A(n) 

~ Const . n-TJ r (n- 1 0;1 + b;) A(n)) 

then, by (I. 75) , 

r r r r r 

I L (bj - bj)2 - L T})~ I L (bj - bj)
2 - L T12

) + I L (Tlj - Tfj)I 

j=l j=l j = l j=l j=l 

~ const . n-TJ r (n- 1 0;1 + b;) A(n) + const . n- 1-TJ r 0;1 A(n) 

~ const. n- TJ r (n- 1 0;1 + b;) A(n) . 

Thus , from the above result we see that for some 71 > 0, 

if Q holds then for all l ~ r ~ ro , ILj~r{ (bj - bj)2 - T}JI < 

const. n-TJ r (n-1 0;1 + b; ) A(n), where supn21 E{A(n)3
} < oo for (I.76 ) 

each s 2 1. 

Combining (I. 10), (I.68) and (I. 76 ), and noting that dependence of the function . 
b on m has been suppressed , we conclude t hat, for some 7J > 0, 

if Q holds then for all l S r S ro, I J(b - b)2 
- L ; = l T3~ - L j2r bJI S 

const . n- TJ r (n- 1 0; 1 + b~) A(n), where supn21 E{A(n)s } < oo for each 

s 2 1. 

This property implies (I.1 9) . To get (I. 20), we have: 
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E{S(r)} = E [ t 0jt t j (Xi(t) - X(t)) 1/JJ n 
r [1 n ]2 

= ?;0j
2
E ;_ ~(fo - {J) (ci - E) 

r n 

= L 0;2 n-2 L E[fo - [j]2 E[Ei - E]2 
j=l i=l 

-2 Lr -2 1 1 2 
=n 0. n(l--)0 · x (1--)u 

J n J n 
j=l 

r 

= n-1 (1 - n-1 )2 (T2 L e;l. • 
j=l 

I.2.8. Bounds relating to ;J;j- ?pj · It can be proved from (I.30) that ll ij - ?/Jj ll2 = 

u2 + 02 where J J) 

A2 ~ (0 e ) - 2 A2 
'llj = L.___, j - k Wj k i 

k:bj=j 

v; = { J r1ij - 1/!jl 1/Jj} 
2 

and 'llJj ~; = J(K - K ) {f;j 1Pk · Since b oth 1/J j and 1h are of uni t length , then 

'VJ = 2{ 1 - (1 - '117)112
} - u;, which implies t hat 

fo r all .i 2:: 1, I I {f;j - 1/J j I I 
2 ~ 2 u} , A2 < A/J 

v j - v,_i . 

Jf the event Q obtains , then so too does (I. 24), and therefore, 

A A .,,..._ A 1 A 

I 0.1 - 0 k I ~ Io j - e j I + I e j - e k I ~ 6 + I e j - e k I ~ 2 P j + I ej - 0 k I . 

(I. 77) 

Thus , I0.1 - 0,,.1 ~ ½ l0j -0kl, which means l0j -0,~1- 1 ~ 2l0j -0k1-
1 fo r all .7, h such 

Urnt j :j:: k ancl 1 ~ j ~ r0 . For t he same range of values of _j and k, l0j - 01;1- 1 ~ 

C ()
1
~,

1 r0 ; sec (I. O). Here , C denotes a posit ive constant not depending on c in the 

defini tion of 9. Defining X ij = J(K - K ) 1/J j 1/Jk and Yjk = J(I< - K ) ( ij - 1/Jj ) 1/h, 
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we have wJk :::; 2 (x;k + f)Jk). Hence, assuming Q holds, we have for 1 :::; j :::; r0 , 

u; :::; s L (ej - ek)-2 (x;k + f)Jk) :::; s aj + s c2 e;/ r5 cj 

k:k,j:j 

< 8a . + 8 c2 g-2 7'2 E211/J7: , - nl, · 112 
- J TQ O lf/J lf/J ) 

(I. 78) 

where CLj = Lk : k=/=j ( ej - ek)-2 x;k and Cj = Lk: k=/=j Y]k :::; E2 JJjj - 'l/Jj 11 2
. Condi

tion (I.4) and Lemma 2.5 imply that n E(x;k) :::; const . 0j 0k, where the constant 

does not depend on j, k or n. Moreover, by (I. 1) and (I. 2), 

~ _ 2 ~ { max(j, k) }
2 

~ (0j -0k) ejek:::; const . ~ max(0· e) 1 · -kl ejek 
k:k#j k:k#j 1, k J 

-s: const . { 0j L 0;;1 + j2 L (j - k)-
2 + 0;1 L 0k} -s: Const j2. 

k~j /2 j /2<k9j k>2j 

(I. 79) 

Therefore , E(aj ):::; cohst. n-1 j2. Also , for s 2:: 1, 

E(aj ) = E[ ( L (0j-0k )-
2 x;k)'] ,S: ( L (0j - 0k)-

2 
(E[xJ,m

11·r- (I SO) 

k:k#j k :k#j 

Using Lemma 2.5 , we see that 

E(x;i) :::; Cs n - T 0J ek for all k -I j and s 2:: 1 , (I. 81) 

where C,. is a constant depending only on r. So , (I.79)-(I. 81) imply that for each 

s 2 1, 

E(a;) :::; Cs(n- 1 j2)5, uniformly in j , (I. 82) 
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where Cs does not depend on j . Moreover, defining CLj = n j-2 
CLj, we have, 

ro ro 

E( m_ax Cljr s E( L a;) s L E(a;) s ro m_ax E(a;) s const . ro, 
l <J<ro l<1<ro 

- - j=l j=l - -

where the constant does not depend on n or r 0 . Therefore, similarly to the 

argument used to obtain (1.45), with U = max1::::;j:=:;ro CLj we have, for any sequence 

U1, · · · , Uro and all r S ro, 

r r 

L Uj aj S UL Uj, where 
j=l j=l 

supE(n-rJ uy < oo for all r ~land 'Tl> 0. 
n2:1 

(I.83) 

Combining (I. 78) with the first part of (I. 77) we deduce that if Q holds, 

11;;,;j - '1/Jj 11
2 s 16 aj + 16 c2 

e;/ r6 Z. 2 
11 ;;,;j - '1/Jj 11

2
, (I.84) 

for 1 S j S ro, However , by definition of Q, if that event holds then 6. S c ro 1 
ero. 

Hence. by (I.84J, if() holds then for 1 < j < rn: 

(1 - 16 C
2 

c
2

) 11;;,;j - '1/Jj 11
2 

S 16 a'.i . 

Choosing c, in the definition of Q, so small that 16 C2 c2 S ½, \Ve deduce that if Q 

holds then for 1 S j S r0 , 11;;,;j - 'lj)j 11 2 S 32 CLj. Combining this result with (I. 78), 

n.ncl noting the choice of c, we deduce that if Q holds then fo r 1 S j S r 0 , 'IJ,] S 

16 fi,,i. From this property and the second part of (I. 77) we conclud e that 

if Q holds then for 1 S j S ro, ll~j - 'ljJ_711 2 S 32 o,_7 and 

I ; ( 1~ j - 1P j ) 'lj! j I s 16 a j 
(I. 85) 
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R esults (I.37), (I.66) and (I.67) follow from (I.1 ), (I.65 ), (I. 82), (I. 83) and (I. 85). 

Using (I.55), together with t he bounds at (I.33) and (I.54) on s(j) and u(j) 

respectively, plus also the bounds at (I.49 ) on the maximum of 6- (j), and the 

bounds (I.83) and (I.85) on the mau-ximum of ll'<h - ?µj II, we can similarly de

rive (I.56) from (I. 55). 

I.1 On Validity of the Asymptotic MISE Ap-

proximation 

Conditions under which ( 4.17) holds can be quickly deduced from Theorem 2.4, 

as follows . Under condition (2 .1), we have E{ J (R -K) '1/)J 1PJ } 
2 

:':'.: const. n - 1 eJ 

(see Lemma 2.5), and also from (2 .28) and (2.29) we conclude that E(IIIK -

K JII IIK - Kllsup ) = O(n- 1
) . From these results and (2.18) it is deduced that, for 

each 1 :S j :S T, 

El 1\ - 0j1 = o( n -
1

/
2 ej + n -

1 0;1). (I. 86) 

Recall that £ denote the event that 6. :S c To 0,0
, where c > 0 is chosen so small 

t hat CTo
1 e,o :S ½ c5,o, for all n. We proved that 1 - P (£ ) = O(n- 0

), for each 

C > 0. If c is chosen sufficiently small, then we have 6 :S ½ 6,
0

. Since 6,
0 

:S 0,
0

, 

then 6. :S ½ ero ·which implies 10j - ej I :S ½ ej for 1 :S j :S r :S To . Hence, for 

sufficiently small choice of c, we have l - P (J0j - 0jl :S ½ 0j) :S 1-P(E) = O(n- c ). 

So , denoting 7-i as the event IBj - 0jl :S ½ ej, provided the event H obtains: for 

each 1 :S j :S , we have: 

El 0-;1 - e;-1 1::; 20-;
2 E[lej - 0j1]. (I.87) 



244 APPENDIX I. GENERALISATION AND PROOF OF THEOREM 4.1 

Combining (I.86) and (I.87) and summing up over j, and choosing C large enough, 

we have: 

r ( r r ) ~EliJ_;1-0;1l=O n-1
!

2 ~0;1+n-1 ~0j2 0_;1. 

Consequently, 

E[l(t0;1)/(t0;1)-1I] ~ r 

1 
- tEliJ_;1-0_;1I 

J=l J=l ( ~ . 0 . l) J=l 
UJ=l J 

= 0 (n-1/2 + (Zjsr 0j2 ~~1)) ' 
(n Lj~r ej ) 

(I.88) 

from which it follmvs that ( 4.17) holds, provided r increases sufficiently slowly, a 

sufficient condition for the rate being: (Lj~r 0-;
2 o;1) / ( n Lj~r 0;1) -, 0. 
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