On properties of Parisi measures

Wei-Kuo Chen

Department of Mathematics
University of Chicago

$$
2014.7 .23
$$

Mixed p-spin model

- Configuration space: $\Sigma_{N}=\{-1,+1\}^{N}$
- Energy:

$$
-H_{N}(\boldsymbol{\sigma})=\sum_{p \geq 2} \frac{\beta_{p}}{N^{(p-1) / 2}} \sum_{i_{1}, \ldots, i_{p}=1}^{N} g_{i_{1}, \ldots, i_{p}} \sigma_{i_{1}} \cdots \sigma_{i_{p}},
$$

where $g_{i_{1}, \ldots, i_{p}}$ are i.i.d. standard Gaussian.

- Gibbs measure: G_{N}
- Free energy: $F_{N}=\frac{1}{N} \mathbb{E} \log \sum_{\boldsymbol{\sigma}} \exp \left(-H_{N}(\boldsymbol{\sigma})\right)$.
- Here,

$$
\mathbb{E} H_{N}\left(\boldsymbol{\sigma}^{1}\right) H_{N}\left(\boldsymbol{\sigma}^{2}\right)=N \xi\left(R\left(\boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2}\right)\right),
$$

where $R\left(\boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2}\right)=\frac{\boldsymbol{\sigma}^{1} \cdot \boldsymbol{\sigma}^{2}}{N}$ and $\xi(x)=\sum_{p \geq 2} \beta_{p}^{2} x^{p}$.

Theorem (Parisi' 79, Talagrand '06, Panchenko '10)

$$
\lim _{N \rightarrow \infty} F_{N}=\inf _{\mu \in M[0,1]} \mathcal{P}(\mu),
$$

where

- $M[0,1]=\{$ all prob. meas. on $[0,1]\}$.
- $\mathcal{P}(\mu):=\Phi_{\mu}(0,0)-\frac{1}{2} \int_{0}^{1} q \xi^{\prime \prime}(q) \mu([0, q]) d q$.
- $\Phi_{\mu}(q, x)$ is the solution to the Parisi PDE,

$$
\begin{aligned}
\partial_{q} \Phi_{\mu}(q, x) & =-\frac{\xi^{\prime \prime}(q)}{2}\left(\partial_{x x} \Phi_{\mu}(q, x)+\mu([0, q])\left(\partial_{x} \Phi_{\mu}(q, x)\right)^{2}\right) \\
\Phi_{\mu}(1, x) & =\log \cosh x .
\end{aligned}
$$

- How many minimizers?
- What is the role played by any such minimizers?

The minimizer of the Parisi functional: Predictions

We call any measure that minimizes the previous variational problem a Parisi measure. We denote it by μ_{P}.
It is expected that
(a) μ_{P} is unique.

The limit law of the overlap under the measure $\mathbb{E} G_{N}^{2}$ is given by μ_{P}. For i.i.d. sampled $\left(\sigma^{\ell}\right)_{\ell \geq 1}$ from G_{N}, they are ultrametric and the joint law is determined by μ_{P}.

The minimizer of the Parisi functional: Predictions

We call any measure that minimizes the previous variational problem a Parisi measure. We denote it by μ_{P}.
It is expected that
(a) μ_{P} is unique.
(b) The limit law of the overlap under the measure $\mathbb{E} G_{N}^{\otimes 2}$ is given by μ_{P}. For i.i.d. sampled $\left(\sigma^{\ell}\right)_{\ell \geq 1}$ from G_{N}, they are ultrametric and the joint law is determined by μ_{P}.

The minimizer of the Parisi functional: Predictions

We call any measure that minimizes the previous variational problem a Parisi measure. We denote it by μ_{P}.
It is expected that
(a) μ_{P} is unique.
(b) The limit law of the overlap under the measure $\mathbb{E} G_{N}^{\otimes 2}$ is given by μ_{P}.

The minimizer of the Parisi functional: Predictions

We call any measure that minimizes the previous variational problem a Parisi measure. We denote it by μ_{P}.
It is expected that
(a) μ_{P} is unique.
(b) The limit law of the overlap under the measure $\mathbb{E} G_{N}^{\otimes 2}$ is given by μ_{P}.
(c) For i.i.d. sampled $\left(\boldsymbol{\sigma}^{\ell}\right)_{\ell \geq 1}$ from G_{N}, they are ultrametric and the joint law is determined by μ_{P}.

Quantitative behavior of μ_{P} : predictions

Let $\alpha(q)=\mu_{P}([0, q])$.

Physicists' predictions: summary

Any Parisi measure should satisfy the following:
The origin is contained in the support of the Parisi measure at any
temperature.
(2) One expects FRSB behavior at low temperature.
(3) Any Parisi measure has a jump discontinuity at q_{M} at any temperature.

Physicists' predictions: summary

Any Parisi measure should satisfy the following:
(1) The origin is contained in the support of the Parisi measure at any temperature.
(2) One expects FRSB behavior at low temperature.
(3) Any Parisi measure has a jump discontinuity at q_{M} at any temperature.

Physicists' predictions: summary

Any Parisi measure should satisfy the following:
(1) The origin is contained in the support of the Parisi measure at any temperature.
(2) One expects FRSB behavior at low temperature.
(3) Any Parisi measure has a jump discontinuity at q_{M} at any temperature.

Physicists' predictions: summary

Any Parisi measure should satisfy the following:
(1) The origin is contained in the support of the Parisi measure at any temperature.
(2) One expects FRSB behavior at low temperature.
(3) Any Parisi measure has a jump discontinuity at q_{M} at any temperature.

Quantitative behavior of μ_{P} : known results

Let $\alpha(q)=\mu_{P}([0, q])$.

Our results

Theorem (Uniqueness, Auffinger-Chen '14)

At any temperature $\left(\beta_{p}\right)_{p \geq 2}$, the Parisi measure is unique.

```
Theorem (Auffinger-Chen '13)
We have that
    - 0 \in suppup.
    - If }\mp@subsup{\beta}{2}{2}<1\mathrm{ , then 0 is an isolated point.
```

\square 0 is an isolated point.

Our results

```
Theorem (Uniqueness, Auffinger-Chen '14)
At any temperature \(\left(\beta_{p}\right)_{p \geq 2}\), the Parisi measure is unique.
```

Theorem (Auffinger-Chen '13)
We have that

- $0 \in \operatorname{supp} \mu_{P}$.
- If $\beta_{2}^{2}<1$, then 0 is an isolated point.

Example (Pure p-spin model with $p \geq 3$)
0 is an isolated point.

Our results: towards FRSB

Theorem (Auffinger-Chen '13)
Suppose that

$$
\xi(1)>\frac{1}{3} \sqrt{\xi^{\prime}(1)} 2^{\frac{\xi^{\prime}(1)}{\xi(1)}+5} .
$$

Then the Parisi measure is neither RS nor 1RSB.

Example (Pure p-spin model with $p \geq 2$)
Neither RS nor 1 RSB if $\beta_{p}>2^{p+5} \sqrt{p} / 3$.

Our results: towards FRSB

Theorem (Auffinger-Chen '13)

Suppose that

$$
\xi(1)>\frac{1}{3} \sqrt{\xi^{\prime}(1)} 2^{\frac{\xi^{\prime}(1)}{\xi(1)}+5} .
$$

Then the Parisi measure is neither RS nor 1 RSB.

Example (Pure p-spin model with $p \geq 2$)
Neither RS nor 1 RSB if $\beta_{p}>2^{p+5} \sqrt{p} / 3$.

Theorem (Regularity, Auffinger-Chen '13)

- Suppose that $u_{\ell}^{-}, u_{\ell}^{+} \in \operatorname{supp} \mu_{P}$ for all $\ell \geq 1$ satisfy $u_{\ell}^{-} \uparrow u_{0}$ and $u_{\ell}^{+} \downarrow u_{0}$. Then μ_{P} is continuous at u_{0}.
- If $(a, b) \subset$ supp $_{P}$ for some $0 \leq a<b \leq 1$, then $\alpha(r):=\mu_{P}([0, r])$ is infinitely differentiable on $[a, b)$.

Our results: top of the support

Theorem (Auffinger-Chen '13)

Suppose that ξ satisfies $1 / \sqrt{2}<\beta_{2} \leq 3 / 2 \sqrt{2}$ and

$$
\frac{\xi^{\prime \prime \prime}(1)}{6}+\frac{2}{3} \sqrt{\xi^{\prime \prime}(1)} \leq 1 .
$$

Then the Parisi measure has a jump discontinuity at q_{M}.

Example (SK model)

If $1 / \sqrt{2}<\beta_{2} \leq 3 / 2 \sqrt{2}$, then q_{M} is a jump discontinuity.
Whether there are infinitely many points in the support of μ_{P} or not is still unclear.

Our results: top of the support

Theorem (Auffinger-Chen '13)

Suppose that ξ satisfies $1 / \sqrt{2}<\beta_{2} \leq 3 / 2 \sqrt{2}$ and

$$
\frac{\xi^{\prime \prime \prime}(1)}{6}+\frac{2}{3} \sqrt{\xi^{\prime \prime}(1)} \leq 1 .
$$

Then the Parisi measure has a jump discontinuity at q_{M}.

Example (SK model)

If $1 / \sqrt{2}<\beta_{2} \leq 3 / 2 \sqrt{2}$, then q_{M} is a jump discontinuity.
Whether there are infinitely many points in the support of μ_{P} or not is still unclear.

The Parisi formula

Recall Parisi's formula says

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N}=\inf _{\mu \in M[0,1]} \mathcal{P}(\mu)
$$

where

- $\mathcal{P}(\mu):=\Phi_{\mu}(0,0)-\frac{1}{2} \int_{0}^{1} q \xi^{\prime \prime}(q) \mu([0, q]) d q$.
- $\Phi_{\mu}(q, x)$ is the solution to the Parisi PDE,

$$
\begin{aligned}
\partial_{q} \Phi_{\mu}(q, x) & =-\frac{\xi^{\prime \prime}(q)}{2}\left(\partial_{x x} \Phi_{\mu}(q, x)+\mu([0, q])\left(\partial_{x} \Phi_{\mu}(q, x)\right)^{2}\right) \\
\Phi_{\mu}(1, x) & =\log \cosh x
\end{aligned}
$$

To prove the uniqueness of the Parisi measure, it suffices to show that $\mu \mapsto \Phi_{\mu}(0,0)$ defines a strictly convex functional on $M[0,1]$! (Conjectured by

The Parisi formula

Recall Parisi's formula says

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N}=\inf _{\mu \in M[0,1]} \mathcal{P}(\mu)
$$

where

- $\mathcal{P}(\mu):=\Phi_{\mu}(0,0)-\frac{1}{2} \int_{0}^{1} q \xi^{\prime \prime}(q) \mu([0, q]) d q$.
- $\Phi_{\mu}(q, x)$ is the solution to the Parisi PDE,

$$
\begin{aligned}
\partial_{q} \Phi_{\mu}(q, x) & =-\frac{\xi^{\prime \prime}(q)}{2}\left(\partial_{x x} \Phi_{\mu}(q, x)+\mu([0, q])\left(\partial_{x} \Phi_{\mu}(q, x)\right)^{2}\right) \\
\Phi_{\mu}(1, x) & =\log \cosh x
\end{aligned}
$$

To prove the uniqueness of the Parisi measure, it suffices to show that $\mu \mapsto \Phi_{\mu}(0,0)$ defines a strictly convex functional on $M[0,1]$! (Conjectured by Talagrand)

How to solve the Parisi PDE?

- Consider $\mu \in M([0,1])$,

- $\Phi(1, x)=\log \cosh x$.
- Using the Hopf-Cole transformation, for $q \in\left[q_{p}, q_{p+1}\right)$,

How to solve the Parisi PDE?

- Consider $\mu \in M([0,1])$,

- $\Phi(1, x)=\log \cosh x$.
- Using the Hopf-Cole transformation, for $q \in\left[q_{p}, q_{p+1}\right)$,

How to solve the Parisi PDE?

- Consider $\mu \in M([0,1])$,

- $\Phi(1, x)=\log \cosh x$.
- Using the Hopf-Cole transformation, for $q \in\left[q_{p}, q_{p+1}\right)$,

$$
\Phi(q, x)=\frac{1}{m_{p}} \log \mathbb{E} \exp m_{p} \Phi\left(q_{p+1}, x+z \sqrt{\xi^{\prime}\left(q_{p+1}\right)-\xi^{\prime}(q)}\right) .
$$

Know results

- Convexity along one-sided direction if we have stochastic dominance.
- Panchenko '05
- Chen '13
- Suppose that f is convex. Is the following convex?

- Approaches for Gaussian inequalities:
- Ornstein-Uhlenbeck semi-group
- Maximum principle in PDE
- We use tools from the stochastic optimal control theory.

Know results

- Convexity along one-sided direction if we have stochastic dominance.
- Panchenko '05
- Chen '13
- Suppose that f is convex. Is the following convex?

$$
m \mapsto \frac{1}{m} \log \mathbb{E} \exp m f(Z)
$$

- Approaches for Gaussian inequalities:
- Ornstein-Uhlenbeck semi-group
- Maximum principle in PDE
- We use tools from the stochastic optimal control theory.

Know results

- Convexity along one-sided direction if we have stochastic dominance.
- Panchenko '05
- Chen '13
- Suppose that f is convex. Is the following convex?

$$
m \mapsto \frac{1}{m} \log \mathbb{E} \exp m f(Z)
$$

- Approaches for Gaussian inequalities:
- Ornstein-Uhlenbeck semi-group
- Maximum principle in PDE
- We use tools from the stochastic optimal control theory.

Know results

- Convexity along one-sided direction if we have stochastic dominance.
- Panchenko '05
- Chen '13
- Suppose that f is convex. Is the following convex?

$$
m \mapsto \frac{1}{m} \log \mathbb{E} \exp m f(Z)
$$

- Approaches for Gaussian inequalities:
- Ornstein-Uhlenbeck semi-group
- Maximum principle in PDE
- We use tools from the stochastic optimal control theory.

Variational representation for Φ_{μ}

Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$
- $L_{\prime \prime}(u)=\frac{1}{2} \int^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$.

Theorem (Variational representation for the Parisi PDE)

$$
\Phi_{\mu}(s, x)=\max _{u \in D[s, t]} F_{\mu}(u, x) .
$$

The maximum is attained by $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{s \leq w \leq t}$ satisfies

$$
X(w)=x+\int_{s}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{s}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Variational representation for Φ_{μ}

Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$
- $L_{.}(u)=\frac{1}{2} \int^{t} u([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$

Theorem (Variational representation for the Parisi PDE)

$$
\Phi_{\mu}(s, x)=\max _{u \in D[s, t]} F_{\mu}(u, x) .
$$

The maximum is attained by $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{s \leq w \leq t}$ satisfies

$$
X(w)=x+\int_{s}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{s}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r)
$$

Variational representation for Φ_{μ}
Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d w(w)\right)$
- $L_{\mu}(u)=\frac{1}{2} \int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$

Theorem (Variational representation for the Parisi PDE)

The maximum is attained by $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{s \leq w \leq t}$ satisfies

$$
X(w)=x+\int_{s}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{s}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Variational representation for Φ_{μ}

Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$

Theorem (Variational representation for the Parisi PDE)

The maximum is attained by $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{s \leq w \leq t}$ satisfies

$$
X(w)=x+\int_{s}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{s}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Variational representation for Φ_{μ}

Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.

Theorem (Variational representation for the Parisi PDE)

The maximum is attained by $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{s \leq w \leq t}$ satisfies

$$
X(w)=x+\int_{s}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{s}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Variational representation for Φ_{μ}

Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$.

Theorem (Variational representation for the Parisi PDE)

The maximum is attained by $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{s \leq w \leq t}$ satisfies

$$
X(w)=x+\int_{s}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{s}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Variational representation for Φ_{μ}

Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$.

Theorem (Variational representation for the Parisi PDE)

$$
\Phi_{\mu}(s, x)=\max _{u \in D[s, t]} F_{\mu}(u, x)
$$

The max
satisfies

Variational representation for Φ_{μ}

Let $\mu \in M[0,1]$. For $0 \leq s \leq t \leq 1$, define

- $D[s, t]$: all prog. meas. $u=(u(w))_{s \leq w \leq t}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\Phi_{\mu}\left(t, x+\int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{s}^{t} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{s}^{t} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$.

Theorem (Variational representation for the Parisi PDE)

$$
\Phi_{\mu}(s, x)=\max _{u \in D[s, t]} F_{\mu}(u, x)
$$

The maximum is attained by $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{s \leq w \leq t}$ satisfies

$$
X(w)=x+\int_{s}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{s}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Proof of convexity of $\mathcal{P}(\mu)$

Let $s=0$ and $t=1$.

- $D[0,1]$: all prog. meas. $u=(u(w))_{0 \leq w \leq 1}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\log \cosh \left(x+\int_{0}^{1} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{0}^{1} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{0}^{1} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$.

Let $\mu_{\theta}:=(1-\theta) \mu_{0}+\theta \mu_{1}$. Then

Proof of convexity of $\mathcal{P}(\mu)$

Let $s=0$ and $t=1$.

- $D[0,1]$: all prog. meas. $u=(u(w))_{0 \leq w \leq 1}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\log \cosh \left(x+\int_{0}^{1} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{0}^{1} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{0}^{1} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$.

Let $\mu_{\theta}:=(1-\theta) \mu_{0}+\theta \mu_{1}$. Then

$$
\begin{aligned}
C_{\mu_{\theta}}(u, x) & \leq(1-\theta) C_{\mu_{0}}(u, x)+\theta C_{\mu_{1}}(u, x) \\
L_{\mu_{\theta}}(u) & =(1-\theta) L_{\mu_{0}}(u)+\theta L_{\mu_{1}}(u)
\end{aligned}
$$

Proof of convexity of $\mathcal{P}(\mu)$

Let $s=0$ and $t=1$.

- $D[0,1]$: all prog. meas. $u=(u(w))_{0 \leq w \leq 1}$ w.r.t. W with $\|u\|_{\infty} \leq 1$.
- $C_{\mu}(u, x)=\log \cosh \left(x+\int_{0}^{1} \mu([0, w]) \xi^{\prime \prime}(w) u(w) d w+\int_{0}^{1} \xi^{\prime \prime}(w)^{1 / 2} d W(w)\right)$.
- $L_{\mu}(u)=\frac{1}{2} \int_{0}^{1} \mu([0, w]) \xi^{\prime \prime}(w) u(w)^{2} d w$.
- $F_{\mu}(u, x)=\mathbb{E}\left(C_{\mu}(u, x)-L_{\mu}(u)\right)$.

Let $\mu_{\theta}:=(1-\theta) \mu_{0}+\theta \mu_{1}$. Then

$$
\begin{aligned}
C_{\mu_{\theta}}(u, x) & \leq(1-\theta) C_{\mu_{0}}(u, x)+\theta C_{\mu_{1}}(u, x), \\
L_{\mu_{\theta}}(u) & =(1-\theta) L_{\mu_{0}}(u)+\theta L_{\mu_{1}}(u) .
\end{aligned}
$$

So

$$
\begin{aligned}
F_{\mu_{\theta}}(u, x) & \leq(1-\theta) F_{\mu_{0}}(u, x)+\theta F_{\mu_{1}}(u, x) \\
\Rightarrow \Phi_{\mu_{\theta}}(0, x) & \leq(1-\theta) \Phi_{\mu_{0}}(0, x)+\theta \Phi_{\mu_{1}}(0, x)
\end{aligned}
$$

Proof of strict convexity of $\mathcal{P}(\mu)$

- Assume distinct $\mu_{0}, \mu_{1} \in M[0,1]$ and $\theta \in(0,1)$.
- Let $\gamma=\min \left\{s \in[0,1]: \mu_{0}([0, r])=\mu_{1}([0, r])\right.$ for $\left.r \in[s, 1]\right\}$. implies, for instance,

Key computation:

Proof of strict convexity of $\mathcal{P}(\mu)$

- Assume distinct $\mu_{0}, \mu_{1} \in M[0,1]$ and $\theta \in(0,1)$.
- Let $\gamma=\min \left\{s \in[0,1]: \mu_{0}([0, r])=\mu_{1}([0, r])\right.$ for $\left.r \in[s, 1]\right\}$.
- If $\Phi_{\mu_{\theta}}(0, x)=(1-\theta) \Phi_{\mu_{0}}(0, x)+\theta \Phi_{\mu_{1}}(0, x)$, then the uniqueness of $u_{\mu_{0}}^{*}, u_{\mu_{\theta}}^{*}, \mu_{\mu_{1}}^{*}$ implies, for instance,

$$
\partial_{x} \Phi_{\mu_{0}}\left(r, X_{\mu_{0}}(r)\right)=u_{\mu_{0}}^{*}(r)=u_{\mu_{\theta}}^{*}(r)=\partial_{x} \Phi_{\mu_{\theta}}\left(r, X_{\mu_{\theta}}(r)\right), \forall r \in[0, \gamma] .
$$

Key computation:

$\Rightarrow \mu_{1}([0, r])=\mu_{\theta}([0, r])$ on $[0, \gamma]$.

Proof of strict convexity of $\mathcal{P}(\mu)$

- Assume distinct $\mu_{0}, \mu_{1} \in M[0,1]$ and $\theta \in(0,1)$.
- Let $\gamma=\min \left\{s \in[0,1]: \mu_{0}([0, r])=\mu_{1}([0, r])\right.$ for $\left.r \in[s, 1]\right\}$.
- If $\Phi_{\mu_{\theta}}(0, x)=(1-\theta) \Phi_{\mu_{0}}(0, x)+\theta \Phi_{\mu_{1}}(0, x)$, then the uniqueness of $u_{\mu_{0}}^{*}, u_{\mu_{\theta}}^{*}, \mu_{\mu_{1}}^{*}$ implies, for instance,

$$
\partial_{x} \Phi_{\mu_{0}}\left(r, X_{\mu_{0}}(r)\right)=u_{\mu_{0}}^{*}(r)=u_{\mu_{\theta}}^{*}(r)=\partial_{x} \Phi_{\mu_{\theta}}\left(r, X_{\mu_{\theta}}(r)\right), \forall r \in[0, \gamma] .
$$

Key computation:

$$
\begin{aligned}
& d \partial_{x} \Phi_{\mu}(r, X(r))=\xi^{\prime \prime}(r)^{1 / 2} \partial_{x x} \Phi_{\mu}(r, X(r)) d B(r), \forall \mu \in M[0,1] \\
\Rightarrow & \partial_{x x} \Phi_{\mu_{0}}\left(r, X_{\mu_{0}}(r)\right)=\partial_{x x} \Phi_{\mu_{\theta}}\left(r, X_{\mu_{\theta}}(r)\right) .
\end{aligned}
$$

Proof of strict convexity of $\mathcal{P}(\mu)$

- Assume distinct $\mu_{0}, \mu_{1} \in M[0,1]$ and $\theta \in(0,1)$.
- Let $\gamma=\min \left\{s \in[0,1]: \mu_{0}([0, r])=\mu_{1}([0, r])\right.$ for $\left.r \in[s, 1]\right\}$.
- If $\Phi_{\mu_{\theta}}(0, x)=(1-\theta) \Phi_{\mu_{0}}(0, x)+\theta \Phi_{\mu_{1}}(0, x)$, then the uniqueness of $u_{\mu_{0}}^{*}, u_{\mu_{\theta}}^{*}, \mu_{\mu_{1}}^{*}$ implies, for instance,

$$
\partial_{x} \Phi_{\mu_{0}}\left(r, X_{\mu_{0}}(r)\right)=u_{\mu_{0}}^{*}(r)=u_{\mu_{\theta}}^{*}(r)=\partial_{x} \Phi_{\mu_{\theta}}\left(r, X_{\mu_{\theta}}(r)\right), \forall r \in[0, \gamma] .
$$

Key computation:

$$
\begin{aligned}
& d \partial_{x} \Phi_{\mu}(r, X(r))=\xi^{\prime \prime}(r)^{1 / 2} \partial_{x x} \Phi_{\mu}(r, X(r)) d B(r), \forall \mu \in M[0,1] \\
\Rightarrow & \partial_{x x} \Phi_{\mu_{0}}\left(r, X_{\mu_{0}}(r)\right)=\partial_{x x} \Phi_{\mu_{\theta}}\left(r, X_{\mu_{\theta}}(r)\right) .
\end{aligned}
$$

$$
\begin{aligned}
d \partial_{x x} \Phi_{\mu}(r, X(r))= & -\mu([0, r]) \xi^{\prime \prime}(r)\left(\partial_{x x} \Phi_{\mu}(r, X(r))\right)^{2} d r \\
& +\xi^{\prime \prime}(r)^{1 / 2} \partial_{x^{3}} \Phi_{\mu}(r, X(r)) d B(r), \forall \mu \in M[0,1] . \\
\Rightarrow & \mu_{1}([0, r])=\mu_{\theta}([0, r]) \text { on }[0, \gamma] .
\end{aligned}
$$

In the simplest case

Theorem (Boué-Dupuis '98)

Let Z be standard Gaussian and $\left(W_{t}\right)_{0 \leq t \leq 1}$ be a standard $B M$,

$$
\log \mathbb{E} \exp f(Z)=\sup _{v} \mathbb{E}\left(f\left(W(1)+\int_{0}^{1} v(s) d s\right)-\frac{1}{2} \int_{0}^{1} v(s)^{2} d s\right)
$$

where the supremum is taken over all progressively measurable v w.r.t. W.
Using change of variables, $v=m u$,

In the simplest case

Theorem (Boué-Dupuis '98)

Let Z be standard Gaussian and $\left(W_{t}\right)_{0 \leq t \leq 1}$ be a standard BM,

$$
\log \mathbb{E} \exp f(Z)=\sup _{v} \mathbb{E}\left(f\left(W(1)+\int_{0}^{1} v(s) d s\right)-\frac{1}{2} \int_{0}^{1} v(s)^{2} d s\right)
$$

where the supremum is taken over all progressively measurable v w.r.t. W.
Using change of variables, $v=m u$,

$$
\begin{aligned}
\frac{1}{m} \log \mathbb{E} \exp m f(Z) & =\sup _{v} \mathbb{E}\left(f\left(W(1)+\int_{0}^{1} v(s) d s\right)-\frac{1}{2 m} \int_{0}^{1} v(s)^{2} d s\right) \\
& =\sup _{u} \mathbb{E}\left(f\left(W(1)+m \int_{0}^{1} u(s) d s\right)-\frac{m}{2} \int_{0}^{1} u(s)^{2} d s\right)
\end{aligned}
$$

A Gaussian inequality

Theorem (Auffinger-Chen '14)
Let $m_{0}, m_{1}>0$ and $\theta \in[0,1]$.

$$
f((1-\theta) x+\theta y) \leq(1-\theta) g(x)+\theta h(y),
$$

then

$$
\begin{aligned}
& \frac{1}{(1-\theta) m_{0}+\theta m_{1}} \log \mathbb{E} \exp \left((1-\theta) m_{0}+\theta m_{1}\right) f(Z) \\
\leq & \frac{1-\theta}{m_{0}} \log \mathbb{E} \exp m_{0} g(Z)+\frac{\theta}{m_{1}} \log \mathbb{E} \exp m_{1} h(Z) .
\end{aligned}
$$

Equivalently, if $F, G, H \geq 0$ and

$$
F((1-\theta) x+\theta y) \leq G(x)^{1-\theta} H(y)^{\theta} .
$$

then

$$
\|F\|_{(1-\theta) m_{0}+\theta m_{1}} \leq\|G\|_{m_{0}}^{1-\theta}\|H\|_{m_{1}}^{\theta} .
$$

A Gaussian inequality

Theorem (Auffinger-Chen '14)

Let $m_{0}, m_{1}>0$ and $\theta \in[0,1]$. If

$$
f((1-\theta) x+\theta y) \leq(1-\theta) g(x)+\theta h(y)
$$

then

$$
\begin{aligned}
& \frac{1}{(1-\theta) m_{0}+\theta m_{1}} \log \mathbb{E} \exp \left((1-\theta) m_{0}+\theta m_{1}\right) f(Z) \\
\leq & \frac{1-\theta}{m_{0}} \log \mathbb{E} \exp m_{0} g(Z)+\frac{\theta}{m_{1}} \log \mathbb{E} \exp m_{1} h(Z) .
\end{aligned}
$$

Equivalently, if $F, G, H \geq 0$ and
then

$$
\|F\|_{(1-\theta) m_{0}+\theta m_{1}} \leq\|G\|_{m_{0}}^{1-\theta}\|H\|_{m_{1}}^{\theta} .
$$

A Gaussian inequality

Theorem (Auffinger-Chen '14)

Let $m_{0}, m_{1}>0$ and $\theta \in[0,1]$. If

$$
f((1-\theta) x+\theta y) \leq(1-\theta) g(x)+\theta h(y)
$$

then

$$
\begin{aligned}
& \frac{1}{(1-\theta) m_{0}+\theta m_{1}} \log \mathbb{E} \exp \left((1-\theta) m_{0}+\theta m_{1}\right) f(Z) \\
\leq & \frac{1-\theta}{m_{0}} \log \mathbb{E} \exp m_{0} g(Z)+\frac{\theta}{m_{1}} \log \mathbb{E} \exp m_{1} h(Z) .
\end{aligned}
$$

Equivalently, if $F, G, H \geq 0$ and

$$
F((1-\theta) x+\theta y) \leq G(x)^{1-\theta} H(y)^{\theta},
$$

then

$$
\|F\|_{(1-\theta) m_{0}+\theta m_{1}} \leq\|G\|_{m_{0}}^{1-\theta}\|H\|_{m_{1}}^{\theta} .
$$

Derivative of the Parisi functional

Consider the mixed p-spin model with external field h. Let $s=0$ and $t=1$. Write

$$
\mathcal{P}(\mu)=\log 2+\max _{u \in D[0,1]}\left(F_{\mu}(u, h)-\frac{1}{2} \int_{0}^{1} \mu([0, w]) w \xi^{\prime \prime}(w) d w\right)
$$

Idea: Define $f(x)=\max _{y \in A} g(x, y)$. Assume that $\exists y(x)$ such that $f(x)=g(x, y(x))$. Then

$$
f^{\prime}(x)=\partial_{x} g(x, y(x))+y^{\prime}(x) \partial_{y} g(x, y(x))
$$

Derivative of the Parisi functional

Consider the mixed p-spin model with external field h. Let $s=0$ and $t=1$. Write

$$
\mathcal{P}(\mu)=\log 2+\max _{u \in D[0,1]}\left(F_{\mu}(u, h)-\frac{1}{2} \int_{0}^{1} \mu([0, w]) w \xi^{\prime \prime}(w) d w\right)
$$

Idea: Define $f(x)=\max _{y \in A} g(x, y)$. Assume that $\exists y(x)$ such that $f(x)=g(x, y(x))$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\partial_{x} g(x, y(x))+y^{\prime}(x) \partial_{y} g(x, y(x)) \\
& =\partial_{x} g(x, y(x))
\end{aligned}
$$

Recall $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{0 \leq w \leq 1}$ satisfies

$$
X(w)=x+\int_{0}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{0}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Theorem (Chen '14)

Let $\mu_{0} \in M[0,1]$. For $\mu \in M[0,1]$, define $\mu_{\theta}=(1-\theta) \mu_{0}+\theta \mu, \forall \theta \in[0,1]$. Then

$$
\left.\frac{d}{d \theta} \mathcal{P}\left(\mu_{\theta}\right)\right|_{\theta=0}=\frac{1}{2} \int_{0}^{1} \xi^{\prime \prime}(r)\left(\mu([0, r])-\mu_{0}([0, r])\right)\left(\mathbb{E} u_{\mu_{0}}^{*}(r)^{2}-r\right) d r
$$

TFAE:

- μ_{0} is the Parisi measure.
- $\left.\frac{d}{d \theta} \mathcal{P}\left(\mu_{\theta}\right)\right|_{0-0} \geq 0$ for all $\mu \in \mathcal{M}$.
- $\left.\frac{d}{d \theta} \mathcal{P}\left(\mu_{\theta}\right)\right|_{\theta=0} \geq 0$ for all $\mu=\delta_{q}$ with $q \in[0,1]$.

Recall $u_{\mu}^{*}(w)=\partial_{x} \Phi_{\mu}(w, X(w))$, where $(X(w))_{0 \leq w \leq 1}$ satisfies

$$
X(w)=x+\int_{0}^{w} \alpha(r) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu}(r, X(r)) d r+\int_{0}^{w} \xi^{\prime \prime}(r)^{1 / 2} d B(r) .
$$

Theorem (Chen '14)

Let $\mu_{0} \in M[0,1]$. For $\mu \in M[0,1]$, define $\mu_{\theta}=(1-\theta) \mu_{0}+\theta \mu, \forall \theta \in[0,1]$. Then

$$
\left.\frac{d}{d \theta} \mathcal{P}\left(\mu_{\theta}\right)\right|_{\theta=0}=\frac{1}{2} \int_{0}^{1} \xi^{\prime \prime}(r)\left(\mu([0, r])-\mu_{0}([0, r])\right)\left(\mathbb{E} u_{\mu_{0}}^{*}(r)^{2}-r\right) d r
$$

TFAE:

- μ_{0} is the Parisi measure.
- $\left.\frac{d}{d \theta} \mathcal{P}\left(\mu_{\theta}\right)\right|_{\theta=0} \geq 0$ for all $\mu \in \mathcal{M}$.
- $\left.\frac{d}{d \theta} \mathcal{P}\left(\mu_{\theta}\right)\right|_{\theta=0} \geq 0$ for all $\mu=\delta_{q}$ with $q \in[0,1]$.

First conclusion

Theorem (Chen '14)

For all q in the support of μ_{P},

$$
\begin{array}{r}
\mathbb{E} \partial_{x} \Phi_{\mu_{P}}(q, X(q))^{2}=q, \\
\xi^{\prime \prime}(q) \mathbb{E} \partial_{x x} \Phi_{\mu_{P}}(q, X(q))^{2} \leq 1
\end{array}
$$

where for all $s \in[0,1]$,

$$
X(s)=h+\int_{0}^{s} \mu_{P}([0, r]) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu_{P}}(w, X(w)) d w+\int_{0}^{s} \xi^{\prime \prime}(w)^{1 / 2} d W(w)
$$

Assume SK, i.e., $\xi(x)=\beta^{2} x^{2}$. Then

- Toninelli '02: If $\mu_{P}=\delta_{q}$ for some $q \in[0,1]$, then

- If $h=0$, then Replica symmetry solution iff $\beta \leq 1 / \sqrt{2}$.

First conclusion

Theorem (Chen '14)

For all q in the support of μ_{P},

$$
\begin{array}{r}
\mathbb{E} \partial_{x} \Phi_{\mu_{P}}(q, X(q))^{2}=q \\
\xi^{\prime \prime}(q) \mathbb{E} \partial_{x x} \Phi_{\mu_{P}}(q, X(q))^{2} \leq 1
\end{array}
$$

where for all $s \in[0,1]$,

$$
X(s)=h+\int_{0}^{s} \mu_{P}([0, r]) \xi^{\prime \prime}(r) \partial_{x} \Phi_{\mu_{P}}(w, X(w)) d w+\int_{0}^{s} \xi^{\prime \prime}(w)^{1 / 2} d W(w)
$$

Assume SK, i.e., $\xi(x)=\beta^{2} x^{2}$. Then

- Toninelli '02: If $\mu_{P}=\delta_{q}$ for some $q \in[0,1]$, then

$$
\begin{aligned}
\mathbb{E} \tanh ^{2}(\beta z \sqrt{2 q}+h) & =q, \\
\beta^{2} \mathbb{E} \frac{1}{\cosh ^{4}(\beta z \sqrt{2 q}+h)} & \leq 1 \text { (AT line). }
\end{aligned}
$$

- If $h=0$, then Replica symmetry solution iff $\beta \leq 1 / \sqrt{2}$.

Second conclusion

For $k \geq 0$, set

$$
M_{k}[0,1]=\{\text { atomic } \mu \in M[0,1] \text { with at most } k+1 \text { atoms }\}
$$

Theorem (Chen '14)

If $\inf _{\mu \in M_{k+1}[0,1]} \mathcal{P}(\mu)=\mathcal{P}\left(\mu_{0}\right)$ for some $\mu_{0} \in M_{k}[0,1]$, then μ_{0} is the Parisi теаsure.

New result on positivity of the overlap

Positivity holds in the following situations:

- Strong positivity: mixed even p-spin model and $h \neq 0$. (Talagrand)
- Weak positivity: generic mixed p-spin model, $\beta_{p} \neq 0, \forall p \geq 2$.
is nondecreasing for $s \in(0,1]$. If ξ is not even, then

New result on positivity of the overlap

Positivity holds in the following situations:

- Strong positivity: mixed even p-spin model and $h \neq 0$. (Talagrand)
- Weak positivity: generic mixed p-spin model, $\beta_{p} \neq 0, \forall p \geq 2$.

Theorem (Chen '14)

Let $q^{*}=\min \operatorname{supp} \mu_{P}$. Suppose that ξ is convex on $[-1,1]$ and

$$
\frac{\xi^{\prime \prime}(s)}{\xi^{\prime \prime}(s)+\xi^{\prime \prime}(-s)}
$$

is nondecreasing for $s \in(0,1]$. If ξ is not even, then

$$
\mathbb{E} G_{N}^{\otimes 2}\left(\left(\boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2}\right): R\left(\boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2}\right)<q^{*}-\varepsilon\right) \leq K \exp \left(-\frac{N}{K}\right)
$$

New result on positivity of the overlap

Positivity holds in the following situations:

- Strong positivity: mixed even p-spin model and $h \neq 0$. (Talagrand)
- Weak positivity: generic mixed p-spin model, $\beta_{p} \neq 0, \forall p \geq 2$.

Theorem (Chen '14)

Let $q^{*}=\min \operatorname{supp} \mu_{P}$. Suppose that ξ is convex on $[-1,1]$ and

$$
\frac{\xi^{\prime \prime}(s)}{\xi^{\prime \prime}(s)+\xi^{\prime \prime}(-s)}
$$

is nondecreasing for $s \in(0,1]$. If ξ is not even, then

$$
\mathbb{E} G_{N}^{\otimes 2}\left(\left(\boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2}\right): R\left(\boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2}\right)<q^{*}-\varepsilon\right) \leq K \exp \left(-\frac{N}{K}\right)
$$

Note: We do not require $h \neq 0$.

Positivity holds in different nature

Figure: Positivity of the SK model with $h \neq 0$

Example

$\xi(x)=\beta_{2 p}^{2} x^{2 p}+\beta_{2 p+1}^{2} x^{2 p+1}$ on $[-1,1]$, where $(2 p+1) \beta_{2 p+1}^{2}<(2 p-1) \beta_{2 p}^{2}$.

Figure: Positivity of the $(4+5)$-spin model with $h=0$.

