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Abstract—The deployment of alternative, low-cost RF test
methods in industry has been, to date, rather limited. This is
due to the potentially impaired ability to identify device pass/fail
labels when departing from traditional specification test. By
relying on alternative tests, pass/fail labels must be derived
indirectly through new test limits defined for the alternative tests,
which may incur error in the form of test escapes or yield loss.
Clearly, estimating these test metrics as early as possible in the
test development process is key to the success of an alternative
test approach. In this work, we employ a test metrics estimation
technique based on non-parametric kernel density estimation to
obtain such early estimates, and, for the first time, demonstrate
a real-world case study of test metric estimation efficiency at
parts-per-million levels. To achieve this, we employ a set of more
than 1 million RF devices fabricated by Texas Instruments, which
have been tested with both traditional specification tests as well
as alternative, low-cost On-chip RF Built-in Tests, or “ORBiTs”.

I. INTRODUCTION

In the post-silicon production flow, every integrated circuit

is thoroughly tested before it is shipped to the user, in order

to guarantee that it meets the original design specifications.

Testing targets the detection of defects that are due to the

various sources of imperfection in the fabrication technology.

Defects can range from catastrophic to parametric. The former

lead to a complete malfunction of the IC and, typically,

can be detected by simple tests. The latter are caused by

excessive process variations that may bring some or all of

the specifications outside the allowable limits. Parametric

defects are considerably harder to detect. For the case of RF

circuits, the current practice is to measure directly the specified

performances that are promised in the data sheet. Although

this approach is highly accurate, it comes at the expense of a

very high cost, which can amount up to 50% of the overall

production cost according to anecdotal evidence. Given that

RF circuits typically occupy less than 5% of the die area, it

is unsurprising that the reduction of RF test cost is an area of

focus and innovation for the semiconductor industry [1], [2].

The high cost of RF test is due to the expensive and sophis-

ticated automated test equipment that is required, on one hand,

and due to the lengthy test times that result from a sequential

measurement approach, on the other hand. Recently, there has

been an intensified effort to develop alternative test approaches

that relax the requirements on test equipment and/or reduce the

associated test times. Among others, the built-in test solution

is perhaps the most promising and advantageous [3]–[6]. It

relies on extracting on-chip digital, DC or low-frequency test

signatures that carry RF information. Thereafter, these test

signatures can be transported off-chip and processed by an

inexpensive tester with minimum requirements.

Despite the number of alternative RF test approaches which

have been proposed to date, the industry seems reluctant to

replace the current test approach. The primary reason is the

lack of automated tools for evaluating a new test approach fast

and early at the design and test development phases, before

moving to production test. It may be easy to estimate the

area overhead incurred by a built-in test solution and to study

to what degree it degrades the device performances, yet it

is extremely difficult to estimate the incurred indirect costs,

that is, the resulting test errors. A new test approach should

reduce test cost without sacrificing test accuracy, that is, it

should result in minimum test escape TE (e.g. faulty devices

that pass the test) and yield loss YL (e.g. functional devices

that fail the test).

This paper presents a case study of test metrics estimation.

Specifically, the aim is to prove the equivalence of low-cost

On-chip RF Built-in Tests (ORBiTs) to the traditional RF

specification tests, based solely on a small data set obtained

at the onset of production. Our initial judgement is confirmed

on a much larger data set containing more than 1 million

Bluetooth/Wireless LAN devices fabricated by Texas Instru-

ments. In Section II, we explain the challenges of providing

early and accurate test metric estimates and we provide an

overview of the case study. In Section III, we discuss the

problem of setting limits on ORBiTs. In Section IV, we detail

the test metrics estimation method which we leverage to obtain

accurate early estimates at low cost. In Section V, we define

a feature selection method which we use to focus our analysis

on subsets of ORBiTs. Finally, in Section VI, we provide

experimental validation of the test metric estimation method.

II. PROVING THE EFFICIENCY OF ALTERNATIVE TESTS

Consider, for example, an arbitrary candidate alternative

test system f(·) shown in Figure 1, which operates on the

device under test Di and maps a collected set of alternative

measurements Xi to device labels yi, identifying each device

as passing or failing. Such a system will realize a classification

efficiency in terms of TE and YL, which are simply measures

on the incorrectly labeled devices.
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Fig. 1. Candidate alternative test system
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The most readily obvious way to characterize the alternative

test system under consideration and obtain accurate, parts-per-

million (ppm) test metric estimates is to take a very large set of

fabricated devices, say 1 million, and apply the alternative test

system to each device, recording test metrics on each, as shown

in Figure 2. However, this is not a sustainable practice for

evaluating candidate alternative test systems. Indeed, through

this analysis we may ultimately conclude that the alternative

test system ends up having unacceptably large test metrics, in

which case we have inadvertently wasted a great deal of test

resources and test time.
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Fig. 2. Obtaining parts-per-million test metric estimates

Furthermore, the estimation of test escapes and yield loss in

a simulation environment is difficult because these events are

“rare” and cannot quickly be reproduced with high fidelity.

Typically, a robust design will result in a very small defect

level (e.g. percentage of devices that are faulty), on the order

of a few thousands of faulty ppm. Thus, the test escape

rate is typically in the order of a few hundreds ppm, which

corresponds to a probability of around 10−5. Similarly, a

decent test will fail a small fraction of the functional devices,

which corresponds to a yield loss probability of a similar order.

This implies that millions of Monte Carlo simulations are

needed to estimate such low probabilities with the required

accuracy, which is clearly computationally infeasible. Most

often, practitioners examine the behavior of tests for a few

corner cases, but this approach does not reveal the full truth

since a process design kit has dozens of parameters which

implies a intractable number of corner cases.

In this work, we employ a general technique for obtaining

ppm test metric estimates, originally developed in [7], and

we examine for the first time its potential on a real-world

case study. This technique is able to elegantly achieve the

objective of providing such accurate estimates, as in Figure

2, while reducing the required investment, that is, without the

extreme cost associated with having to consider millions of

fabricated devices. It is based on the statistical methodology of

non-parametric kernel density estimation (NKDE), as shown

in Figure 3. The underlying idea is to rely on a small set

of representative devices to estimate the joint non-parametric

probability density function of specified performances and

alternative tests. Thereafter, the estimated density is sampled

to generate a large synthetic set of device instances from

which one can readily compute test metrics using relative

frequencies.

Moreover, we are able to provide a case study demonstrating

equivalence of our proposed system of Figure 3 and the true

ppm metrics obtained via explicitly testing 1 million devices in

Figure 2. The case study concerns a Bluetooth/Wireless LAN

device from Texas Instruments for which a set of ORBiTs [6]

are developed to replace the costly standard specification tests.

We have at hand measured data from more than one million

device instances. These measured data include the specified

performances and the ORBiTs. Thus, we have sufficient in-

formation to compute the true test metrics resulting from the

replacement of specification tests with the lower-cost ORBiTs

alternatives.
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Fig. 3. Low-cost method for obtaining parts-per-million test metric estimates

The ORBiTs have been proven to be generally very efficient

in such replacements, but this knowledge was acquired only

after measuring millions of RF device instances with the

dedicated built-in test circuitry. In this paper, we try to answer

the following question: Is it possible to estimate values of

the test metrics close to true ones while employing in the

analysis a small set of RF devices that we obtain at the onset

of production? In this case, we will be able to decide on

the efficiency of the ORBiTs early in the process without

having to wait for a large volume of silicon data to reach

a safe conclusion. This type of proactive analysis is very

important in cases where the alternative tests are found later

on to be inefficient. It allows to convince test engineers about

the efficiency of an approach, to identify shortcomings and

come up with remedies for refining an approach, or abandon

an approach altogether if it is deemed not to be equivalent to

the standard specification test approach.

III. SETTING TEST LIMITS ON ORBITS

Before explaining the test metric estimation approach of

Figure 3, it is necessary to define the alternative test system

f(·) being employed and the means of mapping ORBiT

measurements to pass/fail labels, e.g. via setting test limits.

The ORBiTs are internal tests designed to replace expensive

traditional specification tests by self-testing the device with

hardware available on-die. Specifically, the ORBiTs are tar-

geted at two RF cores: a Bluetooth radio and wireless LAN

radio, which are components in a much larger device con-

taining an ARM core. The ARM core is used in conjunction

with on-die test structures to compute test outcomes; thus, the

ORBiTs are entirely internal to the device, and only the test

results are reported externally. Further information about the

ORBiTs employed can be found in [6].

Consider a specification performance P which we wish

to replace with the ORBiT set X = {f1, f2, . . . , fd0
}. If a

subset of X were to contain all the information necessary to

correctly label each device as passing or failing with the same

efficiency as P , it would be a trivial task to set test limits

and incur no additional test escapes or yield loss by reliance

on the system f(·). In reality, any ORBiT replacement for

P is likely to be imperfectly correlated, and therefore realize
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slightly increased error metrics. Ultimately, the resultant test

metrics become a function of the test limits imposed on the

ORBiTs. Therefore, before investigating the technique for

estimating error metrics, we must fully specify the test limits

and alternative test system f(·) we are using. However, we

remind the reader that the particular choice of test limit-setting

technique is largely auxiliary to the primary objective of this

work, in that we are interested in estimating test metrics.

An intuitive approach to defining f(·) is to carefully set

a limit on each individual ORBiT, as one would do with

traditional specification tests. This would result in a hyper-

rectangle acceptance area in the space of ORBiTs, as depicted

for the specification test space in Figure 4. However, one has

to take into consideration that ORBiTs are alternative tests

that are not specified in the data sheet. To this end, one

has to set the limits on ORBiTs such that the faulty devices

are separated from the functional ones, where the labels are

assigned according to the actual specification test limits. Since

the ORBiTs space is a complex translation of the specification

test space, the separation boundary becomes highly irregular

and non-linear and, thereby, a hyper-rectangle would be a

crude approximation that inadvertently would give rise to test

errors. Indeed, the passing subspace may even be non-convex

in the ORBiT space or imperfectly defined if the ORBiTs do

not capture all the same information latent in the specification

tests.
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Fig. 4. Specification boundary translation

In this work, we improve on the limit-setting approach

by implicitly learning the complex boundary which defines

passing and failing regions in the ORBiT space [8], instead

of explicitly defining it as a hyper-rectangle. By relying on

machine learning, we are readily able to capture the non-

linear, complex and possibly non-convex nature of the limits

in ORBiT test space and avoid the test escape and yield loss

shown in Figure 4. Specifically, we train a support vector

machine (SVM) [9] to learn the boundary. As will be described

in greater detail in section VI-E, the training phase employs

an information-rich synthetic set of device instances that is

generated through statistical simulation. This set comprises

marginal instances whose footprints in the ORBiT space

cover the areas around the true separation boundary [10] and,

thereby, they allow a good approximation of this boundary.

IV. TEST METRICS ESTIMATION METHOD

With the machine learning approach to setting test limits

defined in section III, we can readily proceed to evaluating

the test error metrics introduced. As noted in the Introduction,

test metrics can be on the order of hundreds of ppm, which

is likely beyond the capacity of a small device data set to

capture. However, this reliance on small data sets for validation

is understandable given the very costly alternative of validating

on a data set with hundreds of thousands or millions of devices,

which would require both ORBiT and traditional specification

tests to be collected on every device in the validation set.

Clearly this is a non-trivial cost overhead simply to prove the

efficacy of the chosen test limits.

It is in this context that we introduce a novel methodology

originally proposed in [7] to obtain test metric estimates with

ppm accuracy, while side-stepping the cost associated with

exhaustively testing millions of devices. This technique, based

on NKDE, permits dramatically enriching the validation set

with synthetic device instances reflective of the true device

population. With this large synthetic device set in hand, we are

able to produce test metric estimates using relative frequencies.

In particular, if we denote by N , Nfp, and Ngf the size of the

synthetic device set, the number of faulty devices in this set

that pass the ORBiTs, and the number of functional devices in

this set that fail the ORBiTs, respectively, then TE ≈ Nfp/N
and YL ≈ Ngf/N .

NKDE relies on a small Monte Carlo run (e.g. on the order

of a few thousands devices) to generate a synthetic device

sample with population statistics nearly identical to the 106-

order population we are unable to simulate. The underlying

idea is to estimate the joint probability density function of

ORBiTs and specification tests based on the small Monte Carlo

run. Instead of assuming a specific parametric form for the

probability density function (e.g. Gaussian), NKDE makes no

a priori assumptions and allows the available simulation data

to speak for themselves.

Formally, let x denote the vector comprising the ORBiTs

and specification tests and let xi, i = 1, . . . , n, denote n
available observations of x. We first position an Epanechnikov

kernel centered on each observation defined by

Ke(t) =

{

1
2c

−1
d (d+ 2)(1− tT t) If tT t < 1

0 Otherwise
(1)

where cd = 2πd/2/(d·Γ(d/2)) is the volume of the the unit d-

dimensional sphere, and d is the dimensionality of x. Then, we

introduce a non-parametric estimate f̃(x) of the true density

f(x) as the normalized sum of all observation-centered kernel

functions

f̃(x) =
1

nhd

n
∑

i=1

Ke

(

1

h
(x− xi)

)

(2)

where h is a smoothing parameter known as bandwidth. It can

be shown that f̃(x) converges to f(x) as n → ∞ for a proper

choice of h. The interested reader is referred to [7], [11] for

an in-depth discussion.

Thereafter, we can repeatedly sample (e.g. simulate) f̃(x)
to obtain new observations of x, thus generating a synthetic
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population of devices of arbitrary size. Millions of samples

can be generated in a few minutes using a standard desktop

PC. This is similar to generating random samples from a

Gaussian distribution in MATLAB, yet herein we derive

the original probability density function without assuming a

specific parametric form.

V. FEATURE SELECTION

Often when dealing with early characterization data sets,

a large number of measurements are available which are

later pruned for the final test set. This provides a wealth

of data, but also presents a case of the well-known “curse

of dimensionality”, the law that by adding dimensions, one

exponentially increases data sparsity. This data sparsity can

cause learning algorithms to have high-variance classification

boundaries and poor generalization capability. Consider, for

example, an arbitrary ORBiT subspace as illustrated in Figure

5, containing only a single passing device A and failing device

B. Considering that only these two devices are available for

learning the boundary, our classifier might simply allocate

a straight line boundary separating these two points (shown

in the figure as the dotted line), where the true boundary is

far more complex. Thus, classification learning algorithms are

often trained on some subset of the available features rather

than all of the available features, in order to concentrate the

data in a subspace and reduce the variance of the classification

boundary. A variety of methods exist to perform this pruning,

typically conditioned on the empirical classification error in

a hold-out set or some similar error measure in order to

determine an appropriate subset of features to retain.

O
1

O
2

B

A

Fig. 5. Allocation of boundaries in sparsely populated spaces

A key component of our analysis was to perform feature

selection on the very high dimensional space of available

ORBiTs, projecting device test signatures into a more reason-

able low dimensional subspace. Generally, feature selection

is a difficult problem, since the number of possible subsets

of features is 2d0 − 1, where d0 is the cardinality of the

complete feature set. With even a moderate number of features,

exhaustive search of the feature space is completely untenable.

An excellent review of various approaches to feature selection

is given in [12], and within the analog/RF test community

several heuristic methods have already been employed, such

as genetic algorithms [13].

In this work we make use of a supervised feature selection

method known as Laplacian score feature selection (LSFS)

[14] to rank ORBiTs and subsequently reduce dimensionality.

LSFS is a supervised feature selection technique which ranks

features according to their locality preserving power. It consid-

ers the passing and failing classes to define two neighborhoods

of locality in feature space. Formally, let

Xi = [f
(i)
1 , f

(i)
2 , . . . , f

(i)
d0

] (3)

denote the pattern of device instance i, i = 1, . . . , n, where n
is the total number of devices and d0 is the total number of

ORBiTs measured on these n devices. We will create a graph

where the i-th node corresponds to the i-th device instance.

Within the graph, we connect nodes i and j if device instances

i and j have the same class (passing or failing). We then

consider the similarity measure

Sij =

{

e−
||Xi−Xj ||

2

t Nodes i, j from same class

0 Otherwise
(4)

where t is a suitable constant1. For each feature fr, r =
1, . . . , d0, we calculate the Laplacian score

Lr :=

∑

i,j

(f (i)
r − f (j)

r )2Sij

σ2
fr

(5)

using the samples f
(1)
r , f

(2)
r , . . . , f

(n)
r , where σ2

fr
denotes the

variance of fr. We rank order the features according to their

Laplacian score Lr

L(1) ≤ L(2) ≤ . . . ≤ L(d0) (6)

such that

L(1) = min{L1, . . . , Ld0
} (7)

L(2) = min
(

{L1, . . . , Ld0
} − L(1)

)

(8)

...

L(d0) = min
(

{L1, . . . , Ld0
} − {L(1), . . . , L(r−1)}

)

(9)

Finally, we define a threshold τL on the Laplacian scores and

retain features that have L(i) ≤ τL. Let d
′

0 be the number of

retained features which are denoted by f
′

1, . . . , f
′

d
′
0

.

VI. EXPERIMENTAL RESULTS

A. Data set

To confirm the efficiency of our approach in providing early

estimates of test metrics, we employed a Texas Instruments

data set from a total of more than 1.1 million devices.

The devices are collected from 176 wafers and each wafer

has between 6,000 and 7,000 devices. For each device, the

data set contains the ORBiT measurements and the specified

performances in the data sheet. Specifically, there are 739

ORBiT measurements {f1, . . . , f739} and 367 performances

{P1, . . . , P367}.

Some ORBiT measurements and performances are discrete-

valued. The test metrics estimation method discussed in Sec-

tion IV is defined only for continuous variables. Therefore,

1Generally, we have found t = d0 to be an appropriate choice.
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in our analysis we considered only the continuous ORBiT

measurements and performances, which number 249 and 264,

respectively. Formally, let unique(Xi), unique(Pj) denote

the number of unique values observed across all devices in

hand for the i-th ORBiT measurement and j-th performance,

respectively. We consider only ORBiT measurements and

performances with more than 100 unique values, that is, we

define a threshold τD = 100 and we retain the ORBiT

measurements and performances that satisfy

unique(Xi) ≤ τD (10)

unique(Pj) ≤ τD (11)

B. Objective of the experiment

Recall that our objective is to predict the expected test

escape TE and yield loss YL test metrics if we replace the

specification tests under consideration by an ORBiT subset.

Consider T
(i)
E the predicted test escape in the case where the

specification test targeting performance Pi is replaced by an

ORBiT subset. Then, the global test escape rate satisfies the

following inequalities, measured in ppm

TE ≤ T
(1)
E + T

(2)
E + . . .+ T

(367)
E (12)

max
i

{T
(i)
E } ≤ TE (13)

Thus, if we can afford TE ≤ λ, using Equation (13) we can

conclude that the ORBiTs are inappropriate if maxi{T
(i)
E } >

λ. Conversely, if
∑

i T
(i)
E ≤ λ, then we can certainly use the

ORBiTs. In fact,
∑

i T
(i)
E represents a pessimistic upper bound

for the TE .

In our analysis, we focused on replacing the single most

sensitive specification test, that is, the test that corresponds

to most commonly failing performance across all wafers. We

denote this performance by P . To predict the test metrics,

we only use devices from the first wafer and we employ the

KNDE technique to generate 1 million additional synthetic de-

vices, in order to achieve ppm levels of accuracy, as illustrated

in Figure 3. We emphasize that our use of a single wafer is

purely to demonstrate the efficacy of the method in extremely

challenging circumstances; in reality this sample may include

an arbitrarily large training sample.

C. Removing Outliers

From the first training wafer, we remove outliers via a

“defect filter”, for two reasons. First, we do not wish outliers

with non-statistical signatures to have leverage over the feature

selection process; the retained features should excel at discern-

ing the more difficult parametric fails rather than the relatively

easy-to-detect catastrophic fails. Second, the test metrics esti-

mation method itself relies on estimating a probability density

function, thus we should avoid using outliers for this purpose

since they are non-statistical in nature and are not generated by

the same probability distribution which assumes only process

variations. To remove such outliers from the first training

wafer, let sl, su be the lower and upper specifications for P .

Then a device instance i will be removed if its performance

P (i) satisfies

P (i) > κu · su (14)

P (i) < κl · sl (15)

where κu and κl are appropriate user-defined constants.

Herein, we employ κu = κl = 3. This results in the removal

of approximately 3% of the device instances from the first

wafer training set. Note that this step is necessary only for

the training set, and subsequent outlier fails are not removed

in this fashion. Moreover, the proposed methodology is not

particularly sensitive to the choice of κu and κl as these limits

only serve to remove extreme outliers.

D. Reducing the dimensionality of ORBiTs

As discussed in section V, fitting a classifier boundary

in a sparse, high dimensional space can be error-prone due

to the consequent variance of the fitted class boundary. For

this purpose, we employ LSFS to reduce the dimensionality

of the problem. In particular, for each of the 249 ORBiTs,

we compute and rank the Laplacian scores as shown in

Figure 6. In this experiment, a threshold of τL = 0.01 was

chosen, which corresponds to retention of 7 ORBiTs. It should

be stressed that a lower dimensionality also maximizes the

efficacy of NKDE technique which is also vulnerable to the

“curse of dimensionality”.
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Fig. 6. Laplacian Scores

E. Information-rich training set

It turns out that even in relatively densely-populated spaces,

classifier performance can benefit by further increases in data

density. Specifically, it is not advisable to attempt to directly fit

a classification boundary to a severely unbalanced population,

as the classifier tends to always label subsequent instances as

the dominant class after training.

To combat this effect and improve classifier performance by

increasing data density in the training set, we employed non-

parametric density estimation to generate synthetic training

instances. To do this, we fit the joint probability density

function of vector x = [f
′

1, . . . , f
′

d
′
7

, P ] using the instances

from the first wafer. We sample the empirical probability

density function to generate an information-rich training set

that has a more balanced population of good, faulty, and
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critical devices across the decision boundary in a similar

fashion to the approach taken in [10].

F. Summary and Results

Assembling the preceding steps, we arrive at the complete

analysis approach shown in Figure 7. The training set is

employed to train the SVM classifier to assign limits on the 7

ORBiTs in the form of a hyper-surface boundary, as shown in

Figure 4. The limits are used to obtain the ground truth test

escape and yield loss values for each wafer, denoted by TE

and YL, respectively. These values are averaged to obtain the

ground truth ppm test escape and yield loss measured over the

complete device population in hand, denoted by TE and Y L,

respectively. The same limits are used on the synthetic device

set generated from the first wafer, in order to obtain early ppm

estimates of the test escape yield loss, denoted by T̂E and ŶL,

respectively.

Test Metrics Estimation Phase

739 ORBiT
367 Spec

Error Metric 
Estimates

f(·)

ϵ

First Wafer
249 ORBiT
264 Spec

Remove 
Discrete

7 ORBiT
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Synthetic Balanced
Population
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Set

Trained
Classifier

-3%
Devices

Remove 
Outliers

f(·)

1 Million
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Synthetic
Population

True
Error Metrics

f(·)

ϵ

1 Million
Devices

Actual
Population

Training Phase

Fig. 7. Summary of experimental approach

The results are shown in Figure 8. As can be observed,

test escape is slightly underestimated, and yield loss is very

slightly overestimated. Specifically, the true values are TE =
0.7286% and Y L = 4.387%, whereas the early estimates are

T̂E = 0.4302% and ŶL = 4.401%, that is, a difference of

∆TE = 0.2984% and ∆YL = −0.014%. We remind that

the objective of the paper is not to propose an alternative test

technique, but to evaluate a proposed alternative test technique

at an early phase. Moreover, we evaluated the scenario where a

subset of ORBiTs replaces the most sensitive specification test,

and not the general case where the complete suite of ORBiTs

is used to replace irrespectively all specification tests.

VII. CONCLUSION

In this work we presented a method for providing accurate,

parts-per-million estimates of test metrics without incurring

the cost associated with simulating or testing millions of

devices. A comparatively small set of RF devices from a

single wafer tested at the onset of production coupled with

the proposed NKDE-based sampling are used to generate

one million synthetic device samples, on which we are able

to evaluate test escape and yield loss test metric estimates.

Furthermore, we have demonstrated our test metric estimates

to be very close to the true values measured on more than one

million devices from Texas Instruments.

Fig. 8. Prediction across all wafers
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