DOI: 10.2478/awutm-2018-0020

Analele Universităţii de Vest, Timişoara
Seria Matematică - Informatică
LVI, 2, (2018), 131-150

On Ψ Bounded Solutions for a Nonlinear Lyapunov Matrix Differential Equation on \mathbb{R}

Aurel Diamandescu
Dedicated to Professor Mihail Megan on the occasion of his 70th birthday

Abstract

Using Banach and Schauder - Tychonoff fixed point theorems, existence results for a nonlinear Lyapunov matrix differential equation on \mathbb{R} are given. The obtained results generalize and extend the results from [5] and [18].

AMS Subject Classification (2000). 34C11, 34D05, 34D10.
Keywords. Ψ - boundedness on \mathbb{R}, nonlinear Lyapunov matrix differential equation on \mathbb{R}.

1 Introduction

The purpose of present paper is to provide sufficient conditions for the existence and uniqueness and existence of at least one Ψ - bounded solution for the nonlinear Lyapunov matrix differential equation on \mathbb{R}

$$
\begin{equation*}
Z^{\prime}=A(t) Z+Z B(t)+C(t)+F(t, Z) \tag{1.1}
\end{equation*}
$$

with the help of Banach and Schauder-Tychonoff fixed point theorems. We first establish two results in connection with the existence and uniqueness and existence of at least one Ψ - bounded solution for the nonlinear matrix differential equation on \mathbb{R} of the form

$$
\begin{equation*}
Z^{\prime}=A(t) Z+C(t)+F(t, Z) \tag{1.2}
\end{equation*}
$$

Second, using vectorization operator and Kronecker product of matrices, we treat the same problems for the nonlinear Lyapunov matrix differential equation on \mathbb{R} of the form (1.1).
History of problem. A classical result in connection with boundedness of solutions of systems of ordinary differential equations

$$
\begin{equation*}
x^{\prime}=A(t) x+c(t)+f(t, x) \tag{1.3}
\end{equation*}
$$

was given by Coppel [5] (Chapter V, section 2, Theorem 4). The problem of Ψ - bounded solutions for systems of ordinary differential equations has been studied by many authors: [2], [3], [4], [8], [9], [12], [13], [14], [18] and for Lyapunov matrix differential equations, [6], [7], [10], [11], [16], [17].
The introduction of the matrix function Ψ in the study of solutions permits to obtain a mixed asymptotic behavior of the components of the solutions of the above equations.

2 Preliminaries

In this section we present some basic notations, definitions, hypotheses and results which are useful later on.
Let \mathbb{R}^{d} be the Euclidean d - dimensional space. For $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)^{T} \in$ \mathbb{R}^{d}, let $\|x\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{d}\right|\right\}$ be the norm of x (here, ${ }^{T}$ denotes transpose).
Let $\mathbb{M}_{d \times d}$ be the linear space of all real $d \times d$ matrices.
For $A=\left(a_{i j}\right) \in \mathbb{M}_{d \times d}$, we define the norm $|A|$ by $|A|=\sup _{\|x\| \leq 1}\|A x\|$. It is well-known that $|A|=\max _{1 \leq i \leq d}\left\{\sum_{j=1}^{d}\left|a_{i j}\right|\right\}$.
By a solution of the equation (1.1) we mean a continuous differentiable $d \times d$ matrix function satisfying the equation (1.1) for all $t \in \mathbb{R}$.
In equation (1.1) we assume that the coefficients are continuous functions. Let $\Psi_{i}: \mathbb{R}_{+} \longrightarrow(0, \infty), i=1,2, \ldots, d$, be continuous functions and

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \cdots \Psi_{d}\right]
$$

A matrix P is said to be a projection if $P^{2}=P$.
Definition 2.1. ([12], [8]) A function $\varphi: R \longrightarrow R^{d}$ is said to be $\Psi-$ bounded on R if $\Psi(t) \varphi(t)$ is bounded on R (i.e. there exists $m>0$ such that \| $\Psi(t) \varphi(t) \| \leq m$, for all $t \in R)$.
Otherwise, is said that the function φ is $\Psi-$ unbounded on R.

Definition 2.2. ([10]) A matrix function $M: \mathbb{R} \longrightarrow \mathbb{M}_{d \times d}$ is said to be $\Psi-$ bounded on R if the matrix function $\Psi(t) M(t)$ is bounded on R (i.e. there exists $m>0$ such that $|\Psi(t) M(t)| \leq m$, for all $t \in R)$.
Otherwise, is said that the matrix function M is $\Psi-$ unbounded on R.

We now describe a few definitions and properties in connection with Kronecker product of matrices and vectorization operator.

Definition 2.3. ([1]) Let $A=\left(a_{i j}\right) \in M_{m \times n}$ and $B=\left(b_{i j}\right) \in M_{p \times q}$. The Kronecker product of A and B, written $A \otimes B$, is defined to be the partitioned matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right)
$$

Obviously, $A \otimes B \in \mathbb{M}_{m p \times n q}$.
We next show the important rules of calculation of the Kronecker product.
Lemma 2.1. ([1]) The Kronecker product has the following properties and rules, provided that the dimension of the matrices are such that the various expressions exist:
1). $A \otimes(B \otimes C)=(A \otimes B) \otimes C$;
2). $(A \otimes B)^{T}=A^{T} \otimes B^{T}$;
3). $(A \otimes B) \cdot(C \otimes D)=(A \cdot C) \otimes(B \cdot D)$;
4). $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$;
5). $A \otimes(B+C)=A \otimes B+A \otimes C$;
6). $(A+B) \otimes C=A \otimes C+B \otimes C$;
7). $I_{d} \otimes A=\left(\begin{array}{cccc}A & O & \cdots & O \\ O & A & \cdots & O \\ \vdots & \vdots & \vdots & \vdots \\ O & O & \cdots & A\end{array}\right)$;
8). $(A(t) \otimes B(t))^{\prime}=A^{\prime}(t) \otimes B(t)+A(t) \otimes B^{\prime}(t) ;\left({ }^{\prime}\right.$ denotes the derivative $\left.\frac{d}{d t}\right)$.

Proof. See in [1].
Definition 2.4. ([15]) The application $\mathcal{V e c}: \mathbb{M}_{m \times n} \longrightarrow \mathbb{R}^{m n}$, defined by

$$
\operatorname{Vec}(A)=\left(a_{11}, a_{21}, \cdots, a_{m 1}, a_{12}, a_{22}, \cdots, a_{m 2}, \cdots, a_{1 n}, a_{2 n}, \cdots, a_{m n}\right)^{T}
$$

where $A=\left(a_{i j}\right) \in \mathbb{M}_{m \times n}$, is called the vectorization operator.

Lemma 2.2. ([10]) The vectorization operator

$$
V_{e c}: \mathbb{M}_{m \times n} \longrightarrow \mathbb{R}^{m n}, A \longrightarrow \operatorname{Vec}(A)
$$

is a linear and one-to-one operator. In addition, Vec and $\mathcal{V e c}^{-1}$ are continuous operators.

Proof. See Lemma 2, [10].
Remark 2.1. Obviously, a function $F: \mathbb{R} \longrightarrow \mathbb{M}_{d \times d}$ is a continuous (differentiable) matrix function on R if and only if the function $f: R \longrightarrow \mathbb{R}^{d^{2}}$, defined by $f(t)=\operatorname{Vec}(F(t))$, is a continuous (differentiable) vector function on R.

We recall that the vectorization operator $\mathcal{V e c}$ has the following properties as concerns the calculations.

Lemma 2.3. ([15]) If $A, B, M \in \mathbb{M}_{n \times n}$, then
1). $\mathcal{V e c}(A M B)=\left(B^{T} \otimes A\right) \cdot \mathcal{V e c}(M)$;
2). $\operatorname{Vec}(M B)=\left(B^{T} \otimes I_{n}\right) \cdot \operatorname{Vec}(M)$;
3). $\operatorname{Vec}(A M)=\left(I_{n} \otimes A\right) \cdot \operatorname{Vec}(M)$;
4). $\operatorname{Vec}(A M)=\left(M^{T} \otimes A\right) \cdot \operatorname{Vec}\left(I_{n}\right)$.

Proof. See [15], Chapter 2.
The following lemmas play a vital role in the proofs of main results of present paper.

Lemma 2.4. ([10]) The matrix function $Z(t)$ is a solution on R of (1.1) if and only if the vector function $z(t)=\mathcal{V e c}(Z(t))$ is a solution of the differential system

$$
\begin{equation*}
z^{\prime}=\left(I_{d} \otimes A(t)+B^{T}(t) \otimes I_{d}\right) z+c(t)+f(t, z) \tag{2.1}
\end{equation*}
$$

where $c(t)=\mathcal{V e c}(C(t))$ and $f(t, z)=\mathcal{V e c}(F(t, Z))$, on the same interval R. Proof. See Lemma 7, [10].

Definition 2.5. ([10]) The above system (2.1) is called "corresponding Kronecker product system associated with (1.1)".

Lemma 2.5. ([10]). For every matrix function $M: R \longrightarrow \mathbb{M}_{d \times d}$,

$$
\begin{equation*}
\frac{1}{d}|\Psi(t) M(t)| \leq\left\|\left(I_{d} \otimes \Psi(t)\right) \mathcal{V e c}(M(t))\right\|_{\mathbb{R}^{d^{2}}} \leq|\Psi(t) M(t)|, \forall t \geq 0 \tag{2.2}
\end{equation*}
$$

Proof. See Lemma 4, [10].
Lemma 2.6. The solutions of (1.1) are $\Psi-$ bounded on R if and only if the solutions of the differential system (2.1) are $I_{d} \otimes \Psi-$ bounded on R.

Proof. It results from above Lemma (2.5).
Lemma 2.7. ([10]). Let $X(t)$ and $Y(t)$ be a fundamental matrices for the equations

$$
\begin{align*}
& Z^{\prime}=A(t) Z \tag{2.3}\\
& Z^{\prime}=Z B(t) \tag{2.4}
\end{align*}
$$

respectively.
Then, the matrix $Z(t)=Y^{T}(t) \otimes X(t)$ is a fundamental matrix for the linear differential system

$$
\begin{equation*}
z^{\prime}=\left(I_{d} \otimes A(t)+B^{T}(t) \otimes I_{d}\right) z \tag{2.5}
\end{equation*}
$$

(i.e. for homogeneous differential system associated with (2.1).

Proof. See Lemma 6, [10].

$3 \quad \Psi$ - bounded solutions for the matrix differential equation (1.2)

The purpose of this section is to provide sufficient conditions for the existence and uniqueness and existence of at least one Ψ - bounded solution on \mathbb{R} for the equation (1.2).
Theorem 3.1. Suppose that:
1). There exist supplementary projections $P_{-}, P_{0}, P_{+} \in \mathbb{M}_{d \times d}$ and a positive constant K such that the fundamental matrix $X(t)$ for (2.3) satisfies the condition

$$
\begin{align*}
& \int_{-\infty}^{t}\left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right| d s+ \\
& +\left|\int_{0}^{t}\right| \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s)|d s|+ \tag{3.1}\\
& +\int_{t}^{\infty}\left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right| d s \leq K,
\end{align*}
$$

for all $t \geq 0$;
2). The continuous function $F: R \times \mathbb{M}_{d \times d} \rightarrow \mathbb{M}_{d \times d}$ satisfies $F(t, O)=O$ and the Lypschitz condition

$$
\left|\Psi(t)\left(F\left(t, Z_{1}\right)-F\left(t, Z_{2}\right)\right)\right| \leq \gamma\left|\Psi(t)\left(Z_{1}-Z_{2}\right)\right|
$$

for $t \in R, Z_{1}, Z_{2} \in \mathbb{M}_{d \times d}$ with $\left|\Psi(t) Z_{1}\right| \leq \rho,\left|\Psi(t) Z_{2}\right| \leq \rho$ for $t \in R,(\rho>0$ is given), where γ is a positive constant such that $\gamma K<1$;
3). The continuous function $C: R \rightarrow \mathbb{M}_{d \times d}$ is Ψ - bounded on R such that

$$
|C|_{\Psi}=\sup _{t \in R}|\Psi(t) C(t)| \leq \frac{\rho(1-\gamma K)}{K}
$$

Then, the equation (1.2) has a unique Ψ - bounded solution $Z(t)$ on R for which $|\Psi(t) Z(t)| \leq \rho$, for all $t \in R$.
Proof. We prove this theorem by means of Banach fixed point theorem.
Consider the space

$$
C_{\Psi}=\left\{Z: R \rightarrow \mathbb{M}_{d \times d} \mid Z \text { is continuous and } \Psi-\text { bounded on } R\right\} .
$$

C_{Ψ} is a Banach space with respect to the norm $|Z|_{\Psi}=\sup _{t \in R}|\Psi(t) Z(t)|$.
Let the ball $S_{\rho}=\left\{Z \in C_{\Psi} \|\left. Z\right|_{\Psi} \leq \rho\right\}$.
For $Z \in C_{\Psi}$, define the operator T by

$$
\begin{aligned}
& (T Z)(t)=\int_{-\infty}^{t} X(t) P_{-} X^{-1}(s)(C(s)+F(s, Z(s))) d s+ \\
& +\int_{0}^{t} X(t) P_{0} X^{-1}(s)(C(s)+F(s, Z(s))) d s- \\
& -\int_{t}^{\infty} X(t) P_{+} X^{-1}(s)(C(s)+F(s, Z(s))) d s
\end{aligned}
$$

From hypotheses, $T Z$ exists and is continuous differentiable on R .
For $Z \in S_{\rho}$ and $t \in R$, we have

$$
\begin{aligned}
& |\Psi(t)(T Z)(t)|=\mid \int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)(C(s)+F(s, Z(s))) d s+ \\
& +\int_{0}^{t} \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s) \Psi(s)(C(s)+F(s, Z(s))) d s- \\
& -\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)(C(s)+F(s, Z(s))) d s \mid \leq \\
& \leq \int_{-\infty}^{t}\left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right||\Psi(s)(C(s)+F(s, Z(s)))| d s+ \\
& +\left|\int_{0}^{t}\right| \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s)| | \Psi(s)(C(s)+F(s, Z(s)))|d s|+ \\
& +\int_{t}^{\infty}\left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right||\Psi(s)(C(s)+F(s, Z(s)))| d s \leq \\
& \leq K \cdot \sup _{t \in R}|\Psi(s)(C(s)+F(s, Z(s)))| \leq \\
& \leq K \cdot\left(\frac{\rho(1-\gamma K)}{K}+\gamma|Z|_{\Psi}\right)=\rho(1-\gamma K)+\gamma K \rho=\rho
\end{aligned}
$$

It follows that $T Z \in S_{\rho}$ and hence,

$$
T S_{\rho} \subset S_{\rho} .
$$

On the other hand, for $Z_{1}, Z_{2} \in S_{\rho}$ and $t \in R$, we have

$$
\begin{aligned}
& \left|\Psi(t)\left(\left(T Z_{1}\right)(t)-\left(T Z_{2}\right)(t)\right)\right|= \\
& =\mid\left[\int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{1}(s)\right)\right) d s+\right. \\
& +\int_{0}^{t} \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{1}(s)\right)\right) d s- \\
& \left.-\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{1}(s)\right)\right) d s\right]- \\
& -\left[\int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{2}(s)\right)\right) d s+\right. \\
& +\int_{0}^{t} \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{2}(s)\right)\right) d s- \\
& \left.-\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{2}(s)\right)\right) d s\right] \mid= \\
& =\mid \int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(F\left(s, Z_{1}(s)\right)-F\left(s, Z_{2}(s)\right)\right) d s+ \\
& +\int_{0}^{t} \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(F\left(s, Z_{1}(s)\right)-F\left(s, Z_{2}(s)\right)\right) d s- \\
& -\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(F\left(s, Z_{1}(s)\right)-F\left(s, Z_{2}(s)\right)\right) d s \mid \leq \\
& \leq \int_{-\infty}^{t}\left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right|\left|\Psi(s)\left(F\left(s, Z_{1}(s)\right)-F\left(s, Z_{2}(s)\right)\right)\right| d s+ \\
& +\left|\int_{0}^{t}\right| \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s) \| \Psi(s)\left(F\left(s, Z_{1}(s)\right)-F\left(s, Z_{2}(s)\right)\right)|d s|+ \\
& +\int_{t}^{\infty}\left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right|\left|\Psi(s)\left(F\left(s, Z_{1}(s)\right)-F\left(s, Z_{2}(s)\right)\right)\right| d s \leq \\
& \leq \gamma \int_{-\infty}^{t}\left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right|\left|\Psi(s)\left(Z_{1}(s)-Z_{2}(s)\right)\right| d s+ \\
& +\gamma\left|\int_{0}^{t}\right| \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s)| | \Psi(s)\left(Z_{1}(s)-Z_{2}(s)\right)|d s|+ \\
& +\gamma \int_{t}^{\infty}\left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \| \Psi(s)\left(Z_{1}(s)-Z_{2}(s)\right)\right| d s \leq \\
& \leq \gamma K \sup _{t \in R}\left|\Psi(s)\left(Z_{1}(s)-Z_{2}(s)\right)\right|=\gamma K\left|Z_{1}-Z_{2}\right| \Psi
\end{aligned}
$$

It follows that

$$
\left|T Z_{1}-T Z_{2}\right|_{\Psi} \leq \gamma K\left|Z_{1}-Z_{2}\right|_{\Psi}
$$

Therefore, T is a contraction operator on S_{ρ}. Hence, by Banach fixed point theorem, T has a unique fixed point $Z \in S_{\rho}$. From $Z=T Z$, it follows that Z is continuous differentiable on R and then, for $t \in R$,

$$
\begin{aligned}
& Z^{\prime}(t)=(T Z)^{\prime}(t)= \\
& =\int_{-\infty}^{t} X^{\prime}(t) P_{-} X^{-1}(s)(C(s)+F(s, Z(s))) d s+ \\
& +X(t) P_{-} X^{-1}(t)(C(t)+F(t, Z(t)))+ \\
& +\int_{0}^{t} X^{\prime}(t) P_{0} X^{-1}(s)(C(s)+F(s, Z(s))) d s+ \\
& +X(t) P_{0} X^{-1}(t)(C(t)+F(s, Z(t)))- \\
& -\int_{t}^{\infty} X^{\prime}(t) P_{+} X^{-1}(s)(C(s)+F(s, Z(s))) d s+ \\
& +X(t) P_{+} X^{-1}(t)(C(t)+F(t, Z(t)))= \\
& =A(t)(T Z)(t)+X(t)\left(P_{-}+P_{0}+P_{+}\right) X^{-1}(t)(C(t)+F(t, Z(t)))= \\
& =A(t) Z(t)+C(t)+F(t, Z(t))
\end{aligned}
$$

Thus, $\mathrm{Z}(\mathrm{t})$ is a solution of equation (1.2).
In conclusion, the equation (1.2) has a unique Ψ - bounded solution $Z(t)$ on R for which $|\Psi(t) Z(t)| \leq \rho$, for all $t \in R$.

Remark 3.1. Theorem generalizes the Theorem 4 ([5], Ch. 5, s. 2) and Theorem 2.1, [18] from systems of differential equations to matrix differential equations and extents them for case $P_{0} \neq 0$.

The next simple example is an illustration of Theorem.
Example 3.1. Consider the equation (1.2) with

$$
A(t)=\operatorname{diag}[-2 t, 1,-1], C(t)=\operatorname{diag}\left[\frac{\alpha}{1+t^{2}}, \alpha e^{-t} \sin t, \alpha e^{t} \cos t\right]
$$

and

$$
F(t, Z)=\operatorname{diag}\left[\ln \left(1+a\left|z_{11}\right|\right), \sin a z_{22}, \operatorname{arctg} a z_{33}\right],
$$

where $Z=\left(z_{i j}\right) \in \mathbb{M}_{3 \times 3}$ and a, α are real constants such that

$$
0<a<\left[1+\int_{0}^{1} e^{s^{2}} d s\right]^{-1} .
$$

Then, $\mathrm{X}(\mathrm{t})=\operatorname{diag}\left[e^{t^{2}}, e^{t}, e^{-t}\right], t \in R$, is a fundamental matrix for (2.3). Consider $\Psi(\mathrm{t})=\operatorname{diag}\left[1, e^{t}, e^{-t}\right], t \in R$.
There exist supplementary projections

$$
P_{-}=\operatorname{diag}[0,0,1], P_{0}=\operatorname{diag}[1,0,0], \text { and } P_{+}=\operatorname{diag}[0,1,0]
$$

such that:

- $\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)=\operatorname{diag}\left[0,0, e^{-2(t-s)}\right]$ and then

$$
\int_{-\infty}^{t}\left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right| d s \leq \int_{-\infty}^{t} e^{-2(t-s)} d s=\frac{1}{2}
$$

- $\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)=\operatorname{diag}\left[0, e^{2(t-s)}, 0\right]$ and then

$$
\int_{t}^{\infty}\left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right| d s \leq \int_{t}^{\infty} e^{2(t-s)} d s=\frac{1}{2} ;
$$

- $\Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s)=\operatorname{diag}\left[e^{-t^{2}+s^{2}}, 0,0\right]$ and then

$$
\begin{aligned}
& \left|\int_{0}^{t}\right| \Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s)|d s|=\left|\int_{0}^{t} e^{-t^{2}+s^{2}} d s\right|= \\
= & \int_{0}^{|t|} e^{-t^{2}+s^{2}} d s \leq 1+\int_{0}^{1} e^{s^{2}} d s .
\end{aligned}
$$

and then, the condition (3.1) is satisfied with $K=1+\int_{0}^{1} e^{s^{2}} d s$. After that, for $t \in R$ and for $Z^{\prime}, Z^{\prime \prime} \in \mathbb{M}_{3 \times 3}$, we have

$$
\begin{aligned}
& \left|\Psi(t)\left(F\left(t, Z^{\prime}\right)-F\left(t, Z^{\prime \prime}\right)\right)\right| \leq \\
& \leq \max \left\{a\left|z_{11}^{\prime}-z_{11}^{\prime \prime}\right|, a e^{t}\left|z_{22}^{\prime}-z_{22}^{\prime \prime}\right|, a e^{-t}\left|z_{33}^{\prime}-z_{33}^{\prime \prime}\right|\right\}= \\
& =a \cdot \max \left\{\left|z_{11}^{\prime}-z_{11}^{\prime \prime}\right|, e^{t}\left|z_{22}^{\prime}-z_{22}^{\prime \prime}\right|, e^{-t}\left|z_{33}^{\prime}-z_{33}^{\prime \prime}\right|\right\}= \\
& =a \cdot\left|\Psi(t)\left(Z^{\prime}-Z^{\prime \prime}\right)\right| .
\end{aligned}
$$

and then, the condition 2) of Theorem is satisfied.
At least, for the matrix $C(t)$ we have that

$$
|C|=\sup _{t \in R}|\Psi(t) C(t)|=|\alpha|
$$

From Theorem, it follows that for $\rho \geq \frac{|\alpha| K}{1-a K}$, the equqtion (1.2) has a unique $\Psi-$ bounded solution $Z(t)$ for which $|\Psi(t) Z(t)| \leq \rho$, for all $t \in R$.

Theorem 3.2. Suppose that:
1). There exist supplementary projections $P_{-}, P_{+} \in \mathbb{M}_{d \times d}$ and a positive constants K_{1}, K_{2}, α and β such that the fundamental matrix $X(t)$ for (2.3) satisfies the conditions

$$
\begin{aligned}
& \left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right| \leq K_{1} e^{-\alpha(t-s)}, \text { for } s \leq t \\
& \left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right| \leq K_{2} e^{-\beta(s-t)}, \text { for } t \leq s
\end{aligned}
$$

2). The continuous function $F: R \times \mathbb{M}_{d \times d} \rightarrow \mathbb{M}_{d \times d}$ satisfies the condition

$$
|\Psi(t) F(t, Z)| \leq \gamma|\Psi(t) Z|
$$

for $t \in R, Z \in \mathbb{M}_{d \times d}$ with $|\Psi(t) Z| \leq \rho$ for $t \in R$ ($\rho>0$ is given), where γ is a positive constant such that $\gamma\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)<1$;
3). The continuous function $C: R \rightarrow \mathbb{M}_{d \times d}$ is $\Psi-$ bounded on R such that

$$
|C|_{\Psi}=\sup _{t \in R}|\Psi(t) C(t)| \leq \frac{\rho\left[1-\gamma\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)\right]}{\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}}
$$

Then, the equation (1.2) has at least one $\Psi-$ bounded solution $Z(t)$ on R for which $|\Psi(t) Z(t)| \leq \rho$, for all $t \in R$.

Proof. We prove this treorem by means of Schauder-Tychonoff fixed point theorem.
For this, let C_{Ψ} denote the set of all matrix functions $Z(t)$ which are continuous and Ψ-bounded on R , and S_{ρ} be the subset formed by those functions $Z(t)$ such that $|Z|_{\Psi}=\sup _{t \in R}|\Psi(t) Z(t)| \leq \rho$.
For $Z \in C_{\Psi}$, define the operator T by

$$
\begin{aligned}
& (T Z)(t)=\int_{-\infty}^{t} X(t) P_{-} X^{-1}(s)(C(s)+F(s, Z(s))) d s- \\
& -\int_{t}^{\infty} X(t) P_{+} X^{-1}(s)(C(s)+F(s, Z(s))) d s
\end{aligned}
$$

This operator have the following two properties:
i). T is continuous, in the sense that if $Z_{n} \in S_{\rho}(n=1,2, \ldots)$ and $Z_{n} \rightarrow Z$ uniformly on every compact subinterval J of R , then $T Z_{n} \rightarrow T Z$ uniformly on every compact subinterval J of R.
Indeed, let $Z_{n} \in S_{\rho}(n=1,2, \ldots)$ and $Z_{n} \rightarrow Z$ uniformly on every compact subinterval $J=[p, q]$ of R . For an arbitrary small $\varepsilon>0$, choose $\tau>0$ so large that

$$
\tau>\max \left\{-\frac{1}{\alpha} \ln \frac{\alpha \varepsilon}{8 \rho \gamma K_{1}},-\frac{1}{\beta} \ln \frac{\beta \varepsilon}{8 \rho \gamma K_{2}}\right\} .
$$

Since $F(t, Z)$ is uniformly continuous for $t \in[p-\tau, q+\tau]$ and $|\Psi(t) Z| \leq \rho$, it follows that the sequence $U_{n}(t)=\Psi(t)\left(F\left(t, Z_{n}(t)\right)-F(t, Z(t))\right)$ tends to zero uniformly on $[p-\tau, q+\tau]$. Thus, there exists $n_{0} \in \mathbb{N}$ such that $\left|U_{n}(t)\right|<\frac{\varepsilon}{4 \tau \max \left\{K_{1}, K_{2}\right\}}$, for $n \geq n_{0}$ and $t \in[p-\tau, q+\tau]$.
For $t \in J$ and $n \geq n_{0}$, consider

$$
\begin{aligned}
& \left.\mid \Psi(t)\left(\left(T Z_{n}\right) \bar{t}\right)-(T Z)(t)\right) \mid= \\
& =\mid\left[\int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{n}(s)\right)\right) d s-\right. \\
& \left.-\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(C(s)+F\left(s, Z_{n}(s)\right)\right) d s\right]- \\
& -\left[\int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)(C(s)+F(s, Z(s))) d s-\right. \\
& \left.-\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)(C(s)+F(s, Z(s))) d s\right] \mid=
\end{aligned}
$$

$$
=\mid \int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(F\left(s, Z_{n}(s)\right)-F(s, Z(s))\right) d s-
$$

$$
-\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)\left(F\left(s, Z_{n}(s)\right)-F(s, Z(s))\right) d s \mid \leq
$$

$$
\leq \int_{-\infty}^{t}\left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \| \Psi(s)\left(F\left(s, Z_{n}(s)\right)-F(s, Z(s))\right)\right| d s+
$$

$$
+\int_{t}^{\infty}\left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \| \Psi(s)\left(F\left(s, Z_{n}(s)\right)-F(s, Z(s))\right)\right| d s \leq
$$

$$
\leq K_{1} \int_{-\infty}^{t} e^{-\alpha(t-s)}\left|U_{n}(s)\right| d s+K_{2} \int_{t}^{\infty} e^{-\beta(s-t)}\left|U_{n}(s)\right| d s=
$$

$$
=K_{1} \int_{-\infty}^{t-\tau} e^{-\alpha(t-s)}\left|U_{n}(s)\right| d s+K_{1} \int_{t-\tau}^{t} e^{-\alpha(t-s)}\left|U_{n}(s)\right| d s+
$$

$$
+K_{2} \int_{t+\tau}^{\infty} e^{-\beta(s-t)}\left|U_{n}(s)\right| d s+K_{2} \int_{t}^{t+\tau} e^{-\beta(s-t)}\left|U_{n}(s)\right| d s \leq
$$

$$
\leq 2 \rho \gamma\left(K_{1} \int_{-\infty}^{t-\tau} e^{-\alpha(t-s)} d s+K_{2} \int_{t+\tau}^{\infty} e^{-\beta(s-t)} d s\right)+\max \left\{K_{1}, K_{2}\right\} \int_{t-\tau}^{t+\tau}\left|U_{n}(s)\right| d s<
$$

$$
<2 \rho \gamma\left(K_{1} \cdot \frac{e^{-\alpha \tau}}{\alpha}+K_{2} \cdot \frac{e^{-\beta \tau}}{\beta}\right)+\max \left\{K_{1}, K_{2}\right\} \cdot \frac{\varepsilon}{4 \tau \max \left\{K_{1}, K_{2}\right\}} \cdot 2 \tau<\varepsilon .
$$

This shows that $T Z_{n} \rightarrow T Z$ uniformly on every compact subinterval of R . Thus, T is continuous.
ii). the functions in the image set $T S_{\rho}$ are equicontinuous and bounded at every point of J.
Indeed, from $Z \in S_{\rho}$, we have

$$
\begin{aligned}
& |\Psi(t)(T Z)(t)|= \\
& =\mid \int_{-\infty}^{t} \Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s) \Psi(s)(C(s)+F(s, Z(s))) d s- \\
& -\int_{t}^{\infty} \Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s) \Psi(s)(C(s)+F(s, Z(s))) d s \mid \leq \\
& \leq \int_{-\infty}^{t}\left|\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right||\Psi(s)(C(s)+F(s, Z(s)))| d s+ \\
& +\int_{t}^{\infty}\left|\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right||\Psi(s)(C(s)+F(s, Z(s)))| d s \leq \\
& \leq K_{1} \int_{-\infty}^{t} e^{-\alpha(t-s)}|\Psi(s)(C(s)+F(s, Z(s)))| d s+ \\
& +K_{2} \int_{t}^{\infty} e^{-\beta(s-t)}|\Psi(s)(C(s)+F(s, Z(s)))| d s \leq \\
& \leq K_{1} \int_{-\infty}^{t} e^{-\alpha(t-s)}(|\Psi(s) C(s)|+\gamma|\Psi(s) Z(s)|) d s+ \\
& +K_{2} \int_{t}^{\infty} e^{-\beta(s-t)}(|\Psi(s) C(s)|+\gamma|\Psi(s) Z(s)|) d s \leq \\
& \leq\left(\frac{\rho\left[1-\gamma\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)\right]}{\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}}+\gamma \rho\right)\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)=\rho .
\end{aligned}
$$

Hence, the functions in the image set $T S_{\rho}$ are uniformly bounded at every point of J.
On the other hand, we have

$$
\begin{aligned}
& (T Z)^{\prime}(t)= \\
& =\int_{-\infty}^{t} X^{\prime}(t) P_{-} X^{-1}(s)(C(s)+F(s, Z(s))) d s+ \\
& +X(t) P_{-} X^{-1}(t)(C(t)+F(t, Z(t)))+ \\
& -\int_{t}^{\infty} X^{\prime}(t) P_{+} X^{-1}(s)(C(s)+F(s, Z(s))) d s+ \\
& +X(t) P_{+} X^{-1}(t)(C(t)+F(t, Z(t)))= \\
& =A(t)(T Z)(t)+X(t)\left(P_{-}+P_{+}\right) X^{-1}(t)(C(t)+F(t, Z(t)))= \\
& =A(t)(T Z)(t)+C(t)+F(t, Z(t)),
\end{aligned}
$$

which shows that $(T Z)(t)$ is a solution of equation $W^{\prime}=A(t) W+C(t)+$ $F(t, Z(t))$.

It follows that the derivatives $(T Z)^{\prime}(t)$ are uniformly bounded on any compact subinterval J of R . Thus, the functions in $T S_{\rho}$ are echicontinuous on any compact subinterval J of R .
From i) and ii), all the conditions of the Schauder-Tychonoff theorem are satisfied. Hence, the operator T has at least one fixed point $\mathrm{Z}(\mathrm{t})$ in S_{ρ}. But the fixed point of T is just the solution of the integral equation

$$
Z=T Z
$$

in S_{ρ}, i.e., of the matrix differential equation (1.2), with the required properties.

Remark 3.2. In a particular case, our result reduces to Theorem 2.2 obtained in [18].
Indeed, if
$F(t, Z)=\left(\begin{array}{cccc}f_{1}(t, z) & f_{1}(t, z) & \cdots & f_{1}(t, z) \\ f_{2}(t, z) & f_{2}(t, z) & \cdots & f_{2}(t, z) \\ \vdots & \vdots & \vdots & \vdots \\ f_{d}(t, z) & f_{d}(t, z) & \cdots & f_{d}(t, z)\end{array}\right), C(t)=\left(\begin{array}{cccc}c_{1}(t) & c_{1}(t) & \cdots & c_{1}(t) \\ c_{2}(t) & c_{2}(t) & \cdots & c_{2}(t) \\ \vdots & \vdots & \vdots & \vdots \\ c_{d}(t) & c_{d}(t) & \cdots & c_{d}(t)\end{array}\right)$
it is easy to see that the solutions of the equation (1.2) is

$$
Z(t)=\left(\begin{array}{cccc}
z_{1}(t) & z_{1}(t) & \cdots & z_{1}(t) \\
z_{2}(t) & z_{2}(t) & \cdots & z_{2}(t) \\
\vdots & \vdots & \vdots & \vdots \\
z_{d}(t) & z_{d}(t) & \cdots & z_{d}(t)
\end{array}\right)
$$

where $z(t)=\left(z_{1}(t), z_{2}(t), \cdots, z_{d}(t)\right)^{T}$ is the solution of the equation (1.3) with
$c(t)=\left(c_{1}(t), c_{2}(t), \cdots, c_{d}(t)\right)^{T}$ and $f(t, z)=\left(f_{1}(t, z), f_{1}(t, z), \cdots, f_{1}(t, z)\right)^{T}$.

In this case, the solution $z(t)$ is Ψ-bounded on R iff the corresponding solution $Z(t)$ is Ψ-bounded on R .
Thus, the Theorem generalizes the result from [18], from systems of differential equations to matrix differential equations.

4 - bounded solutions for the Lyapunov matrix differential equation (1)

The purpose of this section is to provide sufficient conditions for the existence and uniqueness and existence of at least one Ψ - bounded solution on \mathbb{R} for the Lyapunov matrix differential equation (1.1).

Theorem 4.1. Suppose that:
1). There exist supplementary projections $P_{-}, P_{0}, P_{+} \in \mathbb{M}_{d \times d}$ and a positive constant K such that the fundamental matrices $X(t)$ and $Y(t)$ for (2.3) and (2.4) respectively satisfy the condition

$$
\begin{aligned}
& \int_{-\infty}^{t}\left|\left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right)\right| d s+ \\
& +\left|\int_{0}^{t}\right|\left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{0} X^{-1}(s) \Psi^{-1}(s)\right)|d s|+ \\
& +\int_{t}^{\infty}\left|\left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right)\right| d s \leq K
\end{aligned}
$$

for all $t \geq 0$;
2). The continuous function $F: R \times \mathbb{M}_{d \times d} \rightarrow \mathbb{M}_{d \times d}$ satisfies the Lypschitz condition

$$
\left|\Psi(t)\left(F\left(t, Z_{1}\right)-F\left(t, Z_{2}\right)\right)\right| \leq \frac{\gamma}{d}\left|\Psi(t)\left(Z_{1}-Z_{2}\right)\right|
$$

for $t \in R, Z_{1}, Z_{2} \in \mathbb{M}_{d \times d}$ with $\left|\Psi(t) Z_{1}\right| \leq \rho,\left|\Psi(t) Z_{2}\right| \leq \rho$ for $t \in R,(\rho>0$ is given), where γ is a positive constant such that $\gamma K<1$;
3). The continuous matrix function $C: R \rightarrow \mathbb{M}_{d \times d}$ is $\Psi-$ bounded on R such that

$$
|C|_{\Psi}=\sup _{t \in R}|\Psi(t) C(t)| \leq \frac{\rho(1-\gamma K)}{K}
$$

Then, the Lyapunov matrix differential equation (1.1) has a unique $\Psi-$ bounded solution $Z(t)$ on R for which $|\Psi(t) Z(t)| \leq \rho d$, for all $t \in R$.

Proof. From Lemma 2.4, one know that $\mathrm{Z}(\mathrm{t})$ is a solution of (1.1) iff the vector function $z(t)=\operatorname{Vec}(Z(t))$ is a solution of the corresponding Kronecker product system associated with (1.1), i.e. of the differential system (2.1).
From Lemma (2.7), one know that $U(t)=Y^{T}(t) \otimes X(t)$ is a fundamental matrix for the differential system (2.5).
Now, the hypotheses of the Theorem ensure the hypotheses of Theorem 3.1 (variant for systems) for the system (2.1). Indeed:
i). Since

$$
\begin{aligned}
& \left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right)= \\
& =(I \otimes \Psi(t)) \cdot\left(Y^{T}(t) \otimes X(t)\right) \cdot\left(I \otimes P_{-}\right) \cdot\left(\left(Y^{T}\right)^{-1}(s) \otimes X^{-1}(s)\right) \cdot\left(I \otimes \Psi^{-1}(s)\right)
\end{aligned}
$$

(see Lemma 2.1) and similarly for P_{0} and P_{+}, the hypothesis 1) of Theorem 3.1 is satisfied;
ii). Since

$$
\begin{aligned}
& \left\|(I \otimes \Psi(t)) \cdot\left(f\left(t, z_{1}\right)-f\left(t, z_{2}\right)\right)\right\|_{R^{d^{2}}}= \\
& =\left\|(I \otimes \Psi(t)) \cdot \operatorname{Vec}\left(F\left(t, Z_{1}\right)-F\left(t, Z_{2}\right)\right)\right\|_{R^{d^{2}}} \leq \\
& \leq\left|\Psi(t)\left(F\left(t, Z_{1}\right)-F\left(t, Z_{2}\right)\right)\right| \leq \frac{\gamma}{d}\left|\Psi(t)\left(Z_{1}-Z_{2}\right)\right| \leq \\
& \leq \gamma\left\|(I \otimes \Psi(t)) \cdot \operatorname{Vec}\left(Z_{1}-Z_{2}\right)\right\|_{R^{d^{2}}}= \\
& =\gamma\left\|(I \otimes \Psi(t)) \cdot\left(z_{1}-z_{2}\right)\right\|_{R^{d^{2}}},
\end{aligned}
$$

for all z_{1}, z_{2} with $\left\|(I \otimes \Psi(t)) \cdot z_{i}\right\|_{R^{d^{2}}}=\left\|(I \otimes \Psi(t)) \cdot \operatorname{Vec}\left(Z_{i}\right)\right\|_{R^{d^{2}}} \leq \mid$ $\Psi(t) Z_{i} \mid \leq \rho$,
(see Lemmas 2.1 and 2.5) and $\gamma K<1$, the hypothesis 2) of Theorem 3.1 is satisfied;
iii). Since

$$
\begin{aligned}
& \|c\|_{R^{d^{2}}}=|C|=\sup _{t \in R}|(I \otimes \Psi(t)) \operatorname{Vec}(C(t))| \leq \\
& \leq \sup _{t \in R}|\Psi(t) C(t)| \leq \frac{\rho(1-\gamma K)}{K},
\end{aligned}
$$

the hypothesis 3) of Theorem 3.1 is satisfied.
At this stage we appeal to Theorem 3.1 to deduce that the system (2.1) has a unique $I \otimes \Psi(t)$ - bounded solution $z(t)$ on R for which $\|(I \otimes \Psi(t))$. $z(t) \|_{R^{d^{2}}} \leq \rho$.
From Lemma 2.4 again, the matrix function $Z(t)=\mathcal{V e c}^{-1}(z(t))$ is unique solution of (1.1) on R such that (see Lemma 2.5) $|\Psi(t) Z(t)| \leq \rho d$, for all $t \in R$.

Remark 4.1. The Theorem extends the Theorem 2.1, [18] and Theorem 3.1 above to Lyapunov matrix differential equation (1.1).
Theorem 4.2. Suppose that:
1). There exist supplementary projections $P_{-}, P_{+} \in \mathbb{M}_{d \times d}$ and a positive
constants K_{1}, K_{2}, α and β such that the fundamental matrices $X(t)$ and $Y(t)$ for (2.3) and (2.4) respectively satisfy the condition

$$
\begin{aligned}
& \left|\left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right)\right| \leq K_{1} e^{-\alpha(t-s)}, \text { for } s \leq t \\
& \left|\left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right)\right| \leq K_{2} e^{-\beta(s-t)}, \text { for } t \leq s
\end{aligned}
$$

2). The continuous function $F: R \times \mathbb{M}_{d \times d} \rightarrow \mathbb{M}_{d \times d}$ satisfies the condition

$$
|\Psi(t) F(t, Z)| \leq \frac{\gamma}{d}|\Psi(t) Z|
$$

for $t \in R, Z \in \mathbb{M}_{d \times d}$ with $|\Psi(t) Z| \leq \rho$ for $t \in R$ ($\rho>0$ is given), where γ is a positive constant such that $\gamma\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)<1$;
3). The continuous matrix function $C: R \rightarrow \mathbb{M}_{d \times d}$ is Ψ - bounded on R such that

$$
|C|_{\Psi}=\sup _{t \in R}|\Psi(t) C(t)| \leq \frac{\rho\left[1-\gamma\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)\right]}{\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}}
$$

Then, the Lyapunov matrix differential equation (1.1) has at least one $\Psi-$ bounded solution $Z(t)$ on R for which $|\Psi(t) Z(t)| \leq \rho d$.
Proof. From Lemma 2.4, one know that $\mathrm{Z}(\mathrm{t})$ is a solution of (1.1) iff the vector function $z(t)=\mathcal{V e c}(Z(t))$ is a solution of the corresponding Kronecker product system associated with (1.1), i.e. of the differential system (2.1).
From Lemma (2.7), one know that $U(t)=Y^{T}(t) \otimes X(t)$ is a fundamental matrix for the differential system (2.5).
Now, the hypotheses of the Theorem ensure the hypotheses of Theorem 3.2 (variant for systems) for the system (2.1). Indeed:
i). Since

$$
\begin{aligned}
& \left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right)= \\
& =(I \otimes \Psi(t)) \cdot\left(Y^{T}(t) \otimes X(t)\right) \cdot\left(I \otimes P_{-}\right) \cdot\left(\left(Y^{T}\right)^{-1}(s) \otimes X^{-1}(s)\right) \cdot\left(I \otimes \Psi^{-1}(s)\right)
\end{aligned}
$$

(see Lemma 2.1) and similarly for P_{+}, the hypothesis 1) of Theorem 3.2 is satisfied;
ii). Since

$$
\begin{aligned}
& \|(I \otimes \Psi(t)) \cdot f(t, z)\|_{R^{d^{2}}}=\|(I \otimes \Psi(t)) \cdot \operatorname{VecF}(t, Z)\|_{R^{d^{2}}} \leq \\
& \leq|\Psi(t) F(t, Z)| \leq \frac{\gamma}{d}|\Psi(t) Z| \leq \gamma\|(I \otimes \Psi(t)) \cdot \operatorname{Vec}(Z)\|_{R^{d^{2}}}= \\
& =\gamma\|(I \otimes \Psi(t)) \cdot z\|_{R^{d^{2}}},
\end{aligned}
$$

for $t \in R$ and $z \in R^{d^{2}}$, (see Lemmas 2.1 and 2.5) and $\gamma\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)<1$, the hypothesis 2) of Theorem 3.2 is satisfied;
iii). Since

$$
\begin{aligned}
& \|c\|_{R^{d^{2}}}=\|\operatorname{Vec}(C(t))\|_{R^{d^{2}}}=\sup _{t \in R}|(I \otimes \Psi(t)) \operatorname{Vec}(C(t))| \leq \\
& \leq \sup _{t \in R}|\Psi(t) C(t)| \leq \frac{\rho\left(1-\gamma\left(\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}\right)\right)}{\frac{K_{1}}{\alpha}+\frac{K_{2}}{\beta}},
\end{aligned}
$$

the hypothesis 3) of Theorem 3.2 is satisfied.
At this stage we appeal to Theorem 3.2 to deduce that the system (2.1) has at least one $I \otimes \Psi(t)$ - bounded solution $z(t)$ on R for which $\|(I \otimes \Psi(t))$. $z(t) \|_{R^{d^{2}}} \leq \rho$.
From Lemma 2.4 again, the matrix function $Z(t)=\operatorname{Vec}^{-1}(z(t))$ is a solution of (1.1) on R such that (see Lemma 2.5), $|\Psi(t) Z(t)| \leq \rho d$, for all $t \in R$.

Remark 4.2. The Theorem extends the Theorem 2.2 [18] and Theorem 3.2 above to Lyapunov matrix differential equation (1.1).

The next simple example is an illustration of Theorem.
Example 4.1. Consider the nonlinear Lyapunov matrix differential equation (1.1) with

$$
\begin{aligned}
A(t) & =\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right), B(t)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \\
C(t) & =\left(\begin{array}{cc}
0 & a e^{4 t} \cos |t| \\
a e^{-3 t} \sin t^{2} & a e^{-3|t|}
\end{array}\right)
\end{aligned}
$$

and

$$
F(t, Z)=m\left(\begin{array}{cc}
\sin z_{1} \sin t & z_{2} \cos t \\
z_{3} \sin z_{4} & \frac{2}{\pi} z_{4} \operatorname{arctg} t
\end{array}\right),
$$

where $t \in R, Z=\left(\begin{array}{cc}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right) \in \mathbb{M}_{2 \times 2}$ and a, m are real constants, $0<|m|<$ $\frac{1}{4}$.
Then,

$$
X(t)=\left(\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{-2 t}
\end{array}\right) \text { and } Y(t)=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & 1
\end{array}\right)
$$

are fundamental matrices for (2.3) and (2.4) respectively.
Consider

$$
\Psi(t)=\left(\begin{array}{cc}
e^{-4 t} & 0 \\
0 & e^{3 t}
\end{array}\right), t \in R .
$$

There exist supplementary projections

$$
P_{-}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { and } P_{+}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

such that

$$
\left|\left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{-} X^{-1}(s) \Psi^{-1}(s)\right)\right|=e^{-\alpha(t-s)}, \text { for } s \leq t
$$

and

$$
\left|\left(Y^{T}(t)\left(Y^{T}\right)^{-1}(s)\right) \otimes\left(\Psi(t) X(t) P_{+} X^{-1}(s) \Psi^{-1}(s)\right)\right|=e^{-(s-t)}, \text { for } t \leq s
$$

Thus, the condition 1) of Theorem is satisfied with $K_{1}=K_{2}=1$ and $\alpha=\beta=1$.
After that, for $t \in R, Z=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right) \in \mathbb{M}_{2 \times 2}$, we have

$$
|\Psi(t) F(t, Z)|=\left|m\left(\begin{array}{ll}
e^{-4 t} \sin z_{1} \sin t & e^{-4 t} z_{2} \cos t \\
e^{3 t} z_{3} \sin z_{4} & \frac{2}{\pi} e^{3 t} z_{4} \operatorname{arctg} t
\end{array}\right)\right| \leq|m \| \Psi(t) Z|
$$

Thus, the condition 2) of Theorem is satisfied with $\gamma=2|m|$ and $d=2$.
At least, for the matrix $C(t)$ we have that

$$
|C|=\sup _{t \in R}|\Psi(t) C(t)|=\sup _{t \in R}\left|\left(\begin{array}{cc}
0 & a \cos |t| \\
a \sin t^{2} & a e^{-3|t|+3 t}
\end{array}\right)\right|=2|a|
$$

Now, from Theorem 4.2, it follows that for all $\rho \geq \frac{8|a|}{1-4|m|}$, the equation (1.1) has at least one solution $Z(t)$ for which $|\Psi(t) Z(t)| \leq \rho$, for all $t \in R$.

References

[1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, Inc. New York, 1960 (translated in Romanian).
[2] P. N. Boi, Existence of Ψ - bounded solutions on R for nonhomogeneous linear differential equations, Electron. J. Diff. Eqns. 2007 (2007), 52:110.
[3] P. N. Boi, On the Ψ-dichotomy for homogeneous linear differential equations, Electronic Journal of Differential Equations 2006 (2006), 40: 1-12.
[4] A. Constantin, Asymptotic properties of solutions of differential equations, Analele Universităţii din Timişoara, Seria Ştiinte Matematice $\mathbf{3 0}$ (2-3) (1992), 183-225.
[5] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston, 1965.
[6] A. Diamandescu, On the Ψ - boundedness of the solutions of a nonlinear Lyapunov matrix differential equation, Applied Sciences 19 (2017), 31-40.
[7] A. Diamandescu, On the Ψ - boundedness of the solutions of linear nonhomogeneous Lyapunov matrix differential equations, Differential Geometry - Dynamical Systems 19 (2017), 35-44.
[8] A. Diamandescu, A note on the existence of Ψ - bounded solutions for a system of differential equations on R, Electronic Journal of Differential Equations 2008 (2008), 128: 1-11.
[9] A. Diamandescu, Ψ - bounded solutions for linear differential systems with Lebesgue Ψ - integrable functions on R as right-hand sides, Electronic Journal of Differential Equations 2009 (2009), 5: 1-12.
[10] A. Diamandescu, Ψ - bounded solutions for a Lyapunov matrix differential equation, Electronic Journal of Qualitative Theory Differential Equations 17 (2009), 1-11.
[11] A. Diamandescu, Existence of Ψ - bounded solutions for nonhomogeneous Lyapunov matrix differential equations on R, Electronic Journal of Qualitative Theory Differential Equations 42 (2010), 1-9.
[12] A. Diamandescu, On the Ψ - boundedness of the solutions of a linear system of ordinary differential equations, Analele Ştiințifice ale Universităţii "Al. I. Cuza" Iaşi, XLVIII, s. I, Matematică, (2) (2002), 269-286.
[13] T. G. Hallam, On asymptotic equivalence of the bounded solutions of two systems of differential equations, Mich. Math. Journal 16 (1969), 353-363.
[14] T. Hara, T. Yoneyama, T. Itoh, Asymptotic Stability Criteria for Nonlinear Volterra Integro-Differential Equations, Funkcialaj Ekvacioj 33 (1990), 39-57.
[15] J. R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley \& Sons Ltd, Chichester, 1999.
[16] M. S. N. Murty, G. Suresh Kumar, On Ψ - boundedness and Ψ - stability of matrix Lyapunov systems, J. Appl. Math. Comput. 26 (2008), 67-84.
[17] M. S. N. Murty, G. Suresh Kumar, On Ψ - bounded solutions for non-homogeneous matrix Lyapunov systems on R, Electronic Journal of Qualitative Theory Differential Equations 62 (2009), 1-12.
[18] Ch. Vasavi, T. Srinivasa Rao, G. Suresh Kumar, On Ψ - bounded solutions for semi-linear differential equations on R, International Journal of Advances in Engineering, Science and Technology 3, No. 1 (2013), 22-25.

Aurel Diamandescu

Department of Applied Mathematics
University of Craiova
13 A.I. Cuza Street
200585, Craiova
Romania
E-mail: diamandescu.aurel@ucv.ro

