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1 Introduction

The purpose of present paper is to provide sufficient conditions for the exis-
tence and uniqueness and existence of at least one Ψ− bounded solution for
the nonlinear Lyapunov matrix differential equation on R

Z ′ = A(t)Z + ZB(t) + C(t) + F (t, Z) (1.1)

with the help of Banach and Schauder-Tychonoff fixed point theorems.
We first establish two results in connection with the existence and uniqueness
and existence of at least one Ψ− bounded solution for the nonlinear matrix
differential equation on R of the form

Z ′ = A(t)Z + C(t) + F (t, Z). (1.2)
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Second, using vectorization operator and Kronecker product of matrices, we
treat the same problems for the nonlinear Lyapunov matrix differential equa-
tion on R of the form (1.1).
History of problem. A classical result in connection with boundedness of
solutions of systems of ordinary differential equations

x′ = A(t)x+ c(t) + f(t, x) (1.3)

was given by Coppel [5] (Chapter V, section 2, Theorem 4). The problem
of Ψ− bounded solutions for systems of ordinary differential equations has
been studied by many authors: [2], [3], [4], [8], [9], [12], [13], [14], [18] and
for Lyapunov matrix differential equations, [6], [7], [10], [11], [16], [17].
The introduction of the matrix function Ψ in the study of solutions permits
to obtain a mixed asymptotic behavior of the components of the solutions of
the above equations.

2 Preliminaries

In this section we present some basic notations, definitions, hypotheses and
results which are useful later on.
Let Rd be the Euclidean d − dimensional space. For x = (x1, x2, ..., xd)

T ∈
Rd, let ‖ x ‖ = max{| x1|, | x2|, ..., | xd|} be the norm of x (here, T denotes
transpose).
Let Md×d be the linear space of all real d× d matrices.
For A = (aij) ∈ Md×d, we define the norm | A | by | A | = sup

‖x‖≤1

‖ Ax ‖ . It

is well-known that | A | = max
1≤i≤d

{
d∑
j=1

| aij|}.

By a solution of the equation (1.1) we mean a continuous differentiable d×d
matrix function satisfying the equation (1.1) for all t ∈ R.
In equation (1.1) we assume that the coefficients are continuous functions.
Let Ψi : R+ −→ (0,∞), i = 1, 2, ..., d, be continuous functions and

Ψ = diag [Ψ1,Ψ2, · · ·Ψd].

A matrix P is said to be a projection if P 2 = P.

Definition 2.1. ([12], [8]) A function ϕ : R −→ Rd is said to be Ψ− bounded
on R if Ψ(t)ϕ(t) is bounded on R (i.e. there exists m > 0 such that ‖
Ψ(t)ϕ(t) ‖ ≤ m, for all t ∈ R).
Otherwise, is said that the function ϕ is Ψ− unbounded on R.
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Definition 2.2. ([10]) A matrix function M : R −→Md×d is said to be Ψ−
bounded on R if the matrix function Ψ(t)M(t) is bounded on R (i.e. there
exists m > 0 such that | Ψ(t)M(t) | ≤ m, for all t ∈ R).
Otherwise, is said that the matrix function M is Ψ− unbounded on R.

We now describe a few definitions and properties in connection with Kro-
necker product of matrices and vectorization operator.

Definition 2.3. ([1]) Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q. The
Kronecker product of A and B, written A⊗B, is defined to be the partitioned
matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 .

Obviously, A⊗B ∈Mmp×nq.

We next show the important rules of calculation of the Kronecker product.

Lemma 2.1. ([1]) The Kronecker product has the following properties and
rules, provided that the dimension of the matrices are such that the various
expressions exist:

1). A⊗ (B ⊗ C) = (A⊗B)⊗ C;
2). (A⊗B)T = AT ⊗BT ;
3). (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D);
4). (A⊗B)−1 = A−1 ⊗B−1;
5). A⊗ (B + C) = A⊗B + A⊗ C;
6). (A+B)⊗ C = A⊗ C +B ⊗ C;

7). Id ⊗ A =


A O · · · O
O A · · · O
...

...
...

...
O O · · · A

 ;

8).(A(t)⊗B(t))′ = A′(t)⊗B(t) + A(t)⊗B′(t); (′ denotes the derivative d
dt

).

Proof. See in [1].

Definition 2.4. ([15]) The application Vec : Mm×n −→ Rmn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)T ,

where A = (aij) ∈ Mm×n, is called the vectorization operator.
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Lemma 2.2. ([10]) The vectorization operator

Vec : Mm×n −→ Rmn, A −→ Vec(A),

is a linear and one-to-one operator. In addition, Vec and Vec−1 are contin-
uous operators.

Proof. See Lemma 2, [10].

Remark 2.1. Obviously, a function F : R −→ Md×d is a continuous (dif-
ferentiable) matrix function on R if and only if the function f : R −→ Rd2 ,
defined by f(t) = Vec(F (t)), is a continuous (differentiable) vector function
on R.

We recall that the vectorization operator Vec has the following properties as
concerns the calculations.

Lemma 2.3. ([15]) If A,B,M ∈Mn×n, then

1). Vec(AMB) = (BT ⊗ A) · Vec(M);
2). Vec(MB) = (BT ⊗ In) · Vec(M);
3). Vec(AM) = (In ⊗ A) · Vec(M);
4). Vec(AM) = (MT ⊗ A) · Vec(In).

Proof. See [15], Chapter 2.

The following lemmas play a vital role in the proofs of main results of present
paper.

Lemma 2.4. ([10]) The matrix function Z(t) is a solution on R of (1.1) if
and only if the vector function z(t) = Vec(Z(t)) is a solution of the differen-
tial system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z + c(t) + f(t, z), (2.1)

where c(t) = Vec(C(t)) and f(t, z) = Vec (F (t, Z)) , on the same interval R.

Proof. See Lemma 7, [10].

Definition 2.5. ([10]) The above system (2.1) is called ”corresponding Kro-
necker product system associated with (1.1)”.

Lemma 2.5. ([10]). For every matrix function M : R −→Md×d,

1

d
| Ψ(t)M(t) |≤‖ (Id ⊗Ψ(t))Vec (M(t)) ‖Rd2≤| Ψ(t)M(t) |,∀t ≥ 0. (2.2)
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Proof. See Lemma 4, [10].

Lemma 2.6. The solutions of (1.1) are Ψ− bounded on R if and only if the
solutions of the differential system (2.1) are Id ⊗Ψ− bounded on R.

Proof. It results from above Lemma (2.5).

Lemma 2.7. ([10]). Let X(t) and Y(t) be a fundamental matrices for the
equations

Z ′ = A(t)Z (2.3)

Z ′ = ZB(t) (2.4)

respectively.
Then, the matrix Z(t) = Y T (t)⊗X(t) is a fundamental matrix for the linear
differential system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z (2.5)

(i.e. for homogeneous differential system associated with (2.1).

Proof. See Lemma 6, [10].

3 Ψ− bounded solutions for the matrix differential equa-
tion (1.2)

The purpose of this section is to provide sufficient conditions for the existence
and uniqueness and existence of at least one Ψ− bounded solution on R for
the equation (1.2).

Theorem 3.1. Suppose that:
1). There exist supplementary projections P−, P0, P+ ∈ Md×d and a posi-
tive constant K such that the fundamental matrix X(t) for (2.3) satisfies the
condition ∫ t

−∞ | Ψ(t)X(t)P−X
−1(s)Ψ−1(s) | ds+

+ |
∫ t

0
| Ψ(t)X(t)P0X

−1(s)Ψ−1(s) | ds | +

+
∫∞
t
| Ψ(t)X(t)P+X

−1(s)Ψ−1(s) | ds ≤ K,

(3.1)

for all t ≥ 0;
2). The continuous function F : R ×Md×d → Md×d satisfies F (t, O) = O
and the Lypschitz condition

| Ψ(t) (F (t, Z1)− F (t, Z2)) |≤ γ | Ψ(t) (Z1 − Z2) |,
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for t ∈ R, Z1, Z2 ∈Md×d with | Ψ(t)Z1 |≤ ρ, | Ψ(t)Z2 |≤ ρ for t ∈ R, (ρ > 0
is given), where γ is a positive constant such that γK < 1;
3). The continuous function C : R→Md×d is Ψ− bounded on R such that

| C |Ψ = sup
t∈R
| Ψ(t)C(t) |≤ ρ(1− γK)

K
.

Then, the equation (1.2) has a unique Ψ− bounded solution Z(t) on R for
which | Ψ(t)Z(t) |≤ ρ, for all t ∈ R.
Proof. We prove this theorem by means of Banach fixed point theorem.
Consider the space

CΨ = {Z : R→Md×d | Z is continuous and Ψ− bounded on R}.
CΨ is a Banach space with respect to the norm | Z |Ψ = sup

t∈R
| Ψ(t)Z(t) | .

Let the ball Sρ = {Z ∈ CΨ || Z |Ψ≤ ρ}.
For Z ∈ CΨ, define the operator T by

(TZ) (t) =
∫ t
−∞X(t)P−X

−1(s) (C(s) + F (s, Z(s))) ds+

+
∫ t

0
X(t)P0X

−1(s) (C(s) + F (s, Z(s))) ds−

−
∫∞
t
X(t)P+X

−1(s) (C(s) + F (s, Z(s))) ds.

From hypotheses, TZ exists and is continuous differentiable on R.
For Z ∈ Sρ and t ∈ R, we have

| Ψ(t) (TZ) (t) |=|
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z(s))) ds+

+
∫ t

0
Ψ(t)X(t)P0X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z(s))) ds |≤

≤
∫ t
−∞ | Ψ(t)X(t)P−X

−1(s)Ψ−1(s) || Ψ(s) (C(s) + F (s, Z(s))) | ds+

+ |
∫ t

0
| Ψ(t)X(t)P0X

−1(s)Ψ−1(s) || Ψ(s) (C(s) + F (s, Z(s))) | ds | +

+
∫∞
t
| Ψ(t)X(t)P+X

−1(s)Ψ−1(s) || Ψ(s) (C(s) + F (s, Z(s))) | ds ≤

≤ K · sup
t∈R
| Ψ(s) (C(s) + F (s, Z(s))) |≤

≤ K ·
(
ρ(1−γK)

K
+ γ | Z |Ψ

)
= ρ(1− γK) + γKρ = ρ.
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It follows that TZ ∈ Sρ and hence,

TSρ ⊂ Sρ.

On the other hand, for Z1, Z2 ∈ Sρ and t ∈ R, we have
| Ψ(t) ((TZ1) (t)− (TZ2) (t)) | =

=| [
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z1(s))) ds+

+
∫ t

0
Ψ(t)X(t)P0X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z1(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z1(s))) ds]−

−[
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z2(s))) ds+

+
∫ t

0
Ψ(t)X(t)P0X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z2(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z2(s))) ds] |=

=|
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (F (s, Z1(s))− F (s, Z2(s))) ds+

+
∫ t

0
Ψ(t)X(t)P0X

−1(s)Ψ−1(s)Ψ(s) (F (s, Z1(s))− F (s, Z2(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (F (s, Z1(s))− F (s, Z2(s))) ds |≤

≤
∫ t
−∞ | Ψ(t)X(t)P−X

−1(s)Ψ−1(s) || Ψ(s) (F (s, Z1(s))− F (s, Z2(s))) | ds+

+ |
∫ t

0
| Ψ(t)X(t)P0X

−1(s)Ψ−1(s) || Ψ(s) (F (s, Z1(s))− F (s, Z2(s))) | ds | +

+
∫∞
t
| Ψ(t)X(t)P+X

−1(s)Ψ−1(s) || Ψ(s) (F (s, Z1(s))− F (s, Z2(s))) | ds ≤

≤ γ
∫ t
−∞ | Ψ(t)X(t)P−X

−1(s)Ψ−1(s) || Ψ(s) (Z1(s)− Z2(s)) | ds+

+γ |
∫ t

0
| Ψ(t)X(t)P0X

−1(s)Ψ−1(s) || Ψ(s) (Z1(s)− Z2(s)) | ds | +

+γ
∫∞
t
| Ψ(t)X(t)P+X

−1(s)Ψ−1(s) || Ψ(s) (Z1(s)− Z2(s)) | ds ≤

≤ γKsup
t∈R
| Ψ(s) (Z1(s)− Z2(s)) | = γK | Z1 − Z2 |Ψ .
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It follows that
| TZ1 − TZ2 |Ψ≤ γK | Z1 − Z2 |Ψ .

Therefore, T is a contraction operator on Sρ. Hence, by Banach fixed point
theorem, T has a unique fixed point Z ∈ Sρ. From Z = TZ, it follows that
Z is continuous differentiable on R and then, for t ∈ R,
Z ′(t) = (TZ)′ (t) =

=
∫ t
−∞X

′(t)P−X
−1(s) (C(s) + F (s, Z(s))) ds+

+X(t)P−X
−1(t) (C(t) + F (t, Z(t))) +

+
∫ t

0
X ′(t)P0X

−1(s) (C(s) + F (s, Z(s))) ds+

+X(t)P0X
−1(t) (C(t) + F (s, Z(t)))−

−
∫∞
t
X ′(t)P+X

−1(s) (C(s) + F (s, Z(s))) ds+

+X(t)P+X
−1(t) (C(t) + F (t, Z(t))) =

= A(t) (TZ) (t) +X(t) (P− + P0 + P+)X−1(t) (C(t) + F (t, Z(t))) =

= A(t)Z(t) + C(t) + F (t, Z(t)).
Thus, Z(t) is a solution of equation (1.2).
In conclusion, the equation (1.2) has a unique Ψ− bounded solution Z(t) on
R for which | Ψ(t)Z(t) |≤ ρ, for all t ∈ R.

Remark 3.1. Theorem generalizes the Theorem 4 ([5], Ch. 5, s. 2) and
Theorem 2.1, [18] from systems of differential equations to matrix differential
equations and extents them for case P0 6= 0.

The next simple example is an illustration of Theorem.

Example 3.1. Consider the equation (1.2) with

A(t) = diag [− 2t, 1,−1], C(t) = diag [
α

1 + t2
, αe−t sin t, αet cos t]

and
F (t, Z) = diag [ ln (1 + a | z11 |) , sin az22, arctg az33],

where Z = (zij) ∈M3×3 and a,α are real constants such that

0 < a <

[
1 +

∫ 1

0

es
2

ds

]−1

.
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Then, X(t) = diag [et
2
, et, e−t], t ∈ R, is a fundamental matrix for (2.3).

Consider Ψ(t) = diag [1, et, e−t], t ∈ R.
There exist supplementary projections

P− = diag [0, 0, 1], P0 = diag [1, 0, 0], and P+ = diag [0, 1, 0]

such that:

I Ψ(t)X(t)P−X
−1(s)Ψ−1(s) = diag [0, 0, e−2(t−s)] and then∫ t

−∞ | Ψ(t)X(t)P−X
−1(s)Ψ−1(s) | ds ≤

∫ t
−∞ e

−2(t−s)ds = 1
2
;

I Ψ(t)X(t)P+X
−1(s)Ψ−1(s) = diag [0, e2(t−s), 0] and then∫∞

t
| Ψ(t)X(t)P+X

−1(s)Ψ−1(s) | ds ≤
∫∞
t
e2(t−s)ds = 1

2
;

I Ψ(t)X(t)P0X
−1(s)Ψ−1(s) = diag [e−t

2+s2 , 0, 0] and then

|
∫ t

0
| Ψ(t)X(t)P0X

−1(s)Ψ−1(s) | ds |=|
∫ t

0
e−t

2+s2ds |=

=
∫ |t|

0
e−t

2+s2ds ≤ 1 +
∫ 1

0
es

2
ds.

and then, the condition (3.1) is satisfied with K = 1 +
∫ 1

0
es

2
ds.

After that, for t ∈ R and for Z ′, Z ′′ ∈M3×3, we have

| Ψ(t) (F (t, Z ′)− F (t, Z ′′)) |≤

≤ max{a | z′11 − z′′11 |, aet | z′22 − z′′22 |, ae−t | z′33 − z′′33 |} =

= a ·max{| z′11 − z′′11 |, et | z′22 − z′′22 |, e−t | z′33 − z′′33 |} =

= a· | Ψ(t) (Z ′ − Z ′′) | .

and then, the condition 2) of Theorem is satisfied.
At least, for the matrix C(t) we have that

| C | = sup
t∈R
| Ψ(t)C(t) |=| α | .

From Theorem, it follows that for ρ ≥ |α|K
1−aK , the equqtion (1.2) has a unique

Ψ− bounded solution Z(t) for which | Ψ(t)Z(t) |≤ ρ, for all t ∈ R.
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Theorem 3.2. Suppose that:
1). There exist supplementary projections P−, P+ ∈ Md×d and a positive
constants K1, K2, α and β such that the fundamental matrix X(t) for (2.3)
satisfies the conditions

| Ψ(t)X(t)P−X
−1(s)Ψ−1(s) |≤ K1e

−α(t−s), for s ≤ t

| Ψ(t)X(t)P+X
−1(s)Ψ−1(s) |≤ K2e

−β(s−t), for t ≤ s

2). The continuous function F : R×Md×d →Md×d satisfies the condition

| Ψ(t)F (t, Z) |≤ γ | Ψ(t)Z |,

for t ∈ R, Z ∈ Md×d with | Ψ(t)Z |≤ ρ for t ∈ R (ρ > 0 is given), where γ

is a positive constant such that γ
(
K1

α
+ K2

β

)
< 1;

3). The continuous function C : R→Md×d is Ψ− bounded on R such that

| C |Ψ = sup
t∈R
| Ψ(t)C(t) | ≤

ρ
[
1− γ(K1

α
+ K2

β
)
]

K1

α
+ K2

β

.

Then, the equation (1.2) has at least one Ψ− bounded solution Z(t) on R for
which | Ψ(t)Z(t) |≤ ρ, for all t ∈ R.

Proof. We prove this treorem by means of Schauder-Tychonoff fixed point
theorem.
For this, let CΨ denote the set of all matrix functions Z(t) which are contin-
uous and Ψ−bounded on R, and Sρ be the subset formed by those functions
Z(t) such that | Z |Ψ = sup

t∈R
| Ψ(t)Z(t) | ≤ ρ.

For Z ∈ CΨ, define the operator T by

(TZ) (t) =
∫ t
−∞X(t)P−X

−1(s) (C(s) + F (s, Z(s))) ds−

−
∫∞
t
X(t)P+X

−1(s) (C(s) + F (s, Z(s))) ds,

This operator have the following two properties:
i). T is continuous, in the sense that if Zn ∈ Sρ (n = 1, 2, ...) and Zn → Z
uniformly on every compact subinterval J of R, then TZn → TZ uniformly
on every compact subinterval J of R.
Indeed, let Zn ∈ Sρ (n = 1, 2, ...) and Zn → Z uniformly on every compact
subinterval J = [p, q] of R. For an arbitrary small ε > 0, choose τ > 0 so
large that

τ > max{− 1

α
ln

αε

8ργK1

,− 1

β
ln

βε

8ργK2

}.
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Since F (t, Z) is uniformly continuous for t ∈ [p− τ, q + τ ] and | Ψ(t)Z |≤ ρ,
it follows that the sequence Un(t) = Ψ(t) (F (t, Zn(t))− F (t, Z(t))) tends
to zero uniformly on [p − τ, q + τ ]. Thus, there exists n0 ∈ N such that
| Un(t) |< ε

4τ max{K1,K2} , for n ≥ n0 and t ∈ [p− τ, q + τ ].
For t ∈ J and n ≥ n0, consider
| Ψ(t) ((TZn) (t)− (TZ) (t)) |=

=| [
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Zn(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Zn(s))) ds]−

−[
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z(s))) ds] |=

=|
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (F (s, Zn(s))− F (s, Z(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (F (s, Zn(s))− F (s, Z(s))) ds |≤

≤
∫ t
−∞ | Ψ(t)X(t)P−X

−1(s)Ψ−1(s) || Ψ(s) (F (s, Zn(s))− F (s, Z(s))) | ds+

+
∫∞
t
| Ψ(t)X(t)P+X

−1(s)Ψ−1(s) || Ψ(s) (F (s, Zn(s))− F (s, Z(s))) | ds ≤

≤ K1

∫ t
−∞ e

−α(t−s) | Un(s) | ds+K2

∫∞
t
e−β(s−t) | Un(s) | ds =

= K1

∫ t−τ
−∞ e−α(t−s) | Un(s) | ds+K1

∫ t
t−τ e

−α(t−s) | Un(s) | ds+

+K2

∫∞
t+τ

e−β(s−t) | Un(s) | ds+K2

∫ t+τ
t

e−β(s−t) | Un(s) | ds ≤

≤ 2ργ(K1

∫ t−τ
−∞ e−α(t−s)ds+K2

∫∞
t+τ

e−β(s−t)ds) + max{K1, K2}
∫ t+τ
t−τ | Un(s) | ds <

< 2ργ
(
K1 · e

−ατ

α
+K2 · e

−βτ

β

)
+ max{K1, K2} · ε

4τ max{K1,K2} · 2τ < ε.

This shows that TZn → TZ uniformly on every compact subinterval of R.
Thus, T is continuous.
ii). the functions in the image set TSρ are equicontinuous and bounded at
every point of J.
Indeed, from Z ∈ Sρ, we have
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| Ψ(t) (TZ) (t) |=

=|
∫ t
−∞Ψ(t)X(t)P−X

−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z(s))) ds−

−
∫∞
t

Ψ(t)X(t)P+X
−1(s)Ψ−1(s)Ψ(s) (C(s) + F (s, Z(s))) ds |≤

≤
∫ t
−∞ | Ψ(t)X(t)P−X

−1(s)Ψ−1(s) || Ψ(s) (C(s) + F (s, Z(s))) | ds+

+
∫∞
t
| Ψ(t)X(t)P+X

−1(s)Ψ−1(s) || Ψ(s) (C(s) + F (s, Z(s))) | ds ≤

≤ K1

∫ t
−∞ e

−α(t−s) | Ψ(s) (C(s) + F (s, Z(s))) | ds+

+K2

∫∞
t
e−β(s−t) | Ψ(s) (C(s) + F (s, Z(s))) | ds ≤

≤ K1

∫ t
−∞ e

−α(t−s) (| Ψ(s)C(s) | +γ | Ψ(s)Z(s) |) ds+

+K2

∫∞
t
e−β(s−t) (| Ψ(s)C(s) | +γ | Ψ(s)Z(s) |) ds ≤

≤
(
ρ[1−γ(

K1
α

+
K2
β

)]
K1
α

+
K2
β

+ γρ

)
(K1

α
+ K2

β
) = ρ.

Hence, the functions in the image set TSρ are uniformly bounded at every point
of J.
On the other hand, we have

(TZ)′ (t) =

=
∫ t
−∞X

′(t)P−X
−1(s) (C(s) + F (s, Z(s))) ds+

+X(t)P−X
−1(t) (C(t) + F (t, Z(t))) +

−
∫∞
t
X ′(t)P+X

−1(s) (C(s) + F (s, Z(s))) ds+

+X(t)P+X
−1(t) (C(t) + F (t, Z(t))) =

= A(t) (TZ) (t) +X(t) (P− + P+)X−1(t) (C(t) + F (t, Z(t))) =

= A(t) (TZ) (t) + C(t) + F (t, Z(t)),

which shows that (TZ) (t) is a solution of equation W ′ = A(t)W + C(t) +
F (t, Z(t)).
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It follows that the derivatives (TZ)′ (t) are uniformly bounded on any com-
pact subinterval J of R. Thus, the functions in TSρ are echicontinuous on
any compact subinterval J of R.
From i) and ii), all the conditions of the Schauder-Tychonoff theorem are
satisfied. Hence, the operator T has at least one fixed point Z(t) in Sρ. But
the fixed point of T is just the solution of the integral equation

Z = TZ

in Sρ, i.e. , of the matrix differential equation (1.2), with the required prop-
erties.

Remark 3.2. In a particular case, our result reduces to Theorem 2.2 ob-
tained in [18].
Indeed, if

F (t, Z) =


f1(t, z) f1(t, z) · · · f1(t, z)
f2(t, z) f2(t, z) · · · f2(t, z)

...
...

...
...

fd(t, z) fd(t, z) · · · fd(t, z)

 , C(t) =


c1(t) c1(t) · · · c1(t)
c2(t) c2(t) · · · c2(t)
...

...
...

...
cd(t) cd(t) · · · cd(t)


it is easy to see that the solutions of the equation (1.2) is

Z(t) =


z1(t) z1(t) · · · z1(t)
z2(t) z2(t) · · · z2(t)

...
...

...
...

zd(t) zd(t) · · · zd(t)

 ,

where z(t) = (z1(t), z2(t), · · · , zd(t))T is the solution of the equation (1.3)
with

c(t) = (c1(t), c2(t), · · · , cd(t))T and f(t, z) = (f1(t, z), f1(t, z), · · · , f1(t, z))T .

In this case, the solution z(t) is Ψ−bounded on R iff the corresponding so-
lution Z(t) is Ψ−bounded on R.
Thus, the Theorem generalizes the result from [18], from systems of differ-
ential equations to matrix differential equations.
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4 Ψ− bounded solutions for the Lyapunov matrix dif-
ferential equation (1)

The purpose of this section is to provide sufficient conditions for the existence
and uniqueness and existence of at least one Ψ− bounded solution on R for
the Lyapunov matrix differential equation (1.1).

Theorem 4.1. Suppose that:
1). There exist supplementary projections P−, P0, P+ ∈Md×d and a positive
constant K such that the fundamental matrices X(t) and Y(t) for (2.3) and
(2.4) respectively satisfy the condition∫ t

−∞ |
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P−X

−1(s)Ψ−1(s)) | ds+

+ |
∫ t

0
|
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P0X

−1(s)Ψ−1(s)) | ds | +

+
∫∞
t
|
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P+X

−1(s)Ψ−1(s)) | ds ≤ K,

for all t ≥ 0;
2). The continuous function F : R ×Md×d → Md×d satisfies the Lypschitz
condition

| Ψ(t) (F (t, Z1)− F (t, Z2)) |≤ γ

d
| Ψ(t) (Z1 − Z2) |,

for t ∈ R, Z1, Z2 ∈Md×d with | Ψ(t)Z1 |≤ ρ, | Ψ(t)Z2 |≤ ρ for t ∈ R, (ρ > 0
is given), where γ is a positive constant such that γK < 1;
3). The continuous matrix function C : R → Md×d is Ψ− bounded on R
such that

| C |Ψ = sup
t∈R
| Ψ(t)C(t) |≤ ρ(1− γK)

K
.

Then, the Lyapunov matrix differential equation (1.1) has a unique Ψ−
bounded solution Z(t) on R for which | Ψ(t)Z(t) |≤ ρd, for all t ∈ R.

Proof. From Lemma 2.4, one know that Z(t) is a solution of (1.1) iff the vec-
tor function z(t) = Vec(Z(t)) is a solution of the corresponding Kronecker
product system associated with (1.1), i.e. of the differential system (2.1).
From Lemma (2.7), one know that U(t) = Y T (t) ⊗ X(t) is a fundamental
matrix for the differential system (2.5).
Now, the hypotheses of the Theorem ensure the hypotheses of Theorem 3.1
(variant for systems) for the system (2.1). Indeed:
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i). Since(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P−X

−1(s)Ψ−1(s)) =

= (I ⊗Ψ(t)) ·
(
Y T (t)⊗X(t)

)
· (I ⊗ P−) ·

((
Y T
)−1

(s)⊗X−1(s)
)
· (I ⊗Ψ−1(s))

(see Lemma 2.1) and similarly for P0 and P+, the hypothesis 1) of Theorem
3.1 is satisfied;
ii). Since
‖ (I ⊗Ψ(t)) · (f(t, z1)− f(t, z2)) ‖Rd2=

=‖ (I ⊗Ψ(t)) · Vec (F (t, Z1)− F (t, Z2)) ‖Rd2≤

≤| Ψ(t) (F (t, Z1)− F (t, Z2)) |≤ γ
d
| Ψ(t) (Z1 − Z2) |≤

≤ γ ‖ (I ⊗Ψ(t)) · Vec (Z1 − Z2) ‖Rd2=

= γ ‖ (I ⊗Ψ(t)) · (z1 − z2) ‖Rd2 ,

for all z1, z2 with ‖ (I ⊗Ψ(t)) · zi ‖Rd2=‖ (I ⊗Ψ(t)) · Vec (Zi) ‖Rd2≤|
Ψ(t)Zi |≤ ρ,
(see Lemmas 2.1 and 2.5) and γK < 1, the hypothesis 2) of Theorem 3.1 is
satisfied;
iii). Since
‖ c ‖Rd2= | C | = sup

t∈R
| (I ⊗Ψ(t))Vec (C(t)) |≤

≤ sup
t∈R
| Ψ(t)C(t) |≤ ρ(1−γK)

K
,

the hypothesis 3) of Theorem 3.1 is satisfied.
At this stage we appeal to Theorem 3.1 to deduce that the system (2.1)
has a unique I ⊗Ψ(t)− bounded solution z(t) on R for which ‖ (I ⊗Ψ(t)) ·
z(t) ‖Rd2≤ ρ.
From Lemma 2.4 again, the matrix function Z(t) = Vec−1(z(t)) is unique
solution of (1.1) on R such that (see Lemma 2.5) | Ψ(t)Z(t) |≤ ρd, for all
t ∈ R.
Remark 4.1. The Theorem extends the Theorem 2.1, [18] and Theorem 3.1
above to Lyapunov matrix differential equation (1.1).

Theorem 4.2. Suppose that:
1). There exist supplementary projections P−, P+ ∈ Md×d and a positive
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constants K1, K2, α and β such that the fundamental matrices X(t) and
Y(t) for (2.3) and (2.4) respectively satisfy the condition

|
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P−X

−1(s)Ψ−1(s)) |≤ K1e
−α(t−s), for s ≤ t

|
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P+X

−1(s)Ψ−1(s)) |≤ K2e
−β(s−t), for t ≤ s

2). The continuous function F : R×Md×d →Md×d satisfies the condition

| Ψ(t)F (t, Z) |≤ γ

d
| Ψ(t)Z |,

for t ∈ R, Z ∈ Md×d with | Ψ(t)Z |≤ ρ for t ∈ R (ρ > 0 is given), where γ

is a positive constant such that γ
(
K1

α
+ K2

β

)
< 1;

3). The continuous matrix function C : R → Md×d is Ψ− bounded on R
such that

| C |Ψ = sup
t∈R
| Ψ(t)C(t) |≤

ρ
[
1− γ(K1

α
+ K2

β
)
]

K1

α
+ K2

β

.

Then, the Lyapunov matrix differential equation (1.1) has at least one Ψ−
bounded solution Z(t) on R for which | Ψ(t)Z(t) |≤ ρd.

Proof. From Lemma 2.4, one know that Z(t) is a solution of (1.1) iff the vec-
tor function z(t) = Vec(Z(t)) is a solution of the corresponding Kronecker
product system associated with (1.1), i.e. of the differential system (2.1).
From Lemma (2.7), one know that U(t) = Y T (t) ⊗ X(t) is a fundamental
matrix for the differential system (2.5).
Now, the hypotheses of the Theorem ensure the hypotheses of Theorem 3.2
(variant for systems) for the system (2.1). Indeed:
i). Since(

Y T (t)
(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P−X

−1(s)Ψ−1(s)) =

= (I ⊗Ψ(t)) ·
(
Y T (t)⊗X(t)

)
· (I ⊗ P−) ·

((
Y T
)−1

(s)⊗X−1(s)
)
· (I ⊗Ψ−1(s))

(see Lemma 2.1) and similarly for P+, the hypothesis 1) of Theorem 3.2 is
satisfied;
ii). Since
‖ (I ⊗Ψ(t)) · f(t, z) ‖Rd2=‖ (I ⊗Ψ(t)) · VecF (t, Z) ‖Rd2≤

≤| Ψ(t)F (t, Z) |≤ γ
d
| Ψ(t)Z |≤ γ ‖ (I ⊗Ψ(t)) · Vec (Z) ‖Rd2=

= γ ‖ (I ⊗Ψ(t)) · z ‖Rd2 ,
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for t ∈ R and z ∈ Rd2 , (see Lemmas 2.1 and 2.5) and γ
(
K1

α
+ K2

β

)
< 1, the

hypothesis 2) of Theorem 3.2 is satisfied;
iii). Since
‖ c ‖Rd2= ‖ Vec (C(t)) ‖Rd2 = sup

t∈R
| (I ⊗Ψ(t))Vec (C(t)) |≤

≤ sup
t∈R
| Ψ(t)C(t) |≤ ρ(1−γ(K1

α
+
K2
β ))

K1
α

+
K2
β

,

the hypothesis 3) of Theorem 3.2 is satisfied.
At this stage we appeal to Theorem 3.2 to deduce that the system (2.1) has
at least one I ⊗ Ψ(t)− bounded solution z(t) on R for which ‖ (I ⊗Ψ(t)) ·
z(t) ‖Rd2≤ ρ.
From Lemma 2.4 again, the matrix function Z(t) = V ec−1(z(t)) is a solution
of (1.1) on R such that (see Lemma 2.5), | Ψ(t)Z(t) |≤ ρd, for all t ∈ R.

Remark 4.2. The Theorem extends the Theorem 2.2 [18] and Theorem 3.2
above to Lyapunov matrix differential equation (1.1).

The next simple example is an illustration of Theorem.

Example 4.1. Consider the nonlinear Lyapunov matrix differential equation
(1.1) with

A(t) =

(
2 0
0 −2

)
, B(t) =

(
1 0
0 0

)
,

C(t) =

(
0 ae4t cos | t |

ae−3t sin t2 ae−3|t|

)
and

F (t, Z) = m

(
sin z1 sin t z2 cos t
z3 sin z4

2
π
z4arctg t

)
,

where t ∈ R, Z =

(
z1 z2

z3 z4

)
∈M2×2 and a, m are real constants, 0 <| m |<

1
4
.

Then,

X(t) =

(
e2t 0
0 e−2t

)
and Y (t) =

(
et 0
0 1

)
are fundamental matrices for (2.3) and (2.4) respectively.
Consider

Ψ(t) =

(
e−4t 0

0 e3t

)
, t ∈ R.



148 A. Diamandescu An. U.V.T.

There exist supplementary projections

P− =

(
1 0
0 0

)
and P+ =

(
0 0
0 1

)
such that

|
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P−X

−1(s)Ψ−1(s)) |= e−α(t−s), for s ≤ t

and

|
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P+X

−1(s)Ψ−1(s)) |= e−(s−t), for t ≤ s.

Thus, the condition 1) of Theorem is satisfied with K1 = K2 = 1 and
α = β = 1.

After that, for t ∈ R, Z =

(
z1 z2

z3 z4

)
∈M2×2, we have

| Ψ(t)F (t, Z) | =

∣∣∣∣m( e−4t sin z1 sin t e−4tz2 cos t
e3tz3 sin z4

2
π
e3tz4arctg t

)∣∣∣∣ ≤ | m || Ψ(t)Z | .

Thus, the condition 2) of Theorem is satisfied with γ = 2 | m | and d = 2.
At least, for the matrix C(t) we have that

| C | = sup
t∈R
| Ψ(t)C(t) | = sup

t∈R

∣∣∣∣( 0 a cos | t |
a sin t2 ae−3|t|+3t

)∣∣∣∣ = 2 | a | .

Now, from Theorem 4.2, it follows that for all ρ ≥ 8|a|
1−4|m| , the equation (1.1)

has at least one solution Z(t) for which | Ψ(t)Z(t) |≤ ρ, for all t ∈ R.
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