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ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS

A. A. SHAIKH AND SANJIB KUMAR JANA

Abstract. The object of the present paper is to introduce a type of non-flat Riemannian manifold called pseudo gen-

eralized quasi-Einstein manifold and studied some properties of such a manifold with several non-trivial examples.

1. Introduction

In 2000 M. C. Chaki and R. K. Maity [1] introduced the notion of quasi-Einstein manifold.

A non-flat Riemannian manifold (Mn , g ) (n > 2) is said to be quasi-Einstein manifold if its

Ricci tensor S of type (0, 2) is not identically zero and satisfies the following:

S(X ,Y ) =αg (X ,Y )+βA(X )A(Y ) (1.1)

where α, β are scalars such that β 6= 0 and A is a non-zero 1-form defined by g (X ,U ) = A(X )

for all vector fields X ; U being a unit vector field, called the generator of the manifold. An

n-dimensional manifold of this kind is denoted by (QE )n. The scalars α, β are known as the

associated scalars.

Recently U. C. De and G. C. Ghosh [3] introduced the notion of generalized quasi-Einstein

manifold. A non-flat Riemannian manifold (Mn , g ) (n > 2) is said to be generalized quasi-

Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the

following condition:

S(X ,Y ) =αg (X ,Y )+βA(X )A(Y )+γB(X )B(Y ) (1.2)

where α, β and γ are non-zero scalars and A, B are non-zero 1-forms defined respectively

by g (X ,U ) = A(X ) and g (X ,V ) = B(X ) for all vector fields X . The unit vector fields U and

V corresponding to the 1-forms A and B are orthogonal i.e., g (U ,V ) = 0. Also U and V are

known as the generators of the manifold. Such an n-dimensional manifold of this kind is

denoted by G(QE )n.

The present paper deals with a non-flat Riemannian manifold called pseudo generalized

quasi-Einstein manifold.
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A Riemannian manifold (Mn , g ) (n > 2) is called a pseudo generalized quasi-Einstein manifold

if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the following:

S(X ,Y ) =αg (X ,Y )+βA(X )A(Y )+γB(X )B(Y )+δD(X ,Y ) (1.3)

where α, β, γ and δ are non-zero scalars and A, B are non-zero 1-forms such that

g (X ,U ) = A(X ), g (X ,V ) = B(X ) (1.4)

for all vector fields X ; U , V being mutually orthogonal unit vector fields called the generators

of the manifold, D is a symmetric (0,2) tensor, with zero trace, which satisfies the condition

D(X ,U ) = 0 (1.5)

for all vector fields X . Also α, β, γ and δ are called the associated scalars; A, B are the asso-

ciated 1-forms of the manifold and D is called the structure tensor of the manifold. Such an

n-dimensional manifold will be denoted by P (GQE )n.

Section 2 is concerned with the preliminaries and it is shown that the scalars α+β and

α+γ+δD(V ,V ) are the Ricci curvatures along the directions of the vector fields U and V re-

spectively. After preliminaries, in section 3, we prove the existence theorem for a P (GQE )n.

Section 4 is devoted to the conformally flat P (GQE )n and introduced the notion of pseudo

generalized quasi-constant curvature. It is shown that a manifold of pseudo generalized quasi-

constant curvature is a P (GQE )n. But the converse is not true, in general. However a P (GQE )3

is a manifold of pseudo generalized quasi-constant curvature. Section 5 deals with some ge-

ometric properties of P (GQE )n. In section 6 we investigate the application of P (GQE )4 to

the general relativistic viscous fluid spacetime admitting heat flux and it is shown that such

a spacetime obeying Einstein’s equation with a cosmological constant is a connected semi-

Riemannian P (GQE )4. In the last section we discover several non-trivial examples of the

P (GQE )n which are neither (QE )n nor G(QE )n.

2. Preliminaries

We consider a P (GQE )n (n > 2). Let {ei : i = 1, . . . ,n} be an orthonormal basis of the tangent

space at any point of the manifold. Then setting X = Y = ei in (1.3) and taking summation

over i ,1≤ i ≤ n we obtain

r = nα+β+γ, (2.1)

where r is the scalar curvature of the manifold. Also from (1.3) we have

S(U ,U )=α+β, (2.2)

S(V ,V ) =α+γ+δD(V ,V ) and (2.3)

S(U ,V )= 0. (2.4)

It is known that if P be a unit vector field, then S(P,P ) is the Ricci curvature in the direction of

P . Hence from (2.2) and (2.3) we can state the following:
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Theorem 2.1. In a P (GQE )n (n > 2), the scalars α+β and α+γ+δD(V ,V ) are the Ricci

curvatures in the directions of the generators U and V respectively.

Let Q and L be the symmetric endomorphisms of the tangent space at any point of the

manifold corresponding to the Ricci tensor S and the structure tensor D respectively i.e.,

g (QX ,Y ) = S(X ,Y ) and g (LX ,Y ) = D(X ,Y ). Further, let s2 and d2 denote the squares of the

length of the Ricci tensor S and the structure tensor D respectively. Then s2 =
n
∑

i=1
S(Qei ,ei )

and d2 =
n
∑

i=1
D(Lei ,ei ). Now from (1.3) we get

n
∑

i=1

S(Qei ,ei ) = (n−2)α2 + (α+β)2 + (α+γ)2 +γδD(V ,V )+δ
n
∑

i=1

S(Lei ,ei ). (2.5)

Also from (1.3) we obtain

n
∑

i=1

S(Lei ,ei )= γD(V ,V )+δ
n
∑

i=1

D(Lei ,ei ). (2.6)

Hence from (2.5) and (2.6) it follows that

s2 = nα2 +β2 −γ2 +2[αβ+γS(V ,V )]+δ2d2. (2.7)

From (2.7) it follows that δ > s
d (resp. <, =) according as nα2 +β2 −γ2 +2[αβ+γS(V ,V )] < 0

(resp. >, =). Hence we can state the following:

Theorem 2.2. In a P (GQE )n (n > 2) the associated scalar δ is less than or equal or greater

than the ratio which the length of the Ricci tensor S bears to the length of the structure tensor D

according as nα2 +β2 −γ2 +2[αβ+γS(V ,V )]> 0 or, = 0 or, < 0 respectively.

3. Existence Theorem of P(GQE )n (n > 2)

To prove the existence theorem of P (GQE )n (n > 2), we first state a well-known result ([5],

[6]) as follows:

Proposition 3.1. For a connected orientable manifold Mn the following assertions are

equivalent:

1. There is a non-vanishing vector field V on Mn .

2. Either Mn is non-compact, or Mn is compact and has Euler number χ(Mn ) = 0.

Theorem 3.1. Let (Mn , g ) be a connected orientable Riemannian manifold which is either

non-compact or compact with vanishing Euler number. If the Ricci tensor S of type (0,2) of a

Riemannian manifold is non-vanishing and satisfies the following relation

S(Y , Z )S(X ,W )−S(X , Z )S(Y ,W ) = p1[g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )]

+p2g (T X ,W )g (Y , Z ) (3.1)
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where p1, p2 are non-zero scalars and T is the symmetric endomorphism of the tangent space

at any point of the manifold corresponding to a tensor field of type (0,2), then the manifold is a

pseudo generalized quasi-Einstein manifold.

Proof. From the Proposition 3.1, it follows that there is a non-vanishing vector field V

on the manifold (Mn , g ) under consideration such that g (X ,V ) = B(X ) for all vector fields X .

Then setting Y = Z =V in (3.1) yields

S(V ,V )S(X ,W )−S(X ,V )S(W,V ) = p1[g (V ,V )g (X ,W )− g (X ,V )g (W,V )]

+p2g (T X ,W )g (V ,V ),

which can be written as

aS(X ,W )−B(QX )B(QW ) = p1||V ||2g (X ,W )−p1B(X )B(W )

+p2||V ||2g (T X ,W ) (3.2)

where a = S(V ,V ) and B(QX ) = g (QX ,V ) = S(X ,V ). Since S(V ,V ) is the Ricci curvature in the

direction of the generator V and the Ricci tensor is non-vanishing, it follows that the scalar a

is non-vanishing. From (3.2) it follows that

S(X ,W ) =αg (X ,W )+βA(X )A(W )+γB(X )B(W )+δD(X ,W )

where α = p1 ||V ||2
a

,β = 1
a

,γ = − p1

a
,δ = p2 ||V ||2

a
, A(X ) = B(QX ) and D(X ,W ) = g (T X ,W ). Since

V is non-null, S 6= 0, p1 and p2 are non-zero scalars, it follows that α, β, γ, δ are non-zero

scalars. Hence the manifold is a P (GQE )n.

4. Conformally flat P(GQE )n (n > 3)

Let R be the curvature tensor of type (0, 4) of a conformally flat P (GQE )n. Then we have

R(X ,Y , Z ,W ) =
1

n−2
[g (Y , Z )S(X ,W )− g (X , Z )S(Y ,W )

+g (X ,W )S(Y , Z )− g (Y ,W )S(X , Z )]

−
r

(n−1)(n−2)
[g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )], (4.1)

where r is the scalar curvature of the manifold. Using (1.3) and (2.1) in (4.1) we obtain

R(X ,Y , Z ,W ) =
α(n−2)−β−γ

(n−1)(n−2)
[g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )]

+
β

n−2
[g (Y , Z )A(X )A(W )− g (X , Z )A(Y )A(W )

+g (X ,W )A(Y )A(Z )− g (Y ,W )A(X )A(Z )]

+
γ

n−2
[g (Y , Z )B(X )B(W )− g (X , Z )B(Y )B(W )

+g (X ,W )B(Y )B(Z )− g (Y ,W )B(X )B(Z )]

+
δ

n−2
[g (Y , Z )D(X ,W )− g (X , Z )D(Y ,W )

+g (X ,W )D(Y , Z )− g (Y ,W )D(X , Z )]. (4.2)
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According to Chen and Yano [2], a Riemannian manifold (Mn , g ) (n ≥ 3) is said to be of

quasi-constant curvature if it is conformally flat and its curvature tensor R of type (0, 4) has

the form

R(X ,Y , Z ,W ) = a1[g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )]

+a2[g (Y , Z )A(X )A(W )− g (X , Z )A(Y )A(W )

+g (X ,W )A(Y )A(Z )− g (Y ,W )A(X )A(Z )],

where A is a 1-form and a1, a2 are scalars of which a2 6= 0.

Also according to De and Ghosh [3], a Riemannian manifold (Mn , g ) (n ≥ 3) is said to be of

generalized quasi-constant curvature if it is conformally flat and its curvature tensor R of type

(0, 4) has the form

R(X ,Y , Z ,W ) = b1[g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )]

+b2[g (Y , Z )A(X )A(W )− g (X , Z )A(Y )A(W )

+g (X ,W )A(Y )A(Z )− g (Y ,W )A(X )A(Z )]

+b3[g (Y , Z )B(X )B(W )− g (X , Z )B(Y )B(W )

+g (X ,W )B(Y )B(Z )− g (Y ,W )B(X )B(Z )],

where A and B are 1-forms and b1,b2,b3 are non-zero scalars. Generalizing this notion we

define the manifold of pseudo generalized quasi-constant curvature as follows:

A Riemannian manifold (Mn , g ) (n ≥ 3) is said to be of pseudo generalized quasi-constant cur-

vature if it is conformally flat and its curvature tensor R of type (0, 4) satisfies the condition

R(X ,Y , Z ,W ) = α1[g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )]

+α2[g (Y , Z )A(X )A(W )− g (X , Z )A(Y )A(W )

+g (X ,W )A(Y )A(Z )− g (Y ,W )A(X )A(Z )]

+α3[g (Y , Z )B(X )B(W )− g (X , Z )B(Y )B(W )

+g (X ,W )B(Y )B(Z )− g (Y ,W )B(X )B(Z )]

+α4[g (Y , Z )D(X ,W )− g (X , Z )D(Y ,W )

+g (X ,W )D(Y , Z )− g (Y ,W )D(X , Z )], (4.3)

where α1,α2, . . . ,α4 are non-zero scalars and D is a symmetric tensor of type (0, 2).

Now the relation (4.2) can be written as

R(X ,Y , Z ,W ) = β1[g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )]

+β2[g (Y , Z )A(X )A(W )− g (X , Z )A(Y )A(W )

+g (X ,W )A(Y )A(Z )− g (Y ,W )A(X )A(Z )]

+β3[g (Y , Z )B(X )B(W )− g (X , Z )B(Y )B(W )

+g (X ,W )B(Y )B(Z )− g (Y ,W )B(X )B(Z )]

+β4[g (Y , Z )D(X ,W )− g (X , Z )D(Y ,W )

+g (X ,W )D(Y , Z )− g (Y ,W )D(X , Z )], (4.4)
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where β1 = α(n−2)−β−γ
(n−1)(n−2)

, β2 = β
n−2

, β3 = γ
n−2

and β4 = δ
n−2

are non-zero scalars. Comparing

(4.3) and (4.4), it follows that the manifold is of pseudo generalized quasi-constant curvature.

This leads to the following:

Theorem 4.1. A conformally flat P (GQE )n (n > 3) is a manifold of pseudo generalized

quasi-constant curvature.

Let us now consider a manifold of pseudo generalized quasi-constant curvature. Then

from (4.3) it follows that

S(X ,Y ) = ᾱg (X ,Y )+ β̄A(X )A(Y )+ γ̄B(X )B(Y )+ δ̄D(X ,Y ),

where ᾱ= (n−1)α1+α2+α3, β̄= (n−2)α2, γ̄= (n−2)α3 and δ̄= (n−2)α4 are non-zero scalars.

Thus we have the following:

Theorem 4.2. A manifold (Mn , g ) (n > 2) of pseudo generalized quasi-constant curvature

is a P (GQE )n.

Now a P (GQE )n is not a manifold of pseudo generalized quasi-constant curvature in gen-

eral. However, since a 3-dimensional Riemannian manifold is conformally flat, it follows by

virtue of Theorem 4.1 that a P (GQE )3 is a manifold of pseudo generalized quasi-constant cur-

vature. This leads to the following:

Corollary 4.1. A P (GQE )3 is a manifold of pseudo generalized quasi-constant curvature.

5. Geometric Properties of P(GQE )n (n > 2)

This section deals with some geometric properties of P (GQE )n (n > 2). From (1.3) it fol-

lows that

S(X ,U )= (α+β)g (X ,U ) for all X .

This leads to the following:

Theorem 5.1. In a P (GQE )n (n > 2) the generator U is an eigenvector of the Ricci tensor S

corresponding to the eigen value α+β.

Next we suppose that in a P (GQE )n (n > 2), the generator U is a parallel vector field. Then

we have ∇X U = 0 for all X , which implies that R(X ,Y )U = 0 and hence S(X ,U ) = 0 for all X .

Again from (1.3) we have

S(X ,U )= (α+β)A(X ).

Therefore we must have α+β= 0. Thus we have the following:

Theorem 5.2. If the generator U of a P (GQE )n (n > 2) is a parallel vector field then the

associated scalars α, β are related by α+β= 0.
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Again since U and V are orthogonal unit vector fields, we have from (2.2) that

g (QU ,U )=α+β,

which implies that QU is orthogonal to U if and only if α+β = 0. Hence we can state the

following:

Theorem 5.3. In a P (GQE )n (n > 2), QU is orthogonal to U if and only if α+β= 0.

Further from (2.3) we obtain

g (QV ,V ) =α+γ+δD(V ,V ),

which implies that QV is orthogonal to V if and only if α+γ+δD(V ,V ) = 0. Thus we have the

following:

Theorem 5.4. In a P (GQE )n (n > 2), QV is orthogonal to V if and only if α+γ+δD(V ,V ) =
0.

We now consider a compact orientable P (GQE )n (n > 2) without boundary. From (1.3) we

have

S(X , X ) =αg (X , X )+βA(X )A(X )+γB(X )B(X )+δD(X , X ). (5.1)

Let us assume that θU be the angle between U and any vector field X ; θV be the angle between

V and any vector field X . Therefore, cosθU = g (X ,U )p
g (X ,X )

and cosθV = g (X ,V )p
g (X ,X )

. Further, we

assume that θU ≥ θV . Then we have cosθV ≥ cosθU and consequently g (X ,V ) ≥ g (X ,U ).

Hence from (5.1) we have

S(X , X ) ≥ (α+β+γ){g (X ,U )}2 when α,β,γ,δD(X , X ) are positive. (5.2)

Definition 5.1. A vector field H in a Riemannian manifold (Mn , g ) (n > 2) is said to be

harmonic [7] if

dτ= 0 and δτ= 0 (5.3)

where τ(X ) = g (X , H) for all X .

It is known from [7] that in a compact, orientable Riemannian manifold (Mn , g ) (n > 2), the

following relation holds

∫

M=P (GQE )n

[S(X , X )−
1

2
|dτ|2 +|∇X |2 − (δτ)2]d v = 0 for any vector fieldX , (5.4)

where ‘d v ’ denotes the volume element of M . Now let X ∈ χ(M) be a harmonic vector field.

Then (5.4) yields by virtue of (5.3) that

∫

M
[S(X , X )+|∇X |2]d v = 0 for any vector fieldX . (5.5)
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Hence if each of α, β, γ, δD(X , X ) of P (GQE )n are positive, then (5.2) and (5.5) together yields

∫

M
[(α+β+γ)|g (X ,U )|2 +|∇X |2]d v ≤ 0,

which implies by virtue of α+β+γ> 0 that

g (X ,U ) = 0 and ∇X = 0 for any vector field X . (5.6)

Thus from (5.6), it follows that X is orthogonal to U and X is a parallel vector field.

Similarly for the case, θU ≤ θV , arguing as before it can be shown that g (X ,V ) = 0 and ∇X = 0

for any vector field X . Thus we can state the following:

Theorem 5.5. In a compact, orientable P (GQE )n (n > 2) without boundary any harmonic

vector field X is parallel and orthogonal to one of the generators of the manifold which makes

greatest angle with the vector X provided that α, β, γ and δD(X , X ) are positive scalars.

6. General relativistic viscous fluid spacetime admitting heat flux

Let (M4, g ) be a connected semi-Riemannian viscous fluid spacetime admitting heat flux

and satisfying Einstein’s equation with a cosmological constant λ. Also let U be the unit

timelike velocity vector field of the fluid, V be the unit heat flux vector field and D be the

anisotropic pressure tensor of the fluid. Then we have

g (U ,U )=−1, g (V ,V ) = 1, g (U ,V ) = 0, (6.1)

D(X ,Y ) = D(Y , X ), Tr.D = 0, D(X ,U ) = 0 for all vector fields X . (6.2)

Let

g (X ,U ) = A(X ), g (X ,V ) = B(X ) for all vector field X . (6.3)

Also let T be the energy-momentum tensor of type (0, 2) describing the matter distribution of

such a fluid and it be of the following form [4]

T (X ,Y ) = pg (X ,Y )+ (σ+p)A(X )A(Y )+B(X )B(Y )+D(X ,Y ) (6.4)

where σ and p are the energy density and isotropic pressure respectively. General relativity

flows from Einstein’s equation given by

S(X ,Y )−
r

2
g (X ,Y )+λg (X ,Y ) = kT (X ,Y )

for all vector fields X , Y , where S is the Ricci tensor of type (0, 2), r is the scalar curvature, λ is

a cosmological constant. Thus by virtue of (6.4), the above equation can be written as

S(X ,Y )−
r

2
g (X ,Y )+λg (X ,Y ) = k[pg (X ,Y )+ (σ+p)A(X )A(Y )

+B(X )B(Y )+D(X ,Y )]. (6.5)
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Let us now consider a P (GQE )4 viscous fluid spacetime with the generator U as the flow vector

field of the fluid.

Again from (6.5) we have

S(X ,Y ) = [kp +
r

2
−λ]g (X ,Y )+k(σ+p)A(X )A(Y )+kB(X )B(Y )+kD(X ,Y )

which shows that the spacetime under consideration is a P (GQE )4 with kp + r
2 −λ, k(σ+p),

k and k as associated scalars; A and B as associated 1-forms; U and V as generators and D as

the structure tensor of type (0, 2). Hence we can state the following:

Theorem 6.1. A viscous fluid spacetime admitting heat flux and satisfying Einstein’s equa-

tion with a cosmological constant is a 4-dimensional connected semi-Riemannian pseudo gen-

eralized quasi-Einstein manifold.

Using (1.3) and (2.1) in (6.5) we get

2kp −2λ+2α+β+γ

2
g (X ,Y ) = [β−k(σ+p)]A(X )A(Y )

+(γ−k)B(X )B(Y )−kD(X ,Y ). (6.6)

Setting Y =U in (6.6) we obtain by virtue of (6.1)−(6.3) that

2kp −2λ+2α+β+γ

2
A(X ) = [kσ+kp −β]A(X ) for all vector field X . (6.7)

Again setting X =U in (6.7) we obtain

σ=
2α+3β+γ−2λ

2k
. (6.8)

Now contracting (6.5) we get

r −2r +4λ= k(3p −σ+1),

which yields by virtue of (2.1) and (6.8) that

p =
6λ−6α+β−γ−2k

6k
. (6.9)

Since α, β, γ are not constants, from (6.8) and (6.9) it follows that σ and p are not constants.

Hence we can state the following:

Theorem 6.2. If a viscous fluid P (GQE )4 spacetime admitting heat flux obeys Einstein’s

equation with a cosmological constant then none of the energy density and isotropic pressure

of the fluid can be a constant.

Now if the associated scalars α, β, γ are constants then it follows from (6.8) and (6.9) that

σ and p are constants. Since σ> 0 and p > 0, we have from (6.8) and (6.9) that

λ<
2α+3β+γ

2
and λ>

6α−β+γ−2k

6
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and hence
6α−β+γ−2k

6
<λ<

2α+3β+γ

2
. (6.10)

Thus we have the following:

Theorem 6.3. If a viscous fluid P (GQE )4 spacetime admitting heat flux obeys Einstein’s

equation with a cosmological constant λ, then λ satisfies the relation (6.10).

7. Some examples of P(GQE )n

This section deals with several examples of P (GQE )n. On the real number space Rn (with

coordinates x1, x2, . . . , xn ) we define a suitable Riemannian metric g such that Rn becomes a

Riemannian manifold (Mn , g ). We calculate the components of the Ricci tensor and then we

verify the defining condition (1.3).

Example 1. We define a Riemannian metric on the 4-dimensional real number space R4

by the formula

d s2 = gi j d xi d x j = (d x1)2 + (x1)2(d x2)2 + (x1 sin x2)2(d x3)2 + (d x4)2,

(i , j = 1,2, . . . ,4), (7.1)

where x1 6= 0 and 0 < x2 < π
2

. Then the only non-vanishing components of the Christoffel

symbols and the curvature tensor are

Γ
1
22 =−x1,Γ1

33 =−x1(sin x2)2,Γ2
12 =

1

x1
= Γ

3
13,Γ3

23 = cot x2,Γ2
33 =−sin x2 cos x2,

R2332 =−(x1 sin x2)2

and the components which can be obtained from these by the symmetry properties. Using

the above relations, we can find the non-vanishing components of Ricci tensor as follows:

S22 =−1,

S33 =−(sin x2)2.

Also it can be easily found that the scalar curvature of the manifold is non-zero and is given by

r = − 2
(x1)2 6= 0. Therefore R4 with the considered metric is a Riemannian manifold (M4, g ) of

non-vanishing scalar curvature. We shall now show that this M4 is a P (GQE )4 i.e., it satisfies

the defining relation (1.3). Let us now consider the associated scalars, associated 1-forms and

structure tensor as follows:

α=−
1

(x1)2
, β=

1

(x1)2
, γ=

1

(x1)2
, δ=

2

(x1)2
, (7.2)

Ai (x) = x1 for i = 2,

= 0 otherwise, (7.3)
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Bi (x) = 1 for i = 2,

= x1 for i = 3,

= 0 otherwise, (7.4)

Di j (x) =
1

2
for i = j = 1,4,

= −
1

2
for i = j = 2,3,

= −x1 for i = 2, j = 3,

= 0 otherwise (7.5)

at any point x ∈ M . In our M4, (1.3) reduces with these associated scalars, 1-forms and struc-

ture tensor to the following equations:

(i) S11 =αg11 +βA1 A1 +γB1B1 +δD11,

(ii) S22 =αg22 +βA2 A2 +γB2B2 +δD22,

(iii) S23 =αg23 +βA2 A3 +γB2B3 +δD23,

(iv) S33 =αg33 +βA3 A3 +γB3B3 +δD33,

(v) S44 =αg44 +βA4 A4 +γB4B4 +δD44

since for the cases other than (i)−(v) the components of each term of (1.3) vanishes identically

and the relation (1.3) holds trivially. Now from (7.2)−(7.5) we get the following relations for the

right hand side (R.H.S.) and left hand side (L.H.S.) of (i):

R.H.S. of (i) =αg11 +βA1 A1 +γB1B1 +δD11 = 0 = S11 = L.H.S. of (i).

Again

R.H.S. of (ii) =αg22 +βA2 A2 +γB2B2 +δD22 =−1 = S22 = L.H.S. of (v),

R.H.S. of (iv) =αg33 +βA3 A3 +γB3B3 +δD33 =−(sin x2)2 = S33 = L.H.S. of (iv).

By a similar argument as in (i), (ii) and (iv) it can be shown that the relations (iii) and (v) are

true. Therefore, (M4, g ) is a P (GQE )4 which is neither (QE )4 nor G(QE )4. Hence we can state

the following:

Theorem 7.1. Let (M4, g ) be a Riemannian manifold endowed with the metric given by

d s2 = gi j d xi d x j = (d x1)2 + (x1)2(d x2)2 + (x1 sin x2)2(d x3)2 + (d x4)2,

(i , j = 1,2, . . . ,4),

where x1 6= 0 and 0 < x2 < π
2 . Then (M4, g ) is a pseudo generalized quasi-Einstein manifold of

non-vanishing scalar curvature which is neither quasi-Einstein nor generalized quasi-Einstein.

Example 2. We define a Riemannian metric on the 4-dimensional real number space R4

by the formula

d s2 = gi j d xi d x j = ex1

(d x1)2 +ex2

(d x2)2 +ex3

(d x3)2 + (sin x3)2(d x4)2,

(i , j = 1,2, . . . ,4), (7.6)
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where π
4
< x3 < π

2
. Then the only non-vanishing components of the Christoffel symbols and

the curvature tensor are

Γ
1
11 =−

1

2
= Γ

2
22 = Γ

3
33, Γ

4
34 = cot x3, Γ

3
44 =−e−x3

sin x3 cos x3,

R3443 = 1+
3

2
sin x3 cos x3 −3(cos x3)2

and the components which can be obtained from these by the symmetry properties. Using

the above relations, we can find the non-vanishing components of Ricci tensor as follows:

S33 = 1+
3

2
cot x3 −2(cot x3)2,

S44 = e−x3

[1+
3

2
sin x3 cos x3 −3(cos x3)2].

Also it can be easily shown that the scalar curvature of the manifold is non-vanishing. There-

fore R4 with the considered metric is a Riemannian manifold (M4, g ) of non-vanishing scalar

curvature. We shall now show that this M4 is a P (GQE )4 i.e., it satisfies the defining condition

(1.3). Let us now consider the associated scalars, associated 1-forms and structure tensor as

follows:

α=−e−x3

(cot x3)2, β= 3e−x3

cot x3, γ= e−x3

, δ= e−x3

(cot x3)2, (7.7)

Ai (x) =

√

3ex3 +2ex1
cot x3

6
for i = 3,

=
√

3

2
(cot x3)2 +1 for i = 4,

= 0 otherwise, (7.8)

Bi (x) =
√

ex3 − (cot x3)2 for i = 3,

= 0 otherwise, (7.9)

Di j (x) = ex1

for i = j = 1,

= ex2

for i = j = 2,

= −ex1

for i = j = 3,

=

√

[ex3 − (cot x3)2][3ex3 +2ex1
cot x3]

6
for i = 3, j = 4,

= e−x2

for i = j = 4,

= 0 otherwise (7.10)

at any point x ∈ M . In our M4, (1.3) reduces with these associated scalars, 1-forms and struc-

ture tensor to the following equations
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(i) S11 =αg11 +βA1 A1 +γB1B1 +δD11,

(ii) S22 =αg22 +βA2 A2 +γB2B2 +δD22,

(iii) S33 =αg33 +βA3 A3 +γB3B3 +δD33,

(iv) S34 =αg34 +βA3 A4 +γB3B4 +δD34,

(v) S44 =αg44 +βA4 A4 +γB4B4 +δD44,

since for the cases other than (i)−(v) the components of each term of (1.3) vanishes identically

and the relation (1.3) holds trivially. By virtue of (7.7)−(7.10) we get the following relations for

the right hand side (R.H.S.) and left hand side (L.H.S.) of (iii):

R.H.S. of (iii) = αg33 +βA3 A3 +γB3B3 +δD33 = 1+
3

2
cot x3 −2(cot x3)2

= S33 = L.H.S. of (iii).

By a similar argument as in (iii) it can be shown that the relations (i), (ii), (iv) and (v) are true.

Therefore, (M4, g ) is a P (GQE )4 which is neither (QE )4 nor G(QE )4. Thus we can state the

following:

Theorem 7.2. Let (M4, g ) be a Riemannian manifold endowed with the metric given by

d s2 = gi j d xi d x j = ex1

(d x1)2 +ex2

(d x2)2 +ex3

(d x3)2 + (sin x3)2(d x4)2, (i , j = 1,2, . . . ,4)

where π
4
< x3 < π

2
. Then (M4, g ) is a pseudo generalized quasi-Einstein manifold of non-

vanishing scalar curvature which is neither quasi-Einstein nor generalized quasi-Einstein.

Example 3. We define a Riemannian metric on the 4-dimensional real number space R4

by the formula

d s2 = gi j d xi d x j = (1+2p)[(d x1)2 + (d x2)2 + (d x3)2 + (d x4)2], (i , j = 1,2, . . . ,4) (7.11)

where p = ex1

ρ2 and ρ is a non-zero constant. Then the only non-vanishing components of the

Christoffel symbols and the curvature tensor are

Γ
1
22 = Γ

1
33 = Γ

1
44 =−

p

1+2p
, Γ1

11 = Γ
2
12 = Γ

3
13 = Γ

4
14 =

p

1+2p
,

R1221 = R1331 = R1441 =
p

1+2p

and the components which can be obtained from these by the symmetry properties. Using

the above relations, we can find the non-vanishing components of Ricci tensor as follows:

S11 =
3p

(1+2p)2
,

S22 =
p

(1+2p)2
,

S33 =
p

(1+2p)2
,

S44 =
p

(1+2p)2
.
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Also it can be easily shown that the scalar curvature of the manifold is non-vanishing. There-

fore R4 with the considered metric is a Riemannian manifold (M4, g ) of non-vanishing scalar

curvature. We shall now show that this M4 is a P (GQE )4 i.e., it satisfies the defining condition

(1.3). Let us now consider the associated scalars, associated 1-forms and structure tensor as

follows:

α=
p

(1+2p)3
, β=

4p

(1+2p)3
, γ=−

2p

(1+2p)3
, δ=

p

(1+2p)3
, (7.12)

Ai (x) = p
p for i = 1,

=
1

2
for i = 3,

=
p

2
for i = 4,

= 0 otherwise, (7.13)

Bi (x) =
p
p

2
for i = 2,

= 0 otherwise, (7.14)

Di j (x) = 1 for i = j = 1,

= −2
p

p for i = 1, j = 3,

= −2p
3
2 for i = 1, j = 4,

= p2 for i = j = 2,

= −1 for i = j = 3,

= −p for i = 3, j = 4,

= −p2 for i = j = 4,

= 0 otherwise (7.15)

at any point x ∈ M . In our M4, scalars, 1-forms and structure tensor to the following equa-

tions

(i) S11 =αg11 +βA1 A1 +γB1B1 +δD11,

(ii) S13 =αg13 +βA1 A3 +γB1B3 +δD13,

(iii) S14 =αg14 +βA1 A4 +γB1B4 +δD14,

(iv) S22 =αg22 +βA2 A2 +γB2B2 +δD22,

(v) S33 =αg33 +βA3 A3 +γB3B3 +δD33,

(vi) S34 =αg34 +βA3 A4 +γB3B4 +δD34,

(vii) S44 =αg44 +βA4 A4 +γB4B4 +δD44,

since for the cases other than (i)−(vii) the components of each term of (1.3) vanishes iden-

tically and the relation (1.3) holds trivially. By virtue of (7.12)−(7.15) we get the following

relations for the right hand side (R.H.S.) and left hand side (L.H.S.) of (i):

R.H.S. of (i) =αg11 +βA1 A1 +γB1B1 +δD11 =
3p

(1+2p)2
= S11 = L.H.S. of (i).
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By a similar argument as in (i) it can be shown that the relations (ii)−(vii) are true. Therefore,

(M4, g ) is a P (GQE )4 which is neither (QE )4 nor G(QE )4. Thus we can state the following:

Theorem 7.3. Let (M4, g ) be a Riemannian manifold endowed with the metric given by

d s2 = gi j d xi d x j = (1+2p)[(d x1)2 + (d x2)2 + (d x3)2 + (d x4)2], (i , j = 1,2, . . . ,4)

where p = ex1

ρ2 and ρ is a constant. Then (M4, g ) is a pseudo generalized quasi-Einstein mani-

fold of non-vanishing scalar curvature which is neither quasi-Einstein nor generalized quasi-

Einstein.
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