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1. Introduction. Let (Pn, g) be any Riemannian structure on the
n dimensional real protective space. Let vol(Pn, g) denote the volume of
Pn with respect to the canonical measure derived from g, and Lg(c) denote
the length of a curve c relative to g. Following M. Berger ([1]), we
define

P71, g) = Inΐ{Lg(c) \ c; homologically non-trivial
piecewise smooth closed curve on Pn)

quot^P", g) = vol(P", ^/{carc^P , g)}n .

Then Pu ([3]) has showen the following: quot^P2, g) ^ quot^P2, gQ) = l/(2ττ)
holds, where g0 denotes the canonical Riemannian structure of constant
curvature. Moreover, the equality holds if and only if g is of constant
curvature.

Now it is natural to ask whether the higher dimensional analogue
of Pu's theorem is valid; that is, quot^P*, g) ^ quot^p", gQ) holds, where
the equality holds if and only if g is of constant curvature. Pu's proof
depends on the fact that any Riemannian structure g over P 2 is conformally
related to the canonical structure, and his method is valid for a class of
Riemannian structures on Pn which are conformally related to the canonical
structure of constant curvature. Berger treats various generalizations of
Pu's theorem (see ([1]).

The purpose of the present note is to show that, on odd dimensional
real protective spaces, for some classes of Riemannian structures which
are not conformally related to the canonical structure, the version of Pu's
theorem holds good.

Now we shall explain these special classes of Riemannian structures
on P2n+\ First we shall review the notion of contact Riemannian structure.
Let ζ be a unit Killing vector field on a Riemannian manifold (M2n+\ g)
which satisfies

R(X, ξ)Y= k{g(X, Y)ξ - g(Y, ξ)X}
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for some positive constant k. Then (M, g, ξ) is called a Sasakian structure
on M. Note that sectional curvatures of plane sections containing ξ are
equal to a constant k. (M, g, ξ) is called to be of constant ^-holomorphic sec-
tional curvature H, if sectional curvature K(X, ΦX) = H for every X _i_ ξ,
where we put φ{X) = — Vxf. Now it is well known that every odd di-
mensional space form of positive curvature has a natural contact Riemannian
structure (see [8]).

Let (S2n+ί, g0, lo) be the canonical regular Sasakian structure of constant
curvature k on S2n+1, and Φt be the one parameter group of transformations
generated by |o Then {id., Φπιvj} acts on S2n+1 as a deck transformation
group. Dividing (S2n+1, g0, | 0 ) by {id., ΦπJvτ}, we have the canonical Sasakian
structure (P2n+\ gθ9 ξ0) of constant curvature k over P2n+1. We have the
Boothby-Wang's fiberings p: (S**+i,gQ,h)-+{Pn{C),K Jo) andp: (P2n+\g0,ζQ)-+
(Pn(C), hQ, Jo), where (Pn(C), h0, JQ) denotes the complex protective space of
complex dimension n with constant holomorphic sectional curvature 4Λ\
Then we have the following canonical representations of g0 and g0,

So = v*K + Vo (x) Vo i 9o = P*h0 + yjo ® Vo f

where η0 (resp. η0) denotes the contact form corresponding to | 0 (resp. ζ0);
i.e. ηo(X) = yo(lo, -ϊ) for any vector field X on S2%+1 (resp. ηo(X) = go(ζo, X)
for any vector field X on P 2 ^ 1 ) .

Now, let 9>, /3 be arbitrary positive C°°-ΐunctions on Pn(C). We shall
consider a class of Riemannian structures g on P2n+1 which have the form

If β is a constant, (P2%+1

) #, (l/β)ξ0) defines an almost contact Riemannian
structure on P2n+1. But this almost contact Riemannian structure is not
a contact Riemannian structure, unless ψ is a constant function. If
φ = β = 1, then p*Λ0 + ^ o ® ^ reduces to the canonical metric of constant
curvature &. More generally, if 9>, β are constants and φ2 = β holds, then
we have a Sasakian structure (P2n+1, g = βp*{h0) + β% (x) ^o, (l//5)ί0) of
constant ^-holomorphic sectional curvature ((4 — Sβ)/β)k ([5], [7]).

Now we shall state our results.

THEOREM A. Let (P2n+\ g, ξ) be any regular Sasakian structure of
constant φ-holomorphic sectional curvature H. Then we have

P 2 ^ 1 , g, ξ) ^ quotΛP +S 9o, f o) =

where the equality holds if and only if g is of constant curvature.

REMARK. I. Chavel ([2]) proved Pu's theorem for a class of normal
homogeneous Riemannian structures on odd dimensional real projective
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spaces. On the other hand, the author has proved that these spaces have
natural Sasakian structures of constant ^-holomorphic sectional curvature
([4]). Thus Theorem A covers the result of Chavel.

THEOREM B. Let (P2n+\ g) denote the Riemannian structure over P2n+1

with g — p*(φ2hQ) + (p*β2)η0 (8) V^ where φ, β are arbitrary positive C°°-
functions on Pn(C). Then we have

quotΛP +S g) ^ quot^P8*4"1, g0) = 1/nl πn ,

where the equality holds if and only if g is of constant curvature.

REMARK. Theorem A is a corollary to Theorem B. But we shall
give an independent proof, because we can give a proof which uses only-
elementary geometry of Sasakian manifolds of constant ^-holomorphic
sectional curvature.

All facts about contact Riemannian structure used in this note may be
found in the Lecture Note by S. Sasaki ([5]) and papers of S. Tanno ([6], [7]).

The author wishes to express his sincere thanks to Prof. S. Tanno
for some helpful discussions.

2. Proof of Theorem A. It suffices to show the theorem in the case
k = 1 (k is a constant appeared in the definition of Sasakian structure).
Let (P2n+\ g9 ζ) be a regular Sasakian structure of constant ^-holomorphic
sectional curvature H over the real protective space P2n+\ Then it is
known that H+ 3 > 0 holds ([7]). Let (S2n+1, g, f) be a regular Sasakian
structure on S2n+1 which is derived from (P2n+\ g9 ξ) via the covering
projection q: S2n+1 —> P2n+1 and is of constant ^-holomorphic sectional cur-
vature H. Then we have the Boothby-Wang's fibering p (resp. p) of
(P2 n + 1, g, ξ) (resp. (S2n+1, g, ?)) over the complex protective space (Pn(C), h, J)
of constant holomorphic sectional curvature H+ 3, and p = pq holds. Then
we get

g = p*h + Ύ] (g) η, g = p*h + rj (g) η, qj = ξ ,

where η (resp. rj) denotes the contact form corresponding to ζ (resp. f).
Note that H = 1 holds if and only if (P2 n + 1, g, ζ) is the canonical Sasakian
structure of constant curvature 1 ([7]). Now it is known that every
Sasakian structure of constant ^-holomorphic sectional curvature H may
be obtained from the canonical structure by the so-called D-homothetic
deformation. That is, (P2n+\ g, ξ) (resp. (S2n+1, g, ?)) has the form

g = ago + (α2 - oc)η, (x) η0 , ξ = (l/α)£0

(resp. g = ago + (a2 - a)η0 ®rjQ, ξ = (l/α)f0)

with a = 4/(H+ 3). So the fibres of p are closed geodesies of length
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δ = 4π/(H + 3). Since p: (P 2 Λ + 1, g, ξ) -> (Pn(C), h, J) is a Riemannian sub-
mersion and (Pn(C), h, J) is of constant holomorphic sectional curvature
H + 3, we have by ([1] p. 8)

vol(P8 +1, g, f) - δ vol(P (C), Λ, J ) = δ{(H + 3)/4}-7Γ»/n! .

Case 1. δ ^ 2π/VH + 3 (that is, £Γ ̂  1). Since fibres of p define a
non-trivial one dimensional homology cycle of length δ, we get

quot^P 2 ^ 1 , g, ζ) = vol(P8 +1, <7, f)/{carCl(P2ίl+1, </, ξ)Yn+1

^ π {(iϊ + 3)/4}-/{δ£»w!} ^ l/(τr w!) - quot^P 2 ^ 1 , #0, ξ0) ,

where the equality holds if and only if H = 1 holds.

Case 2. δ ^ 2π/VH + 3 (that is, jff ^ 1). First take a half great
circle c on (S 2 n + 1, §o, f o) connecting x e S2n+1 and its antipodal point which
is horizontal with respect to the Riemannian submersion p: (S2n+ί, g0, | 0 ) —>
(PW(C), Λo, Jo). Since through D-homothetic deformation, horizontal geodesies
are taken into horizontal geodesies, closed geodesic qc defines a non-trivial
one dimensional homology cycle of length 2π/v/H + 3 on (P2n+\ gf £). So
we have

,a,ζ) >
nl\ 4 / I\VH+Z) π*n\\π 2

P 2 ^ 1 , flr0, ί0) ,

where the equality holds if and only if J3Γ = 1.

3. Proof of Theorem B. Before the proof of Theorem B, we note
that SU(n + 1) x R acts on (S2 n + 1, gθ910) as an automorphism group.
We explain this fact as follows. (See S. Tanno ([6]) also). Let
(SU(n + ϊ)/SU(n), g) be a normal homogeneous Riemannian manifold of
Berger. This space is diffeomorphic to a sphere and on this space there
exists a unit Killing vector field f which defines a Sasakian structure of
constant ^-holomorphic sectional curvature 4 — (3/4)τ2 (7 = V2{n + ΐ)/n) and
SU(n + 1) x R acts on (SU(n + l)/SU(ri), g,ξ) as an automorphism group
([4].) Since this structure may be obtained from the canonical structure
of constant curvature via D-homothetic deformation, g takes a form g =
ocg0 + βVo (8) Vo where α, β are constants (See the proof of Theorem A).
Since SU(n + 1) x R leaves g, |0> Vo invariant, SU(n + 1) x R leaves also g0

invariant and acts on (S2n+1, g0, | 0 ) as an automorphism group. (But g0 is
not a normal homogeneous Riemannian metric with respect to SU(n + 1) if
n > 1 holds.) Moreover, let p: (S2n+ί, g0, | 0 ) — (Pn(C), h0, Jo) be the Boothby-
Wang's fibering. Then SU(n + 1) acts also on P(C) = SU(n + ΐ)/U(n) as an
automorphism group and elements of SU(n + 1) acting on (S2n+\ go,ξo)
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commute with p.
Now we shall return to the proof of Theorem B. We may assume

that k = 1 holds, where k is a constant appeared in the definition of
Sasakian structure. We choose a Haar measure v on SU(n + 1) with
total measure 1, and define the function ψ on Pn(C) by

= \ σ*φ-v
σeSU(n+l)

which reduces to a constant because SU(n + 1) acts transitively on Pn(C).
Then as Pu showed ([3]), by Holder inequality, we have

vol(P (C), ψ%) ^ vol(P»(C), φ2h0) ,

where the equality holds if and only if φ is a constant.
Next recall that p: (P2n+\ g) —>• (Pn(C), φ2h0) is a Riemannian submersion

and fiber p~\m) over mePn(C) is a closed curve of length πβ(m). Since
(Pn(C), ho) is of constant holomorphic sectional curvature 4, we have

vo\(P2n+\ g) = π\ β{m)dM ^ bπ vol(P*(C), ψ2h0) = bπf2nπn/nl ,

where dilί denotes the volume element of (Pn(C), φ2h0) and we put b —
Minm6Pn{C) β(m).

Case 1. ψ ^ b. In this case we have
1, g) ^ vol(P2%+1, g)/{minimum length of closed

curves which are fibers of p}2n+ι > — π ^ π— >
" (bπ)2n+1nl ~(bπ)2n+1nl ~ πnn\

If the equality holds then φ — β (=ψ) is a constant and g takes the form

g = ψ(p*h0 + 7}0 (x) )7o) = f^o.

Case 2. ψ ^ b. Let c = (c(ί); 0 ^ t ^ 7r} be a geodesic connecting
x e (S2n+1, g0, f o) and its antipodal point which is horizontal with respect to
the Riemannain submersion p: (S2n+1, gQ,ξ0)-+(Pn(C), ho,Jo). This curve is
again horizontal with respect to the Riemannian submersion p: (S2n+1, g) —>
(Pn(C), φ2h0), because g = p*(φ2h0) + (p*β2)η, (x) τj0 holds. By projecting this
curve by q we have a non-trivial one dimensional cycle of P2n+ί.

Now let C be a set of closed geodesies of length π on (Pn(C), h0, Jo).
Then C has a natural topology of compact (in — 2)-dimensional manifold

φ(c(t))dt is continuous. So this function
0

takes a minimum value at some closed geodesic cQ. If we lift c0 to a
horizontal geodesic c0 of (S2 w + 1, &, ξ0) connecting x and its antipodal point,
we have
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= \\i>*φ)(co(t))dt = [φ(co(t))dt ^ [φ(σco(t))dt
Jo Jo Jo

for any σeSU(n + 1), where we have used the fact that σ and p are
commutative. Now we get,

(qc0) = \\ϊ>*φ){cQ{t))dt S \ \[(p*<P)(σco(t))dt\v
Jθ Jσ€SU(n+l)lJO )

L9

Jo lJσeSU(n+ί)

Since qc0 defines a non-trivial one dimensional homology cycle of (P2n+\ g)
which is horizontal relative to the Riemannian submersion p: (P2n+\ g) —•
(Pn(C), <p%), we have finally

2 ^ 1 , g) > vol(P +1, g)/{Lg(qCo)}2n+1 ^ ^ f ^ ] A^ ] r^ ^ AT+1nl n\ πn ψ n\ πn

If the equality holds then φ = β (=ψ) is a constant and g takes the
form g = f(p*h0 + Ύ]o (X) η0) = ψg0.
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