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Abstract
We consider the class §*({, ), 0 <a <1, of normalized analytic functions f such that
zdf (Z)}
Re >a, |zl<]1,
75 g
where d¢f is the convolution operator
1 Z
ds =— e
SO = )

where ( is complex, |{| < 1. For { = 1 the operator becomes the derivative f’, while for real { = ¢, 0 <g < 1, we obtain the

Jackson g-derivative d,f.
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1 Introduction

Let 'H denote the class of analytic functions in the unit disc
D:={ze€C: |z]<1}. Let A be the subclass of H con-
sisting of functions normalized by f(0) = 0, f'(0) = 1, i.e.
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f(2) :erZanz”, ze€ D, (1)
n=2

and let S C A be the class of functions which are univalent
in D. Moreover, we shall use the following notations:

L f(2) #f"(z)
Fsr(fi2) =gy )

Let a function f € H be univalent in D with the normal-
ization f(0) = 0. Then f maps D onto a starlike domain
with respect to the origin, if and only if

me{JST(f; Z)} >0, zeD, (3)

and such function fis said to be starlike in D with respect
to the origin (or briefly starlike). Furthermore, a function
S maps D onto a convex domain E, if and only if

Rel{Jev(f;z)} >0, zeD, (4)

and such function f is said to be convex in D (or briefly
convex). Recall that a set E C C is said to be starlike with
respect to a point wy € E, if and only if the linear segment
joining wy to any other point w € E lies entirely in E, while
a set E is said to be convex, if and only if it is starlike with

#

Jev(f;2) =1+ (2)

; @ Springer
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respect to each of its points, that is, if and only if the linear
segment joining any two points of E lies entirely in E. It is
well known that if an analytic function f satisfies condition
(3) and f(0) = 0, f'(0) # 0O, then f is univalent and starlike
in D. By §" and K, we denote the subclasses of A which
consist of starlike univalent functions and convex univalent
functions in D), respectively. It is known that for f € A
condition (4) is sufficient for starlikeness of f. The fol-
lowing condition

Jev(f;z) —1|<2, zeD

is also sufficient for starlikeness of f.

Robertson introduced in Robertson (1936) the classes
S (o) and (o) of starlike and convex functions of order o,
o<1, which are defined by:

S () :={feA: Re{Jsr(f;2)} >, z€ D},
K(o) ={f € A: Re{Jev(f;2)} > o, z€ D}
={feA: 7f'(z) € S*(a), z € D}.

If 0<a<1, then a function in either of these sets is uni-
valent; if o <0, it may fail to be univalent. In particular, we
have §*(0) =S* and K(0) = K. It is known as the old
Strohhécker result (Strrohhicker 1933) that
K(0) € 8*(«) € S*(0). Furthermore, note that if f € K(«),
then f € §*(6(«)), see Wilken and Feng (1980), where

5 _{(1—2@)/(22‘2“—2) for o #£1/2,
() = 1/log4 for a=1/2.

Robertson (1985) proved that if f € A with f(z)/z # 0,
z € D, and if there exists k, 0 <k <2, such that

Vev(f;z) — 1 <klJsr(f;2)]s

then f € §*(2/(2 + k)). In Mocanu (1986), it was proved
that if f € A with f(z2)f"(z)/z # 0 and

Vev(f;2)| < V2Wsr(fsz) + 1],

z€ D,

ze D,

then f € §*. Several more complicated sufficient condi-
tions for starlikeness and convexity are collected in
Chapter 5 of Miller and Mocanu (2000).

Jackson (1908, 1910) introduced and studied the g¢-
derivative, 0 <g <1, as

(o) =TI,

and d,f(0) = f'(0). Thus, from (5) for a function f given by
(1) we have

z2#0 (5)

o0

2d,f(z) =z + Z[n]qanzn, (6)

n=2

2. ) Springer

[n]q: g n=273 ...

Let us recall also the definition of the convolution. The
convolution, or the Hadamard product, of two power series

film)=z+ Zanz" and fa(z) =z+ Zb,,z”
n=2 n=2

convergent in D is the function f3 = f; *f, with power
series

AR =2+ ab2', z€D.
n=2

2 (-Derivative Operator

The function A; of the form

B z _ool_éfn .,
hg(@_—(l—iz)(l—z)_glfc 7', z€D

is starlike for all complex {, || <1. It is easy to check that
if { — 17, then the function h; becomes the well-known
Koebe function

0]

h(2) :ﬁ: S ', zeD.

n=1

For each f € A, we can express its derivative in terms of
the Koebe function as

110 =@ +hn(@)} = {f(Z) ﬁ} zeD,
™

where * denotes the Hadamard product, or convolution, of
power series. It is natural to consider the following gen-
eralization of (7) for { € C, |{| <1

1 1 <
dif (z) = —{f (@) * he(0)} = - {f(Z) * m}

(8)
For { = 1, convolution operator (8) becomes the derivative
f', while for real { = g, 0<g<1, we obtain the Jackson g-
derivative of f, namely d,f(z), which is defined in (5).
Therefore, for f given by (1) we have:
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z
(1 ={z)(1 —z)}

_l 00 . oolicn .,
{fge)-(£559)
¢

e o ©)
:Z{z+; ¢ a,,z”}
1 {z + i[n]ganz"},
< n—2
where
[n], = 1]__C£, n=273,

For these reasons, we can also look at Jackson’s g-
derivative d,f from (5), as a special case of convolution
operator (8).

Definition 1 [11] Let f € A. For given {, |{| <1, we say
that f'is in the class §*({, ) of {-starlike functions of order
o, 0<a<l, if

2 (2)
iRe{ @) } >a, z€D, (10)

where the operator d; is defined in (8).

Remark 1 For { = 1, condition (10) becomes
zf’(z)}
Re >0, z€D, 11
56 ()

and the class §*(1, o) becomes the well-known class S* (o)
of starlike functions of order «, while for { = 0 we have
S*(0,a) = A. For { # 1, condition (10) becomes

‘Re{wi} >oa, zecD. (12)

=Dz f(2)
Remark 2 1t is known that condition (11) follows the
univalence of f, whenever f € A. If { # 1, then condition
(10) does not follow that fis univalent in D. For example, it
is known that f(z) = z+ (2/3)z* is not univalent in D,
while f € §*(1/2,0) because for this function f we have

zdef (z)} { 1+z }
R =Red ————— 0 D.
L5t -l a0 <
Theorem 1 The function g(z) =z+ az® is in the class
S*(¢, ), if and only if
2
m{l ME“T%WQ}>” 13)
—|a

Proof We have

)i

The function

1+a(l+1)z
=
14az

maps D onto a disc at S with radius R, where

1—la]? 1
5 |al (C;r ) R— IaIICIZ.
1 —|a 1 —|af

)

Therefore, g € S*({,«), if and only if Re(S—R) > o,

which gives (13). O
Lemma 1 Ruscheweyh and Sheil-Small (1973) If f €
S*(1/2) and g € §*(1/2) [or iff € K and g € 8" |, then
) *8(2)F(z) _ __

F 0 8@ cco{F(D)}, zeD, (14)

where F € H and co{F(D)} denotes the closed convex
hull of F(D).

Theorem 2 [ffis in the class S8*(1/2) of starlike functions
of order 172, then for all {, |{|<1, f is in the class
S (G 1/(1+¢]) of (-starlike  functions of order
L/(1+[2)).

Proof The case |{| = 1 is trivial. Assume that |{| < 1. Note
that

g(z) = 1 < . €8(1/2), zeD.

Therefore, Lemma 1 gives

fl2) =
— =5 (15)
f Z) * liz S CO{F(D)}7
where
2z
=)= 1 1 } 1
F(z) = = R T D
(z) = et Q{I—Cz >1+|C\7 z€ D,
for all {, |{| < 1. Hence, (15) becomes
@) * == 1
Re SIECR , zeD,
{ @) * 15 T+ [0
or equivalently
zdgf(z)} 1
‘.Re{ > , zeD,
f(2) 1+
in view of (10), this means that f is {-starlike functions of
order 1/(1 4+ [{]). O

Since 1/2<1/(1+ (), for all {, |{| <1, Theorem 2
implies the following corollary.

e

L il @ Springer
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Corollary 1 Iffis in the class S*(1/2) of starlike functions
of order 112, then for all {, |{|<1, f is in the class
S*(¢,1/2) of (-starlike functions of order 1/2.

Corollary 1 provides some examples of {-starlike func-
tions of order 1/2, for example

g €S (1/2) = g€ S8'((,1/2), forall {, |{|<1.

It is known that X C §"(1/2); therefore, Corollary 1 leads
to the following result.

Corollary 2 If f is in the class K of convex univalent
functions, then for all {, |{| <1, fis in the class S*({,1/2)
of {-starlike functions of order 1/2.

We can look for the smallest « such that for all {, |{| < 1,
we have K C 8*({,a). From Corollary 2, we have
0<o<1/2 and it is known that for { = 1 the order of a-
starlikeness in the class of convex functions is 1/2, so 1/2 is
the solution of this problem. However, we may consider
this problem for a given (.

Open problem. For given {, |{| <1, find the smallest a
such that

K cS8 (¢ a).

Recall here another definition of g-starlike functions of
order o. Namely, making use of g-derivative (6), Argawal
and Sahoo in Agrawal and Sahoo (2017) introduced the
class S, (). A function f € A belongs to the class S, (),
0<a<l,if

Wyf(z) 1—og| _1-u

fle) 1-q|7 1-q’
If ¢ — 1~ the class S;(oc) reduces to the class S*(a). If
o = 0, the class S, («) coincides with the class S_(0) = S,
which was first introduced by Ismail et al. (1990) and was
considered in Abu-Risha et al. (2007), Agrawal and Sahoo
(2014), Annaby and Mansour (2012), Aouf and Seoudy
(2019), Raghavendar and Swaminathan (2012), Rgnning
(1994), Sahoo and Sharma (2015), Seoudy and Aouf
(2014, 2016). Moreover, only for o = 0 the classes S, ()

and S*(g, o) are equal one to another. In other cases, i.e. for
O<a<1, condition (16) follows

i}{e{zcjlfé()z)} >a, zeD.

Therefore,

ze D. (16)

0<g<l = S (x) C S(q,).

Lemma 2 [f f is in the class K of convex univalent func-
tions, then we have

(1 -0df(2)
ERe{W} >0, z,(eD, (17)

78
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Proof Tt is known that if f € /C, then f(D) is starlike with
respect to each of its points, so we have

f'(2)

me{m} >O7 |x‘<‘Z|<1
This implies
me{%} >0, z,(eD. (18)
On the other hand,
f@) =f(le) f)—f() (1 -0z

'(2) (1-0z () (19)

(1= 0)df ()
fila)

Finally, from (18) and (19), we get (17). O

Theorem 3 If f and h are in the class K of convex uni-
valent functions, then we have

h(z) = (1 — {)zdef(2)
m{ h(z) = '(2)

Proof From the hypothesis, we have h €K and
7f'(z) € 8%, z € D, so by Lemma | we have

h(z) = (1 — 0)zdif (z) _ h(z) * zf'(z) (]_ﬁ)é{w € co{F(D)},

}>o, 2, (eD. (20)

h(z) * 2f"(z) h(z) * 2f"(z)
where
_0-0E g
F(z) = 7 , zeD.
By Lemma 2, we get Re{F(z)} > 0, which implies (20).

O

Corollary 3 If f is in the class K of convex univalent
functions, then we have

o J1=0) [5def (1)dr
Re{ )

Proof 1t is known that the following function

() = toe{ =32

=lo = =
1\Z g 1— Z n 9
belongs to the class K. Furthermore, for f € H, we have

Hi(2) +f(z) = /Ow ar.

}>O, z,(eD. (21)

It is easy to check that

Hi(2) * (1 = Qzdef (z) _ (1 =) Jydef (e)de )
H,(z) * 2f"(2) f(2) '

From (22) and Theorem 3, we immediately get (21). OJ
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Some further applications of Theorem 3 can be obtained
in the same way as in Corollary 3 by choosing some other
convex functions. The following functions are in the class

HZ(Z) = I iz’ HS(Z) — _2(Z+1(;g(1 — Z))7
1 1-{z (23)
Hy(z) ::1—*5 Ogl—z" z,¢ € D.

The above functions H;, i = 2, 3,4, generate the following
corollaries.

Corollary 4 If f is in the class K of convex univalent
functions, then we have

(1-0df(2)

ER A
{ £

Proof For f € 'H, we have

Hy(z) xf(z) = f(2), (25)

where H, is given by (23) Inequality (24) is obtained from
(20) by putting h(z) = Ha(z) and using (25). O

}>0, 7, (e D. (24)

Corollary 5 If f is in the class K of convex univalent
functions, then we have

—{) [y tdef(1)de
Jo o (1)dt

Proof For f € H, we have

o zzn 2 Z
> =2 / fid,  (27)

where Hj is given by (23) Inequality (26) is obtained from
(20) by putting h(z) = H;(z) and using (27). O

Re

>0, z,({eD. (26)

Hi(z) * f(z) =

Corollary 6 If f is in the class K of convex univalent
functions, then we have

0 fid; th
R
VR

Proof For f € 'H, we have

>0, z(eD. (28)

<1 G
S +c+n 7 e

= (29)

/O ) def (r)de,

where H, is given by (23) Inequality (28) is obtained from
(20) by putting h(z) = H4(z) and using (29). O

Hy(z) * f(2)
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