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On ¢-Euler numbers, ¢-Salié numbers and ¢-Carlitz numbers
by

HAO PAN and ZHI-WEI SUN (Nanjing)
1. Introduction. The Fuler numbers Ey, E1, Es, ... are defined by

ZE 2e” et +e " -1 _ io: 113‘2” _1;
nl €@ 41 2 = (2n)!

they are all integers because of the recursion

Zn: (Z)En—k =00 (neN={0,1,2,...}),

k=0

2|k
where 0y, ,, is the Kronecker symbol. It is easy to see that Egry; = 0 for
every k = 0,1,2,.... In 1871 Stern [St] obtained an interesting arithmetic
property of the Euler numbers:
(1.1) Fonyos = Eyp +2° (mod2°t1)  for any n,s € N;

equivalently we have
(1.1') By = Fay, (mod2°™) & m =n (mod2°) for any m,n,s € N.

Later Frobenius amplified Stern’s proof in 1910, and several different proofs
of (1.1) or (1.1") were given by Ernvall [E], Wagstaff [W]| and Sun [Su]. Our
first goal is to provide a complete g-analogue of the Stern congruence.

As usual we let (a;9)n = [[o<pen(l — aq®) for every n € N, where an
empty product is regarded to have value 1 and hence (a;q)o = 1. For n € N

we set
= >

0<k<n

[n]g =
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this is the usual g-analogue of n. For any n,k € N, if £ < n then we call

[n} _ o<r<nlrlg _ (@9
k],  (ocs<klsla)TToct<n—rltl) (@ 0)k(@s )n—rk

a g-binomial coefficient; if k > n then we let [Z]q = 0. Obviously we have

limg_.q [Z]q = (Z) It is easy to see that

—1 —1
[”] :qk[” ] +[” } for all k,n=1,2,3,....
K, kol k1],

By this recursion, each g-binomial coefficient is a polynomial in ¢ with integer
coefficients.

We define the g-Euler numbers E,(q) (n € N) by

(1.2) ZE (quq )

Multiplying both sides by > > q( ) 22" /(q; q)2n, We obtain the recursion

-1

Xn: [ZLQ@)En—k(Q) =0n0 (neN),

k=0
20k

which implies that E,(q) € Z[g]. Observe that

i Enld) 77 Z En( {@=gof
n=0

H0<k<n (q; ‘J)

<z‘“2" T )(Z%)

and hence lim,_1 E,(q) = E,.
The usual way to define a g-analogue of Euler numbers is as follows:

ZQ,M T (é %)1

(See, e.g., [GZ].) We assert that E,(q) = q(g)E (1/q). In fact,

o B (g (~q'a)"
,;)q Enla™ H0<k<n (1—g") nz;)E H0<k§n(1 —q")

(S (S
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Recently, with the help of cyclotomic polynomials, Guo and Zeng [GZ]
proved that if m,n,s,t € N, m —n = 25 and 2{75 then

Egm( )=q™ ”Egn (mod H el )

This is a partial g-analogue of Stern’s result.
Using our g¢-analogue of Euler numbers, we are able to give below a
complete g-analogue of the classical result of Stern.

THEOREM 1.1. Let n,s,t € N and 2tt. Then
(13) Egn(q) — E2n+25t(Q) = [2s]qt (mod (1 =+ q)[2s]qt).

The Salié numbers S,, (n € N) are given by
p2n 0 r2n
—-1)" .
2n)!>/ngo( ) (2n)!

., 2" coshz (e*+e7)/2 N
S T R (5
n=0 ) n=0
Multiplying both sides by Y>> ;(—1)"2?"/(2n)! we get the recursion

cosx (e +e)/2

n

> (f) v s =E wem,

k=0
2k
which implies that all Salié numbers are integers and So;11 = 0 for all £ € N.
By a sophisticated use of some deep properties of Bernoulli numbers, in
1965 Carlitz [C2| proved that 2™ | Sy, for any n € N (which was first conjec-
tured by Gandhi [G]). Recently Guo and Zeng [GZ] defined a g-analogue of
Salié numbers in the following Way:

e qn2x2n > " x2n
ZS" (a; q) ' /,;)(_1) (43 4)2n
(

= (q, )2n

and hence
n

92 ~
Z [22] —1)’“5’271,%((1) = q”2 for any n € N.
k=0 q

They conjectured that (—q;q)n = [[gcp<n(l + ¢~) divides San(q) (in Z[q)).
We define the ¢-Salié numbers by

o0 © n(n—1),.2n X (_1\n (Zn) 2n
q T (=1)"q\2/x
1.4 Sn(g N / (D" 2 2™
(14 7;) @ n ,;) (¢ 9)2n 7;) (4 9)2n
Multiplying both sides by Z;L”:O(—l)"q(?)m%/(q; q)2n one finds

(15) Zm (a2 Sy aila) =" (neN).
k=0 q
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In this paper we are able to prove the following ¢g-analogue of Carlitz’s result
concerning Salié numbers.

THEOREM 1.2. Let n € N. Then (—q;q)n = [ocpen(l + ¢~) divides
San(q) in the ring Z[q]. B

COROLLARY 1.1. For any n € N we have (—¢; q)n|§2n(q) in the ring
Z[q] as conjectured by Guo and Zeng.

Proof. By Theorem 1.2, S2,,(q) = (—¢;q)nPn(q) for some P,(q) € Z[q|.
Let m be a natural number not smaller than deg P. Then ¢™P (¢~ ') € Z|q].

Since
") I a+at= T a+d.

0<k<n 0<k<n
m (") N L s .
q 2 ) Son(¢™") is in Z[q] and divisible by (—¢; q)n. If the equality

Son(@) = 4(*) Soula™)
holds, then qmggn(q) is divisible by (—¢; ¢), and hence so is ggn(q) since g™
is relatively prime to (—¢; q)n.
Now let us explain why S,(q) = q(g)S (¢71) for any n € N. In fact,

S s
n=0

-1

—q )"
ZS Ho<k<n<1 =

H0<k<n (1- q
_ g1 2n/ )( g lz)n
o H0<k<2n 1 —q H0<k<2n(1 q)

> 5/ 2 T~ 2
= =) Snlg)
H0<k<2n (1-q") H0<k<2n (1—q¥) =0 !

This concludes our proof. =

In 1956 Carlitz [C1] investigated the coefficients of

. h [e.e] n
e S0,
sin x

n=0

where
oT o~ T o x2n+ 1

sinhg = —— = -
[
2 o (2n+1)!

We call those numbers C,, (n € N) Carlitz numbers. In 1965 Carlitz [C2]
proved a conjecture of Gandhi [G| which states that 2" divides the numerator
of an.
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Now we define ¢-Carlitz numbers C,(q) (n € N) by
n( p2n+l n n(2n+1) 2n+1
19 Y e =3 T / :
n—0 q q2n+1 2n+1

Multiplying both sides by Y 2 (—1)"q ”(2”+1)x2”+1/(q; q)2n+1 we get the
recursion

" 2n+1 (e
(1.7) > {Qk + 1} (—1)* "Dy i(q) = "D (n € N).
= q

y (1.7) and induction,
[1g[3]q - - - [2n + 1]4Can(q) € Zg];

in particular, (2n+ 1)!!Cy, € Z. If j,k € N and ¢/ = —1, then gD = 1
and hence ¢®**1 # 1. Thus ¢/ + 1 is relatively prime to 1 — ¢2**! for any
J,k € N, and hence (—¢;q), = H0<j§n(1 + ¢7) is relatively prime to the
denominator of Cy,(q). This basic property will be used later.

Here is our g-analogue of Carlitz’s divisibility result concerning Carlitz
numbers.

THEOREM 1.3. For anyn € N, (—q; q),, divides the numerator of Capn(q).
Note that Foxy1(g ) = 52k+1( ) = Cgk+1(q) = 0 for all £k € N because

Z En( Z S > Culg)
n=0

are even functlons in x.

Our approach to g-Euler numbers, ¢g-Salié¢ numbers and ¢-Carlitz numbers
is quite different from that of Guo and Zeng [GZ]. The proofs of Theorems
1.1-1.3 depend on new recursions for ¢g-Euler numbers, ¢g-Salié numbers and
g-Carlitz numbers. In the next section we will prove Theorem 1.1. In Sec-
tion 3 we establish an auxiliary theorem which implies that if ] € Z and n € N
then

2n
(18) S 0t ] =0 od (—gi),)
kEZ q
2k+1>0
(We can also substitute 2n + 1 for 2n in (1.8).) Section 4 is devoted to the
proofs of Theorems 1.2 and 1.3 on the basis of Section 3.

~—
3

2. Proof of Theorem 1.1

LEMMA 2.1. For any n € N we have

(2.1) Ew(g)=1- ) (—g @%4[3}2] Eyn—1)(q)-

0<k<n
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Proof. Let us recall the following three known identities (cf. Theo-
rem 10.2.1 and Corollary 10.2.2 of [AAR]):

>, ¢(3) (—z)n
q .
,LZO T
where (2;¢)oc = [ (1 — z¢™),
N SO o X G £Y') L A 1)
7;) Gon ~ @aw M 7;) (@ @)n (23@)o

Observe that

1 x" B e q(g)x” > q(g)(—m)" -1
§§E“<q)<q;q>n‘<z IR Sk rrn >

“(Ga)n = (64
B 1
C(59)00 + (—739)oc
and hence
1/ " > (—=1;q)pz™
- En(q) 1+ ————
2(,;) ! (q;q)n>< ,;) (¢ @)n >

(73 @)oo + (=75 ¢) 0 (3 9)oo T3 q) oo (& @)n

n=0
Comparing the coefficients of ™ we obtain
1 1 & n
L)+ 5> (Ll { k} B xla) =1,
k=0 a
ie.,
n
Ei(g)=1- Y (~6:¢)k [k} En—k(q).
0<k<n q
Substituting 2n for n in the last equality and recalling that Ey;11(¢q) = 0 for
j € N, we immediately obtain the desired equality (2.1). m
COROLLARY 2.1. For any n € N we have
(2.2) Esn(q) =1 (mod1+ q).

Proof. This follows from (2.1) because 1+ ¢ divides (—g; ), for all m =
1,2,3,.... m

The following trick is simple but useful.

n

(2.3) H(l + q2k) = [2"*™1], for anyn € N.
k=0
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In fact,

k k
G- JJa+)=0-¢) [ A+
k=0 0<k<n
= =01-¢")01+¢")=1-¢q
LEMMA 2.2. Let m,n,s,t be positive integers with 2m > n and 21tt.
Then (—q; Q)m > t]q is divisible by (1 + q)L"=1/21[2°] . where we use o]

n
to denote the greatest integer not exceeding a real number a.

Proof. Write n = 2¥I with k,1 € N and 241. Then
2k

2n+1

_1—-q" 1-—4¢q 1—ql_

[n]g =

(2]t 1

Obviously [2¥], = [To<jcr(X+ ¢’ divides (—q;q)m = [T, (1 + ¢’) since
m >n/2 = 2" Thus [2%], = [25t]/[t], divides

-aiahm || = S |

1-q 1-¢ 1-q

25t —1
n q'
Note that [2°],: = Hi;(l)(l +¢%') is relatively prime to [I], = (1—¢')/(1—q)
since [ = 1 (mod 2). Therefore [2°],+ divides (—g; q)m[zst]q,

Clearly (1 + ¢)lm*t1D/2] divides

[(m+1)/2] o my2) |
I[I a+¢@ - [ 0+ =(¢dm
j=1 j=1
Since
s — s=1_1
. 1—g* 1-g*t t—1 2 i
[Q]qt:1—qt'1_q2t:(1+q) (—q) 7"
j=0 =0

and the sum 20§j<t(—q)j D 0<r<2s-1 q>"t takes value 2571t # 0 at ¢ = —1,
the polynomial [2%],¢ is divisible by 1 + ¢ but not by (1 + ¢)*. Therefore
(1+ q)lm=1/21[2¢] , divides (—g; q)m[QSt]q by the above. m

n

Proof of Theorem 1.1. The case s = 0 is easy. In fact,

E20(q) = Bony20¢(q) = Bon(q) = 1= [2°)g (mod (1 +¢)[2%])
by Corollary 2.1.
To handle the case s > 0, we use induction on n. Assume that

(*)  Eom(q) — Eamy2st(q) = [2°]p (mod (14 ¢q)[2°],) for 0 <m < n.

(This holds trivially in the case n = 0.) In view of Lemma 2.1, we have
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E2n(q) — Eonyost(q)

n+25—1¢
2n + 25t 2n
= E (_Q§Q)2k71 E2n+25t72k(Q)_ E2n72k(Q) ,
— 2k q 2k q

where we set Ej(q) =0 for [ < 0.

Let 0 < k < n+ 25't. Applying a g-analogue of the Chu-Vandermonde
identity (cf. [AAR, Exercise 10.4(b)]), we find that

2n + 2%t 2n
Fopsooroi(q) — Ey,_
[ o L ont25t—2k(Q) [%L on—2k(q)

2k on] [ 2% 2
= Fonyost— > g e - Eop_
2n+25¢ Qk(Q)jzoq il l2e -4, 2% ], 2n—2k(q)

2kl 2n 25t
e E St (2n_])(2k_j)
ont2:1—2k(q) jE—O q il l2e—j],

+ BZ} q(E2n+2St—2k(Q) — Ean—2k(q))-

In view of the hypothesis (x),

(=@ @)2k—1 [2n

ok (Povezican(@) = Paaony@) =0 Gmod 1+ 127)

In view of Lemma 2.2, if 0 < j < 2k then (—¢;q)ok_1 [2@2](1 is divisible by
(14 q)*~1[2%],+. Therefore, if k> 1 then (1 + ¢)[2%],+ divides

2n + 2%t 2n
(= @)2k—1 ([ o) ]qE2n+25t2k(Q) - [Qk} qEznzk(Q))
by the above. In the case k =1,
2%t R s
(o] = O, = 0 Dl
q

and hence

(—g:ah ( [Zn J; 2%} qE2n+2st—2(Q) - [2;} qE2n2(Q)>

= (1+ q)Eanyast—2(q)g? 00 [2071} [2;] (mod (1 + q)[2°]4)

= Entos-2(q)g™" 1ra [2°]¢[2°% — 1]¢ (mod (1 + q)[2°]4¢)

2lq

= Eon2et-2(0)q " [2%] e [tlg(1 + q[2°t — 2]g) = [2°] ¢ (mod (1 + )[2°]e);
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in the last step we have noted that ¢** — 1, [t], — 1, [2%t — 2], are divisible by
1+ ¢, and Fa,195¢—2(q) =1 (mod 1+ ¢) by Corollary 2.1.
Combining the above we obtain

n+251¢
Bon(q) = Bonvot(@) = 3 05[2%g = [2°]g0 (mod (1 + ¢)[27])-
k=1

This concludes the induction.
The proof of Theorem 1.1 is now complete. =

REMARK 2.1. With a bit more effort we can prove the following more
general result. For £ =1,2,3,... let

> (k) z" > (kn) rkn -1
;:;)En v <,§q ) (q;q)kn> '

Given positive integers k, s,t with 21¢, we have

2k’ 2k s N\ ros
B (@) = B o) e 1 (0) = (2K = D[2°] e (mod (14 ¢*)[2°] )

for all n € N, where k¥’ = 2*~1. This is a g-analogue of Conjecture 5.5 in
[GZ].
3. An auxiliary theorem

THEOREM 3.1. For all m,n € N, both

- 2n
mo._ _1\k  k(k—1)+2m(n—k)
(31) Sy =Y (1) o
k=0 q
and
2n
mo._ 1k k(k—1)+2m(n—1-k)
(32 = Y (-1 ]
0<k<n q

are divisible by (—q;q)n = [lo<pen(l + ¢%) in the ring Zlq). Also, for any
m,n € N and 6 € {0,1} we have the congruence
= 2
(33) Z(_l)qu(k+2m—l) |:2k, :L_ 5:| =0 (mod (_q; Q)n)
k=0 q

Proof. (i) We use induction on n to prove the first part.

For any m € N, clearly both Sf* = 1 and Tj" = 0 are divisible by
(=q;q)o = 1, also both S7* = ¢*" — 1 and T{" = [2], = 1 + ¢ are multiples
of (—¢;¢)1 =14+¢.

Now let n > 1 be an integer and assume that (—gq;¢q),—1 divides both
Sy and T)"  for all m € N.
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For each m € Z we have

= 2n
m o _ _1\n—l_(n=1)(n=1-1)4+2ml

= 2n
—(—1)" n(n—1) 1) I(14+1)—2In+2lm
(-1)"q ;( )'q o),

= (—1)ngnin=D=2n(n-l-m)gn-l-m _ (_qj)n;n(2m-n+1)gn-1-m
In particular,
S = (~1)"g" DS and §7L = (—1)"gn D SY,
Similarly, for every m € Z we have
5 11 (n—1-1)(n—1-2)+2mi 2n
T{[L:;(_U" " : m[2(n—1—l)+1]q

n—1
2n
— (_1\n—1 (n—1)(n—2) 1\ I(I4+1)=2l(n—1)4+2lm
(17 EW B

— (—1)"_lq("_l)(zm_"”)T,’f—Q_m,
In particular,

ng—l _ (_1)n—1qn(n—1)Tn—1 and T;Lm—Q _ (_1)n—1q(n—1)(n—2)Tg'

For any m € N, clearly

n

Sg@—i—l —Sm = Z(_l)qu(k—1)+2m(n—k)(q2(n—k) ~1) {2”]

k=0 2k],
2n—1
_ ) gh(k=12m(n—k) (g2n _
Z (" 1)[ o ]
q
n—1
1)k gk k=D 2m(nk) 2 [271—2]
k:O 2k 4
s, 2 — 2
an 1Yk (k1) 42m(n—k) | 27
+ (g );( ) ok 1

2n 1)q2(m+n71)S711n_—11 - (q2n - 1)q2(m+n72)T71ln_—11

2n 1)q2(m+n—2)(q25771ni—11 _ T?T—_ll)
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and
S 2n
Tm+l _pm -1 k_k(k—1)+2m(n—1-k)/ 2(n—1—k)+1 _ 1
qiy n Z( ) q (q ) 2% + 1
k=0 q
n—1
2n —1
= Z(_l)qu(kfl)Jer(nflfk)(q2n _ 1) I: :|
k=0 2k+1],
i )k gFe-D+2m(n—1- k)q2k+1[2n_2:|
=0 2k+1],
n—1
- min—1—k) | 2 —2
+ (@ = 1) Y (~1)kgh D+ 2m(n k)[ " ]
k=0 g
— (an _ 1)q2m+2n 3Tm 1 + ( N 1) ZL_]_’

therefore by the induction hypothesis we have
Sl = 8™ (mod (—q;q)n) and ¢IT™ =T™ (mod (—¢; q)n).

(Note that ¢"®1s 1 = (~1)"718""| and ¢~ V=271 — (—1)n7n?
are both divisible by (—¢;¢)n—1 by the induction hypothesis.) Thus, if
(—q; ), divides both SO and T then it divides both S™ and T for ev-
erym=20,1,2,....

Observe that

" 2n
0_ vk k(k—1)
Sp=> (-1)'q [%_%L

k=0
n n—1
—1 2n—1
_ 1)k k(k—1)+2n—2k 2n k k k—1)
D> (D' 2n - 2k ], Z on — 2k — 1
k=1 =0 q
- 0 (o | 20— 2
_ Z(_l)qu(k 1)q2(2 2k) |:2n - 2k:|
k=1 q
— 2n — 2
_1)kgkk=1)(2n—2k | 2n—2k—1 -
n—1
2n —2
k ¢ k=1
z {Qn_%_Q}
— q2n—2571L 2n 3(1 + Q) SO

and hence (—¢;q),_1 divides S? by the induction hypothesis. Similarly,
(—q; q)n—1 divides T? = —g?"~ 2T1 L+ A4S +T0,
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Since
(=1)"q""Vs) = 557! = 57 (mod (—4; ¢)n)
and
1= (17" = 1 — (~1)7(~1)"1 = 2 (mod 1 +¢"),
we must have S°/(—q; q)n—1 =0 (mod 1 + ¢") and hence (—g¢; q),, | SY. Sim-
ilarly, as
¢" (=) VI = T = T (mod (—¢ )

and 1 — (=1)""1¢"2) = 2 (mod1 + ¢"), we have T%/(=¢;q)n_1 = 0
(mod 1+ ¢") and hence (—¢; q), | 7. This concludes our induction step and
proves the first part.
(ii) Now fix m,n € Nand § € {0, 1}. We can verify (3.3) directly if n < 2.
Below we assume n > 2. By a previous argument,

- 2n
_1\yngm+n—1 _ n(2m+n-1)g-m _ n(n—1) _ 1\k  k(k+2m—1)
(st =g S = Sy M

and
(_1)n—1T£n+n—2 _ q(n—l)(2m+n—2)Tn—m

i
L

=4q

n—1)(n— m— 2n
(n—1)(n—2) (_1)qu(k+2 1) |:2k N 1:| )
q

il

0

Thus, applying the first part we immediately get (3.3).
The proof of Theorem 3.1 is now complete. =

REMARK 3.1. Theorem 3.1 is somewhat difficult and sophisticated, how-
ever it is easy to evaluate the sums

() -5 ()t

k=0 k=0
and
2n .k N
2n 2n\ i" — (—1i)
i k — -  ~ 7
Z( b (2k+1> Z(k:) 21 '
0<k<n k=0

Now let us explain why (1.8) holds for any [ € Z and n € N. Write
l=2m+ 0 with m € Z and ¢ € {0,1}. Then

> (—ngk(kl)[Q;ZlL: > (_1)qu(k1)[2(k: +2:z)+5L

keZ k+meN
2k+1>0
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2n
— _ 1\k—m (k—m)(k—m—1)
> ()" [2k + 5] ,

keN
n—ao m
— (—1)™ 1 k _k(k—1)—2km+m(m+1) ]
( )gzo( )"q 2%+ 6],

So (1.8) follows from Theorem 3.1. Note also that

_ni2n+1 _ 2n
vk k(k—1) B 1k k(k—1)
>, (D' [%HL >, (D [2k+l—1L

keZ keZ
2k-+1>0 2k+1—1>0
2n
_ _1)k k(k—1)+2k+l|: ]
;Z (=1’ 2k +1],
2k+1>0
2n
1 1\k—1_k(k—1)
= 1
1 %ZZ (=D)"" [2k+l—2L
2k+1—2>0
and thus
nl2n+1
(3.4 > it ] =0 mod (<),
keZ q
2k+1>0

4. Proofs of Theorems 1.2 and 1.3

LEMMA 4.1. We have

yrg2n 1)kg2k &2 (—1)lz?
(41) 14D (=¢:9)2 , G q
Z " Z Q)2k — (¢:9)
and
[e.o] [e.9] (e 9]
( 1 n 2n+1 2k+1 )k 2k+1 (_1)lm2l
(4.2) (@@~ =) 4q .
,;) " (492011 ZO 4 4)2k41 =0 (¢ 9)

Proof. Let § € {0,1}. Then

i(—nkq(z’”“) 22040 (1)l _i(—nnx?m z":q(%;s) [211—!—5
= (@D = (GDu o (GDmes 2k+4],

By the g-binomial theorem (cf. [AAR, Corollary 10.2.2(c)]),

(£ q)m = Y [mL(—l)kq(g)xk for any m € N.

53
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Thus
n 2n+0 2n+0
(2559) 2n+46 _ ©) 2n+46 5+ (1) 2n+0
2> a2 s DT X (T
k=0 q =0 q =0 q
= (=1;@)2n+s + (=1)°(1; @) 201
and hence

o (_1)kq(2k+5) 2+ 2 (_1)lg2

D

= (@GDws = (G

o (D) (— 1 )angs + (=1)°(1;9)2n s
-2(5 )

n—0 q; q)2n+5 2
1)”:{?2”
1+ ; if § =0,
Z G- i (¢ 4)2n
= oo
—1)" 2n+l )
> (=4 9)2n L if 6 = 1.
n—0 (¢ @)2n+1

We are done. =

REMARK 4.1. (4.1) and (4.2) are g-analogues of the trigonometric iden-
tities
1+ cos(2x)
2

sin(2x)

=cos’z and = sinx cos x

respectively.

LEMMA 4.2. Letn > k > 1 be integers. Then both (—q;q)k[gmq and
(=g @)k [5p71], are divisible by

k
(=" e =[]+ 7).
j=1

Proof. Observe that

HE L o —ﬁ (1 @) (1 - 1)
2k |, L - i (1—q¥)(1—q%1)

ko1 — gn—it1y(q n—j+1y(] — g2n—2i+1
:H( "1 +¢" (1 —q )

i (1=¢)(1+¢7)(1 — ¢
[ Ml g
kly @k 1— g%t

j=1
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and hence

n—k+1,

(_q 7Q)

S [10 -,

qj=1

Recall that the polynomial (—¢" **1:q), = [],_ k<l<n(1 + ¢') is relatively

prime to H?:l(l —q*7"). Therefore (—¢" "' q)i | (—q; )i [32] ‘

n—k+1.

Since [2k + 1], is also relatively prime to (—¢ ,q)k, we have

oo 1| = Coon g on).

This concludes the proof. =

0 (mod (—¢" "5 q)y).

REMARK 4.2. Lemma 4.2 yields a trivial result as ¢ — 1.

Proof of Theorem 1.2. Clearly

<mn GG )

2
Z +Z - —q; q) 2k 1[22}(]52%%((1)-

- n:l q)2n = 1

On the other hand, by (4.1) we have

g 2 & (=1)'a? _ = (=1)ra® - \kk(k—1)| 2N
D=2 G o X e,

-0 (Q7q)2l n—0 (qaq)Qn =0

Therefore

Son(@) + Y (—1)k(—Q;Q)2k—1EZ} San—2k(q)

0<k<n
° 2n
—(_1\n 1k k(k—1)
(17 i ]

k=0 q

0 (mod (—g; q)n)

with the help of (1.8) or Theorem 3.1. If (—g;q);|S2(q) for all 0 <1 < n,
then

2n

San(q) = — Z (—1)k(—QQ q)2k—1 [Qk] Son—2k(q) =0 (mod (—g; ¢)n)
0<k<n q

since [Jo <, r(1+ ¢’) divides S, ox(q) and [Lkejcn (1 + ¢’) divides

(—q;9)2k-1 [gZ]q by Lemma 4.2. Thus we have the desired result by induc-

tion. =
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REMARK 4.3. As ¢ — 1 our new recursion for ¢-Salié numbers yields a
useful recursion for Salié numbers:

St 3 02 ()= (-0 (7))

0<k<n k=0

from which Carlitz’s result 2" | Sy, follows by induction.

Proof of Theorem 1.3. 1t is apparent that

(@) = <§:02n<q) o )(i(—%@?"w>

n—0 (¢; 4)2n =0 (4 @)2n+1
= D¥(—q; Cop— .
Z (@ Dot £ Z( )¥(—q Q)2k[2k+1L on—2k(q)

On the other hand, (4.2) implies that

qk(kfl)m2k+1 0 (—l)lle

g(x) =
k=0

) o 20+l Zn:( Lk gtk 1)[2n+1]
= (492 (= 2k+1

(@5 @) 2841 (¢;@)u

=0

Therefore we have the recurrence relation

n

" o+ 1 omn + 1
1)k (—g- o nkkk 1) '
;)( )™ q,Q)2k[2k+1L02 2k(q z;) 21,

The right-hand side of the last equality is a multiple of (—g¢; ), by (3.4). So
we have

S M0 1y | Con-aele) =0 (mod (i)
k=0

Assume that (—g¢; ¢); divides the numerator of Cy(g) for each 0 <1 < n.

Then (—g¢; q)y, divides the numerator of (—¢;q)ax [%ZIH(]C%_%((]) for each

0 <k <n, because [[o,<, (1 + ¢’) divides the numerator of Co,,_2(q)
and ankqgn(l—i—qj) divides (—¢; q)2x BZIHq by Lemma 4.2. Thus (—¢; ¢)n
must also divide the numerator of [2"1“][102”((]) = [2n + 1]4C%,(q). Recall
that [2n + 1], is relatively prime to (—g¢;q)n. So the numerator of Ca,(q) is
divisible by (—¢; q)n.

In view of the above, the desired result follows by induction on n. =
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REMARK 4.4. As ¢ — 1 our new recursion for ¢-Carlitz numbers yields
the following recurrence relation for Carlitz numbers:

- 2n + 1 - 2n + 1
N )
k=0 k=0
From this one can easily deduce the Carlitz congruence Cy,, = 0 (mod2").
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