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Abstract. In this paper we study quadratic transportation cost inequalities. To this end
we introduce new families of inequalities (for quadratic transportation cost and for relative
entropy) that are shown to be equivalent to the Poincaré inequality. This allows us to give
some examples of measures satisfying T2 but not the logarithmic Sobolev inequality.
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1. Introduction, framework and main results.

Transportation inequalities recently deserved a lot of interest, especially in connection with
the concentration of measure phenomenon (see [15], [16]). Links with others renowned func-
tional inequalities, in particular logarithmic-Sobolev inequalities, were also particularly stud-
ied (see [5], [18], [4], [16] ...), as no direct or tractable criteria were available for this kind of
inequalities.

Given a metric space (E, d) equipped with its Borel σ field, the Lp Wasserstein distance
between two probability measures µ and ν on E is defined as

(1.1) Wp(µ, ν) =
(

inf
π

∫
E×E

dp(x, y)π(dx, dy)
)1/p

,

where π describes the set of all coupling of (µ, ν) , i.e. the set of all probability measures on
the product space with marginal distributions µ and ν.

A probability measure µ is said to satisfy the Tp(C) transportation cost inequality if for all
probability measure ν,

(1.2) Wp(µ, ν) ≤
√

2C H(ν, µ) ,

where H(ν, µ) stands for the Kullback-Leibler information (or relative entropy), i.e.

H(ν, µ) =

∫
log (

dν

dµ
) dν if ν � µ ; +∞ otherwise.

As shown by K. Marton ([17]), T1 implies a Gaussian type concentration for µ.
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Let us briefly recall the general argument, we shall use later.

For any Borel set A with measure µ(A) ≥ 1/2 introduce Acr = {x , d(x,A) ≥ r} and

dµA = 1IA
µ(A) dµ. Set B for Acr and assume that W1(ν, µ) ≤ ϕ(H(ν, µ)) for all ν. Then

r ≤ W1(µB, µA) ≤ W1(µB, µ) + W1(µ, µA)(1.3)

≤ ϕ(H(µA, µ)) + ϕ(H(µB, µ))

= ϕ

(
log

1

µ(A)

)
+ ϕ

(
log

1

µ(Acr)

)
.

When ϕ(u) =
√

2Cu we immediately obtain

µ(Acr) ≤ exp

− 1/2C

(
r −

√
2C log(

1

µ(A)
)

)2
 .

Hence criteria for T1 to hold are very useful. Such a criterion was first obtained by Bobkov and
Götze ([5] Theorem 3.1) and recently discussed by Djellout, Guillin and Wu ([13] Theorem
2.3) where the following is proved

Theorem 1.4. [13] µ satisfies T1 if and only if there exist ε > 0 and x0 ∈ E such that

(EIε(2))

∫
E
eε d

2(x,x0) µ(dx) < +∞ .

Unfortunately T1 is not well adapted to dimension free bounds, while T2 is, as shown by
Talagrand ([21]). The first example of measure satisfying T2 is the standard Gaussian measure
([21]), for which C = 1. When E is a complete smooth Riemannian manifold of finite
dimension, with d the geodesic distance and dx the volume measure, Otto and Villani ([18])
have studied the T2 property for absolutely continuous probability measures (Boltzmann
measures)

(B.M) µ(dx) = e−V (x) dx ,

for V ∈ C2(E) in connection with the logarithmic-Sobolev inequality. Their method was
recently improved by Wang ([26]) in order to skip the curvature assumption made in [18].

In the sequel we shall assume that µ is a Boltzmann measure with V ∈ C3, and that the
diffusion process built on E with generator L = 1/2 div(∇) − 1/2∇V.∇ is non explosive. We
denote (Pt)t≥0 the associated semigroup.

This is assumption (A) in [26]. Conditions for non explosion are known. Here are two
different among others when E = Rd:

• there exists some ψ such that ψ(x) → +∞ as |x| → +∞ and ∆ψ − ∇V.∇ψ is
bounded from above,
•
∫
|∇V |2 dµ < +∞ .

For the first two see e.g. [20] p.26 (replacing V therein by ψ), for the second one see e.g.
[10].

Then
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Theorem 1.5. [18], [4], [26], (also see [12]) If µ satisfies the logarithmic-Sobolev inequality
(L.S.I) ∫

g2 log(g2) dµ −
(∫

g2 dµ
)

log
(∫

g2 dµ
)
≤ 2C

∫
|∇g|2 dµ ,

for all smooth g, then µ satisfies T2(C).

A partial converse of Theorem 1.5 is also shown in [18] (Corollary 3.1), namely

Theorem 1.6. [18], [4] Let E = Rn. If µ satisfies T2(C) and the curvature assumption

Hess(V ) ≥ K Idn

for some K ∈ R, then µ satisfies a logarithmic-Sobolev inequality (with some new constant
C̄), provided

1 + K C > 0 .

The latter restriction is very important and has to be compared with Wang’s results ([24] and
[25]) telling that a logarithmic-Sobolev inequality holds provided the curvature assumption
above and the integrability condition EIε(2) in Theorem 1.4 hold with

ε + K > 0 .

In other words, according to Theorem 1.4 and Theorem 1.6, under the curvature assumption,
log-Sobolev, T1(C1), T2(C2) are all equivalent for appropriate constants C1 and C2.

Whether this equivalence holds without restrictions on the constants or not was left open by
these authors. One aim of this paper is to show that this equivalence does not hold. Before
stating a more precise result, let us complete the picture.

On one hand, as shown by Otto and Villani (see [4] subsection 4.1 for another approach)

Theorem 1.7. If µ satisfies T2(C) then µ satisfies the Poincaré (or spectral gap) inequality
(S.G.I) i.e. for all smooth f ,

Varµ(f) ≤ C

∫
|∇f |2 dµ .

This result gives us a first hint on what should be the difference between T1 and T2 as T1 is
well known to hold when (S.G.I.) fails (see [13], Remark 2.4).

On the other hand, the difference between T2 and T1 is only concerned with small entropies
due to the following elementary

Lemma 1.8. Assume that µ satisfies EIε(p) for some ε > 0. Then there exists a constant
C(ε) such that for all ν satisfying H(ν, µ) ≥ 1 , W p

p (ν, µ) ≤ C(ε)H(ν, µ) .

Here EIε(p) is defined as in 1.4 with dp instead of d2.

Hence the transportation inequalities T2 and T1 are “equivalent” for large entropy. Since
Marton’s method is essentially concerned with large entropy, T2 cannot furnish a better
concentration result than T1. The main interest of T2 for the concentration of measure
phenomenon is thus that T2 can be tensorized.

At this point we shall mention that the proof of Lemma 1.8 is using the trivial independent
coupling. We learned from F. Bolley and C. Villani [7] that, using a less trivial coupling in
[22], this statement can be greatly improved, in particular
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Proposition 1.9. Bolley and Villani

EIε(p) ⇒ W p
p (ν, µ) ≤ C(ε)

(
H(ν, µ) + H

1
2 (ν, µ)

)
.

Bolley and Villani are then able to get back Theorem 1.4 i.e. EIε(2) is equivalent to the
transportation inequality T1, but with some better constant than in [13].

Let us come to the contents of the present paper where we shall mainly focus on W2.

In section 2 we shall show that (S.G.I) implies some quadratic transportation inequality for
measures ν with a bounded density. Actually we prove an interpolation result between (S.G.I)
and (L.S.I) through a family of inequalities I(α) introduced by Latala and Oleszkiewicz (see
[14]) for 0 ≤ α ≤ 1 ,

(1.10) I(α) sup
p∈[1,2)

∫
f2 dµ −

(∫
|f |p dµ

) 2
p

(2 − p)α
≤ C(α)

∫
|∇f |2 dµ .

Note that I(0) is the Poincaré inequality and I(1) reduces to the logarithmic-Sobolev in-
equality. Our first result is the following

Theorem 1.11.

Let µ be as above. If I(α) holds then for all ν such that ‖ dν
dµ ‖∞≤ K the following modified

transportation inequality holds

W2(ν, µ) ≤ D(α,K)
√
C(α)H(ν, µ) ,

where

D(α,K) = 8 exp

(
1− α

2
(1 − log(1− α))

)
(log K)

1−α
2 , for K ≥ e1−α ,

and
D(α,K) = 8

√
K for K ≤ e1−α .

Remark that the previous Theorem and Marton’s trick allow to recover the concentration
property shown in [14]. Indeed, recall (1.3) and remark that the interesting K is given by

K = 1/µ(Acr). We immediately see that if I(α) holds, µ(Acr) behaves like exp (−C r
2

2−α ).
Also note that for α = 1 we recover Otto-Villani result, since K can be arbitrarily chosen.

We refer to [26], [23], [3], [11] and [2] for more refined results in connection with I(α).

If the meaning of a transportation inequality reduced to bounded densities is not clear, the
previous Theorem nevertheless allows us to obtain as a first consequence the following (weak)
transportation inequality proved in section 3

Corollary 1.12.

Let µ be as above. If EIε(2) and I(α) are satisfied, there exists some constant C such that

W 2
2 (ν, µ) ≤ C

(
1 + (1− α)−

1−α
2−α

(
log+(1/H(ν, µ))

) 1−α
2−α
)
H(ν, µ) .

Remark that this corollary presents an interpolation between Poincaré and log-Sobolev in-

equality, which is expected to tensorize, but it is not dimension free, as a (log(n))
1−α
2−α appears

in the tensorization procedure, which is however better than the factor n obtained with the
sole T1. We will see that we have to impose conditions slightly stronger than Poincaré’s
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inequality (at least in the real line case) to get rid of the extra ”
√
log” term leading thus to

the true T2 inequality.

Actually one can get some equivalences between various inequalities for bounded functions.
This will be done in Section 2. The result is the following

Theorem 1.13.

Let µ be as above. Then (up to the constants) the following statements are equivalent

(1) I(0) (i.e. the Poincaré inequality) holds,
(2) the (modified) transportation inequality in Theorem 1.11 holds for α = 0,
(3) the following (restricted) log-Sobolev inequality holds: for all nonnegative h such

that
∫
h dµ = 1 ,∫

h log h dµ ≤ C(1 + log(‖ h ‖∞))

∫
|∇h|2

h
dµ ,

(4) there exist some C and some K > 1 such that the previous log-Sobolev inequality
holds for all h as above and bounded by K.

Point (3) is some kind of modified log-Sobolev inequality, i.e. available for some subset of
probability densities. Such modified inequalities were first introduced by Bobkov and Ledoux
[6] who have considered the set of h such that |∇ log(h)| is bounded by a small enough
constant. These inequalities are particularly well suited for concentration estimates (as we
said we recover some weaker form of concentration results). However the set considered by
Bobkov and Ledoux is not Pt stable. The set of densities bounded by some constant K is Pt
stable, so that (3) tells that relative entropy is exponentially decaying i.e for some C

(1.14) H(Pthµ , µ) ≤ e
− Ct

1+log(‖h‖∞) H(hµ , µ) .

If I(α) holds we think that the decay is controlled by log1−α(‖ h ‖∞) .

In order to deduce Corollary 1.12 from Theorem 1.11 we are using a simple truncation
argument (truncating with a constant). If one wants to improve this result, one has to
truncate with some function C exp(η d2). This is explained in Section 4. This section is
devoted to various comments and technical results allowing to build measures satisfying T2.
Some of them may have their own interest. We then obtain the following corollaries

Corollary 1.15. Assume that EIε(2) holds. Assume in addition that there exist some q > 1
and some M > 0 such that for all nonnegative h with

∫
h dµ = 1 and

∫
hq dµ ≤M ,∫

h log h dµ ≤ C(M)

∫
|∇h|2

h
dµ ,

then T2 holds.

Corollary 1.16. In the previous corollary we can replace the condition
∫
hq dµ ≤ M by

h(x) ≤ K eη d
2(x,x0) for some small enough η, (hence the constant C(M) by C(K, η)) provided

Hess(V ) ≥ RId for some R ∈ R and E = RN .

We shall give a proof of Corollary 1.16 in section 4.3. In both Corollaries one may reduce a
little bit the set of allowed densities assuming in addition that h ≥ a for some a > 0.
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To get rid of the curvature assumption one has to call upon the methods in [4], namely
Herbst’s argument and the beautiful characterization of T2 obtained by Bobkov-Götze [5]

Theorem 1.17. Assume that EIε(2) holds. If the restricted logarithmic Sobolev inequality∫
f2 log f2 dµ −

(∫
f2 dµ

)
log

(∫
f2 dµ

)
≤ C

∫
|∇f |2 dµ ,

holds for all

(1.18) f2 ≤
(∫

f2 dµ

)
eη(d

2(x,x0)+
∫
d2(y,x0)µ(dy))

for some η < ε/2, then T2 holds.

We have chosen to write the hypotheses in a slightly different form but this result is of course
the same as Corollary 1.16 without the curvature assumption. Note that it generalizes slightly
the principal result in [4]: a full logarithmic Sobolev inequality is too strong to get T2.

The proof of this Theorem will be given at the end of section 4.4. It is an almost immediate
adaptation of the section 3.3 in [4]. Since it is the most general result of the section, the
reader should ask about the interest of the remainder of section 4. As we said some of
the results therein have their own interest, but the comparison between both approaches
(Otto and Villani coupling on one hand, Infimum convolution on the other hand) is more
interesting. Indeed both approaches are qualitatively very different : Otto-Villani’s coupling
yield local results (if one wants to get some estimate for the Wasserstein distance for a single
h, one only needs to look at Pth) while the infimum convolution approach is global (since
variational) in nature. In particular, for the latter approach we did not succeed in reducing
the problem to small entropies and/or bounded below densities.

In the final Section 5, we give some Hardy’s like conditions implying a T2 inequality for
measure on the real line. It finally enables us to build explicitly a potential V such that µ
satisfies T2 but does not satisfy a logarithmic Sobolev inequality, however with unbounded
below curvature. These examples show that T2 is strictly weaker than (L.S.I), which was in
fact the primary goal of the authors, the second one being still an open question: an explicit
characterization of the T2 inequality.

Acknowledgments. We wish to thank François Bolley and Cedric Villani for numerous
and fruitful exchanges. Franck Barthe, Ivan Gentil, Michel Ledoux and Liming Wu are also
gratefully acknowledged for their kind interest in this work and their remarks. We want
to particularly acknowledge Michel Ledoux for a careful reading of our first draft, and for
pointing out some mistakes therein. Also a special thank for the final comments of Franck
Barthe.

2. Modified transportation and functional inequalities.

In this section we shall discuss several functional inequalities involving bounded functions.
We start with the proof of Theorem 1.11
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Proof. of Theorem 1.11.

Let ν be a probability measure such that h = dν
dµ satisfies 0 < β ≤ h(x) ≤ K. We assume

first that h ∈ D i.e. is the sum of a constant and a C∞ function with compact support.

Let Pt denotes the µ symmetric semigroup with generator L = 1/2 div(∇) − 1/2∇V.∇, and
define νt = (Pth)µ.

Our method relies on Otto-Villani’s coupling [18], refined by Wang [26], whose idea is the
following: to provide a coupling between νt and νt+s as πs(dx, dy) = νt(dx)δϕs(x)(dy) where
ϕs is the well defined unique (under our assumptions) solution of the p.d.e.

d

ds
ϕs = −ξt+s ◦ ϕs, ϕ0 = Id, S ≥ 0

with ξt+s(x) = ∇ logPt+sh(x).

Then, according to Otto and Villani [18], Lemma 2 (or more exactly its proof), or Wang [26]
section 3,

A =
d+

dt
(−W2(νt, µ)) ≤ lim sup

s→0+

1

s
W2(νt, νt+s)(2.1)

≤ 2

(∫
|∇
√
Pth|2 dµ

) 1
2

.

Using I(α) we obtain for all 1 ≤ p < 2 ,

(2.2) A ≤
2
√
C(α) (2− p)α

∫
|∇
√
Pth|2 dµ√

1 −
(∫

(Pth)
p
2 dµ

) 2
p

.

Now using a similar argument as in Lemma 3.1 in [26] or simply the fact that D is a nice
core for the diffusion semigroup, the following computation is rigorous

(2.3)
d

dt

(
1 −

(∫
(Pth)

p
2 dµ

) 1
p

)
= −1

2

(∫
(Pth)

p
2 dµ

) 1
p
−1 ∫

(Pth)
p
2
−1 LPth dµ

=
1

4

(∫
(Pth)

p
2 dµ

) 1
p
−1 ∫

(
p

2
− 1) (Pth)

p
2
−2 |∇Pth|2 dµ

=
1

2

(∫
(Pth)

p
2 dµ

) 1
p
−1 ∫

(p− 2) (Pth)
p
2
−1 |∇

√
Pth|2 dµ

≤ 0 .

But since h ≤ K, Pth ≤ K hence according to (2.2) and (2.3)

(2.4) A ≤
2
√
C(α) (2− p)α

∫
|∇
√
Pth|2 K1− p2

(Pth)
1− p2

dµ√
1 −

(∫
(Pth)

p
2 dµ

) 1
p

√
1 +

(∫
(Pth)

p
2 dµ

) 1
p
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≤ −
4
√
C(α) (2− p)α√

1 −
(∫

(Pth)
p
2 dµ

) 1
p

K1− p
2

(2− p)
( ∫

(Pth)
p
2 dµ

) 1
p
−1

d

dt

(
1 −

(∫
(Pth)

p
2 dµ

) 1
p

)

≤ 8
√
C(α) (2− p)

α
2
−1K1− p

2

− d

dt

√√√√(1 −
(∫

(Pth)
p
2 dµ

) 1
p

) .

For the latter inequality we have used
∫

(Pth)
p
2 dµ ≤ 1 .

It remains to integrate in t. Since I(α) implies (S.G.I), we know that Pth goes to 1 in L2(µ)
as t goes to infinity. Arguing as in [26] p.10, one can show that W2(νt, µ) goes to 0 as t goes
to ∞, so that we have obtained

W2(ν, µ) ≤ 8
√
C(α) (2− p)

α
2
−1K1− p

2

√√√√(1 −
(∫

h
p
2 dµ

) 1
p

)
(2.5)

≤ 8
√
C(α) (2− p)

α
2
−1K1− p

2

√√√√(1 −
(∫

h
p
2 dµ

) 2
p

)
.

Now we shall use the two following elementary inequalities for p ∈ [1, 2):

• 1 − u
2
p ≤ 2

p (1− u) for u ∈ [0, 1],

• ξ log ξ + 1 − ξ ≥ 0 for ξ > 0 .

The latter yields log ξk ≥ 1 − ξ−k, hence ξ log ξk ≥ ξ − ξ1−k and finally for k = 1 − p
2 ,

(1− p
2) ξ log ξ ≥ ξ − ξ

p
2 . We apply this with h(x) = ξ, integrate with respect to µ and use

the former inequality in order to get

(2.6) 1 − (

∫
h
p
2 dµ)

2
p ≤ 2

p
(1− p

2
)H(ν, µ) .

Plugging (2.6) into (2.5) furnishes (using p ≥ 1)

(2.7) W2(ν, µ) ≤ 8
√
C(α) (2− p)

α−1
2 K1− p

2

√
H(ν, µ) .

It is now enough to optimize in p, just taking care that p ≥ 1. The optimal value is obtained
for 2− p = 1−α

logK if K ≥ e1−α and for p = 1 otherwise. A simple calculation yields the exact

bound in Theorem 1.11.

It remains to extend the result to densities h that are no more bounded away from 0, by
using standard tools. �

This modified transportation inequality does not seem tensorizable. Now we come to the
proof of Theorem 1.13.

Proof. of Theorem 1.13.

The first implication is given by the previous theorem. The equivalence between (1) and
(2) follows from Otto-Villani’s way of proof of T2 =⇒ SGI. Namely choose some smooth
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f with compact support (hence bounded) such that
∫
fdµ = 0, and set for ε small enough

µε = (1 + εf)µ. Recall that

H(µε, µ)/ε2 →
∫
f2dµ .

By Taylor formula at order 2, as f is smooth and compactly supported, one may find a
constant C such that for all x, y

f(x)− f(y) ≤ |∇f(y)||x− y|+ C|x− y|2.
Denote by πε an “optimal coupling” for the Wasserstein distance between µ and µε, then for
ε small enough

∫
fd

(
µε − µ
ε

)
=

1

ε

∫
(f(x)− f(y))dπε

≤ 1

ε

∫
|∇f(y)||x− y|dπε +

C

ε

∫
|x− y|2dπε

≤ 1

ε

√∫
|∇f |2dµW2(µε, µ) +

C

ε
W 2

2 (µε, µ)

≤ 8
√

1 + ε||f ||∞

√∫
|∇f |2dµ

√
C(0)H(µε, µ)/ε2 +

+
64C

ε
(1 + ε||f ||∞)C(0)H(µε, µ) .

Let ε tend to 0. In the limit we obtain that for all those f

∫
f2dµ ≤ 8

√
C(0)

√∫
|∇f |2dµ

√∫
f2dµ

which gives the SGI (but with a worse constant) for all those f , and then extend by density.

Let us come to the restricted log-Sobolev inequality. That (4) implies (1) is standard. To
prove (2) implies (3), one can get a precise result by using the robust version of the logarithmic
Sobolev inequality proved in [8] (formula (2.6)) namely

(2.8)

∫
f2 log f2 dµ ≤ t

β

∫
|∇f |2 dµ +

2

β
log

(∫
f1+β Ptf dµ

)
,

that holds for any Pt (satisfying the assumptions in the introduction), any nonnegative β
and any nonnegative f such that

∫
f2dµ = 1.

Indeed, for β ≤ 1,
∫
f dµ and

∫
f1+βdµ are less or equal to 1, hence

log

(∫
f1+β Ptf dµ

)
≤
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≤ log

(
1 +

∫
f1+β Pt(f −

∫
fdµ) dµ

)
≤
∫

f1+β Pt(f −
∫
fdµ) dµ

≤ V ar
1
2
µ (f1+β)V ar

1
2
µ (Ptf) .

If Poincaré holds with constant CP we thus obtain∫
f2 log f2 dµ ≤ t

β

∫
|∇f |2 dµ +

2(1 + β)

β
CP e

− t
CP

(∫
|∇f |2dµ

) 1
2
(∫

|∇f |2f2βdµ
) 1

2

,

and finally ∫
f2 log f2 dµ ≤

(
t

β
+

2(1 + β)

β
CP e

− t
CP ‖ f2 ‖

β
2∞

) ∫
|∇f |2dµ .

An easy optimization in t shows that the best choice of β is β = 1 and yields, for h = f2,

(2.9)

∫
h log h dµ ≤ CP (2 log 2 +

1

2
log ‖ h ‖∞)

∫
|∇h|2

h
dµ .

�

Theorem 1.13 gives another characterization of the Spectral Gap property in terms of trans-
portation inequalities. It has to be compared with Corollary 5.1 in [4], where (S.G.I) is shown
to be equivalent to some WL transportation inequality (see section 3).

Remark 2.10. One may prove (2) implies (3) in an elementary way using once again a
truncation argument and careful calculus but with less precise constants.

Remark 2.11. One can easily get a similar but weaker statement without any effort. Indeed
recall that u log u − u + 1 ≥ 0 . Writing this inequality with v = 1/u and then multiplying
by v2 yields v log v ≤ v2 − v. Applying this with v = h(x) and integrating with respect to µ
yields ∫

h log h dµ ≤ V arµ(h) ,

if h is a density of probability.

Hence if Poincaré holds∫
h log h dµ ≤ CP

∫
|∇h|2dµ ≤ CP ‖ h ‖∞

∫
|∇h|2

h
dµ .

3. Application to Transportation inequalities.

In this section we shall see how to use the functional inequalities of the previous section
in order to obtain transportation inequalities (in particular Corollary 1.12. We shall also
compare this results with other similar results in the literature.

We start this section by the proof of the elementary Lemma 1.8 showing that the obstruction
for T2 to hold is in a neighborhood of µ. Notice that many results in this section are available
in a general metric space.
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Proof. of Lemma 1.8.

Introduce the Young function

(3.1) τ(u) = u log+(u) ,

and its Legendre conjugate function τ∗(v) = v 1Iv<1 + ev−1 1Iv≥1.

Among all possible coupling of (µ, ν), the simplest one is the independent one i.e. if we
denote h = dν

dµ ,

π(dx, dy) = h(x)µ(dx)µ(dy) .

Accordingly

W p
p (ν, µ) ≤

∫
dp(x, y)h(x)µ(dx)µ(dy)

≤ 2Nτ (h)Nτ∗(d
p) ,

where Nτ and Nτ∗ are the gauge norms in the corresponding Orlicz spaces, the second
inequality being the classical Hölder-Orlicz inequality (see e.g. [19] for all concerned with
Orlicz spaces). Recall that the gauge norm for a general Young function ψ is defined as

Nψ(g) = inf {λ > 0 ,

∫
ψ(g/λ)(x, y)µ(dx)µ(dy) ≤ 1} ,

such that an easy convexity argument yields

(3.2) Nψ(g) ≤ max {1 ,
∫

ψ(g)dµ⊗ dµ} .

In addition remark that∫
h log+(h) =

∫
h log(h) −

∫
h<1

h log(h) ≤
∫

h log(h) + 1/e .

Hence if H(ν, µ) ≥ 1 ,

1 ≤
∫

h log+(h) ≤ (1 + 1/e)H(ν, µ) ,

and according to (3.2) and what precedes

W p
p (ν, µ) ≤ 2(1 + 1/e)Nτ∗(d

p)H(ν, µ) .

Finally, thanks to Iε(p) , Nτ∗(d
p) < +∞ and the result follows. �

One can improve the preceding result by showing that (up to the constant) it holds for
H(ν, µ) bounded away from 0. But as quoted in Proposition 1.9 one can also get a precise
bound for the behavior of the Wasserstein distances when entropy goes to 0.

Theorem 1.13 suggests that working with bounded density is natural with regard to trans-
portation cost inequalities, starting with Poincaré inequality. We are so tempted to use some
truncation for ν i.e. if a > 0 we define

(3.3) νa = (1/ν(h ≤ a))h 1Ih≤a µ ,

and look at what happens. According to Lemma 1.8 and (3.2) we may and will assume that
H(ν, µ) is small enough. We start with two elementary lemmata.

Lemma 3.4. Let ν = hµ be a probability measure. If a > e, then
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(1) H(ν, µ) ≥
(
1 − 1/ log a

) ∫
h>a h log h dµ ,

(2) ν(h > a) ≤
(
1 / (log a − 1)

)
H(ν, µ) .

Proof. Again we start with u log u + 1 − u ≥ 0 which yields∫
h≤a

h log h dµ + 1 −
∫
h≤a

h dµ ≥ 0 ,

hence

H(ν, µ) ≥
∫
h>a

h log h dµ − ν(h > a) .

(2) follows immediately since log h > log a on {h > a} . For (1) we have

ν(h > a) ≤
∫
h>a

log h

log a
h dµ = (1/ log a)

∫
h>a

h log h dµ .

�

Lemma 3.5. Let ν = hµ be a probability measure such that H(ν, µ) ≤ 1/2. If a > e
3
2 and

νa is given by (3.3), then

H(νa, µ) ≤
(

1 +
1

2(log a− 3/2)
+

2

log a− 1

)
H(ν, µ) .

Proof.

H(νa, µ) =

∫
h 1Ih≤a
ν(h ≤ a)

log

(
h

ν(h ≤ a)

)
dµ

≤ H(ν, µ) + ((1/ν(h ≤ a))− 1)

∫
h≤a

h log h dµ

− log(ν(h ≤ a)) −
∫
h>a

h log h dµ

≤ H(ν, µ) +
ν(h > a)

ν(h ≤ a)
H(ν, µ) − log(1− ν(h > a)) .

But if 0 ≤ x ≤ 1/2 , − log(1 − x) ≤ 2x, hence according to (3.4)(2), if H(ν, µ) ≤ 1/2,
− log(1− ν(h > a)) ≤ (2/(log a− 1))H(ν, µ) and

ν(h > a)

ν(h ≤ a)
≤ H(ν, µ)

log a− 1−H(ν, µ)

and we get the desired result. �

We turn now to the proof of Corollary 1.12.

Proof. of Corollary 1.12. We assume that I(α) and the exponential integrability condition
EIε(2) are satisfied. Let consider a positive constant C that may change line to line, but
which does not depend neither on a nor α.

Since W2 is a distance, it holds

(3.6) W2(ν, µ) ≤ W2(νa, µ) + W2(νa, ν) .
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But, on one hand, since I(α) holds, according to Theorem 1.11, for a large enough

W 2
2 (νa, µ) ≤ C log1−α(a/ν(h ≤ a))H(νa, µ)

≤ 2C log1−α(a/ν(h ≤ a))H(ν, µ) ,

provided H(ν, µ) ≤ 1/2 thanks to Lemma 3.5.

On the other hand, a classical result in mass transportation theory (see [22] Proposition 7.10)
tells that for any x0

(3.7) W 2
2 (ν ′, ν) ≤ 2

∫
d2(x, x0) |h′ − h| dµ .

Applying (3.7) with ν ′ = νa yields, assuming again that H(ν, µ) ≤ 1/2

W 2
2 (νa, ν) ≤ 2

ν(h > a)

ν(h ≤ a)

∫
h≤a

d2(x, x0)h dµ + 2

∫
h>a

d2(x, x0) dν

≤ C (H(ν, µ) + Nτ (h 1Ih>a)) ,

according to Lemma 3.4 (2) and Orlicz-Hölder inequality (see the proof of Lemma 1.8 at the
beginning of the section), since EIε(2) is satisfied for the latter.

Plugging all this into (3.6), we get that there exists a constant C such that

(3.8) W 2
2 (ν, µ) ≤ C

(
log1−α(a)H(ν, µ) + Nτ (h 1Ih>a)

)
.

Now we choose a = 1/Hq(µ, ν) for some q > 0 (recall that we may assume that H(ν, µ) is
small enough). Lemma 3.4(2) furnishes

ν(h > a) ≤ C
H(ν, µ)

q log(1/H(ν, µ))
,

so that it is easily seen that

Nτ (h 1Ih>a) = inf{λ > 0;

∫
τ(h 1Ih>a)dµ}

≤
∫
h 1Ih>a log+ hdµ

≤ C q−1H(ν, µ) .

We have thus obtained

W 2
2 (ν, µ) ≤ C

(
(q log(1/H(ν, µ)))1−α + 1/q

)
H(ν, µ) ,

so that optimizing in q (q2−α = 1/((1 − α) log1−α(1/H)) so that a is big for small entropy
H) we complete the proof of Corollary 1.12. �

Remark 3.9. It is worthwhile noticing that Nτ (h 1Ih>a) behaves like

H(ν, µ)
log(1/H(ν, µ))

log a

for small entropies. This is why some extra logarithm appears in Corollary 1.12.

Also notice that a similar result can be directly obtained using the WL transportation in-
equality in [4], when α = 0 i.e. when Poincaré holds. We briefly indicate how to do below
(some of the bounds are clearly non sharp).
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Indeed taking an optimal coupling Π (or an almost optimal coupling, and then taking limits)
for the L cost introduced in [4] section 5.2 (recall that L is, up to constants, the square of
the distance for small distances and the distance for large ones), it is immediate that

W 2
2 (ν, µ) ≤ C

√
log(1/H)

∫
1Id2(x,x0)≤q log(1/H) 1Id2(y,x0)≤q log(1/H) L(x, y) dΠ

+

∫
(1Id2(x,x0)≥q log(1/H) + 1Id2(y,x0)≥q log(1/H)) d

2(x, y) dΠ

≤ C
√

log(1/H)WL + 2

∫
1Id2(x,x0)≥q log(1/H) (d2(x, x0) + C ′) (dν + dµ) ,

where C ′ =
∫
d2(x, x0) (dµ+ dν) . Hence if Poincaré holds, according to [4] the first term in

the right hand side is less than C H
√

log(1/H). For the second term first write∫
ed2 ≥ 1/Hq

d2(x, x0) dµ ≤
(∫

d4 dµ

) 1
2 (
µ(d2 ≥ q log(1/H))

) 1
2

≤ C

(∫
d4 dµ

) 1
2

Hqη / 2

where η is the constant of the gaussian concentration of µ, namely for which EIη(2) holds.
It is now enough to choose q large enough for this term to be less than C H. It remains to
study ∫

ed2 ≥ 1/Hq

d2(x, x0) dν .

First remark that we can also assume that h > K, for K large enough, in this integral, since
on the complement set h ≤ K we may use the previous inequality.

But according to Young’s inequality

d2(x, x0)h(x) ≤ (1/ε)
(
h(x) log(h(x)) + eε d

2(x,x0)
)
,

so that the previous quantity can be controlled by∫
h>K

h log h dµ ,

and ∫
ed2 ≥ 1/Hq

eε d
2(x,x0) dµ .

Choosing ε small enough, and using EIε(2) we may argue as before (replacing d4 by e2 ε d
2
) to

bound the latter term by (constant times) H again, while for the former we can use Lemma
3.4 (1).

This remark shows that the optimal coupling (if it exists) for WL achieves (up to the con-
stants) the bound we obtained in Corollary 1.12. One can thus think that this bound is not
optimal.
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4. Towards a criterion for Talagrand inequality.

For simplicity for now on we assume that E = Rn.

First recall (2.1)

A =
d+

dt
(−W2(νt, µ)) ≤ lim sup

s→0+

1

s
W2(νt, νt+s)

≤ 2

(∫
|∇
√
Pth|2 dµ

) 1
2

=

(
− d

dt
H(νt, µ)

) 1
2

.

Hence using the restricted log-Sobolev inequality given by Theorem 1.13 (3) for bounded
functions we should directly recover the modified transportation inequality in Theorem 1.11
for α = 0 (up to the constants). More generally the proof of Theorem 1.11 works for any Pt
stable subset of functions for which a (restricted) logarithmic Sobolev inequality holds.

Since truncating by constants is not sufficient (in view of the preceding section), we shall
first explain what kind of truncation is useful.

4.1. A first reduction.

Lemma 4.1. If

W2

(
ν + µ

2
, µ

)
≤

√
C H

(
ν + µ

2
, µ

)
then

W2(ν, µ) ≤
√
C√

2− 1

√
H(ν, µ) .

Proof. Since W2 is a distance

W2(ν, µ) ≤ W2(
ν + µ

2
, µ) + W2(

ν + µ

2
, ν) .

But W 2
2 is convex in each argument, hence

W2(
ν + µ

2
, ν) ≤

√
1/2W2(ν, µ) ,

hence

W2(ν, µ) ≤
√

2√
2− 1

W2(
ν + µ

2
, µ) .

In addition since relative entropy is also convex, H(ν+µ2 , µ) ≤ 1
2 H(ν, µ) and we get the

result. �

The meaning of this Lemma is clear: it is enough to show T2 for densities h such that

(4.2) for all x , h(x) ≥ 1

2
.

Note that this set is Pt stable.

More useful is the following
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Lemma 4.3. Let γη(x) = eη d
2(x,x0) for some nonnegative η, and define

dνKγη = hKγη dµ = z−1 min (h , Kγη) dµ ,

where z is a normalizing constant, assuming that K ≥ e2.

Assume that EIε(2)is satisfied.

If for some η < ε ,

W2(ν
K
γη , µ) ≤

√
C H(νKγη , µ)

then provided H(ν, µ) ≤ 1/2 it holds

W2(ν, µ) ≤
√
C(η,K,C)H(ν, µ) .

Proof. Note that 1 ≥ z ≥ ν(h ≤ K). So on one hand

H(νKγη , µ) = z−1H(ν, µ) − z−1 log(z)(4.4)

−z−1
∫
h≥Kγη

(h−Kγη) log(h/z) dµ + z−1
∫
h≥Kγη

Kγη log(Kγη/h) dµ

≤ z−1H(ν, µ) − z−1 log(z)

≤ C(1 +
2

logK − 1
)H(ν, µ) ,

as soon as H(ν, µ) ≤ 1/2. Hence

H(νKγη , µ) ≤ C(K)H(ν, µ) .

On the other hand, (3.7) with ν ′ = νKγη furnishes

(4.5) W 2
2 (νKγη , ν) ≤ 2

∫
d2(x, x0) |h − hKγη | dµ .

and thus we get

W 2
2 (νKγη , ν) ≤ 2 (z−1 − 1)

∫
h≤Kγη

d2 h dµ + 2

∫
h>Kγη

d2 |1− z−1Kγη
h
|h dµ(4.6)

≤ 2
ν(h > K)

ν(h ≤ K)

∫
d2 h dµ +

4

ν(h ≤ K)

∫
h>Kγη

1

η
log(h/K)h dµ

≤ M(K, η)H(ν, µ) ,

where we used Lemma 3.4 and the smallness of H(ν, µ) (in particular Nτ (h) is bounded,
hence

∫
d2 h dµ is bounded by some constant only depending of η).

Putting all this together, we thus have shown for H(ν, µ) ≤ 1/2

W2(ν, µ) ≤ W2(ν
K
γη , ν) + W2(ν

K
γη , µ)

≤
√
C(η,K,C)H(ν, µ) .

�

Once again this Lemma shows that we may assume that h ≤ Kγη for some η < ε. But
unfortunately this set does not seem to be Pt stable in general.

However it is included into the subset of densities h such that
∫
hq dµ ≤ M for some q > 1

and M < +∞. Hence as a consequence we obtain Corollary 1.15.
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Unfortunately we do not know whether the restricted log-Sobolev inequality stated in Corol-
lary 1.15 is strictly weaker than the (full) log-Sobolev inequality or not. Notice that the
method used in Remark 2.10 cannot be extended to the case q < +∞. Indeed in this case
one has to call upon Hölder inequality, thus introduce some power of the Dirichlet form.

4.2. Decay of entropy. In section 2 we bound the right hand side in (2.1) by some deriva-
tive, using Poincaré inequality, and then we integrated in time. One can also first integrate
in time and then use inequalities. The result presented here means that this methodology is
promised to failure, at least in the bounded curvature case.

Choose some weight function ξ such that
∫ +∞
0 ξ−1(t) dt = 1 . Integrating (2.1) with respect

to time yields (recall that W2(νt, µ) goes to 0 as t tends to infinity)

W2(ν, µ) ≤
∫ +∞

0

(
− d

dt
H(νt, µ)

) 1
2

dt(4.7)

=

∫ +∞

0

(
− ξ2(t) d

dt
H(νt, µ)

) 1
2

ξ−1(t) dt

≤
(∫ +∞

0
− ξ(t) d

dt
H(νt, µ) dt

) 1
2

,

where we have used Cauchy-Schwarz inequality for the probability measure ξ−1(t) dt to get
the latter inequality. Hence provided

ξ(t)H(νt, µ) goes to 0 as t goes to +∞ ,

we have obtained

(4.8) W 2
2 (ν, µ) ≤ ξ(0)H(ν, µ) +

∫ +∞

0
ξ′(t)H(νt, µ) dt ,

where the right hand side is finite provided the relative entropy goes to 0 quickly enough.

Remark 4.9. Note that if we choose ξ−1(t) = (1/T ) 1It≤T , the derivation in (4.7) furnishes

W2(ν, µ) ≤ T
1
2 (H(ν, µ) − H(νT , µ))

1
2 + W2(νT , µ) .

Hence a uniform decay of the Wasserstein distance implies T2.

But this result also shows that T2 holds as soon as it holds for the probability densities of
the form h = PT g for some T > 0.

The natural question is thus to know whether one can find other uniform decays than the
exponential one for relative entropy. Of course the exponential decay of the relative entropy

H(νt, µ) ≤ e−CtH(ν, µ)

is known to be equivalent to a logarithmic Sobolev inequality, in which case it is enough to
take ξ(t) = eθt with θ smaller than the inverse of the log-Sobolev constant.

More generally if for some s > 0 and some λ > 0 ,

H(νs, µ) ≤ e−λH(ν, µ)
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for all ν , using the semi group property and the fact that t → H(νt, µ) is non increasing, it
is easy to see that

H(νt, µ) ≤ e−(
t
s
− 1)λH(ν, µ)

for all t > s, hence the relative entropy is exponentially decaying, but there is some constant
eλ in front of the e−Ct. This kind of exponential decay is no more immediately equivalent to
a log-Sobolev inequality, and we may ask whether it is strictly weaker or not.

Unfortunately the following Lemma shows that in many cases both are equivalent

Lemma 4.10. Assume that the potential V satisfies the curvature condition Hess(V ) ≥
RId for some R ∈ R. Then if for some s > 0 and some λ > 0 ,

H(νs, µ) ≤ e−λH(ν, µ)

for all ν, µ satisfies a logarithmic Sobolev inequality.

Proof. Recall the classical commutation properties (see [1] Thm 5.4.7 and Remark 5.4.8)

(4.11) Pt(h log h) − Pth log(Pth) ≤ 1− e−Rt

2R
Pt

(
|∇h|2

h

)
,

(just being careful since the semi-group therein is our P2t) the constants being t/2 for R = 0.
Integrating the right hand inequality with respect to µ we obtain for h a density of probability
and ν = hµ (see also [4, Eq. (4.4)],

H(ν, µ) ≤ H(νt, µ) +
1− e−Rt

2R

∫
|∇h|2

h
dµ .

Applying this at time s we finally obtain

H(ν, µ) ≤ 1− e−Rs

2R(1− e−λ)

∫
|∇h|2

h
dµ .

�

A similar result is true for the Spectral Gap Inequality, without any restriction according to
the well known robust inequality

V arµ(g) ≤ t

∫
|∇g|2 dµ + V arµ(Ptg) .

4.3. A natural Pt almost stable subset. The preceding subsection has shown that there
is no hope to get some uniform decay of relative entropy without log-Sobolev. Hence we really
have to find an appropriate Pt stable subset for which a restricted log-Sobolev inequality is
available. As we saw in subsection 4.1 the natural one is the subset of densities smaller than
constant times some gaussian density, but these sets do not seem to be Pt stable. Fortunately
we can combine the ideas of both previous subsections in order to build an appropriate almost
Pt stable subset. The result is the following

Lemma 4.12. Assume that the potential V satisfies the curvature condition Hess(V ) ≥
RId for some R ≤ 0 and that EIε(2) is satisfied. Then if h ≤ Kγη for η < ε/2 , Pth ≤
M(K,R) γβ with β = (2η R)/(ε(eRt − 1)).

In particular for any θ > 0 there exist T > 0 and η > 0 such that for all t ≥ T , Pth ≤ M γθ.
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Proof. Recall the beautiful Harnack-Wang inequality (see [24], and [25] (2.1)),

(4.13) |Pth(x)| ≤ (Pt(|h|q))
1
q (y) exp

(
Rd2(x, y)

2(q − 1)(eRt − 1)

)
,

that holds for any (x, y), any q > 1 and any continuous and bounded h. Again we shall
integrate with respect to µ(dy), use the elementary d2(x, y) ≤ 2d2(x, x0) + 2d2(x0, y) and
apply Cauchy-Schwarz in order to get

(4.14) |Pth(x)| ≤ M exp

(
Rd2(x0, x)

(q − 1)(eRt − 1)

)
,

with

M =

(∫
(Pt(|h|q))

2
q (y)µ(dy)

) 1
2
(∫

exp

(
2Rd2(x0, y)

(q − 1)(eRt − 1)

)
µ(dy)

) 1
2

.

(4.14) is interesting provided M is finite, i.e provided

(4.15) q > 2 ,
2R

(q − 1)(eRt − 1)
≤ ε and h ∈ Lq ,

since u2/q ≤ 1 + u for a nonnegative u if q > 2. Note that in this case∫
(Pt(|h|q))

2
q (y)µ(dy) ≤ K2(1 +

∫
|h/K|q dµ)

≤ K2 (1 +

∫
eη q d

2
dµ) ,

so that for η < ε the latter does not depend on η but only depends on R and ε.

Hence if h ≤ Kγη for η < ε/2, we may take q = ε/η and obtain that Pth ≤ M(K,R) γβ
with β = (2η R)/(ε(eRt − 1)) . �

How we shall use this result is now clear. According to Lemma 4.3 we may assume that
h ≤ K γη with η as small as we want, in order to ensure that Pth ≤ M γθ for θ small
enough, and all t large enough. But thanks to Remark 4.9 it is enough to consider such
densities and the required Ps stability is now ensured. So we have shown Corollary 1.16 at
least with the additional curvature assumption.

It should be very interesting to know whether the statement of Lemma 4.12 is still true
without the curvature assumption or not. This would complete the picture of what can be
done using Otto and Villani coupling.

4.4. The infimum convolution approach. Let us as an introduction of this method
present a refinement of Lemma 4.3. Actually one can obtain a more precise result if in-
stead of Villani’s coupling used in (3.7) one uses the inf-convolution method in [4].

Indeed recall that

W 2
2 (ν, µ) = sup

(∫
g dν −

∫
f dµ

)
where the supremum is running over all pairs (f, g) of measurable and bounded functions
satisfying g(x) ≤ f(y) + d2(x, y) for all (x, y). Adding a constant to both f and g we may
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assume that
∫
f dµ = 0. Denote by

Qf(x) = inf
y∈E

(
f(y) + d2(x, y)

)
,

the function achieving the optimal choice. Integrating with respect to µ it holds

Qf(x) ≤
∫

d2(x, y)µ(dy) ≤ 2d2(x, x0) + 2

∫
d2(y, x0)µ(dy) ,

i.e Qf(x) ≤ 2d2(x, x0) + C(x0) .

Recall that by (see [4]), the condition
∫
eηQf dµ ≤ 1 is equivalent to T2. Remark now that for

2η < ε the density h = eηQf/
∫
eηQfdµ is such that either

∫
eηQf dµ ≥ 1 and h ≤ eηC(x0)γ2η

or
∫
eηQf dµ ≤ 1. We may thus focus on the first condition.

If βW 2
2 (ν, µ) ≤ H(ν, µ) for all ν such that dν/dµ ≤ K γθ, then for 2η < θ and such that

eηC(x0) ≤ K , ν = hµ satisfies the previous condition so that

β

∫
Qf dν ≤ H(ν, µ) .

If in addition η < β we may replace β by η in the left hand side of the previous inequality
(even if this left hand side is nonpositive, since the right hand side is nonnegative), and thus
obtain

(

∫
eηQf dµ) log

(∫
eηQf dµ

)
≤ 0

i.e
∫
eηQf dµ ≤ 1 for all f , which leads then to a refined version of Lemma 4.3.

We may now go further in this infimum convolution approach and mimic arguments of [4, Sec.
3.3]. This approach based on Herbst argument is apparently not well suited for restricted
logarithmic Sobolev inequalities. Indeed it requires the use of non normalized functions for
which the hypothesis in Corollary 1.16 reads as

(4.16) f2 ≤ (

∫
f2dµ)K eη̃ d

2(x,x0) .

However, and surprisingly enough, a very slight improvement of the argument yields the
result. Before starting the proof, remark that we have used a slightly different form for the
definition of the infconvolution than in [4], but all calculus presented in there work is only
modified by constants.

Proof. of Theorem 1.17. In fact the theorem will be established under some more general
hypothesis, namely we do not need that the restricted logarithmic Sobolev inequality be ver-
ified for all the functions satisfying (1.18) but only a subclass. It is however more convenient
to write the theorem with this larger class and easier to derive conditions on the real line for
such a restricted logarithmic Sobolev inequality.

Remember that Qf(x) ≤ 2d2(x, x0) + C(x0) for all f such that
∫
f dµ = 0. For 2η ≤ ε and

all λ introduce f2λ = eη Q(λf) and G(λ) =
∫
f2λ dµ. Then either G(λ) ≤ 1 or G(λ) > 1 and in

this case f2λ satisfies (4.16) (for some well choosen η̃ depending on η and λ) .

Assume that G(1) > 1 and introduce

λ0 = inf {λ ∈ [0, 1] , G(u) > 1 for all u ≥ λ} .
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Then λ0 < 1 , G(λ0) = 1 (remark that G(0) = 1) and G(λ) > 1 on ]λ0, 1]. Hence the
restricted log-Sobolev holds for all λ ∈]λ0, 1]. An easy computation using the Hamilton
Jacobi semigroup described in [4] (see Section 2.1 formula 2.6 and 3.3 first formula p.380)
yields

λG′(λ) =

∫
f2λ log f2λmu −

4

η

∫
|∇fλ|2 dµ .

We may always assume that C η ≤ 4 (decreasing η if necessary), so that the latter yields

(4.17) λG′(λ) ≤ G(λ) logG(λ)

on ]λ0, 1]. This differential inequality can be rewritten

d

dλ

(
logG(λ)

λ

)
≤ 0 ,

so that logG(λ) / λ is non increasing, hence

λ0 logG(1) ≤ logG(λ0) = 0 .

If λ0 > 0, we get G(1) ≤ 1 in contradiction with our assumption G(1) > 1. If λ0 = 0,

limλ→0
logG(λ)

λ = G′(0)
G(0) = η

∫
fdµ = 0 and the same conclusion holds.

Hence G(1) ≤ 1 for all f as above, which is known to be equivalent to T2. �

5. The case of the real line.

As for many functional inequalities the one dimensional case is much simpler thanks to
Hardy inequalities. We thus consider a Probability measure µ on the real line such that∫
eεx

2
dµ < +∞ and denote by v the second moment v =

∫
x2dµ. We also denote by M

the quantity M = e2v. In the sequel η will be a positive number smaller than 1∧ ε/2 so that

e2ηv ≤M . Recall that µ(dx) = e−V (x)dx.

Let h be such that
∫
hdµ = 1 and h ≤ M eηx

2
. Define ν = hµ. For K large enough to be

chosen later, we get∫
h log h dµ =

∫
h≤K

h log h dµ +

∫
h>K

h log h dµ(5.1)

≤
∫
h≤K

(h ∧K) log(h ∧K) dµ +

∫
h>K

h (logM + ηx2) dµ

≤
∫

(h ∧K) log(h ∧K) dµ + logM ν(h > K) +

∫
ψ2(
√
h)x2 dµ

where ψ(u) = 0 if 0 ≤ u ≤
√
K/2, ψ(u) = (

√
2/
√

2 − 1)(u −
√
K/2) if

√
K/2 ≤ u ≤

√
K

and ψ(u) = u if u ≥
√
K. If we choose K > 2M then ψ(

√
h)(0) = 0.

We shall now bound the three terms in the right hand side of (5.1). To this end we first
remark that

H(ν, µ) ≤
∫

M eηx
2

(logM + ηx2) dµ = C(η, µ) < +∞ .
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Hence, according to Lemma 3.4 (2), as soon as K > e,

ν(h > K) ≤ 1

logK − 1
H(ν, µ) ≤ 1

logK − 1
C(η, µ) .

It follows that logM ν(h > K) ≤ 1/2H(ν, µ) as soon as 2 logM ≤ logK − 1. Furthermore

1 ≥ zK =

∫
(h ∧K)dµ ≥ 1 − C(η,M)

logK − 1

so that for logK − 1 ≥ 2C(η,M), zK ≥ 1/2. Thus∫
(h ∧K) log(h ∧K) dµ ≤

∫
(h ∧K) log

(
h ∧K
zK

)
dµ

and h ∧K ≤ 2KzK . Hence if Poincaré holds, we may apply (2.9) and get

(5.2)

∫
(h ∧K) log(h ∧K) dµ ≤ CP (2 log 2 + (1/2) log(2K))

∫
(h′)2

h
dµ .

Plugging these two estimates into (5.1) we arrive at

(5.3) (1/2)H(ν, µ) ≤ C(CP ,K, µ)

∫
(h′)2

h
dµ + η

∫
ψ2(
√
h)x2 dµ .

In order to obtain the desired restricted logarithmic Sobolev inequality, it remains to bound
the second term in the right hand side of (5.3). To this end we shall use Hardy’s inequality
on the positive and on the negative half line. We only write things on the positive half line.
Since ψ(

√
h)(0) = 0, Hardy’s inequality (see e.g. [1] Theorem 6.2.1) gives

(5.4)

∫ ∞
0

ψ2(
√
h)x2 dµ ≤ A+

∫ ∞
0

(ψ′)2(
√
h)

(h′)2

h
dµ ,

where

A+ = sup
x≥0

(∫ ∞
x

t2 e−V (t) dt

∫ x

0
eV (t) dt

)
.

Since ψ′ is bounded we have obtained

Proposition 5.5. Let E = R, dµ = e−V dx. Assume that EIε(2) is satisfied. Then the
restricted logarithmic Sobolev inequality in Theorem 1.17 holds as soon as

A+ = sup
x≥0

(∫ ∞
x

t2 e−V (t) dt

∫ x

0
eV (t) dt

)
and

A− = sup
x≤0

(∫ x

−∞
t2 e−V (t) dt

∫ 0

x
eV (t) dt

)
are finite. Hence in this case µ satisfies T2.

Note first that the boundedness of A+ and A− are sufficient for the Poincare inequality to
hold (see e.g. [1] chapter 6, also see [9] for d-dimensional general results).

It remains to find sufficient conditions for all these hypotheses to hold. Here we shall follow
section 6.4 in [1] to describe some understandable sufficient conditions. To this end we shall
assume that

(5.6) lim inf
∞

V ′(x) > 0 and V ′′(x)/(V ′(x))2 → 0 when x goes to ∞ .
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Note that V − 2 log |x| also fulfills (5.6). In this case it is known that µ satisfies Poincaré
inequality (see Theorem 6.4.3 (1) in [1]). Furthermore A+ is finite as soon as

(5.7) lim sup
∞

x2/(V ′(x))2 < +∞ ,

thanks to the estimates in Corollaire 6.4.2 in [1].

Note in addition that a logarithmic Sobolev inequality holds if in only if we have (in addition
to (5.6))

(5.8) lim sup
∞

V (x)/(V ′(x))2 < +∞ .

In particular if V (x) ≤ αx2 at infinity, (5.7) implies (5.8). According to Wang’s argument,
under the curvature assumption, if V (x) ≥ αxp at infinity for some p > 2 then µ satisfies
a log-Sobolev inequality too. Hence it is not easy with our rough estimate in Proposition
5.5 to build an example of measure with bounded below curvature, satisfying T2 but not the
log-Sobolev inequality. If we relax the curvature assumption then the construction is simpler.

Example 5.9. We only describe the behavior of V near +∞. Thus choose

V (x) = x3 + 3x2 sin2 x + xβ .

then
V ′(x) = 3x2(1 + sin 2x) + 6x sin2 x + β xβ−1 ,

and
V ′′(x) = 6x2 cos 2x + 6x(1 + 2 sin 2x) + 6 sin2 x + β(β − 1)xβ−2 ,

so that (5.6) and (5.7) are satisfied as soon as β > 2, but (5.8) is not satisfied if β < 5/2.

This furnishes an example of a measure satisfying T2 but not the log-Sobolev inequality.
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inégalités de Sobolev logarithmiques., volume 10 of Panoramas et Synthèses. S.M.F., Paris, 2000.
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