
QUARTERLY OF APPLIED MATHEMATICS 225

OCTOBER, 1975

ON QUADRATURE FORMULAS FOR SINGULAR INTEGRAL EQUATIONS OF
THE FIRST AND THE SECOND KIND*

By

STEEN KRENK

Technical University of Denmark

Abstract. In this paper it is shown that by proper choice of the collocation points

singular integral equations of the first and the second kind can be integrated by use of the

usual Gauss-Jacobi quadrature formula. Detailed formulas are given for various values of

the index.

1. Introduction. A large number of mixed boundary-value problems can be reduced

to the problem of solving a system of singular integral equations of the form

b f1 rlf R f1
arti(x) + — / 0,(0 ——; + X) / 0^.(0 dt = g,Or),

7T J — i L ju j = i J _ i

-1 < x < 1, i = 1, • • • , R. (1.1)

In (1.1) the a,s and b{s are real constants, and the kernels fc,-,(x, t) are bounded in the

closed domain — 1 < (x, t) < 1. The <7,s are known functions and the functions <£, are the

unknowns of the problem. At the endpoints x = ± 1 the 4>is or their first derivatives have

integrable singularities.

A general closed-form solution to (1.1) is not known, but in [1] and [2] numerical

methods are outlined. By applying the method given in [2] and [3] a group of fundamental

functions which characterize the singular behavior of <f>i is found to be

w,(x) = (1 - + xf, (1.2)

= 2Vi log (a, + it) + Nl ' (1 3)

- ~h ^ (iTri)+ M> ■
Mj and Nj, j = 1, 2, • • • , R are integers and for each of the R equations in (1.1) the index

is defined as

Kj = — (a,- + 0,-) = — (Nj + Mj) j = 1, • ■ • , R. (1.4)

In order to get integrable singularities k must be restricted to —1, 0, 1.
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To obtain a solution by numerical means the following expansions are used:

= fi(x)Wi( x), (1.5)

/,(*)= X(1.6)
7=0

In (1.6) P(x) is the Jacobi polynomial of degree j with indices a and /3. In [2] the

expansion (1.6) is used in connection with the orthogonality properties of the Jacobi

polynomials. An infinite system of equations results, and by truncation an approximate

solution is obtained. For = 0, i — 1, • • • , R, an alternative method is available. In

[1] and [2] it is proved that for this special case quadrature formulas of Gauss-Chebyshev

type exist for the singular integral. This means that for proper selection of x all integrals

can be evaluated by the usual quadrature formulas for continuous bounded functions.

In this paper the latter method is extended to the general case, and it is demonstrated

how one obtains the formulas from [1] and [2] as special cases. Only a single equation is

considered, as the extension to a system of equations of the form (1.1) is trivial.

2. A quadrature formula. As a basis for the calculations the following result from

[2] and [4] is used:

aw(.x)P,la-0\x) +- f w^P^^it) = —2~" r(a)F(1 ~ a) bPj^-'-^ix),
7T J-1 t — X 7T

-1 < x < 1. (2.1)

It is noted that, while the two terms on the left-hand side of (2.1) are both singular, their

sum is regular. From the Jacobi polynomials another type of polynomials is formed in the

following way:

Qn.^^ix) = Pn^""-'\x)P,{a^\x) - Pn'a^\x)Pi.:-a^){x). (2.2)

Provided (x) is of degree equal to or less than n, the following expansion is

possible:

Pn.K(-a-")(x)Pi(a'")(x) - Pnia-"){x)Pi^-a-"\x) _ c- /o ON

Pnla^\x) h. ti - X

where t, is determined by

Pn{a'*\t,) = 0, »=1, 2, ■■■,». (2.4)

In the next section it is proved that is of degree n — j — 1 for k = —1 0, 1

and n > j. The expansion coefficients c; are then determined by

pn-K(-a--"\t,)p;a's\t,)

Ci = (2.5)
pJ'^Xu)

By choosing xk as

P„J-a'~"\xh) =0, k = 1, 2, • • • , n - «, (2.6)

(2.3) and (2.5) yield

w h p,(" ■"'«,) u-x„
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Now (2.7) is used to evaluate the expression

SM-!♦(*) + !/_>«) ^ (2.8)

where

4>(z) = j(x)w{x). (2.9)

and /(a;) is approximated by a truncated series of the form (1.6)

]{x) = (2.10)
J =0

Using (2.9), (2.10), (2.1) and (2.7), we obtain

S(xk) = -2- r(a)r(1 ~ a)
IT j= o

_ r(a)r(l - a) -y f, PnJ-a'-B\U) BjP

h h p„<«-»u) u - Xk

r(«)r(i - «) f, Ku) (n .
"2 - h Pja,fiy(ti) U-xJ (-U)

Two points require notice in (2.11). First: the only approximation involved is the trunca-

tion of the series (2.10). Second: it is necessary to use p < n, which is equivalent to using

j < n for all j.

In (2.11) S(xk) is calculated by a procedure analogous to mechanical quadrature of an

integral, but it must be kept in mind that S(xh) consists of an integral plus a nonintegral

term.

(2.11) is of the form

s(xh) ~ tw" -rz1- (2-12)
t = l £»■ %k

with the weights given by

„ r(«)r(i - a) P..,'" "■-"((<) fo r,s

Win will be put in standard form in Sec. 4.

3. The polynomials Qn,i{a'B\x). The polynomials Qn,j(a ,B\x) are defined by (2.2)

Qn.^^ix) = PnJ~"-"\x)Pila^(x) - Pn{a^(x)PiJ-a-'m(x). (3.1)

For n = j (3.1) yields

Q,.,(-«(x) = 0. (3.2)

The properties of Q„,,<a fl>>(x) are established by use of the recurrence relation for the

Jacobi polynomials [5].

o,1.(o-'>P.+1<-'"(x) = [a2,J"'B) + xa3 .S-'W'ix)

- a4.„("'*)P„_1(t"<,,(z), n > 0,

a
(a./J)

1 ,n = 2(ft + l)(ft + a + + l)(2n + a + fi),
(3.3)
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0-2, — (2n + a + /3 + l)(a2 — (32),

az.n"'^ = (2 n + a + P)(2n + a + /3 + l)(2n + a + /3 + 2),

ffl4,»(a,P> = 2(n + a)(n + $)(2n + a + /3 + 2).

From (3.3) the following relations are obtained:

at.n-.1--1" = a„nia^, i = 1, 2, 3, 4. (3.4)

By using (3.4) in (3.1) a recurrence relation for Qn,/"'"'(x) is established:

ai,na'^Qn+i,iia'l>)(x) = [a2,:a^ + xas^'-^Q^'^ix) - a^'^Q^'^ix). (3.5)

For n = j (3.5) yields

al.iu-",Qi+1,ila'ff\x) = -o4..<ai')QJ-_ll,(-,,(x) = at.%l-'"Qi.i-1l"n(x). (3.6)

By continued use of (3.6) formulas for Qn-i,/"(x) are obtained. For k = —1, 0, 1 these

have the common form

n — r(j + 1 + «)r(j + 1 + ft) 2j + a + ft + 2 . .
Vi+I"' w r(i + a + ft + 2)0" + 1)! r(a)r(i - «) '

From (3.2), (3.7) and the recurrence relation (3.5) it follows by induction that Q„. (x)

is a polynomial of degree n — j — 1 for k = — 1, 0, 1 and n > j.

4. The weights W,n. The weights W" are given by (2.13). By using (3.1)

P„_,<_ais eliminated:

D <-<*.-0)/, \ _ Qn.i (U) (A IN

( i) ' *»/"■»(*,) ( j

Two values of i are of practical interest. For j = n — 1 (4.1) and (2.13) yield

TIT- n   ^ 2 (a+0) 1^(^ "1" Q^) r"1" /-Q 2/1 ~t~ o: ~f~ 0  , . (p..

_ 7T " n! r(n + a + ft + 1) P„("^)'(<,.)P„_1<a^,(<i) '

while j = n + 1 leads to the laternative formula

w " _ __i 9(0+0) r(w + 1 + a)T(n -j- 1 -H /3) 2n a P -{- 2 _ ,.

*' f" (n + 1)! r(n + a + ft + 2) Pja^\ti)Pn+1ia^(ti)'

It is noted that (4.2) and (4.3), with the exception of the factor 1/v, are the Gauss-

Jacobi weights for integration of continuous bounded functions [2, 6],

For a = 0 (1.3) yields a = =L§ and ft = ±§. When this is the case the quadrature

formulas may be obtained solel}' by means of trigonometric formulas and explicit

expressions for t, and xk are obtained. These special formulas are given in [1] and [2],

5. Solution of a singular integral equation. The following singular integral equation

is considered:

h r1 dt f1
a<f>(x) + - / 4>{t) - + / k{x, t)4>(t) dt = g(x), —l<x<l, (5.1)

7T J-i t — X J-j

4>{x) = f(x)(l -*)"(!+ xY. (5.2)
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5.1 The case of k = 1. For this case a < 0 and /3 < 0. The problem consists of (5.1)

and a condition of the form

f\ dt = C. (5.3)

By use of (2.12) and the normal Gauss-Jacobi quadrature formula [6], the following

system of equations is obtained:

Wi7(*i)| ~—-— + 7T k(xt , ti) = g(xk), k = 1,2, ••• , n — 1,
i-l Lw %k

t, Wt'KU) = C/tw,
(5.4)

Pj'-'W = 0, i= 1,2,

Pn-ii~a'~f>)(xk) = 0, k = 1, 2, ••• ,n - 1.

(5.4) provides n linear algebraic equations to determine /(£,), i = 1,2, • ■ ■ ,n.

5.2 The case of k = 0. For this case a = — /3. Here (2.12) provides n equations:

Z wrm + irlc(xk , ti)
.ti ~ xk

Pnia-'\U) = 0, i= 1,2, •••,«,

Pj-a^\xk) = 0, /c = 1, 2, ••• ,n.

= gfe), k = 1,2, • • ■ , n,

(5.5)

5.3 T/ie case of k = —1. For this case « > 0 and /3 > 0. The solution must satisfy

(5.1) and a consistency condition [3]

T  ^ > cfe = 0, (5.6)
J-i (1 — x)a(l + x)

where S(x) is given by (2.8). By use of (2.1) the consistency condition is written as

£ B, f Pi+ll—~$\x)(l - ®)-°(l + x)~' dx = 0, (5.7)
,=o J-l

which is an identity. Use of (2.12) then yields n + 1 equations:

k + Tvk(xk , ti) = gM,
Ji — Xk

P«a-i>\U) = 0, i=l,2, ••■,», (5.8)

Pn+1(-a ~m(xk) = 0, /c = 1, 2, ••• ,n + 1.

To solve (5.8) it is sufficient to choose only n of the n + 1 possible collocation points. This

is consistent with the fact that in actual applications the extra equation is used to

normalize the interval of integration.

6. Convergence of the method. For simplicity we consider the case of k = 0.

The other cases may be treated in a similar way. First we construct an integral equation

satisfied by the interpolation polynomial fix). The determination of f(x) is discussed in
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[7]. We define

$(x) = f(x)w(x), (6.1)

%, t) = "f g ki,iPil-'--'\x)Pil"''\t), (6.2)
= 0 j = 0

n— 1

g(x) = Z (6.3)
i =0

where the coefficients kiti and g4 are determined by

k(xi , t,) = k(xi , t,), i, j = 1, • • • , n. (6.4)

g{Xi) = g(Xi), i = 1, • ■ • , n. (6.5)

By using (2.12) and the standard Gauss-Jacobi quadrature formula [5], both of which are

now exact, we obtain the integral equation

b rl (It r'
a$(x) + - / $(t)   ; + / k(x, t)$(t) clt = g(x), —1 < x < 1. (6.6)

7T J— i t X J — i

We form the difference between (5.1) and (6.6):

ae(x) + - f i(t) —— h f k(x, t)e(t) dt = 8(x), — 1 < x < 1, (6.7)
■K J-i t — X J-i

where the error is defined by

t(x) = 4>{x) — ${x) (6.8)

and the right-hand side is given by

S(x) = g(x) - g(x) - J^ [k(x, t) - i(x, t)\0(t)dt. (6.9)

From (6.7) we see that if the integral equation (5.1) has a unique solution j(x), then the

approximate solution f(x) converges uniformly to j(x), if S(x) converges uniformly to

zero.

Actual error estimates may be obtained by regularizing (5.1) and (6.6) and then

applying techniques described in [8]. Here the regularization will be shown. We consider

the singular integral equation

cuf)(x) + - f 4>(t) ^ = h(x), —l<x<l, (6.10)
7T J-i t — X

and define the integral operator

Kxh(x) = a - - f —— , -1 < x < 1. (6.11)
W(X) 7T ./_i W(t) t — X

It is noted that if h(x) is regular so is KJiix). The solution /(.-r) to (6.10) may be evaluated

by methods described in [2] and [3]. The result is

(a2 + b2)j(x) = KJi{x), -1 < x < 1. (6.12)
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By using

h(x) = g(x) — [ k(x, t)<t>(t) dt (6.13)

we obtain a Fredholm equation for the determination of j(x):

(<a + b*)j(x) + J n{x, t)j(t) dt = Krg(x),

n(x, t) = w(t)Kxk(x, t), — 1 < x < 1.

The transformation of (6.6) yields a similar equation with degenerate kernel:

(a2 + b2)f(x) + J n(x, t)f(t) dt = Kxg{x),

n{x, t) = w(t)Kxk(x, t), —1 < x < 1.

(6.14)

(6.15)

The evaluation of Kxk(x, t) and Kxq(x) is easily performed by use of (2.1), where (a, (3)

must be exchanged with ( — a, — /3). Error estimation for equations of the type (6.14) and

(6.15) is described in detail in [8], chapter II.

7. Example. Consider the singular integral equation

ap(x) — - f p(t) —c^— = 0, — 1 < x < 1, (7.1)
7r J-i t — X

which is solved under the condition

J' p(t) dt = P. (7.2)

Eqs. (7.1) and (7.2) represent the plane elasticity problem consisting of a plane rigid

stamp with sharp corners at x = ±1 sliding slowly in the negative x-direction on the

surface of an elastic halfspace with a constant coefficient of friction 77. pit) is the normal

pressure, and a is given by

a = ^ ^ — 7] for plane strain,
21~v (7.3)

= 7   ri for plane stress.
4 — v

v is Poisson's ratio [2],

In this problem the contact stress has integrable singularities at x = — 1. a and are

then determined by

a = — 1 + - arctan - /3 = — -arctan-- (7.4)
ir a tv a

The solution is readily found to be

p{x) = ——sin (ira)(l — x)°(l + x)B. (7.5)
7r
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By means of the Fortran program described in [6] the constant factor in (7.5) was

calculated for a = —0.34, /3 = —0.66. For easy comparison P was put equal to —7r/sin

(ira). The results are given in Table I. The roots of the polynomials were determined

with accuracy 10~10. From the results it is clear that singular terms of the form here

treated can be calculated by use of the applied numerical routine.

TABLE I

Solution of (7.1) with a = —0.34, /3 = —0.66 and n = 20.

ti f(li) xk

0.99570161 1.0000000 0.98941625
0.96919398 1.0000000 0.95469739

0.91882847 1.0000000 0.89647074
0.84583484 1.0000000 0.81616593
0.75200941 1.0000000 0.71575974

0.63966222 1.0000000 0.59772435
0.51155956 1.0000000 0.46496613
0.37085573 1.0000000 0.32075402
0.22101530 1.0000000 0.16863897
0.06572782 1.0000000 0.01236655

-0.09118299 1.0000000 -0.14421527

- 0.24585350 1.0000000 - 0.29725094

-0.39447517 1.0000000 -0.44297222
-0.53338846 1.0000000 -0.57779094
-0.65917283 1,0000000 -0.69838740
-0.76873102 1.0000000 -0.80179206
- 0.85936525 1.0000000 - 0.88545862
-0.92884347 1.0000000 -0.94732641

-0.97545332 1.0000000 -0.98586879

-0.99802548 1.0000000
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