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ON QUADRUPLES OF PROJECTORS CONNECTED BY A LINEAR RELATION

K. A. Yusenko UDC 517.98

We describe the set of  γ ∈R   for which there exist quadruples of projectors  Pi   for a fixed col-

lection of numbers  αi ∈ +R ,  i = 1 4, ,  such that  α α α α γ1 1 2 2 3 3 4 4P P P P I+ + + = . 

1.  Introduction

Let  Mi  =  { }( ) ( ) ( )0 0 1= < < … <α α αi i
m
i

i
,  i  =  1, n ,  be given sets in  R+.  Collections of self-adjoint opera-

tors  A Ai i= ∗  with spectra  σ( )Ai   ⊂  Mi  and the sum divisible by a scalar operator were studied in many papers
(see, e.g., the references in [1]).  Considering these operators as representations of the generators of an involutive
algebra, we obtain the equivalent problem of the description of irreducible  ∗-representations of the algebra 

A M M Mn1 2, , , ;… γ   =  C a a a a R a a a a en i i i i n1 1 20… = = + +…+ =∗, ( ) , γ ,

where  Ri  is an annihilating polynomial of the corresponding generator  ai  .  This algebra is isomorphic to the al-
gebra generated by the collection of projectors 
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We can associate every algebra of this type with a graph  Γ  that has  n  branches meeting at a single vertex (the

root of the graph).  Each  i th branch of the graph contains  mi  vertices marked by numbers  αi
k( ),  k  =  1, mi .  We

associate the root of the graph with the number  γ  (for more details on the relationship between the problem con-

sidered and representations of graphs, see [2]).  The vector  χ  =  ( )( ) ( ) ( ) ( ), , ; ; , ,α α α α1
1 1 1

1
… … …m n m

n
n

  is called

the character of the algebra  
  
P M M Mn1 2, , , ;… γ .  The algebra  

 
P M M Mn1 2, , , ;… γ   is uniquely defined by its graph,

character  χ,  and number  γ .  In what follows, we denote it by  PΓ, ,χ γ .  It was shown in [3] that, independently

of  χ  and  γ,  the following assertions are true:

(i) the algebra  
  
PΓ, ,χ γ   is finite-dimensional if  Γ  is a Dynkin diagram of the type  Dn ,  E6 ,  E7 ,  or

E8 ; 

(ii)
  
PΓ, ,χ γ   is an infinite-dimensional algebra of polynomial growth if  Γ  is an extended Dynkin dia-

gram of the type  D̃4 ,  Ẽ6 ,  Ẽ7 ,  or  Ẽ8; 

(iii) for the other graphs, the algebra  
  
PΓ, ,χ γ   contains a free algebra with two self-adjoint generators. 
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In the investigation of  ∗-representations of these algebras, the following problems naturally arise: 

1a. Describe the set of pairs  ( χ ; γ )  for which the algebra  
 
PΓ, ,χ γ   has a  ∗-representation;  we denote

this set by  ΣΓ . 

1b. For every character  χ,  describe the set of  γ  for which the algebra  
  
PΓ, ,χ γ   has a  ∗-representation;

we denote this set by  ΣΓ,χ . 

2. For every pair  ( χ ; γ ) ∈ ΣΓ,  describe all irreducible (up to unitary equivalence)  ∗-representations of
the algebra  

  
PΓ, ,χ γ . 

The structure of the sets  ΣΓ   and  ΣΓ,χ   and  ∗-representations of  
 
PΓ, ,χ γ   essentially depends on the

graph.  In [4], problems 1 and 2 were considered for ordinary Dynkin diagrams.  In the case where  Γ  is an ex-
tended Dynkin diagram, several authors described the sets  ΣΓ,χ   for special characters (see the references in

[1]).  A complete description of the set  Σ
D̃4

  is given in [5].  However, despite the fact that the set  Σ ˜ ,D4 χ
  is a

subset of  Σ
D̃4

,  it is a difficult to obtain its description from the results of [5]. 

In the present paper, we give a direct description of the set  Σ ˜ ,D4 χ
.  We investigate in what cases this set is

infinite [a necessary and sufficient condition is given, namely, all components of the character  χ  =   ( ; ;α α1 2

α α3 4; )   must satisfy the inequality  αi  <  ( ) /α α α α1 2 3 4 2+ + +   (Sec. 3)],  which enables us, by analogy with

[5], to investigate in what cases the algebra  
  
P ˜ , ,D4 χ γ

  has a representation on the hyperplane  γ  =  (α α1 2+ +

α α3 4 2+ )/   (Sec. 3).  In Sec. 5, we describe the structure of the set  Σ ˜ ,D4 χ
  for the special character  χδ  =

( , , , )1 1 δ δ . 

1.  Auxiliary Statements

Recall that the set of possible values  γ   for which there exist triples of projectors  P1 , P2 , P3  such that

α α α1 1 2 2 3 3P P P+ +   =  γ I  for a fixed collection  αi ∈ R ,  i  =  1, 2, 3,  arranged in ascending order is described by

the relation (see [4]) 

ΣD4 1 2 3,( , , )α α α   =  

  
{ } , { , , } ( ){ / }0 1 2 3 21 2 3∪ ∪α α α αi

i J

J
∈
∑ ⊂

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ + . (1)

Assume that  α3  <  α1 + α2 .  Otherwise the set does not contain the point  (α1 +  α α2 3 2+ ) / . 

Proposition 1.  If a collection of projectors  P P Pn1 2, , ,…   satisfies the equality 

α α α1 1 2 2 1 1P P P Pn n n+ + … + +− −   =  I,

then the projector  Pn  commutes with the other projectors, i.e.,  [ , ]P Pn i   =  0,  i  =  1 1, n − . 
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Proof.  Consider the operator  Q I Pn= − .  Multiplying the equality  α1 1P  + α α2 2 1 1P Pn n+…+ − −   =   Q
by   Pn   from the right and from the left and taking into account that   Q Pn  =  Pn Q  =  0,  we get 

α α α1 1 2 2 3 1P P P P P P P P Pn n n n n n n+ + … + −   =  0.

Since all operators  P P Pn i n   are nonnegative, we have  P P Pn i n   =   0,  i  =  1 1, n − .  One can verify that
P PQP Pn i i n   =  0.  Therefore,  P PQn i   =  QP Pi n   =  0.  Taking into account that  P PQn i   =  P P I Pn i n( )−   =  P Pn i ,  we

get  P Pn i   =  0.  By analogy, one can show that  P Pi n   =  0.  This means that  [ , ]P Pn i   =  0,  i  =  1 1, n − . 

Corollary 1.  There exists a collection of projectors  Pi ,  i  =  1 4, ,  such that  α 1 P1 + α2 P2 + α3 P3 +

α4 P4  =  α4 I . 

2.  Quadruple of Projectors and Coxeter Functors

Let a collection of numbers  αi ∈  R ,  i  =  1 4, ,  be given.  Our aim is to describe the set of  γ   for which

there exist quadruples of projectors  Pi ,  i  =  1 4, ,  such that  α1 P1 + α2 P2 + α3 P3 + α4 P4  =  γ I . 

We can associate these quadruples of projectors with the associative  C-algebra  
 
P ˜ , ,D4 χ γ

  generated by the

generators  { }pi i=1
4   and the relations 

p p pi i i= = ∗2 ,

α α α α γ1 1 2 2 3 3 4 4p p p p e+ + + = ,

where  χ  =  ( α1 , α2 , α3 , α4 )  is the character of the algebra (we assume that  α α α α1 2 3 4≤ ≤ ≤ ).  Then the

problem can be reformulated as follows:  For every character, describe the set  Σ ˜ ,D4 χ
  of   γ   for which the alge-

bra  P ˜ , ,D4 χ γ
  has a  ∗-representation.  Let  χ i  denote the  i th component of the character  χ  and let  α  =  α1 +

α2 + α3 + α4 . 
The set  Σ ˜ ,D4 χ

  possesses the following properties (see [6]): 

(i) Σ ˜ ,
[ , ]

D4
0

χ
α⊂ ; 

(ii) Σ �D ii J4 ,χ α'
∈∑ ,    J ⊂ { , , , , }0 1 2 3 4 ; 

(iii) τ α τ
χ χ

∈ ⇔ − ∈Σ Σ˜ , ˜ ,D D4 4
. 

Since the set  Σ ˜ ,D4 χ
  is symmetric with respect to  α / 2  [property (iii)], we study the set  

 
Σ ˜ ,

[ ; )/D4
0 2

χ
α∩ .

To investigate the set  Σ ˜ ,D4 χ
,  we use the method of Coxeter functors (introduced in [6]), which establish an

equivalence between the categories of  ∗-representations  
 
Rep P ˜ , ,D4 χ γ

  for different values of the parameters  χ  

and  γ .  The linear  T  and hyperbolic  S  functors were constructed in [6].  The action of these functors between

the categories generates the action on the pair  ( χ ; γ ) : 
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  S : ( ; ) ( , , , ; )χ γ γ α γ α γ α γ α γ� − − − −1 2 3 4 ,

 T : ( ; ) ( , , , ; )χ γ α α α α α γ� 1 2 3 4 − .

Let  ( )( ) ( ); ( ) ( ; )χ γ χ γn n nST=   and  λ α γ= −/ 2 .  Then the following statement is true: 

Proposition 2.  The components of the character   χ( )n   and the number  γ ( )n   are determined by the for-
mulas 

χ α α λi
n

i n( ) ( )2 1

2
2 1− = − − − ,      χ α λi

n
i n( )2 2= − ,    i = 1 4, , (2)

γ α λ( ) ( )n n= − +
2

2 1 ,    n ∈N . (3)

To prove this proposition, it is necessary to write the action of the functor  ST  on the pair  ( χ ; γ )  and to use
the method of mathematical induction. 

Corollary 2.  For any  γ α∈[ , )/0 2 ,  there exists  n ∈N   such that either one of the components of the

character  χ( )n   or the number  γ ( )n   is less than or equal to zero. 

Proof.  Since  λ  >   0  for any  γ α∈[ , )/0 2 ,  it follows from relations (2) and (3) that the sequences

{ }( )χi
n

n
2

1=
∞ ,  { }( )χi

n
n

2 1
1

−
=

∞ ,  and  { }( )γ i
n

n=
∞

1  are infinitely decreasing, and, hence, there exists  n  for which Proposi-
tion 2 is true. 

Theorem 1.  The number  γ α∈[ , )/0 2   belongs to the set  Σ ˜ ,D4 χ
  if and only if there exist  n ∈ +Z   and

j ∈{ , , , }1 2 3 4   such that the following two conditions are satisfied: 

χ j
n( ) ≤ 0,    χi

k( ) > 0 ,    γ ( )k ≥ 0     ∀ <k n, (4)

γ χ
( )

,
n

D
− ∈ ∗

1

4
Σ , (5)

where the character  χ∗   is defined by the triple of coefficients  χi
n( )−1 ,  i = 1 4, ,  i j≠ . 

Proof.  The proof of the theorem follows from Corollary 2 and the functoriality of the mapping  ( ST ) 

used for the construction of the corresponding sequences. 

3.  Infinite Sets  ΣΣ
χχD̃4 ,

  and Representations on a Hyperplane

Theorem 2.  The set  Σ ˜ ,D4 χ
  contains an infinite subset  Σ∞   with limit point  α / 2  if and only if

α αi < / 2,  i = 1 4, .  If this condition is satisfied, then the following assertions are true: 
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(i) Σ∞ = − ∈{ }α α
2 2

1

n
n N    if   α α α α2 3 1 4+ > + ; 

(ii) Σ∞ = − −
−

∈⎧
⎨
⎩

⎫
⎬
⎭

α α α
2

2
2 2 1

4

( )n
n N    if   α α α α2 3 1 4+ < + ; 

(iii) Σ∞ = − ∈{ }α α
2

1

n
n N    if   α α α α2 3 1 4+ = + . 

Proof.  Necessity.  If one of the coefficients satisfies the inequality  α αi ≥ / 2,  then the corresponding
projector  Pi  commutes with the other projectors and, hence, is equal to either  0  or  I  in an irreducible repre-
sentation.  In this case, the problem reduces to a triple (or, correspondingly, to a smaller number) of projectors.
Therefore, by virtue of Theorem 1, the set  Σ ˜ ,D4 χ

  is finite. 

Sufficiency.  Assume, e.g., that  α α α α2 3 1 4+ > + .  We show that, for every  γ α α= −/ / ( )2 21 n ,

n ∈N ,  there exists a representation of the algebra  
  
P ˜ , ,D4 χ γ

.  For this  γ,  we have  χ1
2 0( )n = ,   χi

n( )2 1 0− > ,

i = 1 4, ,  and  χ γ1
2 1 2 1( ) ( )n n− −=   ( χ1

2 1( )n−   is equal to zero at the next step).  According to Corollary 1, this alge-
bra has a representation, and, hence, the initial algebra also has a representation.  The case  α α α α2 3 1 4+ < +   is
proved by analogy.  If  α α α α2 3 1 4+ = + ,  then these two sets are infinite.  With regard for the equalities

α α α
2

2
2 2 1

4− −
−( )n

  =  α α α α
2

2 2 2
2 2 1

1 4 4− + −
−( )n

  =  α α
2 2 1

1−
−n

,

we get 

Σ∞  =  α α
2

1− ∈{ }n
n N .

Remark 1.  By analogy, we can show that, in the case where the condition  α αi < / 2,  i = 1 4,  ,  is satis-

fied, parallel with the infinite set  Σ∞,  Σ ˜ ,D4 χ
  also contains a finite set  Σ0   defined by the following rule: 

(i) Σ0
4 1

2 3 1 42
2

2 2 1
= − −

−
<

+ − −
∈⎧

⎨
⎩

⎫
⎬
⎭

α α α α
α α α α( )

,
n

n n N    if   α α2 3+  > α α1 4+ ; 

(ii) Σ0
1 1

1 4 2 32 2
= − <

+ − −
∈⎧

⎨
⎩

⎫
⎬
⎭

α α α
α α α αn

n n, N    if   α α α α2 3 1 4+ < + ; 

(iii) Σ0 = ∅   if   α α α α2 3 1 4+ = + .

Theorem 3.  Suppose that the numbers   αi ∈R ,  i = 1 4, ,  are such that  α αi < / 2.  Then there exists a
collection of projectors  P1,  P2 ,  P3,  and  P4   such that  α1 1P  + α2 2P  + α3 3P  + α4 4P  = αI / 2 . 

Proof.  It is necessary to show that the set  Σ ˜ ,D4 χ
  contains the point  α / 2.  According to the Shulman

theorem [7], the set  Σ ˜ ,D4 χ
  is closed.  The character  χ  =  ( α1 , α2 , α3 , α4 )  satisfies the conditions of Theo-
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rem 2.  Consequently, the set  Σ ˜ ,D4 χ
  contains the infinite subset  Σ∞ 

,  and, hence, by virtue of closedness, it also

contains the limit point of the series  α / 2. 
Note that this theorem was presented in a somewhat different form by Kirichenko (see, e.g., [5]). 

4.  Subsets in the Set  ΣΣ
χχD̃4 ,

As shown in the proof of Theorem 2, the problem reduces to the case of a smaller number of projectors if at
least one component of the character satisfies the inequality  χ αi ≥ / 2.  Therefore, in what follows, we assume

without loss of generality that  χ αi < / 2,  i = 1 4, . 
To describe other sets, we use Theorem 1.  Let  γ

χ
∈Σ

D̃4 ,
  and let  k  be such that condition (4) is satisfied.

Two cases are possible, namely,  k  =  2n  and  k  =  2n – 1. 

1. Case  k  =  2n.  Using relations (2) and (3), we can rewrite condition (4) in the form of the follow-
ing system of inequalities: 

λ  >  
α1

2n
,      λ  <  

α α−
−

2
2 2 1

4

( )n
,

(6)

λ  <  
α1

2 1( )n −
,      λ  ≤  α

2 4 1( )n −
,

where, as above,  λ α γ= −/ 2 .  By virtue of Theorem 1, condition (5) can be rewritten as follows: 

0
2

4 1= − −α λ( )n ,

α α λ α λ
2

2 1
2

4 1− − − = − −i n n( ) ( ) ,

α α λ α α λ α λ
2

2 1
2

2 1
2

4 1− − − + − − − = − −i jn n n( ) ( ) ( ) ,    i,  j  =  2, 3, 4,    i  ≠  j, (7)

i
i n n

=
∑ − − −⎛

⎝
⎞
⎠ = − −

2

4

2
2 1

2
4 1α α λ α λ( ) ( ) ,

i
i n n

=
∑ − − −⎛

⎝
⎞
⎠ = − −⎛

⎝
⎞
⎠

2

4

2
2 1 2

2
4 1α α λ α λ( ) ( ) .

Solving the system of inequalities (6) for every  λ  that satisfies one of the equations in (7), we ob-
tain the following subsets in  Σ ˜ ,D4 χ

: 

Σ1
4

4

1

12 2 4 1 4 4
= −

−
<

−
< −

−
∈⎧

⎨
⎩

⎫
⎬
⎭

α α α
α α

α α
α α( )

, ,
n

n n n N ,
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Σ2
4 12 2 2 2 4

i i i

i

i

i

i

in
n n n n= − <

+ −
<

−
<

−
∈⎧

⎨
⎩

⎫
⎬
⎭

α α α
α α α

α
α α

α
α α

, , , N ,

Σ3
1 1

1

2 3

4 12
2

2 2 1 4 2
4= − −

+
< −

−
< +

−
− < ∈⎧

⎨
⎩

⎫
⎬
⎭

α α α α α
α α

α α
α α

α α α
( )

,
( )

, ( ) ,
n

n n n ni i N ,    i  =  2, 3, 4.

2. Case  k  =  2n + 1.  Reasoning as in the previous case, we obtain the system of inequalities 

λ  >  
α α−

+
2

2 2 1
4

( )n
,      λ  <  

α1

2n
,

(8)

λ  <  
α α−

−
2

2 2 1
4

( )n
,      λ  ≤  α

2 4 1( )n +

and the equations 

0
2

4 1= − +α λ( )n ,

α λ α λi n n− = − +2
2

4 1( ) ,

α λ α λ α λi jn n n− + − = − +2 2
2

4 1( ) , (9)

i
i n n

=
∑ − = − +

1

3

2
2

4 1α λ α λ( ) ,

i
i n n

=
∑ − = − +⎛

⎝
⎞
⎠

1

3

2 2
2

4 1α λ α λ( ) ,      i,  j  =  1, 2, 3,      i  ≠  j.

Solving the system of inequalities (8) for every  λ   that satisfies one of the equations (9), we obtain
the following subsets in  Σ ˜ ,D4 χ

: 

Σ4  =  
 

α α α α
α α

α
α α2 2 4 1 4 4

04

4

1

1
−

+
< −

−
<

−
∈⎧

⎨
⎩

⎫
⎬
⎭( )

, , { }
n

n n n N ∪ ,

Σ5
i   =  

  

α α α α
α α α

α
α α

α α α
α α2

2
2 2 1 2 2 4 2

01

1

4

4
− −

+
<

− −
<

−
< − −

−
∈⎧

⎨
⎩

⎫
⎬
⎭

i

i

i

i

i

in
n n n n

( )
, ,

( )
, { }N∪ ,    i  =  1, 2, 3.

Thus, the structure of the set  Σ ˜ ,D4 χ
  is completely described by the following theorem: 
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Theorem 4.  The set of  γ    for which the algebra  P ˜ , ,D4 χ γ
  has a representation is described by the fol-

lowing relation: 

  
Σ ˜ ,

[ ; )/D4
0 2

χ
α∩   =   Σ Σ Σ Σ Σ Σ Σ∞ ∪ ∪ ∪ ∪ ∪ ∪0 1 2 3 4 5

i j ,      i  =  2, 3, 4,    j  =  1, 2, 3.

The entire set  Σ ˜ ,D4 χ
  is obtained by symmetric mapping with respect to  α / 2  and adjunction of the point

α / 2. 

5.  The Set  ΣΣ
χχD̃4 ,

  for the Character  χχχχδδδδ  =  (((( 1, 1, δδδδ , δδδδ )))) 

The structure of the set  Σ ˜ ,D4 χ
  is considerably simplified if  χ   =  χ1  =  ( 1, 1, 1, 1 )  or  χδ  =  ( 1, 1, δ , δ )

(see [5, 8]).  We now show how to construct the set  Σ ˜ ,D4 χ
  for the character  χδ  =  ( 1, 1, δ , δ )  by using Theo-

rems 2 and 4. 
Using Proposition 2, we get 

Σ∞ = + − ∈{ }1 1
2

δ
n

n N  ,      Σ0  =  ∅.

The sets  Σ2
i ,  Σ5

j ,  i  =  2, 3, 4,  j  =  1, 2, 3,  and  Σ3  do not exist, and the sets  Σ1   and  Σ4  take the form 

Σ1  =  1 1
4 1 2 1

+ − +
−

<
−

∈⎧
⎨
⎩

⎫
⎬
⎭

δ δ δ
δn

n n
( )

, N ,

Σ4  =  
 
1 1

4 1
1

2 1
0+ − +

+
<

−
∈⎧

⎨
⎩

⎫
⎬
⎭

δ δ
δn

n n
( )

, { }N ∪ .

Thus, 

 
Σ ˜ ,( , , , )

[ ; )/D4 1 1
0 2

δ δ
α∩   =  1 1

2
+ − ∈{ }δ

n
n N   ∪ 1

1
4 1 2 1

+ − +
−

<
−

∈⎧
⎨
⎩

⎫
⎬
⎭

δ δ δ
δn

n n
( )

, N  

∪  
 
1 1

4 1 2 1
0+ − +

+
<

−
∈⎧

⎨
⎩

⎫
⎬
⎭

δ δ δ
δn

n n
( )

, { }N ∪ .
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