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Abstract—Microgrid is a promising component for future smart
grid deployment. The balance of supply and demand of electricity
is one of the most important requirements of microgrid man-
agement. In this paper, we investigate the grid stability problem
from an admission control perspective, while guaranteeing the
quality of usage (QoU) of local residents in a microgrid under
both random electricity supply and demand. In particular, a QoU
request is generated when the electricity demand exceeds the
microgrid supply. The microgrid control center aims to maintain
the QoU blocking probability around a target value by serving
(i.e., switching to the macrogrid for extra electricity supply) or
blocking QoU requests. The problem is formulated as a queue
stability problem by introducing the concept of a QoU blocking
virtual queue. Lyapunov optimization is then applied to derive an
adaptive QoU scheduling algorithm with low complexity O(1).
Furthermore, it is an online algorithm since it does not require any
future knowledge of the electricity supply and demand processes.
The stability of the algorithm is proven, and its performance is
evaluated with trace-driven simulations under random or non-
stationary QoU requests. The simulation results demonstrate the
efficacy and robustness of the proposed QoU scheduling algorithm.

Index Terms—Distributed renewable energy resource (DRER),
Lyapunov optimization, macrogrid, microgrid, quality of usage
(QoU), smart grid, stability.

NOMENCLATURE

Symbol Definition

D(t) Total electricity demand at time slot t.
S(t) Total electricity supply a time slot t.
α(t) QoU request at time slot t.
Emax Maximum allowable QoU requests.

δ Target QoU blocking probability.

p Target average QoU blocking rate.

λ Average QoU request arrival rate.

J(m) The MGCC decision for QoU unit m.

I(t) QoU scheduling decision at time slot t.
Ia(t) Automatic blocking decision for D(t)−S(t)≥

Emax.

Z(t) Backlog of the QoU blocking virtual queue.

L(·) Lyapunov function.

∆(Z(t)) Lyapunov drift.
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B A constant that is 1
2 (1 + δ2).

ǫ A positive constant.

I. INTRODUCTION

SMART GRID is an electricity network, a 21st century

evolution of the utility electricity delivery systems. Smart

grid enhances the traditional power grid through computing,

communications, and control technologies throughout the pro-

cesses of electricity generation, transmission, distribution, and

consumption. The two-way flow of electricity and real-time in-

formation is a characteristic feature of smart grid, which offers

many technical benefits and flexibilities to both utility providers

and consumers. It balances the supply and demand in a timely

fashion and improves the energy efficiency and electricity grid

stability. According to the U.S. 2009 Recovery Act [1], a smart

grid will replace the traditional system and is expected to save

consumer’s cost and reduce America’s dependence on foreign

oil, which is achieved by improving efficiency and spurring the

use of renewable energy sources.

Microgrid is a promising component for future smart grid

deployment. Due to the increasing deployment of distributed

renewable energy resources (DRERs), microgrid provides a

localized cluster of renewable energy generation, storage, dis-

tribution, local demand, and consumption, to achieve reliable

and effective energy supply with simplified implementation of

smart grid functionalities [2], [3]. A typical structure of micro-

grid is illustrated in Fig. 1, which includes one or more renew-

able energy sources (such as wind turbines and solar panels),

wireless networks for information delivery, a microgrid central

controller (MGCC), local residents, and commercial entities.

Some microgrids also have storage capability for storing excess

electricity for future use. The microgrid is centrally controlled

and managed by the MGCC [3], which exchanges information

with both energy sources and local residents via a two-way

information network, such as a wireless network [4] or a power

line communication system [5]. There is a single common

coupling point between the microgrid and the macrogrid, which

can be switched on or off. When switched off, the microgrid

is disconnected from the macrogrid and works in the islanded

mode, in which the DRERs continuously provide electricity to

the local residents. When switched on, the microgrid is con-

nected to the macrogrid and may request extra electricity from

the macrogrid or sell the excess energy back to the market [6].

The balance of supply and demand of electricity energy is

one of the most important requirements for microgrid man-

agement [2]. In this paper, we investigate the problem of
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Fig. 1. Illustration of the microgrid architecture considered in this paper.

guaranteeing the residents’ quality of usage (QoU) of electricity

in a microgrid. In practice, the electricity usage of a user can be

classified into two categories: priority load that must be satisfied

by the basic capacity design of the microgrid and excessive load

that can be deferred or declined. Users may set the load amount

for each type according to their preferences [7]. The QoU of

residents can be defined as the satisfaction level of the excessive

electricity demand for more comfortable life, such as excessive

use of air conditioners and entertainment devices [8].

We design an adaptive MGCC control policy to guarantee

the residents’ satisfactory ratio and maintain the stability of

the grid. The electricity generated from renewable sources is

generally random, due to complex weather conditions, while

the electricity demand is also random due to random consumer

behavior. It may be challenging to identify the exact distribu-

tions of supply and demand for microgrid management, since

the weather process is usually found to be self-similar [9] and

the consumer demand may be nonstationary. It may also be very

costly to have precise real-time monitoring of the supply and

demand processes. Therefore, a simple low-cost scheme that

does not rely on any statistical information of the supply and

demand processes would be highly desirable.

In this paper, we tackle the problem of QoU provisioning

with a Lyapunov optimization approach, which is a useful tech-

nique to solve stochastic optimization and stability problems

[10], [11]. We first introduce the concept of a QoU blocking

virtual queue to transform the QoU scheduling problem to a

queue stability problem. Second, we design an adaptive QoU

control algorithm based on the Lyapunov optimization method

and prove that the algorithm stabilizes the blocking virtual

queue, which is equivalent to ensuring both the QoU satisfac-

tion ratio of residents and grid stability. The proposed algorithm

has low computation complexity, i.e., O(1). Furthermore, it can

be implemented online because it only relies on the current

system status; it does not require any further knowledge of

the electricity demand and supply processes. The proposed

algorithm also converges exponentially due to the nice property

of Lyapunov stability design [12]. The algorithm is evaluated

with trace-driven simulations and is shown to achieve QoU

stability with fast convergence and robustness.

The remainder of this paper is organized as follows. We

present the microgrid QoU stability system model and trans-

form the problem to a queue stability problem in Section II.

An adaptive microgrid QoU scheduling algorithm is developed,

and its stability is proven in Section III. Simulation results are

presented and discussed in Section IV. We discuss related work

in Section V. Section VI concludes this paper.

II. SYSTEM MODEL

We consider the residential electricity consumption in a

microgrid. Specifically, we assume that there is one or more

DRERs in the microgrid, which may consist of wind turbines

and solar panels. We further assume that the microgrid is

designed such that a portion of the electricity demand related

to the basic living usage (e.g., lighting and refrigerator usage)

can be guaranteed by the basic capacity of the DRERs. There

is randomness in both electricity supply (e.g., due to weather

or wind speed changes) and demand (e.g., more entertainment-

related usage in weekends). To cope with the randomness, the

microgrid works in the grid-connected mode. The residents

send their demands, and the DRERs send their supplies to

the MGCC via the information network (such as a power line

communication network or a wireless network). The MGCC

then accumulates the total demand and supply based on the

received information.

The MGCC identifies a QoU request when the total demand

exceeds the supply, which consists of the difference between

the total requested energy and the energy supplied by the

DRERs. Greedily satisfying all the excessive QoU requests,

i.e., by purchasing electricity from the macrogrid, may cause

large load fluctuations to the macrogrid and be harmful to grid

stability. Such a strategy is also not economically efficient for

the operation of the microgrid, due to utility market price fluctu-

ations. Therefore, we consider an MGCC operation mechanism

that determines the amount of QoU requests that need to be

satisfied by purchasing extra electricity from the macrogrid,

while declining the rest of the requests.

After MGCC aggregates the demand profiles through the

information network and applies the proposed admission con-

trol, the control commands are then transmitted to the users

via the communication network and then reach the smart loads

and smart appliances via home area networks (HANs). The

smart meters provide the interface between the communication

network and HAN and serve as the gateway for security authen-

tication and command interpretation to ensure the command

issued from the trusted MGCC. Then, the smart meters plan the

service level of each smart load/facility and send out the control

commands with the service level of individual loads through the

HAN. After the smart load obtains the command, it then adjusts

its level to conform to the new allocation [13].

We assume that the excess electricity usage can tolerate a pre-

scribed QoU blocking probability. For example, some excess air

conditioning cooling- or heating-related QoU requests could be

declined, leading to electricity savings. The MGCC adaptively

serves or blocks QoU requests to maintain a prescribed QoU

blocking probability as well as stability of the grid, as shown

in Fig. 2. Specifically, when a QoU request is triggered, the

MGCC can choose to satisfy this demand with a predetermined

probability 1− δ or block it with average blocking probability

δ. The practical outage risk of the microgrid under the ad-

mission control mechanism can be designed through insurance
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Fig. 2. System model considered in this paper.

Fig. 3. Example of supply S(t), demand D(t), and QoU requests α(t).

premium [14]. Assuming that the average QoU request arrival

rate is λ, the average blocking rate for the QoU requests can be

expressed as p = δ · λ. If the MGCC serves the request, it will

switch on the coupling point to connect to the macrogrid and

request extra electricity from the nonrenewable energy sources

in the macrogrid. Otherwise, the QoU request will be blocked,

and the consumer will not be able to get the electricity for the

desired task.

We consider the electricity demand and supply on a daily ba-

sis, which consists of time slots [15]. Without loss of generality,

we assume that the one-day period is slotted into T time slots,

each of which has a duration that is determined by the timescale

of the demand and supply, as well as how frequent the microgrid

can switch on and off to the macrogrid. Let the total residential

demand at time slot t be D(t) and the total supply from the

DRERs be S(t), each being a random process varying from

time slot to time slot. As shown in Fig. 3, when D(t) is smaller

than S(t), the demand will all be satisfied with the local supply.

Without loss of generality, we assume that the excess supply in

a time slot t can be stored [i.e., accumulated into D(t+ 1)] and

used to accommodate future QoU requests. When D(t) exceeds

S(t) in a time slot t, the local storage and supply are insufficient

to serve the demand, and a QoU request will be generated.

Let α(t) be the function representing the arrival process of

QoU requests, as

α(t) = min
{

[D(t)− S(t)]+, Emax

}

. (1)

At each time slot t, α(t) takes values in a finite set

{0, 1, . . . , Emax}, in certain basic unit of electricity usage. In

(1), Emax is the maximum amount of electricity that can be

requested from the macrogrid in one time slot.

Fig. 4. QoU blocking virtual queue model.

Then, the average QoU request arrival rate is

λ = lim
t→∞

1

t

t−1
∑

τ=0

α(τ). (2)

In (1), the upper limit Emax is due to the practical constraints

such as power line transmission, substation capacity, and power

procurement cost on the energy market. The microgrid may not

support an excessive energy use if the QoU request exceeds

a prescribed threshold, even when it is switched on to the

macrogrid. An automatic blocking operation will be applied to

decline the excess parts that are above Emax. This automatic

blocking operation serves as a disturbance to the microgrid

system, which should be addressed in the system stability

design. The scheduling policy at the MGCC is then designed

to stabilize the system under the presence of such disturbances.

At every time slot t, the MGCC scheduler takes an action in

the set {0: serve, 1: block} for each incoming QoU request unit.

Supposing that α(t) = M , the MGCC operates on each of the

M QoU units as

J(m) =

{

1, QoU request unit m is blocked

0, otherwise

m = 1, 2, . . . ,M. (3)

Then, we have I(t) =
∑

M

m=1 J(m) for time slot t. The average

blocking rate can be evaluated as

p = lim
t→∞

1

t

t−1
∑

τ=0

I(τ). (4)

The microgrid adopts the scheduling policy I(t) to maintain the

stability of the system and keeps the average QoU blocking rate

at a prescribed level p = δ · λ.

We next introduce a conceptual QoU blocking virtual

queue Z(t), as shown in Fig. 4. The queue is “virtual” because

it is maintained by the MGCC control algorithm, without

network traffic arrivals and departures. It is used to track the

number of the blocking events resulted from the MGCC control

actions [16]. When a QoU request unit is granted, the queue

length will be increased by one; the queue backlogs will be

depleted at a rate of δ · α(t) at time slot t. The MGCC scheduler

enqueues or drops incoming QoU requests according to po-

licy I(t) at each time slot t. It is worth noting that, unlike an

actual queue, the virtual queue backlog Z(t) may take negative

values.
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The system equation that governs the dynamics of the QoU

blocking virtual queue is

Z(t+ 1) = Z(t)− δ · α(t) + I(t). (5)

We then have the following proposition that establishes the

equivalence of maintaining the stability of the QoU blocking

virtual queue and QoU assurance.

Proposition 1: If an MGCC control policy I(t) stabilizes

the QoU blocking virtual queue Z(t), the microgrid will be

stabilized at the average QoU blocking rate p = δ · λ.

Proof: According to the dynamics of the QoU blocking

virtual queue (5), we have

Z(1) =Z(0)− δ · α(0) + I(0)

Z(2) =Z(1)− δ · α(1) + I(1)

. . .

Z(t) =Z(t− 1)− δ · α(t− 1) + I(t− 1). (6)

Summing up both sides of (6), we obtain

Z(t) = Z(0)− δ ·
t−1
∑

τ=0

α(τ) +
t−1
∑

τ=0

I(τ). (7)

Dividing (7) by t and then taking limit limt→∞ on both sides,

we have

lim
t→∞

Z(t)− Z(0)

t
= lim

t→∞

1

t

[

−δ ·

t−1
∑

τ=0

α(τ) +

t−1
∑

τ=0

I(τ)

]

.

(8)

If the virtual queue is rate stable by a control policy I(t), the

backlog Z(t) should be finite. We have limt→∞(1/t)[Z(t)−
Z(0)] = 0, which yields

lim
t→∞

1

t

t−1
∑

τ=0

I(τ) = δ · lim
t→∞

1

t

t−1
∑

τ=0

α(τ) ⇒ p = δ · λ

according to definitions (2) and (4). �

Proposition 1 transforms the QoU control problem into a

queue stability problem, which can be solved with a system sta-

bility design from the control theory point of view. Accordingly,

we next derive the control policy by applying the Lyapunov

optimization method to stabilize the virtual queue Z(t), thus

solving the microgrid QoU scheduling problem.

III. ADAPTIVE MICROGRID QOU CONTROL POLICY

With Proposition 1, we show that the QoU control problem

is equivalent to the virtual queue stability problem. We then

use the Lyapunov optimization technique to develop an adaptive

QoU control algorithm. This algorithm is simple to implement

and does not require a priori statistical knowledge of the

electricity supply or demand processes and is also robust to non

independent and identically distributed (i.i.d.) and nonergodic

behaviors [11].

A. Lyapunov Optimization

In Lyapunov stability analysis, a Lyapunov function

L(·) : Rn → R

is an energylike positive definite function [17]. Roughly speak-

ing, for a network system, if we can find a suitable Lyapunov

function and let the control decision at every time slot t greedily

minimize the “drift” (will be defined hereinafter shortly), then

the network state will be consistently pushed toward low-

backlog states, and the network stability will be thus maintained

[10], [11].

We define the following Lyapunov function:

L (Z(t)) =
1

2
[Z(t)]2 (9)

which is positive definite when Z(t) �= 0, and L(Z(t)) = 0
if and only if Z(t) = 0. Intuitively, the Lyapunov function

represents the energy of the dynamic system governed by (5).

Without loss of generality, we first assume that Emax = 1 for

the following analysis to derive the QoU scheduling policy. For

the general case of Emax > 1, we can apply the scheduling

policy for each of the QoU units.

We define the conditional one-slot Lyapunov drift as

∆(Z(t)) = E {L (Z(t+ 1))− L (Z(t)) |Z(t)} . (10)

With some algebraic manipulation, we have from (10)

∆(Z(t)) =
1

2
E

{[

I(t)2 + (δ · α(t))2 − 2δ · α(t) · I(t)
]

+ 2Z(t) (I(t)− δ · α(t)) |Z(t)
}

≤
1

2
E

{(

I(t)2 + (δ · α(t))2
)

|Z(t)
}

+ E {Z(t) (I(t)− δ · α(t)) |Z(t)}

≤
1

2
(1 + δ2)− Z(t)E {δ · α(t)}

+ E {Z(t)I(t)|Z(t)}

=B − Z(t) · δ · λ+ E {Z(t)I(t)|Z(t)} (11)

where B = (1/2)(1 + δ2) is a constant. The first inequality

is because δ, α(t), and I(t) are all nonnegative. The second

inequality is due to the fact that I(t) ≤ 1.

Note that, in the drift (11), the QoU control decision I(t)
only affects the last term on the right-hand side (RHS). We can

design an algorithm to minimize the upper bound of the drift by

observing the current virtual queue state Z(t), i.e., minimizing

the RHS of (11) at every time slot t. Such an approach leads to

the following optimization problem:

min
I(t)

{Z(t)I(t)} , for t = 1, 2, . . . . (12)

Solving the aforementioned minimization problem at each time

slot t, we obtain the QoU scheduling policy I(t). It can be seen

from (11) that the drift will be negative when Z(t) is sufficiently
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large. Thus, the stability of the virtual queue is ensured. We

find that this problem has a straightforward threshold-based

solution, as given in Section III-B.

B. Adaptive Microgrid QoU Control Policy

We can solve problem (12) by observing the current virtual

queue backlog Z(t). If Emax = 1, this is the situation in which,

at most, one unit QoU request arrives in a time slot. The

following adaptive QoU control policy can be obtained:

I(t) =

{

0, Z(t) ≥ 0
1, Z(t) < 0

for t = 1, 2, . . . (13)

which is a solution to problem (12). Specifically, if the current

virtual queue backlog Z(t) ≥ 0, the MGCC will choose I(t) =
0, i.e., to serve the QoU request. Otherwise, if Z(t) < 0, the

MGCC will choose I(t) = 1, i.e., to reject the QoU request.

After the decision is made, the QoU blocking virtual queue

Z(t) will be updated as given in the system (5).

Recall that the parts exceeding Emax in a QoU request

will be automatically blocked, even if the scheduling policy

I(t) = 0. Such an automatic blocking decision is denoted as

Ia(t) = 1. In this case, the virtual queue will be increased by

max{I(t), Ia(t)}. This can be interpreted as a disturbance at

time t in the control system. However, with policy (13), the

Lyapunov drift will still be pushed toward the minimum value

and keeps the system stable.

It can be noted that this algorithm actually solves a minimum

weight matching problem, where weight is defined to be the

virtual queue backlog Z(t) [18]. Furthermore, the algorithm

only requires the current virtual queue backlog information:

It neither requires any knowledge on future DRER supply

and demand nor requires any knowledge on the statistics of

the supply and demand processes. Therefore, this is an online

algorithm that can be easily implemented, with computational

complexity O(1). The detailed adaptive QoU scheduling algo-

rithm is presented in Algorithm 1.

For the general case of Emax > 1, the QoU scheduling

algorithm operates on each unit of the total QoU request in the

time slot. For example, if α(t) = l, then the algorithm divides

the time slot t into l stages, applies (13) to find the scheduling

policy for each QoU request unit, and updates the QoU blocking

virtual queue in each stage.

We have the following proposition on the performance of the

microgrid QoU scheduling algorithm given in Algorithm 1.

Proposition 2: The adaptive microgrid QoU scheduling pol-

icy given in Algorithm 1 stabilizes the microgrid system.

Furthermore, the average backlog of the QoU blocking virtual

queue is upper bounded by B/ǫ, where B = (1/2)(1 + δ2) and

ǫ > 0 are constant.

Proof: Let Î(t) be a policy other than the proposed control

policy I(t) given in (13). With the drift bound (11) and the fact

that I(t) minimizes the drift bound (11), we have

∆(Z(t)) ≤B − Z(t) (δ · λ− E {I(t)|Z(t)})

≤B − Z(t)
(

δ · λ− E

{

Î(t)|Z(t)
})

. (14)

We can choose Î(t) to satisfy the following two conditions:
⎧

⎨

⎩

δ ·λ−E

{

Î(t)|Z(t)
}

=ǫ, if Z(t)≥0

δ · λ−E

{

Î(t)|Z(t)
}

=−ǫ, if Z(t)<0
for t=1, 2, . . .

where ǫ > 0 is a constant.

It follows (14) that the drift achieved by policy I(t) given in

(13) satisfies

∆(Z(t)) ≤ B − ǫ · |Z(t)| . (15)

Taking expectation on both sides of (15), we have

E {∆(Z(t))} ≤ B − ǫ · E {|Z(t)|} .

According to the drift definition, we have

E {L(Z(t+1)) |Z(t)}−E {L (Z(t)) |Z(t)}≤B−ǫ·E {|Z(t)|} .
(16)

Summing up both sides of (16) over K time slots t ∈ [0, . . . ,
K − 1], we have

E {L (Z(K)) |Z(t)} − E {L (Z(0)) |Z(t)}

≤ B ·K − ǫ ·

K−1
∑

t=0

E {|Z(t)|} . (17)

Since the Lyapunov function is nonnegative, we have

E{L(Z(K))|Z(t)} ≥ 0. Removing this nonnegative term on

the left-hand side (LHS) of (17), the inequality still holds

true. We then divide both sides of (17) by (ǫ ·K) and take

limit limK→∞. The LHS becomes zero since the initial state

E{L(Z(0))|Z(t)} ≤ ∞ is finite. We then obtain the following

bound on the average virtual queue length:

lim
K→∞

1

K

K−1
∑

t=0

E {|Z(t)|} ≤ B/ǫ.

Thus, the system is mean rate stable, and the average backlogs

of the queue are upper bounded by B/ǫ. �

IV. SIMULATION STUDY

We demonstrate the performance of the proposed adaptive

QoU control policy through extensive simulations. We simulate

a microgrid with 25 residents, in which the residents’ demands
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Fig. 5. Average QoU blocking probability with different QoU request rates.

are supplied by a wind turbine plant. We use the renewable

energy supply data from the Western Wind Resources Dataset

published by the National Renewable Energy Laboratory [19].

When a QoU request arrives, the MGCC either satisfies the

QoU request by requesting electricity from the macrogrid or

blocks this request according to the adaptive QoU control

policy. We assume that the time slot duration is 10 min and the

simulation duration is one week. The QoU blocking probability

is set to δ = 0.07, and the maximum QoU is set to Emax = 1,

unless otherwise specified.

We first investigate the average QoU blocking probability

with the default parameter settings. We model QoU requests

as i.i.d. process over time slots. The average QoU arrival rates

are λ = 0.3, 0.5, and 0.7 for three simulations, respectively.

We show the first 420 time slots in Fig. 5, corresponding to

70 h. It can be seen that all the three average QoU blocking

probabilities converge to the target probabilities after about 150,

90, and 50 time slots, respectively. The higher the QoU request

rate, the faster the convergence, since the algorithm is triggered

by QoU arrivals and is executed more often for higher QoU

request rate. The converged blocking probabilities are 0.0726,

0.0711, and 0.0704, respectively, which are very close to the

target blocking probability of 0.07. It should be noted that

the algorithm only relies on the current backlog of the virtual

queue; it does not require any further statistical information

of the demand and supply processes. Thus, the proposed QoU

algorithm is effective and easy to implement.

We next examine the virtual queue backlog for the case of

λ = 0.3. In Fig. 6, we find that the algorithm attempts to push

the instant backlog toward zero. The average queue length is

stabilized around 0.4. The average queue length is bounded

during the entire period with ǫ = 0.5, which ensures that the

average blocking probability is stabilized around the target rate.

Recall that the instant virtual backlog can take negative values,

as discussed in Section II. For the cases of λ = 0.5 and 0.7,

similar results are observed but omitted for brevity.

We also explore the performance of the proposed algorithm

under time-varying target QoU blocking rates, due to the differ-

ent microgrid operation strategies at different time periods. We

Fig. 6. Instant and average virtual queue backlogs when λ = 0.3.

Fig. 7. Average QoU blocking probability with varying target QoU blocking
rates.

Fig. 8. Instant virtual queue backlogs with varying target QoU blocking rates.

assume that, from Monday to Friday, the blocking probability

is set to 0.1 and, in the weekend, the blocking probability is

changed to 0.05 to accommodate more entertainment-related

electricity consumption. We simulate the QoU control policy

for a two-week period. The average QoU blocking probability

is plotted in Fig. 7, and the instant virtual queue backlog is

plotted in Fig. 8. From the results, we observe that the algorithm

keeps on tracking the target QoU blocking rate and converges
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Fig. 9. Average QoU arrival rate with a normal distribution.

Fig. 10. Average QoU blocking probability with time-varying QoU arrival
rates—normal distribution.

to around 0.1024, 0.0575, 0.1029, and 0.0548, respectively, and

the average virtual queue is bounded.

Therefore, the proposed QoU policy is dynamically adap-

tive to different microgrid operation strategies. At the strategy

switching point, there is very short period of deviation of the

QoU blocking probability, due to the virtual queue reset for

the new grid operation strategy. However, as time elapses, the

average QoU blocking probability converges to the target rate

very quickly. It is also interesting to see that, during the period

of δ = 0.05, the backlogs evolve more slowly than that of

δ = 0.1, because of the smaller service rate δ as given in the

virtual queue dynamics (5).

We further evaluate the algorithm under time-varying QoU

request rates. In these simulations, we use the default setting but

let the mean QoU arrival rate be a random number following

normal distribution with a mean rate of 0.3 and a standard

deviation of 0.1. The QoU arrival rate, blocking probability,

and virtual queue backlog are plotted in Figs. 9, 10, and 11,

respectively. We observe that the proposed algorithm stabilizes

the system by keeping the QoU blocking rate around 0.07. The

virtual queue backlogs are mean rate stable as well.

Fig. 11. Instant and average virtual queue backlogs with time-varying QoU
arrival rates—normal distribution.

Fig. 12. Average QoU arrival rate following a ramp shape.

It would also be interesting to examine the algorithm under

nonstationary QoU arrivals. We set the QoU arrival rate as a

ramplike function in this simulation. As shown in Fig. 12, the

QoU arrival rate evolves linearly and increases from 0.1 to 0.9;

each rate lasts for a period of a day. Figs. 13 and 14 show

the QoU request blocking probability and virtual queue back-

log obtained from the simulation, respectively. The algorithm

effectively stabilizes the system and keeps the QoU blocking

probability around 0.07. The proposed algorithm exhibits faster

response as time elapses, since a higher average QoU arrival

rate triggers more frequent algorithm execution.

We next consider the strict power purchase limitation from

the macrogrid, i.e., Emax. The other settings are the same as

those in Figs. 5 and 6, except that 3% of the QoU requests

exceed the limit Emax and are blocked automatically by the

MGCC. The simulation results are plotted in Figs. 15 and 16.

We observe that there are some disturbance in the convergence

of the QoU blocking probability and larger variation of the

queue length, which result from the automatic block opera-

tions. However, as time elapses, the average queue length is
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Fig. 13. Average QoU blocking probability with time-varying QoU arrival
rates—ramp.

Fig. 14. Instant and average virtual queue backlogs with time-varying QoU
arrival rates—ramp.

stabilized, and accordingly, the QoU blocking probability con-

verges to the target value of 0.07.

We also evaluate a naive policy, which simply blocks arriving

QoU requests by tossing a coin with the target probability. Note

that this naive policy has a similar computational complexity as

the proposed approach. It can be seen in Fig. 17 that the naive

coin-tossing policy converges much slower than the proposed

adaptive control policy. There is large fluctuation around the

target blocking probability. In fact, the proposed scheme con-

verges exponentially, due to the inherent exponential conver-

gence property in Lyapunov-stability-based design [12]. From

the control theoretic perspective, the naive policy is actually an

open-loop control approach, which may suffer high sensitivity

to disturbance and slow convergence. The proposed adaptive

control policy is a closed-loop feedback control system, which

takes advantage of the feedback of the virtual queue length to

achieve disturbance resistance and fast convergence.

Finally, we set Emax = 5, which means that multiple units of

QoU requests may appear in one slot. We keep other parameters

as the default setting. The proposed policy is applied to each

QoU unit in every slot. We plot the amount of the QoU request

Fig. 15. Average QoU blocking probability under the energy purchase limita-
tion Emax.

Fig. 16. Instant and average virtual queue backlogs under the energy purchase
limitation Emax.

Fig. 17. Average QoU blocking probability with energy purchase limitation
and the naive policy.
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Fig. 18. Total QoU requests and blocked QoU requests when Emax = 5.

Fig. 19. Average QoU blocking probability when Emax = 5.

units and the blocked units when λ = 0.7 for the first 50 time

slots in Fig. 18. It can be observed that, during the periods

that have multiple units of QoU, the proposed algorithm blocks

some of the requests for maintaining the target QoU blocking

probability. Accordingly, from Figs. 19 and 20, we observe that

the average QoU blocking probability is stabilized around 0.07

and the average virtual queue length is also stabilized.

V. RELATED WORK

Smart grid is regarded as the next generation power grid with

two-way flows of both electricity and information. In smart

grid, information technologies and computational intelligence

are integrated across electricity generation, transmission, distri-

bution, and consumption to achieve green, reliable, efficient,

and sustainable energy goals. We refer interested readers to

several comprehensive reviews of smart grid technologies and

related research challenges [2], [13], [20]–[22] and the refer-

ences therein for more details.

Microgrid is a new grid structure to group DRERs and local

residents loads, which provides a promising deployment model

Fig. 20. Instant and average virtual queue backlogs when Emax = 5.

for the future smart grid. In [3], the authors provided a review

of the microgrid structure with distributed energy resources. In

[6] and [23], the integration of random wind power generation

into the grid for cost-effective operation was investigated. In

[24], the authors proposed a useful online method to discover

all available DRERs within the island-mode microgrid and

compute a good DRER access strategy. In [25], the authors

presented an optimal scheduling algorithm to minimize the

overall cost of electricity and natural gas for building operation

with microgrid technology. The problem of optimal residential

demand management was investigated in [15] and [26], corre-

sponding to time-varying energy generation and price and max-

imizing user benefit. These prior works aimed to balance the

time-varying energy generation and user demand, which is one

of the most important requirements of microgrid management.

In a recent work [27], we incorporate the theory of majorization

to develop algorithms for smooth electric power scheduling in

power distribution networks.

Lyapunov optimization is a stochastic optimization method

[10]. It has been widely used and extended in the communica-

tions and networking area [11], [28]–[30]. In [30], Lyapunov

optimization was used in the proof of the stability of a rate

control algorithm for heterogeneous streaming videos. In two

recent works [8], [31], the authors investigated the problem

of profit maximization for renewable energy utility companies.

The Lyapunov optimization method was applied to jointly

optimize the power procurement and dynamic pricing, while

meeting consumer requests.

VI. CONCLUSION

In this paper, we have developed an adaptive QoU con-

trol policy for microgrid energy scheduling, while taking into

account the stabilization of the QoU block probability. We

transformed the QoU scheduling problem to a queue stability

problem by introducing a QoU blocking virtual queue and

proved that the stability of the virtual queue is equivalent

to QoU assurance. We applied the Lyapunov optimization

method to solve this problem and developed a minimum weight
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matching algorithm with low complexity and online operation.

The stability of the system was proven. Our simulation study

showed that the proposed approach is effective and robust for

QoU provisioning in microgrids.
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