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Abstract. Let X be a complex symplectic manifold. By showing
that any Lagrangian subvariety has a unique lift to a contactifica-
tion, we associate to X a triangulated category of regular holonomic
microdifferential modules. If X is compact, this is a Calabi-Yau cat-
egory of complex dimension dim X +1. We further show that regular
holonomic microdifferential modules can be realized as modules over
a quantization algebroid canonically associated to X.
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Introduction

Let X be a complex symplectic manifold. As shown in [16] (see
also [13]), X is endowed with a canonical deformation quantization al-
gebroid WX . Recall that an algebroid is to an algebra as a gerbe is to
a group. The local model of WX is an algebra similar to the one of mi-
crodifferential operators, with a central deformation parameter ~. The
center of WX is a subfield k of formal Laurent series C[~−1, ~]].

Deformation quantization modules have now been studied quite ex-
tensively (see [3, 11, 12] and also [14, 19] for related results), and they
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turned out to be useful in other contexts as well (see e.g. [9]). Of par-
ticular interest are modules supported by Lagrangian subvarieties. It
is conjectured in [11] that, if X is compact, the triangulated category
of regular holonomic deformation-quantization modules is Calabi-Yau of
dimension dimX over k.

There are some cases (representation theory, homological mirror sym-
metry, quantization in the sense of [5]) where one would like to deal with
categories whose center is C instead of k. In the first part of this paper,
we associate to X a C-linear triangulated category of regular holonomic
microdifferential modules. If X is compact, this category is Calabi-Yau
of dimension dimX + 1 over C.

Our construction goes as follows. For a possibly singular Lagrangian
subvariety Λ ⊂ X, we prove that there is a unique contactification
ρ : Y −→ X of a neighborhood of Λ and a Lagrangian subvariety Γ ⊂ Y
such that ρ induces a homeomorphism between Γ and Λ. As shown in [6],
the contact manifold Y is endowed with a canonical microdifferential al-
gebroid EY . We define the triangulated category of regular holonomic
microdifferential modules along Λ as the bounded derived category of
regular holonomic EY -modules along Γ. We then take the direct limit
over the inductive family of Lagrangian subvarieties Λ ⊂ X.

In the second part of this paper, we show that regular holonomic mi-
crodifferential modules can be realized as modules over a quantization

algebroid ẼX canonically associated to X. More precisely, if Γ ⊂ Y is
a lift of Λ ⊂ X as above, we prove that the category of coherent EY -
modules supported on Γ is fully faithfully embedded in the category of

coherent ẼX-modules supported on Λ.

Our construction of ẼX is similar to the construction of WX in [16],
which was in turn similar to the construction of EY in [6]. Here, we
somewhat simplify matters by presenting an abstract way of obtaining
an algebroid from the data of a gerbe endowed with an algebra valued
functor. Let us briefly recall the constructions of EY , WX and present

the construction of ẼX .
Denote by P ∗M the projective cotangent bundle to a complex manifold

M and by EM the ring of microdifferential operators on P ∗M as in [17].
Recall that, in a local system of coordinates, EM is endowed with the
anti-involution given by the formal adjoint of total symbols.

Let Y be a complex contact manifold. By Darboux theorem, the local
model of Y is an open subset of P ∗M . By definition, a microdifferential
algebra E on an open subset V ⊂ Y is a C-algebra locally isomorphic
to EM . Assume that E is endowed with an anti-involution ∗. Any two
such pairs (E ′, ∗′) and (E , ∗) are locally isomorphic. Such isomorphisms
are not unique, and in general it is not possible to patch the algebras E
together in order to get a globally defined microdifferential algebra on Y .



ON QUANTIZATION OF COMPLEX SYMPLECTIC MANIFOLDS 3

However, the automorphisms of (E , ∗) are all inner and are in bijection
with a subgroup of invertible elements of E . This is enough to prove
the existence of a microdifferential algebroid EY , i.e. an algebroid locally
represented by microdifferential algebras.

Denote by T ∗M the cotangent bundle to a complex manifold M , by
(t; τ) the symplectic coordinates on T ∗C, and consider the projection

P ∗(M × C)
ρ−→ T ∗M, (x, t; ξ, τ) 7→ (x, ξ/τ)

defined for τ 6= 0. This is a principal C-bundle, with action given by
translation in the t variable. Note that, for λ ∈ C, the outer isomorphism
Ad(eλ∂t) of ρ∗EM×C acts by translation t 7→ t + λ at the level of total
symbols.

Let X be a complex symplectic manifold. By Darboux theorem, the
local model of X is an open subset of T ∗M . Let ρ : V −→ U be a con-
tactification of an open subset U ⊂ X. By definition, this is a prin-
cipal C-bundle whose local model is the projection {τ 6= 0} −→ T ∗M
above. Consider a quadruple (ρ, E , ∗, ~) of a contactification ρ : V −→ U ,
a microdifferential algebra E on V , an anti-involution ∗ and an operator
~ ∈ E locally corresponding to ∂−1

t . One could try to mimic the above
construction of the microdifferential algebroid EY in order to get an al-
gebroid from the algebras ρ∗E . This fails because the automorphisms of
(ρ, E , ∗, ~) given by Ad(eλ~−1

) for λ ∈ C are not inner. There are two
natural ways out.

The first possibility, utilized in [16], is to replace the algebra ρ∗E by
its subalgebra W = C0

~ρ∗E of operators commuting with ~. Locally, this
corresponds to the operators of ρ∗EM×C whose total symbol does not
depend on t. Then the action of Ad(eλ~−1

) is trivial on W , and these
algebras patch together to give the deformation-quantization algebroid
WX .

The second possibility, which we exploit here, is to make Ad(eλ~−1
) an

inner automorphism. This is obtained by replacing the algebra ρ∗E by
the algebra

Ẽ =
⊕
λ∈C

(
C∞

~ ρ∗E
)
eλ~−1

,

where C∞
~ ρ∗E = {a ∈ ρ∗E ; ad(~)N(a) = 0, ∃N ≥ 0} locally corre-

sponds to operators in ρ∗EM×C whose total symbol is polynomial in t.

By patching these algebras we get the quantization algebroid ẼX . The

deformation parameter ~ is not central in ẼX . We show that the central-

izer of ~ in ẼX is equivalent to the twist of WX ⊗C (
⊕

λ∈C Ceλ~−1
) by the

gerbe parameterizing the primitives of the symplectic 2-form.

In an appendix at the end of the paper, we give an alternative construc-
tion of the deformation-quantization algebroid WX . Instead of using con-
tactifications, we consider as objects deformation-quantization algebras
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endowed with compatible anti-involution and C-linear derivation. We
thus show that WX itself is endowed with a canonical C-linear deriva-
tion. One could then easily prove along the lines of [15] that WX is
the unique k-linear deformation-quantization algebroid which has triv-
ial graded and is endowed with compatible anti-involution and C-linear
derivation.

Finally, we compare regular holonomic quantization modules with reg-
ular holonomic deformation-quantization modules.

This paper is organized as follows.
In section 1, after recalling the definitions of gerbe and of algebroid on

a topological space, we explain how to obtain an algebroid from the data
of a gerbe endowed with an algebra valued functor.

In section 2, we review some notions from contact and symplectic ge-
ometry, discussing in particular the gerbe parameterizing the primitives
of the symplectic 2-form. We further show how a Lagrangian subvariety
lifts to a contactification.

In section 3, we first recall the construction of the microdifferential
algebroid of [6] in terms of algebroid data. Then we show how to asso-
ciate to a complex symplectic manifold a triangulated category of regular
holonomic microdifferential modules.

In section 4, we start by giving a construction of the deformation-
quantization algebroid of [16] in terms of algebroid data. Then, with the

same algebroid data, we construct the algebroid ẼX .
In section 5, we prove coherency of quantization algebras and show

how to realize regular holonomic microdifferential modules as modules

over ẼX .
In appendix A, we give an alternative description of the deformation

quantization algebroid using deformation-quantization algebras endowed
with compatible anti-involution and C-linear derivation. We also com-
pare regular holonomic deformation-quantization modules with regular
holonomic quantization modules.

The results of this paper were announced in [1], to which we refer.

1. Gerbes and algebroid stacks

We review here some notions from the theory of stacks, in the sense
of sheaves of categories, recalling in particular the definitions of gerbe
and of algebroid (refer to [4, 10, 13, 2]). We then explain how to obtain
an algebroid from the data of a gerbe endowed with an algebra valued
functor.

1.1. Review on stacks. Let X be a topological space.
A prestack C on X is a lax analogue of a presheaf of categories, in the

sense that for a chain of open subsets W ⊂ V ⊂ U the restriction functor
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C(U) −→ C(W ) coincides with the composition C(U) −→ C(V ) −→ C(W )
only up to an invertible transformation (satisfying a natural cocycle con-
dition for chains of four open subsets). The prestack C is called sepa-
rated if for any U ⊂ X and any p, p′ ∈ C(U) the presheaf U ⊃ V 7→
HomC(V )(p|V , p′|V ) is a sheaf. We denote it by HomC(p, p′). A stack is

a separated prestack satisfying a natural descent condition (see e.g. [10,
Chapter 19]). If ρ : Y −→ X is a continuous map, we denote by ρ−1C the
pull back on Y of a stack C on X.

A groupoid is a category whose morphisms are all invertible. A gerbe
on X is a stack of groupoids which is locally non empty and locally
connected, i.e. any two objects are locally isomorphic. Let G be a sheaf
of commutative groups. A G-gerbe is a gerbe P endowed with a group
homomorphism G −→ Aut(idP). We denote by P ×G P′ the contracted
product of two G-gerbes. A G-gerbe P is called invertible if G|U −→
AutP(p) is an isomorphism of groups for any U ⊂ X and any p ∈ P(U).

Let R be a commutative sheaf of rings. For an R-algebra A denote by
Mod(A) the stack of left A-modules. An R-linear stack is a stack A such
that for any U ⊂ X and any p, p′ ∈ A(U) the sheaves HomA(p′, p) have
an R|U -module structure compatible with composition and restriction.
The stack of left A-modules Mod(A) = FctR(A,Mod(R)) has R-linear
functors as objects and transformations of functors as morphisms.

Let L be a commutative R-algebra and A an R-linear stack. An action
of L on A is the data of R|U -algebra morphisms L|U −→ EndA(p) for any
U ⊂ X and any p ∈ A(U), compatible with restriction. Then L acts
as a Lie algebra on HomA(p′, p) by [l, f ] = lpf − flp′ , where lp denotes
the image of l ∈ L(U) in EndA(p). This gives a filtration of A by the
centralizer series

C0
LHomA(p′, p) = {f ; [l, f ] = 0, ∀l ∈ L},

Ci
LHomA(p′, p) = {f ; [l, f ] ∈ Ci−1

L , ∀l ∈ L} for any i > 0.

Denote by C0
LA and C∞

L A the substacks of A with the same objects as A
and morphisms C0

LHomA and
⋃
iC

i
LHomA, respectively. Note that C0

LA
is an L-linear stack and C∞

L A is an R-linear stack.
An R-algebroid A is an R-linear stack which is locally non empty and

locally connected by isomorphisms. Thus, an algebroid is to a sheaf of
algebras as a gerbe is to a sheaf of groups. For p ∈ A(U), set Ap =
EndA(p). Then A|U is equivalent to the full substack of Mod(Aop

p ) whose
objects are locally free modules of rank one. (Here Aop

p denotes the
opposite ring of Ap.) Moreover, there is an equivalence Mod(A|U) '
Mod(Ap). One says that A is represented by an R-algebra A if A ' Ap
for some p ∈ A(X). The R-algebroid A is called invertible if Ap ' R|U
for any U ⊂ X and any p ∈ A(U).

The pull-back and tensor product of algebroids are still algebroids.
The following lemma is obvious.
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Lemma 1.1.1. Let A be an R-algebroid endowed with an action of L.
If C0

LA is locally connected by isomorphisms, then C0
LA and C∞

L A are
algebroids.

1.2. Algebroid data. Let R-Alg be the stack on X with R-algebras as
objects and R-algebra homomorphisms as morphisms.

Definition 1.2.1. An R-algebroid data is a triple (P,Φ, `) with P a
gerbe, Φ: P −→ R-Alg a functor of prestacks and ` a collection of liftings
of group homomorphisms

(1.2.1)

Φ(p)×

Ad
��

EndP(p)
Φ //

`p
77oooooooooooo

AutR-Alg(Φ(p))

∀U ⊂ X, ∀p ∈ P(U),

compatible with restrictions and such that for any g ∈ HomP(p′, p) and
any φ′ ∈ EndP(p′) one has

(1.2.2) `p(gφ
′g−1) = Φ(g)(`p′(φ

′)).

Note that condition (1.2.2) ensures compatibility with the equality
Φ(gφ′g−1) = Φ(g)Φ(φ′)Φ(g−1).

Remark 1.2.2. Denote by Grp the stack on X with sheaves of groups
as objects and group homomorphisms as morphisms. The R-algebroid
data (P,Φ, `) induce three natural functors E,A, F : P −→ Grp defined
by E(p) = EndP(p), A(p) = Aut(Φ(p)) and F (p) = Φ(p)× for p ∈ P.
In all three cases, a morphism p′ −→ p is sent to its adjoint. Then the
commutative diagram (1.2.1) corresponds to a commutative diagram of
transformations of functors

F

Ad
��

E
Φ

//

`

::ttttttttttt
A.

Remark 1.2.3. There is a natural interpretation of R-algebroid data in
terms of 2-categories (refer to [18, §9], where 2-categories are called bi-
categories). Denote by R-Alg the 2-prestack on X obtained by enriching
R-Alg with set of 2-arrows f ′ ⇒ f given by

{b ∈ A; bf ′(a′) = f(a′)b, ∀a′ ∈ A′},
for two R-algebra morphisms f, f ′ : A′ −→ A. In particular, f ' f ′ if and
only if f ′ = Ad(b)f for some b ∈ A×. The R-algebroid data (P,Φ, `) is
equivalent to the data of the lax functor of 2-prestacks

Φ : P −→ R-Alg,

where P has trivial 2-arrows and Φ is obtained by enriching Φ at the level
of 2-arrows by Φ(idg′−→g) = `p(g

′g−1) for a morphism g′ −→ g in P(p).
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We will prove in the next proposition that the following description
associates an R-prestack A0 to the data (P,Φ, `).

(i) For an open subset U ⊂ X, objects of A0(U) are the same as
those of P(U).

(ii) For p, p′ ∈ A0(U), the sheaf of morphisms is defined by

HomA0(p
′, p) = Φ(p)

EndP(p)

× HomP(p′, p).

This means that morphisms p′ −→ p in A0 are equivalence classes
[a, g] of pairs (a, g) with a ∈ Φ(p) and g : p′ −→ p in P, for the
relation

(a, φg) ∼ (a`p(φ), g), ∀φ ∈ EndP(p).

(iii) Composition of [a, g] : p′ −→ p and [a′, g′] : p′′ −→ p′ is given by

[a, g] ◦ [a′, g′] = [ag(a′), gg′].

Here we set for short g(a′) = Φ(g)(a′).
(iv) For two morphisms [a, g], [a′, g′] : p′ −→ p and r ∈ R, the R-linear

structure of A0 is given by

r[a, g] = [ra, g], [a, g] + [a′, g′] = [a+ a′`p(g
′g−1), g].

(v) The restriction functors are the natural ones.

Proposition 1.2.4. Let (P,Φ, `) be an R-algebroid data. The descrip-
tion (i)–(v) above defines a separatedR-prestack A0 on X. The associated
stack A is an R-algebroid endowed with a functor J : P −→ A such that
EndA(J(p)) ' Φ(p) for any p ∈ P.

Proof. (a) Let us show that the composition is well defined. Consider
two composable morphisms [a, g] : p′ −→ p and [a′, g′] : p′′ −→ p′. At the
level of representatives, set (a, g) ◦ (a′, g′) = (ag(a′), gg′).

(a-i) Let us show that for φ ∈ EndP(p) we have

(a, φg) ◦ (a′, g′) ∼ (a`p(φ), g) ◦ (a′, g′).

For this, we have to check that

(aφ(g(a′)), φgg′) ∼ (a`p(φ)g(a′), gg′).

This follows from

a`p(φ)g(a′) = aφ(g(a′))`p(φ).

(a-ii) Similarly, for φ′ ∈ EndP(p′) we have to prove that

(a, g) ◦ (a′, φ′g′) ∼ (a, g) ◦ (a′`p′(φ
′), g′).

In other words, we have to check that

(ag(a′), gφ′g′) ∼ (ag(a′`p′(φ
′)), gg′).
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This follows from gφ′g′ = (gφ′g−1)gg′ and

ag(a′`p′(φ
′)) = ag(a′)g(`p′(φ

′)) = ag(a′)`p(gφ
′g−1),

where the last equality is due to (1.2.2).

(a-iii) Associativity is easily checked.

(b) The R-linear structure is well defined by an argument similar to that
in part (a) above.

(c) The functor J : P −→ A is induced by the functor J0 : P −→ A0 defined
by p 7→ p on objects and g 7→ [1, g] on morphisms. The morphism Φ(p) −→
EndA(J(p)), a 7→ [a, id] has an inverse given by [a, g] 7→ a`p(g). �

Note that the functor J : P −→ A is neither faithful nor full, in general.

Remark 1.2.5. For an R-algebroid A, denote by A× the gerbe with the
same objects as A and isomorphisms as morphisms. Then A is the R-
algebroid associated with the data (A×,ΦA, `), where ΦA(p) = EndA(p)
and `p is the identity.

Example 1.2.6. Let X be a complex manifold and OX its structure
sheaf. To an invertible OX-module L one associates an invertible Z/2Z-
gerbe PL⊗1/2 defined as follows.

(i) Objects on U are pairs (F , f) where F is an invertible OU -module

and f : F⊗2 ∼−→ L is an OU -linear isomorphism.
(ii) If (F ′, f ′) is another object, a morphism (F ′, f ′) −→ (F , f) is an

OU -linear isomorphism ϕ : F ′ ∼−→ F , such that f ′ = fϕ⊗2.

Note that any ψ ∈ EndPL⊗1/2

(
(F , f)

)
is a locally constant Z/2Z-valued

function. Denote by CL⊗1/2 the invertible C-algebroid associated with
the data (PL⊗1/2 ,Φ, `), where Φ

(
(F , f)

)
= CU , Φ(ϕ) = id, `(F ,f)(ψ) = ψ.

2. Contactification of symplectic manifolds

We first review here some notions from contact and symplectic geom-
etry. In particular, we discuss the gerbe parameterizing the primitives
of the symplectic 2-form. Then, we show how any Lagrangian subvari-
ety of a complex symplectic manifold can be uniquely lifted to a local
contactification.

2.1. The gerbe of primitives. Let X be a complex manifold and OX
its structure sheaf. Denote by TX and T ∗X the tangent and cotangent
bundle, respectively, and by ΘX and Ω1

X their sheaves of sections. For
k ∈ Z denote by Ωk

X the sheaf of holomorphic k-forms. For v ∈ ΘX

denote by iv : Ωk
X −→ Ωk−1

X the inner derivative and by Lv : Ωk
X −→ Ωk

X the
Lie derivative.

Let ω ∈ Γ (X; Ω2
X) be a 2-form which is closed, i.e. dω = 0.
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Definition 2.1.1. The gerbe C′ω on X is the stack associated with the
separated prestack defined as follows.

(1) Objects on U ⊂ X are primitives of ω|U , i.e. 1-forms θ ∈ Γ (U ; Ω1
X)

such that dθ = ω|U .
(2) If θ′ is another object, a morphism θ′ −→ θ is a function ϕ ∈

Γ (U ;OX) such that dϕ = θ′ − θ. Composition with ϕ′ : θ′′ −→ θ′

is given by ϕ ◦ ϕ′ = ϕ+ ϕ′.

The following result is clear.

Lemma 2.1.2. (i) The stack C′ω is an invertible C-gerbe.
(ii) If ω′ ∈ Ω2

X(X) is another closed 2-form, there is an equivalence

C′ω
C
×C′ω′

∼−→ C′ω+ω′ .

Here, for a commutative sheaf of groups G, P
G
×Q denotes the con-

tracted product of two G-gerbes. This is the stack associated to the
prestack whose objects are pairs (p, q) of an object of P and an object of
Q, with morphisms

Hom
P
G
×Q

(
(p, q), (p′, q′)

)
= HomP(p, p′)

G
×HomQ(q, q′).

For a principal C-bundle ρ : Y −→ X, denote

Tλ : Y −→ Y, va = d
dλ
Tλ

∣∣
λ=0
∈ ΘY

the action of λ ∈ C and the infinitesimal generator of the C-action,
respectively.

Definition 2.1.3. The gerbe Cω on X is defined as follows.

(1) Objects on U ⊂ X are pairs ρ = (V
ρ−→ U, α) of a principal C-

bundle ρ and a 1-form α ∈ Γ (V ; Ω1
V ) such that ivaα = 1 and

ρ∗ω = dα. In particular, Lvaα = 0.

(2) For another object ρ′ = (V ′ ρ′−→ U, α′), morphisms χ : ρ′ −→ ρ are
morphisms of principal C-bundles such that χ∗α = α′.

Denote by p1 : X×C p1−→ X the trivial principal C-bundle given by the
first projection. Let t be the coordinate of C. For a primitive θ of ω, an
object of Cω is given by (p1, p

∗
1θ + dt). By the next lemma, any object ρ

of Cω is locally of this form and any automorphism of ρ is locally of the
form Tλ, for λ ∈ C. (See [16, Remark 9.3] for similar observations.)

Lemma 2.1.4. There is a natural equivalence C′ω
∼−→ Cω. In particular,

Cω is an invertible C-gerbe.

Proof. As above, denote by p1 : X × C p1−→ X the first projection and
by t the coordinate of C. Consider the functor B : C′ω −→ Cω given by
θ 7→ (p1, p

∗
1θ + dt) on objects and ϕ 7→

(
(x, t) 7→ (x, t + ϕ(x))

)
on

morphisms.
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As B is clearly faithful, we are left to prove that it is locally full and

locally essentially surjective. For the latter, let ρ = (V
ρ−→ U, α) be an

object of Cω(U). Up to shrinking U , we may assume that the bundle ρ is
trivial. Choose an isomorphism of principal C-bundles ξ : U×C −→ V . As
iva(ξ

∗α−dt) = Lva(ξ
∗α−dt) = 0, there exists a unique 1-form θ ∈ Ω1

X(U)
such that ξ∗α− dt = p∗1θ. Then ω|U = dθ and ρ ' B(θ).

It remains to show that any morphism χ : ρ′ −→ ρ of Cω(U) is in the
image of B. Up to shrinking U , we may assume that ρ = (p1, p

∗
1θ + dt)

and ρ′ = (p1, p
∗
1θ
′ + dt). Then χ : X × C −→ X × C is given by (x, t) 7→

(x, t + ϕ(x)) for some ϕ ∈ OX(U). Since χ∗(p∗1θ + dt) = p∗1θ
′ + dt, it

follows that dϕ = θ′ − θ. Hence χ = B(ϕ). �

Let R be a commutative ring endowed with a group homomorphism
` : C −→ R×.

Definition 2.1.5. The stack Rω is the invertible R-algebroid associated
with the data (Cω,ΦR, `), where

ΦR(ρ) = RU , ΦR(χ) = idRU
, `ρ(Tλ) = `(λ),

for ρ = (V
ρ−→ U, α), χ : ρ′ −→ ρ and λ ∈ C.

Note that by Lemma 2.1.2 there is an R-linear equivalence

Rω ⊗RX
Rω′

∼−→ Rω+ω′ .

Remark 2.1.6. Equivalence classes of invertible C-gerbes and of invert-
ible R-algebroids are classified byH2(X; C) and H2(X;R×), respectively.
The class of Cω coincides with the de Rham class [ω] of the closed 2-form
ω, and the class of Rω is the image of [ω] by ` : H2(X; C) −→ H2(X;R×).

2.2. Symplectic manifolds. A complex symplectic manifoldX = (X,ω)
is a complex manifold X of even dimension endowed with a holomorphic
closed 2-form ω ∈ Γ (X; Ω2

X) which is non-degenerate, i.e. the n-fold ex-
terior product ω ∧ · · · ∧ ω never vanishes for n = 1

2
dimX.

Let H : Ω1
X

∼−→ ΘX be the Hamiltonian isomorphism induced by the
symplectic form ω. The Lie bracket of ϕ, ϕ′ ∈ OX is given by {ϕ, ϕ′} =
Hϕ(ϕ

′), where Hϕ = H(dϕ) is the Hamiltonian vector field of ϕ.

Example 2.2.1. Let M be a complex manifold. Its cotangent bundle
T ∗M has a natural symplectic structure (T ∗M,dθ), where θ denotes the
canonical 1-form. Let (x) = (x1, . . . , xn) be a system of local coordinates
on M . The associated system (x;u) of local symplectic coordinates on
T ∗M is given by p =

∑
i ui(p)dxi. Then the canonical 1-form is written

θ =
∑

i uidxi and the Hamiltonian vector field of ϕ ∈ OM is written
Hϕ =

∑
i

(
ϕui

∂xi
− ϕxi

∂ui

)
.
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An analytic subset Λ ⊂ X is called involutive if for any f, g ∈ OX
with f |Λ = g|Λ = 0 one has {f, g}|Λ = 0. The analytic subset Λ is called
Lagrangian if it is involutive and dimX = 2 dim Λ.

Let X ′ = (X ′, ω′) be another symplectic manifold. A symplectic trans-
formation ψ : X ′ −→ X is a holomorphic isomorphism such that ψ∗ω = ω′.

By Darboux theorem, for any complex symplectic manifold X there
locally exist symplectic transformations

(2.2.1) X ⊃ U
ψ−→ UM ⊂ T ∗M,

for a complex manifold M with dimM = 1
2
dimX.

2.3. Contact manifolds. Let γ : Z −→ Y be a principal C×-bundle over
a complex manifold Y . Denote by vm the infinitesimal generator of the
C×-action on Z. For k ∈ Z, let OZ(k) be the sheaf of k-homogeneous
functions, i.e. solutions ϕ ∈ OZ of vmϕ = kϕ. Let OY (k) = γ∗OZ(k) be
the corresponding invertible OY -module, so that OY (−1) is the sheaf of
sections of the line bundle C×C× Z.

A complex contact manifold Y = (Z
γ−→ Y, θ) is a complex manifold

Y endowed with a principal C×-bundle γ and a holomorphic 1-form θ ∈
Γ (Z; Ω1

Z) such that (Z, dθ) is a complex symplectic manifold, ivmθ = 0
and Lvmθ = θ, i.e. θ is 1-homogeneous.

Example 2.3.1. Let M be a complex manifold and θ the canonical 1-
form on T ∗M as in Example 2.2.1. The projective cotangent bundle
P ∗M has a natural contact structure (γ, θ) with γ : T ∗M \M −→ P ∗M
the projection. Here T ∗M \M denotes the cotangent bundle with the
zero-section removed.

Note that the 1-form θ on Z may be considered as a global section of
Ω1
Y ⊗O OY (1). In particular, there is an embedding

(2.3.1) ι : OY (−1) −→ Ω1
Y , ϕ 7→ ϕθ.

Note also that the symplectic manifold Z is homogeneous with respect
to the C×-action, i.e. θ = ivm(dθ). Moreover, there exists a unique C×-
equivariant embedding Z ↪→ T ∗Y such that θ is the pull-back of the
canonical 1-form on T ∗Y .

Since dθ is 1-homogeneous, the Hamiltonian vector field Hϕ of ϕ ∈
OZ(k) is (k − 1)-homogeneous, i.e. [vm, Hϕ] = (k − 1)Hϕ.

An analytic subset Γ of Y is called involutive (resp. Lagrangian) if
γ−1Γ is involutive (resp. Lagrangian) in Z.
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Let Y ′ = (Z ′
γ′−→ Y ′, θ′) be another contact manifold. A contact trans-

formation χ : Y ′ −→ Y is an isomorphism of principal C×-bundles

Z ′
eχ //

γ′

��

Z

γ

��
Y ′ χ // Y

such that χ̃∗θ = θ′.
By Darboux theorem, for any complex contact manifold Y there locally

exist contact transformations

(2.3.2) Y ⊃ V
χ−→ VM ⊂ P ∗M,

for a complex manifold M with dimM = 1
2
(dimY + 1).

2.4. Contactifications. Let X = (X,ω) be a complex symplectic man-
ifold. A contactification of X is a global object of the stack Cω described
in Definition 2.1.3. Morphisms of contactifications are morphisms in Cω.

For a contactification ρ = (Y
ρ−→ X,α) of X, the total space Y of ρ

has a natural complex contact structure given by (Y × C× q1−→ Y, τ q∗1α),
where q1 is the first projection and τ ∈ C×. Note that, in terms of
contact structures, a morphism ρ′ −→ ρ of contactifications is a contact
transformation χ : Y ′ −→ Y over X.

Example 2.4.1. Let M be a complex manifold and denote by (t; τ) the
symplectic coordinates of T ∗C. Consider the principal C-bundle

P ∗(M × C) ⊃ {τ 6= 0} ρ−→ T ∗M, (x, t; ξ, τ) 7→ (x; ξ/τ),

with the C-action given by translation in the t variable. Note that the
bundle ρ is trivialized by

χ : {τ 6= 0} ∼−→ (T ∗M)× C, (x, t; ξ, τ) 7→ ((x; ξ/τ), t).

Consider the projection p1 : (T ∗M)× C −→ T ∗M .
As in Example 2.2.1, denote by θ the canonical 1-form of T ∗M . Then

a contactification of (T ∗M,dθ) is given by (ρ, α), with ρ as above and
α = χ∗(p∗1θ + dt). In a system (x;u) of local symplectic coordinates on
T ∗X, one has θ = u dx and α = (ξ/τ)dx + dt. As the canonical 1-form
of T ∗(M × C) is τα = ξ dx+ τ dt, the map (2.3.1) is given by

ι : OP ∗(M×C)(−1)|{τ 6=0} −→ Ω1
P ∗(M×C)|{τ 6=0}, ϕ 7→ ϕ τα.

2.5. Contactification of Lagrangian subvarieties. In this section we
show how any Lagrangian subvariety of a complex symplectic manifold
lifts to a contactification (see e.g. [3, Lemma 8.4] for the case of La-
grangian submanifolds).

Let us begin with a preliminary lemma.
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Lemma 2.5.1. Let M be a complex manifold, S ⊂ M a closed analytic
subset and θ ∈ Ω1

M a 1-form such that dθ|Sreg = 0. Then there locally
exists a continuous function f , on S such that f is holomorphic on the
non-singular locus Sreg, and df |Sreg = θ|Sreg.

Proof. Let S ′ −→ S be a resolution of singularities and let p : S ′ −→M be
the composite S ′ −→ S ↪→M . Thus S ′ is a complex manifold, p is proper
and p−1(Sreg) −→ Sreg is an isomorphism. Consider the global section
θ′ = p∗θ of Ω1

S′ . As dθ|Sreg = 0 and p−1(Sreg) is dense in S ′, we have
dθ′ = 0.

Fix a point s0 ∈ S and set S ′0 = p−1(s0). Since θ′|(S′0)reg = 0, there
exists a unique holomorphic function f ′ defined on a neighborhood of
S ′0 such that df ′ = θ′ and f ′|S′0 = 0. As p is proper, replacing M by a
neighborhood of s0 we may assume that f ′ is globally defined on S ′.

Set S ′′ = S ′ ×S S ′ and S ′′0 = S ′0 ×S S ′0. We may assume that S ′′0
intersects each connected component of S ′′. Consider the diagram

S ′′reg
q // S ′′

p2
//

p1 //
S ′

p // M,

where p1 and p2 are the projections S ′ ×S S ′ −→ S ′. To conclude, it
is enough to prove that g = p∗1f

′ − p∗2f
′ vanishes, for then we can set

f(w) = f ′(w′) with p(w′) = w.
Since pp1 = pp2, one has dq∗g = d(pp1q)

∗θ− d(pp2q)
∗θ = 0 so that g is

locally constant on S ′′reg. Hence g is locally constant by Sublemma 2.5.2
below with T = S ′′ and U = S ′′reg. Since g vanishes on S ′′0 , it vanishes
everywhere. �

Sublemma 2.5.2. Let T be a Hausdorff topological space and U ⊂ T a
dense open subset. Assume there exists a basis B of open subsets of T
such that any B ∈ B is connected and B ∩U has finitely many connected
components. If a continuous function on T is locally constant on U , then
it is locally constant on T .

Let now X = (X,ω) be a complex symplectic manifold.

Proposition 2.5.3. Let Λ be a Lagrangian subvariety of X. Then there
exist a neighborhood U of Λ in X and a pair (ρ,Γ) with ρ : V −→ U a
contactification and Γ a Lagrangian subvariety of V such that ρ|Γ is a
homeomorphism over Λ and a holomorphic isomorphism over Λreg.

Proof. Let {Ui}i∈I be an open cover of Λ in X such that for each i ∈
I there is a primitive θi ∈ Ω1

X(Ui) of ω|Ui
. Set Λi = Λ ∩ Ui. Using

Lemma 2.5.1, up to shrinking the cover we may assume that there is a
continuous function fi on Λi such that fi|Λi,reg

is a primitive of θi|Λi,reg
.

Set Uij = Ui ∩ Uj and similarly for Λij. Up to further shrinking the
cover we may assume that Λij intersects each connected component of
Uij and there is a function ϕij ∈ OX(Uij) such that dϕij = θi − θj|Uij
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and ϕij|Λij,reg
= fi − fj|Λij,reg

. Set Uijk = Ui ∩ Uj ∩ Uk and similarly for
Λijk. Note that d(ϕij + ϕjk + ϕki) = 0, so that ϕij + ϕjk + ϕki is locally
constant on Uijk. Since it vanishes on Λijk, it vanishes everywhere.

Set ρi = (Vi
p1−→ Ui, αi), where Vi = Ui × C and αi = p∗1θi + dt. Let

(ρi,Γi) be the pair with

Γi = {(x, t) ∈ Vi; x ∈ Λi, t+ fi(x) = 0}.

Then the pair (ρ,Γ) is obtained by patching the (ρi,Γi)’s via the maps
(x, t) 7→ (x, t+ ϕij(x)). �

Let us give an example that shows how, in general, Γ and Λ are not
isomorphic as complex spaces.

Example 2.5.4. Let X = (T ∗C, dθ) with symplectic coordinates (x;u),
and Y = (X × C, α) with extra coordinate t. Then θ = u dx and α =
u dx+ dt. Take as Λ ⊂ X a parametric curve Λ = {(x(s), u(s)); s ∈ C},
with x(0) = u(0) = 0. Then

Γ = {(x, u, t); x = x(s), u = u(s), t+ f(s) = 0},

where f satisfies the equations f ′(s) = u(s)x′(s) and f(0) = 0. For

x(s) = s3, u(s) = s7 + s8, f(s) = 3
10
s10 + 3

11
s11,

we have an example where f cannot be written as an analytic function
of (x, u). In fact, s11 = 11x(s)u(s)− 110

3
f(s) and s11 /∈ C[[s3, s7 + s8]].

3. Holonomic modules on symplectic manifolds

We start by giving here a construction of the microdifferential algebroid
of [6] in terms of algebroid data and by recalling some results on regular
holonomic microdifferential modules. Then, using the results from the
previous section, we show how it is possible to associate to a complex
symplectic manifold a natural C-linear category of holonomic modules.

3.1. Microdifferential algebras. Let us review some notions from the
theory of microdifferential operators (refer to [17, 7]).

Let M be a complex manifold. Denote by EM the sheaf on P ∗M of
microdifferential operators, and by FkEM its subsheaf of operators of
order at most k ∈ Z. Then EM is a sheaf of C-algebras on P ∗M , filtered
over Z by the FkEM ’s.

Take a local symplectic coordinate system (x; ξ) on T ∗M . For an open
subset U ⊂ T ∗M , a section a ∈ Γ (U ;FkEM) is represented by its total
symbol, which is a formal series

a(x, ξ) =
∑
j≤k

aj(x, ξ), aj ∈ Γ (U ;OP ∗M(j))
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satisfying suitable growth conditions. In terms of total symbols, the
product in EM is given by Leibniz rule. More precisely, for a′ ∈ EM with
total symbol a′(x, ξ), the product aa′ has total symbol∑

J∈Nn

1

J !
∂Jξ a(x, ξ)∂

J
xa

′(x, ξ).

For a ∈ FkEM , the top degree component ak ∈ OP ∗M(k) of its total
symbol does not depend of the choice of coordinates. The map

σk : FkEM −→ OP ∗M(k), a 7→ ak

induced by the isomorphism FkEM/Fk−1EM ' OP ∗M(k) is called the
symbol map. Recall that an operator a ∈ FkEM \Fk−1EM is invertible at
p ∈ P ∗M if and only if σk(a)(p) 6= 0.

For a ∈ FkEM and a′ ∈ Fk′EM , one has

{σk(a), σk′(a′)} = σk+k′−1([a, a
′]).

An anti-involution of EM is an isomorphism of C-algebras ∗ : EM −→ Eop
M

such that ∗∗ = id.

Remark 3.1.1. In a local system of symplectic coordinates, an example
of anti-involution ∗ of EM is given by the formal adjoint. This is described
at the level of total symbols by

a∗(x, ξ) =
∑
J∈Nn

1

J !
∂Jξ ∂

J
x

(
a(x,−ξ)

)
.

The formal adjoint depends on the choice of the top-degree form dx1 ∧
· · · ∧ dxn.

Consider a contact transformation

P ∗M ′ ⊃ V ′ χ−→ V ⊂ P ∗M

where M,M ′ are complex manifolds with the same dimension. It is a
fundamental result of [17] that quantized contact transformations can be
locally quantized.

Theorem 3.1.2. With the above notations:

(i) Any C-algebra isomorphism f : χ∗EM ′|V
∼−→ EM |V is a filtered iso-

morphism, and σk(f(a′)) = χ∗σk(a
′) for any a′ ∈ FkEM ′.

(ii) For any p ∈ V there exists a neighborhood U of p in V and a

C-algebra isomorphism f : χ∗EM ′|U
∼−→ EM |U .

(iii) Let ∗ and ∗′ be anti-involutions of EM |V and EM ′|V ′, respectively.
For any p ∈ V there exists a neighborhood U of p in V and a
C-algebra isomorphism f as in (ii) such that f∗′ = ∗f .

An isomorphism f as in (ii) is called a quantized contact transforma-
tion over χ. Quantized contact transformations over χ are not unique.
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It was noticed in [6] that one can reduce the ambiguity to an inner au-
tomorphism by considering anti-involutions as in (iii) (see Lemma 3.2.4
below).

The C-algebra EM is left and right Noetherian. It is another fundamen-
tal result of [17] that the support of a coherent EM -module is a closed
involutive subvariety of P ∗M . A coherent EM -module supported by a
Lagrangian subvariety is called holonomic. We refer e.g. to [7] for the
notion of regular holonomic EM -module.

3.2. Microdifferential algebroid. Let Y be a complex contact mani-
fold.

Definition 3.2.1. A microdifferential algebra E on Y is a sheaf of C-
algebras such that, locally on Y , there is a C-algebra isomorphism E|V '
χ−1EM in a Darboux chart (2.3.2).

Since any C-algebra automorphism of EM is filtered and symbol pre-
serving, it follows that a microdifferential algebra E on Y is filtered and
has symbol maps

σk : FkE −→ OY (k).

Example 3.2.2. Let Y = P ∗M be the projective cotangent bundle to
a complex manifold M and denote by ΩM = ΩdimM

M the invertible OM -
module of top-degree forms. Consider the algebra of twisted microdiffer-
ential operators

E
Ω
⊗1/2
M

= Ω
⊗1/2
M ⊗OM

EM ⊗OM
Ω
⊗−1/2
M .

Then E
Ω
⊗1/2
M

is a microdifferential algebra on P ∗M , and the formal adjoint

∗ of Remark 3.1.1 gives a canonical anti-involution of E
Ω
⊗1/2
M

.

Definition 3.2.3. The gerbe PY on Y is defined as follows.

(1) For an open subset V ⊂ Y , objects of PY (V ) are pairs p = (E , ∗)
of a microdifferential algebra E on V and an anti-involution ∗ of
E .

(2) If p′ = (E ′, ∗′) is another object,

HomPY
(p′, p) = {f ∈ IsomC-Alg(E ′, E); f∗′ = ∗f}.

(The fact that the stack of groupoids PY is a gerbe follows from The-
orem 3.1.2.)

Lemma 3.2.4 ([6, Lemma 1]). For any p = (E , ∗) ∈ PY there is an
isomorphism of sheaves of groups

ψ : {b ∈ E×; b∗b = 1, σ0(b) = 1} ∼−→ EndPY
(p), b 7→ Ad(b).

By this lemma, we have a natural C-algebroid data on Y , and hence
a C-algebroid.
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Definition 3.2.5. The microdifferential algebroid EY is the C-algebroid
associated to (PY ,ΦE, `) where

ΦE(p) = E , ΦE(f) = f, `p(g) = b,

for p = (E , ∗), f : p′ −→ p and g = ψ(b).

By the construction in § 1.2, this means that objects of EY are microd-
ifferential algebras (E , ∗) endowed with an anti-involution. Morphisms
(E ′, ∗′) −→ (E , ∗) in EY are equivalence classes of pairs (a, f) with a ∈ E
and f : E ′ ∼−→ E such that f∗′ = ∗f . The equivalence relation is given by
(a,Ad(b)f) ∼ (ab, f) for b ∈ E× with b∗b = 1 and σ0(b) = 1.

Remark 3.2.6. Let Y = P ∗M be the projective cotangent bundle to
a complex manifold M . With notations as in Example 3.2.2, a global
object of EP ∗M is given by (E

Ω
⊗1/2
M

, ∗). This implies that the algebroid

EP ∗M is represented by the microdifferential algebra E
Ω
⊗1/2
M

.

3.3. Holonomic modules on contact manifolds. Let Y = (Z
γ−→

Y, θ) be a complex contact manifold. Consider the stack Mod(EY ) of
modules over the microdifferential algebroid EY . For a subset S ⊂ Y ,
denote by ModS(EY ) the full substack of Mod(EY ) of objects supported
on S. By construction, EY is locally represented by microdifferential alge-
bras. As the notions of coherent and regular holonomic microdifferential
modules are local and invariant by quantized contact transformations,
they make sense also for objects of Mod(EY ). Denote by Modcoh(EY ) and
Modrh(EY ) the full substacks of Mod(EY ) whose objects are coherent and
regular holonomic, respectively.

Let R be an invertible C-algebroid R. Then Mod(R) is locally equiv-
alent to Mod(CY ). Hence the notion of local system makes sense for
objects of Mod(R). Denote by LocSys(R) the full substack of Mod(R)
whose objects are local systems.

Consider the invertible C-algebroid C
Ω
⊗1/2
Λ

on Λ as in Example 1.2.6.

By [6, Proposition 4] (see also [3, Corollary 6.4]), one has

Proposition 3.3.1. For a smooth Lagrangian submanifold Λ ⊂ Y there
is an equivalence

ModΛ,rh(EY ) ' p∗LocSys(p−1C
Ω
⊗1/2
Λ

),

where p : γ−1Λ −→ Λ is the restriction of γ : Z −→ Y .

Recall that a C-linear triangulated category T is called Calabi-Yau of
dimension d if for each M,N ∈ T the vector spaces HomT(M,N) are
finite-dimensional and there are isomorphisms

HomT(M,N)∨ ' HomT(N,M [d]),

functorial in M and N . Here H∨ denotes the dual of a vector space H.
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Denote by Db
rh(EY ) the full triangulated subcategory of the bounded

derived category of EY -modules whose objects have regular holonomic
cohomologies.

The following theorem is obtained in [11]1 as a corollary of results from
[8].

Theorem 3.3.2. If Y is compact, then Db
rh(EY ) is a C-linear Calabi-Yau

triangulated category of the same dimension as Y .

3.4. Holonomic modules on symplectic manifolds. LetX = (X,ω)
be a complex symplectic manifold and Λ ⊂ X a closed Lagrangian sub-
variety. By Proposition 2.5.3 there exists a neighborhood U ⊃ Λ, a
contactification ρ : V −→ U and a closed Lagrangian subvariety Γ ⊂ V
such that ρ induces an isomorphism Γ −→ Λ. Let us still denote by ρ the
composition V −→ U −→ X. We set

RHX,Λ = ρ∗ModΓ,rh(EV ),

DRHΛ(X) = Db
Γ,rh(EV ).

By unicity of the pair (ρ,Γ), the stack RHX,Λ and the triangulated cate-
gory DRHΛ(X) only depend on Λ.

For Λ ⊂ Λ′, there are natural fully faithful, exact functors

RHX,Λ −→ RHX,Λ′ , DRHΛ(X) −→ DRHΛ′(X).

The family of closed Lagrangian subvarieties of X, ordered by inclusion,
is filtrant.

Definition 3.4.1. (i) The stack of regular holonomic microdifferen-
tial modules on X is the C-linear abelian stack defined by

RHX = lim−→
Λ

RHX,Λ.

(ii) The triangulated category of complexes of regular holonomic mi-
crodifferential modules on X is the C-linear triangulated category
defined by

DRH(X) = lim−→
Λ

DRHΛ(X).

As a corollary of Proposition 3.3.1, we get

Theorem 3.4.2. For a closed smooth Lagrangian submanifold Λ ⊂ X,
there is an equivalence

RHX,Λ ' p1∗LocSys(p−1
1 C

Ω
⊗1/2
Λ

),

where p1 : Λ× C× −→ Λ is the projection.

1The statement in [11, Theorem 9.2 (ii)] is not correct. It should be read as
Theorem 3.3.2 in the present paper
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Remark 3.4.3. When X is reduced to a point, the category of regular
holonomic microdifferential modules on X is equivalent to the category
of local systems on C×.

As a corollary of Theorem 3.3.2, we get

Theorem 3.4.4. If X is compact, then DRH(X) is a C-linear Calabi-
Yau triangulated category of dimension dimX + 1.

4. Quantization algebroid

In this section, we first recall the construction of the deformation-
quantization algebroid of [16] in terms of algebroid data. Then, with the
same data, we construct a new C-algebroid where the deformation param-
eter ~ is no longer central. Its centralizer is related to the deformation-
quantization algebroid through a twist by the gerbe parameterizing the
primitives of the symplectic 2-form.

4.1. Quantization data. Let X be a complex symplectic manifold. Let

ρ = (Y
ρ−→ X,α) be a contactification of X and E a microdifferential

algebra on Y .

Definition 4.1.1. A deformation parameter is an invertible section ~ ∈
F−1E such that ι(σ−1(~)) = α, under the embedding (2.3.1).

Example 4.1.2. Let (t; τ) be the symplectic coordinates on T ∗C. Recall
from Example 2.4.1 the contactification of the conormal bundle T ∗M to
a complex manifold M given by

P ∗(M × C) ⊃ {τ 6= 0} ρ−→ T ∗M.

In this case the condition ι(σ−1(~)) = α reads σ−1(~) = τ−1. Denote by
∂t ∈ F1EC the operator with total symbol τ . It induces a deformation
parameter ~ = ∂−1

t in EM×C.

Recall that Tλ : Y −→ Y (for λ ∈ C) denotes the C-action on Y and va

denotes its infinitesimal generator. Note that

ad(~−1) = d
dλ

Ad(eλ~−1

)|λ=0

is a C-linear derivation of E inducing va on symbols. This derivation is
integrable, and induces the isomorphism

eλAd(~−1) = Ad(eλ~−1

) : (T−λ)∗E
∼−→ E .

This is a quantized contact transformation over T−λ.

Definition 4.1.3. The gerbe PX on X is defined as follows.

(1) Objects on U ⊂ X are quadruples q = (ρ, E , ∗, ~) of a contac-

tification ρ = (V
ρ−→ U, α), a microdifferential algebra E on V ,

an anti-involution ∗ of E and a deformation parameter ~ ∈ F−1E
such that ~∗ = −~.
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(2) If q′ = (ρ′, E ′, ∗′, ~′) is another object,

HomPX
(q′, q) = {(χ, f); χ ∈ HomCω(ρ′, ρ), f ∈ IsomC-Alg(χ∗E ′, E),

f∗′ = ∗f, f(~′) = ~},

with composition given by (χ, f) ◦ (χ′, f ′) =
(
χχ′, f(χ∗f

′)
)
.

Note that Ad(eλ~−1
) commutes with ∗ for λ ∈ C, since ~∗ = −~.

Remark 4.1.4. Let M be a complex manifold. With notations as in
Example 4.1.2, the operator ∂t ∈ F1EC induces a deformation parameter
~ = ∂−1

t in the algebra E
Ω
⊗1/2
M×C

of twisted microdifferential operators.

Hence PT ∗M has a global object given by

(ρ, E
Ω
⊗1/2
M×C

∣∣
{τ 6=0}, ∗, ∂

−1
t ),

with ∗ the anti-involution given by the formal adjoint.

Lemma 4.1.5 ([16, Lemma 5.4]). For any q = (ρ, E , ∗, ~) ∈ PX(U)
there is an isomorphism of sheaves of groups

ψ : CU × {b ∈ ρ∗F0E×; [~, b] = 0, b∗b = 1, σ0(b) = 1} ∼−→ EndPX
(q)

given by ψ(µ, b) =
(
Tµ,Ad(beµ~−1

)
)
.

One could now try to mimic the construction of the microdifferential
algebroid EY in order to get an algebroid from the algebras ρ∗E . This
fails because the automorphisms of (ρ, E , ∗, ~) are not all inner, an outer

automorphism being given by Ad(eλ~−1
) for λ ∈ C.

There are two natural ways out: consider subalgebras where Ad(eλ~−1
)

acts as the identity, or consider bigger algebras where Ad(eλ~−1
) becomes

inner. The first solution, utilized in [16] to construct the deformation-
quantization algebroid, is recalled in section 4.2. The second solution is
presented in section 4.3, and will allow us to construct the quantization
algebroid.

4.2. Deformation-quantization algebroid. Let X be a complex sym-
plectic manifold. We can now describe the deformation-quantization al-
gebroid of [16] in terms of algebroid data.

Let ρ = (Y
ρ−→ X,α) be a contactification of X. Let E be a microdiffer-

ential algebra on Y and ~ ∈ F−1E a deformation parameter. To (ρ, E , ~)
one associates the deformation-quantization algebra

W = C0
~ρ∗E .

This is the subalgebra of ρ∗E of operators commuting with ~. Then the
action of Ad(eλ~−1

) is trivial on W .



ON QUANTIZATION OF COMPLEX SYMPLECTIC MANIFOLDS 21

Example 4.2.1. As in Example 4.1.2, consider the contactification of
the conormal bundle T ∗M to a complex manifold M given by

P ∗(M × C) ⊃ {τ 6= 0} ρ−→ T ∗M.

Then ~ = ∂−1
t is a deformation parameter in EM×C. Set

WM = C0
∂t
ρ∗

(
EM×C|{τ 6=0}

)
.

Take a local symplectic coordinate system (x; ξ) on T ∗M . Since an el-
ement a ∈ FkWM commutes with ∂t, its total symbol is a formal series
independent of t ∑

j≤k

ãj(x, ξ, τ), ãj ∈ OP ∗(M×C)(j),

satisfying suitable growth conditions. Setting aj(x, u) = ã−j(x, u, 1) and
recalling that ~ = ∂−1

t , the total symbol of a can be written as

a(x, u, ~) =
∑
j≥−k

aj(x, u)~j, aj ∈ OT ∗M .

To make the link with usual deformation-quantization, consider two op-
erators a, a′ ∈ F0WM of degree zero. Let a(x, u) and a′(x, u) be their
respective total symbol. Then the product aa′ has a total symbol given
by the Leibniz star-product

a(x, u) ? a′(x, u) =
∑
J∈Nn

~|J |

J !
∂Jua0(x, u)∂

J
xa

′
0(x, u).

Recall the gerbe PX from Definition 4.1.3 and the isomorphism ψ of
Lemma 4.1.5.

Definition 4.2.2. The deformation-quantization algebroid WX is the
k-algebroid associated to the data (PX ,ΦW, `) where

ΦW(q) =W , ΦW

(
(χ, f)

)
= ρ∗f, `q(ψ(µ, b)) = b,

for q = (ρ, E , ∗, ~), W = C0
~ρ∗E , (χ, f) : q′ −→ q, and for (µ, b) as in

Lemma 4.1.5.

Remark 4.2.3. Let M be a complex manifold and X = T ∗M . With
notations as in Remark 4.1.4, the algebroid WT ∗M is represented by the
algebra W

Ω
⊗1/2
M

= C0
~ρ∗

(
E

Ω
⊗1/2
M×C

∣∣
{τ 6=0}

)
.

4.3. Quantization algebras. Let ρ = (Y
ρ−→ X,α) be a contactification

of the complex symplectic manifold X = (X,ω). Let E be a microdif-
ferential algebra on Y and ~ ∈ F−1E a deformation parameter. Let us
set

E[ρ] = C∞
~ ρ∗E ,
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where C∞
~ E = {a ∈ E ; ad(~)N(a) = 0, locally for some N > 0}. In local

coordinates (x, t; ξ, τ), sections of C∞
~ E are sections of E whose total

symbol is polynomial in t.

Definition 4.3.1. The quantization algebra associated with (ρ, E , ~) is
the C-algebra

Ẽ =
⊕
λ∈C

E[ρ]eλ~−1

whose product is given by

eλ~−1

eλ
′~−1

= e(λ+λ′)~−1

, eλ~−1

a = Ad(eλ~−1

)(a) eλ~−1

,

for λ, λ′ ∈ C and a ∈ E[ρ].

Denote by R the group ring of the additive group C with coefficients
in C, so that

R '
⊕
λ∈C

C eλ~−1

.

Then one has an algebra isomorphism

C0
~ Ẽ ' W ⊗C R,

where W = ρ∗C
0
~E is the deformation-quantization algebra associated

with (ρ, E , ~). In particular, C0
~ Ẽ is a k⊗C R-algebra.

4.4. Quantization algebroid. Let X = (X,ω) be a complex symplec-
tic manifold. Recall the gerbe PX on X from Definition 4.1.3 and the
isomorphism ψ of Lemma 4.1.5.

Definition 4.4.1. The quantization algebroid on X is the C-algebroid

ẼX associated to the data (PX ,ΦeE, `) where

ΦeE(q) = Ẽ , ΦeE(χ, f) = ρ∗f, `q(ψ(µ, b)) = beµ~−1

,

for q = (ρ, E , ∗, ~), (χ, f) : q′ −→ q, and for (µ, b) as in Lemma 4.1.5.

Note that there is a natural action of C[~] on ẼX . With the notations
of §1.1, we set for short

C0
~ẼX = C0

C[~]ẼX .

Remark 4.4.2. Let M be a complex manifold and X = T ∗M . With

notations as in Remark 4.1.4, the algebroid ẼT ∗M is represented by the

algebra Ẽ
Ω
⊗1/2
M×C

∣∣
{τ 6=0}.

Recall that R '
⊕

λ∈C C eλ~−1
. Let Rω be the invertible R-algebroid

given by Definition 2.1.5 for

` : C −→ R×, λ 7→ eλ~−1

.

The following proposition can be compared with [16, Remark 9.3].
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Proposition 4.4.3. There is an equivalence of k⊗C R-algebroids

WX ⊗CX
Rω ' C0

~ẼX .

Proof. Consider the functor ψ : C0
~ẼX −→ WX ⊗CX

Rω defined by

(ρ, E , ∗, ~) 7→
(
(ρ, E , ∗, ~), ρ

)
, [aeλ~−1

, (χ, f)] 7→ [a, (χ, f)]⊗ [eλ~−1

, χ]

on objects and morphisms, respectively. Since a ∈ C0
~E , ψ is indeed

compatible with composition of morphisms. To show that ψ is an equiv-
alence is a local problem, and thus follows from the isomorphism of the

representative algebras C0
~ Ẽ ' W ⊗C R. �

In particular, WX is equivalent to the homogeneous component of de-
gree zero in

C0
~ẼX ⊗RX

R−ω ' WX ⊗C
(⊕
λ∈C

C eλ~−1)
.

Recall that Rω ' RX if X admits a contactification.

5. Quantization modules

Here, after establishing some algebraic properties of quantization alge-
bras, we show how the category RHX of regular holonomic microdifferen-
tial modules can be embedded in the category of quantization modules.

5.1. A coherence criterion. Let us state a non-commutative version
of Hilbert’s basis theorem. For a sheaf of rings A on a topological space,
consider the sheaf of rings A〈S〉 ' A⊗Z Z[S] of polynomials in a variable
S which is not central but satisfies the rule

Sa = ϕ(a)S + ψ(a), ∀a ∈ A,
where ϕ is an automorphism of A and ψ is a ϕ-twisted derivation, i.e.
a linear map such that ψ(ab) = ψ(a)b + ϕ(a)ψ(b). The following result
can be proved along the same lines as [7, Theorem A.26].

Theorem 5.1.1. If A is Noetherian, then A〈S〉 is Noetherian.

5.2. Algebraic properties of quantization algebras. As the results
in the rest of this section are of a local nature, we will consider the
geometrical situation of Example 2.4.1. In particular, for (t; τ) the sym-
plectic coordinates of T ∗C, we consider the projection

P ∗(M × C) ⊃ Y = {τ 6= 0} ρ−→ T ∗M = X.

For ~ = ∂−1
t , we set

E = EM×C|τ 6=0, E[ρ] = C∞
~ ρ∗E , W = C0

~ρ∗E , Ẽ =
⊕
λ∈C

E[ρ]eλ~−1

.

Theorem 5.2.1. The ring E[ρ] is Noetherian.
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Proof. Note that there is an isomorphism W〈S〉 ∼−→ E[ρ] given by S 7→ t.
Using the results of [7, Appendix], one proves that W is Noetherian.
Then E[ρ] is also Noetherian by Theorem 5.1.1. �

Theorem 5.2.2. The sheaves of rings Ẽ and C0
~ Ẽ are coherent.

Proof. We shall only consider Ẽ , as the arguments for C0
~ Ẽ are similar.

For a finitely generated Z-submodule Γ of C, set ẼΓ =
⊕

λ∈Γ E[ρ]eλ~−1
.

By induction on the minimal number of generators of Γ one proves that

ẼΓ is Noetherian. In fact, let Γ = Γ0 + Zλ and assume that ẼΓ0 is

Noetherian. If Γ ' Γ0⊕Zλ, then ẼΓ0〈S〉
∼−→ ẼΓ by S 7→ eλ~−1

. Hence ẼΓ0

is Noetherian by Theorem 5.1.1. Otherwise, let N be the smallest integer

such that nλ ∈ Γ0. Then ẼΓ ' ẼΓ0〈S〉/S − enλ~−1
is again Noetherian.

As ẼΓ is Noetherian, it is in particular coherent. Since the morphisms

ẼΓ −→ ẼΓ′ are flat for Γ ⊂ Γ′, coherence is preserved at the limit Ẽ '
lim−→
Γ

ẼΓ. �

ForM∈ Mod(E[ρ]), let us set for short

ρ∗EM = E ⊗ρ−1E[ρ]
ρ−1M, Supp(M) = supp(ρ∗EM) ⊂ Y.

Let us denote by Modρ-f,coh(E[ρ]) the full abelian substack of Modcoh(E[ρ])
whose objects M are such that ρ is finite on Supp(M). Let us denote
by Modρ-f,coh(E) the full abelian substack of Modcoh(E) whose objects N
are such that ρ is finite on supp(N ).

Proposition 5.2.3. (i) The ring E is flat over ρ−1E[ρ].
(ii) There is an equivalence of categories

Modρ-f,coh(E[ρ])
ρ∗E // ρ∗Modρ-f,coh(E),
ρ∗

oo

meaning that the functors ρ∗E and ρ∗ are quasi-inverse to each
other.

Let us set for short

(5.2.1) Ak = ρ−1FkE[ρ], Bk = FkE .
Note that A−k = ~kA0 = A0~k, B−k = ~kB0 = B0~k and

A0/A−1 ' ρ−1OX [t], B0/B−1 ' OY .
The above proposition is a non commutative analogue of the following
classical result

Proposition 5.2.4. (i) The ring OY is flat over ρ−1OX [t].
(ii) There is an equivalence of categories

Modρ-f,coh(OX [t])
ρ∗ // ρ∗Modρ-f,coh(OY ).
ρ∗

oo
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Proof of Proposition 5.2.3 (i). With notations (5.2.1), it is enough to
show that B0 is flat over A0. Thus, for a coherent A0-module M, we
have to prove that

(5.2.2) H−1(B0 ⊗LA0
M) = 0.

One says that u ∈M is an element of ~-torsion if ~Nu = 0 for some N ≥
0, i.e. if A−Nu = 0. Denote byMtor ⊂M the coherent submodule of ~-
torsion elements. One says thatM is an ~-torsion module ifMtor =M
and thatM has no ~-torsion ifMtor = 0. Considering the exact sequence

0 −→Mtor −→M −→M/Mtor −→ 0,

it is enough to prove (5.2.2) in the case where M is either an ~-torsion
module or has no ~-torsion.
(a) Assume thatM has no ~-torsion. Then the multiplication map

A−1 ⊗A0
M−→M

is injective. SettingM−1 = A−1M = ~M, this implies the isomorphism

(A0/A−1)⊗A0
M'M/M−1.

By Proposition 5.2.4 (i), we have

H−1((B0/B−1)⊗LB0
B0⊗LA0

M) ' H−1((B0/B−1)⊗LA0/A−1
(M/M−1)) = 0.

From the exact sequence 0 −→ B−1 −→ B0 −→ B0/B−1 −→ 0 we thus obtain
the exact sequence

B−1 ⊗B0
H−1(B0 ⊗LA0

M) −→ H−1(B0 ⊗LA0
M) −→ 0.

By Nakayama’s lemma, we get H−1(B0 ⊗LA0
M) = 0.

(b) LetM be an ~-torsion module. AsM is coherent, there locally exists

N > 0 such that ~NM = 0. Considering the exact sequence

0 −→M−1 −→M −→M/M−1 −→ 0,

by induction on N one reduces to the case N = 1. ThenM =M/M−1

has a structure of A0/A−1-module. Hence

B0 ⊗LA0
M' B0 ⊗LA0

A0/A−1 ⊗LA0/A−1
M' B0/B−1 ⊗LA0/A−1

M,

and (5.2.2) follows from Proposition 5.2.4 (i). �

We shall consider an operator a ∈ F0E[ρ] monic in the t variable, i.e.
an operator of the form

(5.2.3) a = tm +
m−1∑
i=0

bit
i, m ∈ N>0, bi ∈ F0W .

Lemma 5.2.5. Let a be of the form (5.2.3). Then there are isomor-
phisms

ρ∗E(E[ρ]/E[ρ]a) ' E/Ea, ρ∗(E/Ea) ' E[ρ]/E[ρ]a.
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Proof. The first isomorphism is clear. For the second, note that ρ∗(E/Ea) '
ρ∗E/ρ∗Ea since ρ is finite on supp(E/Ea). Note also that, by division,
any c ∈ ρ∗E can be written as c = da+ b with d ∈ ρ∗E and b ∈ E[ρ]. Then

the isomorphism ρ∗E/ρ∗Ea
∼−→ E[ρ]/E[ρ]a is given by c 7→ b. �

Proof of Proposition 5.2.3 (ii). (a) Let N0 be a coherent F0E-module
such that ρ is finite on suppN0. We will show that N0 is F0W-coherent.
As this is a local problem on Y , we can assume that (x0, t; ξ0, 1) ∈ suppN0

only for t = 0. Thus suppN0 ⊂ {tp + ϕ(x, t, ξ/τ) = 0} with ϕ ∈ OX [t]
vanishing for t = 0 and of degree less than p in the t variable. Choose
a system u1, . . . , uN of generators for N0. By division, for each i there
exists ai of the form (5.2.3) such that aiui = 0. One thus gets an exact
sequence

0 −→ N ′
0 −→

N⊕
i=1

F0E/F0Eai −→ N0 −→ 0.

As F0E/F0Eai is F0W-coherent, N0 is a finitely generated F0W-module.
Since also N ′

0 is finitely generated over F0W , it follows that N0 is F0W-
coherent.

In particular, this shows that any N ∈ ρ∗Modρ-f,coh(E) is a coherent
E[ρ]-module.

(b) Let N ∈ ρ∗Modρ-f,coh(E) and choose a system u1, . . . , uN ∈ N
of generators. By (a), ρ∗F0Eui is F0W-coherent. Hence, {tjF0Wui}j>0

is stationary in ρ∗F0Eui, so that there exist mi > 0 and bij ∈ F0W
such that tmiui =

∑
j<mi

bijt
jui. In other words, for each i there exists

ai = tmi −
∑

j bijt
j of the form (5.2.3) such that aiui = 0. One thus gets

an exact sequence

0 −→ N ′ −→
N⊕
i=1

E/Eai −→ N −→ 0.

Applying the same argument to N ′ one gets a presentation

N ′⊕
i=1

E/Ea′i −→
N⊕
i=1

E/Eai −→ N −→ 0.

Since ρ∗ = ρ! is exact on this sequence, by Lemma 5.2.5 the module ρ∗N
has the presentation

N ′⊕
i=1

E[ρ]/E[ρ]a′i −→
N⊕
i=1

E[ρ]/E[ρ]ai −→ ρ∗N −→ 0.

Applying the exact functor ρ∗E and using again Lemma 5.2.5, we get that

ρ∗Eρ∗N
∼−→ N .
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(c) For M ∈ Modρ-f,coh(E[ρ]), let us show that the map M −→ ρ∗ρ
∗
EM

is injective. Let M0 be a lattice of M, that is a coherent sub-F0E[ρ]-
module such that E[ρ]M0 = M. Since ρ∗F0EM0 is a lattice for ρ∗EM, it
is enough to prove the injectivity of the mapM0 −→ ρ∗ρ

∗
F0EM0. Assume

that u ∈M0 is sent to 0. By Proposition 5.2.4 there are isomorphisms

M0/F−1EM0
∼−→ ρ∗ρ

∗(M0/F−1EM0) ' ρ∗ρ
∗
F0EM0/F−1Eρ∗ρ∗F0EM0.

It follows that u ∈ F−1EM0. By induction we then get u ∈
⋂
k>0 F−kEM0,

so that u = 0.

(d) We finally have to prove the isomorphism M ∼−→ ρ∗ρ
∗
EM. Let

u1, . . . , uN be a system of generators of M. By the same arguments
as in (b), for each i there exists ai of the form (5.2.3) such that aiui = 0
in ρ∗EM. By (c) this implies aiui = 0 in M. As in (b) we thus get a
resolution

N ′⊕
i=1

E[ρ]/E[ρ]a′i −→
N⊕
i=1

E[ρ]/E[ρ]ai −→M −→ 0,

giving the isomorphismM ∼−→ ρ∗ρ
∗
EM by Lemma 5.2.5. �

For S ⊂ Y , let us denote by ModS,coh(E[ρ]) the full abelian substack of
Modcoh(E[ρ]) whose objectsM are such that Supp(M) ⊂ S. For T ⊂ X,

let us denote by ModT,coh(Ẽ) the full abelian substack of Modcoh(Ẽ) whose
objectsM are such that supp(M) ⊂ T .

We set for short

ẼM = Ẽ ⊗E[ρ]
M.

Proposition 5.2.6. (i) The ring Ẽ is faithfully flat over E[ρ].
(ii) Let S ⊂ Y be an analytic subset such that ρ|S is proper and

injective. Then the functor

Ẽ(·) : ModS,coh(E[ρ]) −→ Modρ(S),coh(ẼX)

is fully faithful.

Proof. (i) is straightforward.

(ii) For a coherent E[ρ]-moduleM, there is an isomorphism of E[ρ]-modules

ẼM '
⊕
λ∈C

eλ~−1M.

Here, the E[ρ]-module structure of eλ~−1M is given by

a(eλ~−1 · b) = eλ~−1 · Ad(e−λ~−1

)(a)b,

for a ∈ E[ρ] and b ∈M. Note that Supp(eλ~−1M) = Tλ Supp(M).
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ForM,M′ ∈ ModS,coh(E[ρ]), one has

Hom eE(ẼM′, ẼM) ' HomE[ρ]
(M′,

⊕
λ∈C

eλ~−1M)

'
⊕
λ∈C

HomE[ρ]
(M′, eλ~−1M)

'
⊕
λ∈C

HomE(ρ
∗
EM′, ρ∗E(e

λ~−1M))

' HomE(ρ
∗
EM′, ρ∗EM)

' HomE[ρ]
(M′,M),

where the second last isomorphism is due to the fact that Supp(M′) ∩
Supp(eλ~−1M) = ∅ for λ 6= 0. �

5.3. Induced modules. Assume that the symplectic manifoldX admits

a contactification ρ = (Y
ρ−→ X,α). In this section we show how the

constructions from the previous section can be globalized.

Definition 5.3.1. For a contactification ρ of X, the gerbe Pρ on X is
defined as follows.

(1) Objects on U ⊂ X are triples p = (E , ∗, ~) of a microdifferential
algebra E on ρ−1(U), an anti-involution ∗ of E and a deformation
parameter ~ such that ~∗ = −~.

(2) If p′ = (E ′, ∗′, ~′) is another object,

HomPρ(p
′, p) = {f ∈ IsomR-Alg(E ′, E); f∗′ = ∗f, f(~′) = ~}.

As a corollary of Lemma 3.2.4, one has

Lemma 5.3.2. For any p = (E , ∗, ~) ∈ Pρ there is an isomorphism of
sheaves of groups

ψρ : {b ∈ E×; [~, b] = 0, b∗b = 1, σ0(b) = 1} ∼−→ EndPρ(p)

given by ψρ(b) = Ad(b).

Definition 5.3.3. For a contactification ρ of X, the stack E[ρ] is the
C-algebroid associated to the data (Pρ,ΦE[ρ]

, `) where

ΦE[ρ]
(p) = E[ρ], ΦE[ρ]

(f) = ρ∗f, `p(g) = b,

for p = (E , ∗, ~), f : p′ −→ p and g = ψρ(b).

Note that Proposition 4.4.3 implies WX ' C0
~E[ρ].

As in the local case, forM∈ Mod(E[ρ]) we set for short

Supp(M) = supp(ρ∗EM) ⊂ Y.
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Consider the faithful C-linear functors

ρ−1E[ρ] −→ EY , (E , ∗, ~) 7→ (E , ∗), on objects,

(a, f) 7→ (a, f), on morphisms,

E[ρ] −→ ẼX , (E , ∗, ~) 7→ (ρ, E , ∗, ~), on objects,

(a, f) 7→ (ae0~−1

, idρ, f), on morphisms.

For S ⊂ Y they induce the functors

ρ∗E : Modρ-f,coh(E[ρ]) −→ ρ∗Modρ-f,coh(EY ),

Ẽ(·) : ModS,coh(E[ρ]) −→ Modρ(S),coh(ẼX).

By Propositions 5.2.3 and 5.2.6 we have

Proposition 5.3.4. (i) The functor ρ∗E is an equivalence.

(ii) Let S ⊂ Y be an analytic subset such that ρ|S is proper and injective.

Then Ẽ(·) is fully faithful.

We can thus embed regular holonomic microdifferential modules in the

stack of coherent ẼX-modules.

Corollary 5.3.5. There is a fully faithful embedding

RHX ⊂ Modcoh(ẼX).

Remark 5.3.6. We do not know if the above result extends to give an

embedding DRH(X) ⊂ Db
coh(ẼX) at the level of derived categories.

Appendix A. Remarks on deformation-quantization

We give in this appendix an alternative description of the deformation
quantization algebroid using triples (W , ∗, v) of a deformation-quantization
algebra W endowed with an anti-involution ∗ and an order preserving
C-linear derivation v. We also compare regular holonomic deformation-
quantization modules with regular holonomic quantization modules.

A.1. Deformation-quantization and derivations. Let X = (X,ω)
be a complex contact manifold andW a deformation quantization algebra
on X.

Lemma A.1.1. Let w be an order preserving k-linear derivation of W.
Then w is locally of the form ad(~−1d) for some d ∈ F0W.

Proof. Let (x;u) be a local system of quantized symplectic coordinates
(see [9, §2.2.3]). For i = 1, . . . , n, set ei = ~w(xi) ∈ F−1W . From
w([xi, xj]) = 0 we get [ei, xj] = [ej, xi] for any i, j = 1, . . . , n. Hence there
locally exists e ∈ F0W with ei = [xi, e]. Replacing w by w− ad(~−1e) we
may assume w(xi) = 0.
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Set di = ~w(ui) ∈ F−1W . From w([xi, uj]) = 0 we get [xi, dj] = 0,
so that di = di(x) does not depend on u. From w([ui, uj]) = 0 we
get [di, uj] = [dj, ui]. Hence there locally exists d = d(x) ∈ F0W with
di = [ui, d]. Replacing w by w − ad(~−1d) we have w(xi) = w(uj) = 0,
and hence w = 0. �

Definition A.1.2. Let P′X be the stack on X associated with the sepa-
rated prestack P′X,0 defined as follows.

(1) Objects on U ⊂ X are triples q = (W , ∗, v) of a deformation
quantization algebra W on U , an anti-involution ∗ and an order
preserving C-linear derivation v of W such that v(~) = ~ and
v∗ = ∗v.

(2) If q′ = (W ′, ∗′, v′) is another object,

HomP′X,0
(q′, q) = {(g, d); g ∈ IsomR-Alg(W ′,W), d ∈ F0W ,

g∗′ = ∗g, d = d∗, v − gv′g−1 = ad(~−1d)},
with composition given by (g, d) ◦ (g′, d′) = (gg′, d+ g(d′)).

Using Lemma A.1.1 one gets

Lemma A.1.3. The stack P′X is a gerbe.

Remark A.1.4. Let M be a complex manifold and X = T ∗M . With
notations as in Remark 4.1.4, where ~ = ∂−1

t , a global object of P′X is
given by (W

Ω
⊗1/2
M

, ∗, ad(t∂t)).

Lemma A.1.5. For any q = (W , ∗, v) ∈ P′X(U) there is a group iso-
morphism

ψ′ω : CU × {b ∈ F0W×; b∗b = 1, σ0(b) = 1} ∼−→ EndP′X
(q)

given by ψ′ω(µ, b) = (Ad(b), µ+ ~v(b)b−1).

Proof. (i) Let us prove injectivity. Assume that Ad(b) = id and µ +
~v(b)b−1 = 0. Then b ∈ k(0), µ = 0 and v(b) = 0. As v(b) = ~ ∂

∂~b, we
get b ∈ C. Since σ0(b) = 1, this finally gives b = 1.

(ii) Let us prove surjectivity. Take (g, d) ∈ EndP′X
(q). Since any k-

algebra automorphisms of W is inner, we can locally write g = Ad(b)
for some b ∈ F0W×. As g commutes with the anti-involutions, we have
Ad(b)(a∗) = (Ad(b)(a))∗ = Ad(b∗−1)(a∗) for any a ∈ W . This implies
Ad(b∗b) = id, so that b∗b ∈ k(0). Take k ∈ k(0) with k∗k = b∗b. Up
to replacing b with bk−1 we may thus assume that b∗b = 1. This implies
σ0(b) = ±1 and we may further assume that σ(b) = 1. Replacing (g, d)
by (g, d) · ψ′ω(b−1, 0) we may thus assume g = id.

Since ad(~−1d) = 0, we have d ∈ k(0). As d∗ = d and ~∗ = −~, the
coefficients of the odd powers of ~ in d vanish, and we may write d =
µ + ~2d′ for µ ∈ C and d′ ∈ k(0). Take d′′ ∈ k(0) such that ~ ∂

∂~d
′′ = d′,
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and set b = exp(~d′′). Since v(b)b−1 = ~d′, we have d = µ + ~v(b)b−1.
Hence ψ′ω(µ, b) = (id, d). �

Definition A.1.6. The algebroid W′
X is the k-algebroid associated to

the data (P′X ,Φ
′
W, `) where

Φ′
W(q) =W , Φ′

W(g, d) = g, `q(h, e) = b,

for q = (W , ∗, v), (g, d) : q′ −→ q and (h, e) = ψ′ω(µ, b).

Proposition A.1.7. There is a k-linear equivalence

W′
X ' WX .

This follows from the following proposition.

Proposition A.1.8. There is an equivalence of gerbes

P′X ' PX .

Proof. Let us consider the gerbe P′′X whose objects on U ⊂ X are quin-
tuples q = (ρ, E , ∗, ~, t) such that π(q) = (ρ, E , ∗, ~) is an object of
PX and t ∈ F0E is an operator with [~−1, t] = 1. (The local model in a
Darboux chart is obtained by Example 4.1.2 with ~−1 = ∂t and t = t.)
We set

HomP′′X
(q′, q) = HomPX

(π(q′), π(q)).

There is a natural equivalence

P′′X
∼−→ PX , q 7→ π(q).

Consider the functor ψ : P′′X −→ P′X given by

q 7→ (C0
~ρ∗E , ∗, ad(t~−1)), for q = (ρ, E , ∗, ~, t),

(χ, f) 7→
(
ρ∗f, t− f(t′)

)
, for (χ, f) : q′ −→ q.

This is well defined since

ad(t~−1)− f ad(t′~′−1)f−1 = ad((t− f(t′))~−1).

It follows from Lemmas A.1.5 and 4.1.5 that ψ is fully faithful. As P′′X
and P′X are gerbes, ψ is an equivalence. �

Recall that if q = (W , ∗, v) is an object of P′X on an open subset
U ⊂ X, then WX |U is represented by W . As shown in [15], the filtration
and the anti-involution ofW extend to WX . As we will now explain, also
the derivation of W extends to WX .

Let ε be a formal variable with ε2 = 0. Consider the natural morphisms

W i−→W [ε]
π−→W .

Let us extend the anti-involution ∗ to W [ε] by setting ε∗ = −ε.
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Lemma A.1.9. Let ϕ : W −→ W[ε] be an order preserving C-algebra
morphism such that πϕ = idW , ϕ(~) = ~ + ε~2 and ϕ∗ = ∗ϕ. Then
ϕ = i+ ε~v for an order preserving C-linear derivation v of W such that
v∗ = ∗v.

Remark A.1.10. There is an isomorphism of W ⊗CWop-modules

(W [ε])ϕ ' C1
~ρ∗E

such that the multiplication by ε corresponds to ad(~−1). In local coor-
dinates where ~−1 = ∂t and v = ad(t∂t), this isomorphism is given by
a+ εb 7→ at+ b.

The above lemma motivates the following definition.

Definition A.1.11. A derivation of a C-linear stack A is the data of a
pair ϕ = (C, ϕ) where C is an invertible C[ε]-algebroid such that C/ε is
represented by CX and ϕ : A −→ A ⊗C C is a C-linear functor such that
πϕ ' idA. Here π : A⊗C C −→ A is the functor induced by C −→ C/ε.

Consider the following algebroid.

Definition A.1.12. The algebroid Wε
X is the k[ε]-algebroid associated

to the data (P′X ,Φ
ε
W, `) where

Φε
W(q) =W [ε], Φε

W(g, d) = (1 + ε ad(d))g, `q(h, e) = (1 + εµ)b,

for q = (W , ∗, v), (g, d) : q′ −→ q and (h, e) = ψ′ω(µ, b).

There is a natural morphism

ϕ : WX −→ Wε
X

satisfying ϕ(~) = ~ + ε~2 and ϕ∗ = ∗ϕ. Similarly to Proposition 4.4.3,
one proves that there is an equivalence of k[ε]-algebroids

Wε
X ' WX ⊗C C[ε]ω,

where C[ε]ω is the invertible C[ε]-algebroid given by Definition 2.1.5 for

` : C −→ C[ε]×, λ 7→ (1 + ελ).

Thus WX is endowed with the derivation ϕ = (C[ε]ω, ϕ).
Summarizing, WX is a filtered k-stack endowed with an anti-involution
∗ and with a C-linear derivation ϕ such that F0WX/F−1WX is represented
by OX , ϕ(~) = ~ and ϕ∗ = ∗ϕ. One can prove along the lines of [15]
that WX is unique among the stacks which satisfy these properties and
which are locally represented by deformation quantization algebras.
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A.2. Comparison of regular holonomic modules. We shall com-
pare here regular holonomic quantization-modules with regular holo-
nomic deformation-quantization modules. Let us start by recalling the
definition of regular holonomic quantization-modules from [11].

Let X be a complex symplectic manifold and Λ a closed Lagrangian
subvariety of X. Let W be a deformation-quantization algebra on X.

Definition A.2.1. (i) One says that a coherent F0W-moduleM0 is
regular holonomic along Λ if supp(M0) ⊂ Λ and M0/~M0 is a
coherent OΛ-module.

(ii) One says that a coherentW-moduleM is regular holonomic along
Λ if supp(M) ⊂ Λ and there exists locally a coherent F0W-
submodule M0 of M such that M0 generates M over W and
M0 is regular holonomic along Λ.

Recall that WX denotes the deformation-quantization algebroid. As
the above definition is local, there is a natural notion of regular holonomic
WX-module along Λ. Let us denote by ModΛ,rh(WX) the full substack of
Modcoh(WX) whose objects are regular holonomic along Λ.

Up to shrinking X, we may assume that there exist a contactification
ρ : Y −→ X and a Lagrangian subvariety Γ of Y such that ρ induces an

isomorphism Γ −→ Λ. By definition, regular holonomic ẼX-modules along
Λ are equivalent to regular holonomic EY -modules along Γ. In order to
compare quantization and deformation-quantization modules, let us thus
consider the forgetful functor

for : ρ∗ModΓ,rh(EY ) −→ ModΛ,rh(WX)

induced by the equivalence WX ' C0
~E[ρ] and the functor ρ−1E[ρ] −→ EY

from §5.3.

Proposition A.2.2. (i) The functor for is faithful but not locally
full in general.

(ii) If Λ is a smooth submanifold, the functor for is locally essentially
surjective but not essentially surjective in general.

(iii) The functor for is not locally essentially surjective in general.

Proof. (i) holds more generally for the forgetful functor ρ∗Mod(EY ) −→
Mod(WX).

(ii) Let Λ be a smooth submanifold. Consider the commutative diagram

ρ∗ModΓ,rh(EY )
OO

∼
��

for // ModΛ,rh(WX)
OO

∼
��

ρ∗p1∗LocSys(p−1
1 C

Ω
⊗1/2
Γ

) // LocSys(k
Ω
⊗1/2
Λ

),
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where p1 : Γ × C× −→ Γ is the projection. The vertical equivalences are
due to Proposition 3.3.1 and [3, Corollary 9.2], respectively. The bottom
arrow is given by L 7→ k⊗C L|s=1, where s is the coordinate of C×.

This shows that the forgetful functor is locally essentially surjective.
To prove that it is not surjective in general, take X = C× and Λ the zero
section of T ∗(C×). Then the local system with monodromy 1+~ around
the origin is not in the essential image of the forgetful functor.

(iii) follows from Proposition A.2.3 below. �

Before stating Proposition A.2.3 let us introduce some notations.
Let M = C. Denote by (x, t; ξ, τ) the symplectic coordinates of

P ∗(M × C) and by (x;u) those of T ∗M . Let W = WM , and recall
that ~ = ∂−1

t . We will identify elements a ∈ W with their total symbol
a(x, u, τ), and write for example ax for the operator with total symbol
∂
∂x
a(x, u, τ).
Denote by O~

M = W/W∂x the canonical regular holonomic module
along the zero section

Λ1 = {(x, u); u = 0}.

The quotient map W −→ O~
M , b 7→ [b] induces an isomorphism of vector

spaces O~
M

∼←− C0
xW with the subring of operators whose total symbol

does not depend on ∂x.
For m ∈ Z>0, consider the Lagrangian subvariety Λ = Λ1 ∪ Λ2, with

Λ2 = {(x, u); u = xm}.

For a ∈ C0
xW , let Ma be the regular holonomic module along Λ with

generators v1, v2 and relations

∂xv1 = 0, (∂x − xm∂t)v2 = av1.

Note that

Ma ' C0
xW v1 ⊕ C0

xW v2.

Let a′ ∈ C0
xW be another operator. If [a − a′] ∈ (∂x − xm∂t)O~

M ,

then Ma
∼−→ Ma′ . In fact, if e ∈ C0

xW satisfies a − a′ = ex − xme∂t,
an isomorphism Ma

∼−→ Ma′ is given by v1 7→ v′1, v2 7→ v′2 + ev′1. Since
O~
M/(∂x − xm∂t)O~

M '
⊕m−1

i=0 kxi, we may thus assume that

a = a0 + a1x+ · · ·+ am−1x
m−1 with ai ∈ k.

The following counterexample was developed by the second author (M.K.)
while working with Pierre Schapira at [11].

Proposition A.2.3. If Ma ' for(N ) for some EY -module N , then a is
homogeneous, i.e. a = ai0x

i0 for some i0 ∈ {0, . . . ,m− 1}.
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Proof. The existence of such an N is equivalent to the existence of an
endomorphism t ofMa such that [t, x] = [t, ∂x] = 0 and [t, ∂t] = −1.

(i) Let tv1 = bv1 + cv2 for b, c ∈ C0
xW . Then

0 = t∂xv1 = ∂xtv1

= ∂x(bv1 + cv2)

= bxv1 + cxv2 + c(xm∂tv2 + av1).

Hence
bx + ac = 0, xmc∂t + cx = 0.

It follows from the second equation that c = 0. Thus the first equation
implies that b ∈ k. Up to replacing t by t − b, we may assume that
tv1 = 0.

(ii) Let tv2 = bv1 + cv2 for b, c ∈ C0
xW . Then

0 = t
(
(∂x − xm∂t)v2 − av1

)
= (∂x − xm∂t)tv2 + xmv2 − [t, a]v1

= (∂x − xm∂t)(bv1 + cv2) + xmv2 − [t, a]v1

= bxv1 + cxv2 + c(xm∂tv2 + av1)− xmb∂tv1 − xmc∂tv2 + xmv2 − [t, a]v1.

Hence

(A.2.1) ac+ bx − xmb∂t − [t, a] = 0, cx + xm = 0.

The second equation gives c = −xm+1

m+1
+ d for d ∈ k. Then, the first

equation in (A.2.1) can be rewritten

(ad(∂x)− xm∂t)(xa+ (m+ 1)b∂t)− (xax − ea+ (m+ 1)∂t[t, a]) = 0,

for e = (m + 1)d∂t − 1 ∈ k. Hence xa + (m + 1)b∂t = xax − ea + (m +
1)∂t[t, a] = 0. Since a =

∑m−1
i=0 aix

i, it implies that
∑m−1

i=0 ((e−i)ai−(m+
1)∂t[t, ai])x

i = 0. Hence we have (e− i)ai− (m+ 1)∂t[t, ai] = 0 for every

i. Thus we have either ai = 0 or e = (m+1)∂t[t,ai]
ai

+ i. Since (m+1)∂t[t,ai]
ai

∈
(m+ 1)Z + F−1k, this implies a = ai0x

i0 for some 0 ≤ i0 ≤ m− 1. �
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