ON QUANTUM UNIQUE ERGODICITY FOR LOCALLY
SYMMETRIC SPACES |

LIOR SILBERMAN AND AKSHAY VENKATESH

ABSTRACT. We construct an equivariant microlocal lift for locally sym-
metric spaces. In other words, we demonstrate how to lift, in a “semi-
canonical” fashion, limits of eigenfunction measures on locally sym-
metric spaces to Cartan-invariant measures on an appropriate bundle.
The construction uses elementary features of the representation theory
of semisimple real Lie groups, and can be considered a generalization
of Zelditch’s results from the upper half-plane to all locally symmetric
spaces of noncompact type. This will be applied in a sequel to settle
a version of the quantum unique ergodicity problem on certain locally
symmetric spaces.

1. INTRODUCTION

1.1. General starting point: the semi-classical limit on Riemannian
manifolds. LetY be a compact Riemannian manifold, with the associated
Laplace operato\ and Riemannian measudp. An important problem

of harmonic analysis (or mathematical physics)Yoms understanding the
behaviour of eigenfunctions & in the large eigenvalue limit. The equidis-
tribution problem asks whether for an eigenfunctionvith a large eigen-
value )\, [¢(z)| is approximately constant ori. This can be approached
“pointwise” and “on average” (boundin@) ||,y and |||,y in terms

of A, respectively), or “weakly”: asking whether & — oo, the proba-
bility measures defined bifi,, () = [¢(x)|” dp(z) converge in the weak-*
sense to the “uniform” measuggim. For example, Sogge [19] derivés
bounds for2 < p < oo, and in the special case of Hecke eigenfunctions on
hyperbolic surfaces, Iwaniec and Sarnak [11] gave a non-trifabound.
Here we will consider the weak-* equidistribution problem for a special
class of manifolds and eigenfunctions.
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A general approach to the weak-* equidistribution problem was found
by Snirelman [18]. To an eigenfunction he associates a distributiqn,
on the unit cotangent bundl&"Y" projecting toj,, onY. This construc-
tion (the “microlocal lift”) proceeds using the theory of pseudo-differential
operators and has the property that, for any sequénige™” | C L*(Y)
with eigenvalues\,, tending to infinity, any weak-* limit of thex,, = /1, IS
a probability measure on the unit tangent bunsité”, invariant under the
geodesic flow. Since any weak-* limit of the, projects to a weak-* limit
of the 11,,, it suffices to understand these limits; Liouville’'s measdikeon
S*Y plays here the role of the Riemannian measur&on

This construction has a natural interpretation from the point of view of
semi-classical physics. The geodesic flowonlescribes the motion of a
free particle (“billiard ball”). S*Y is (essentially) thgphase spacef this
system, i.e. the state space of the motion. In this setting one calls a function
g € C*(S*Y) anobservable The state space of the quantum-mechanical
billiard is L*(Y"), with the infinitesimal generator of time evolutierA.
“Observables” here are bounded self-adjoint operaboré?(Y) — L*(Y).
Decomposing a staté¢ € L2(Y) w.r.t. the spectral measure &f gives
a probability measure on the spectrum®f(which is the set of possible
“outcomes” of the measurement). The expectation value of the “measuring
B while the system is in the statg’ is then given by the matrix element
(B, ). In the particular case wher® is a pseudo-differential operator
with symbolg € C*(S*Y'), we think of B as a “quantization” of;, and
any such a3 will be denotedOp(g).

We can now describe Snifelan construction: it is given by, (g) =
(Op(g)®,v). This indeed liftgi,, since forg € C*(Y") we can takeép(g)
to be multiplication byg. If the ¢) are taken to be eigenfunctions then,
asymptotically, this construction does not depend on the choice of “quanti-
zation scheme,” that is to say, on the choice of the assignmentOp(g).
Indeed, ifB;, B, have the same symbol of order 0, andvy) = A (i.e. "y
is an eigenstate of energy) then one hag(B; — By)y, ) = O(A~1/?),

On a philosophical level we expect that at the limit of large energies, our
guantum-mechanical description to approach the classical one. We will not
formalize this idea (the “correspondence principle”), but depend on it for
motivating our main question, whether ergodic properties of the classical
system persist in the semi-classical limit of the “gquantized” version:

Problem 1.1. (Quantum Ergodicity) Lefy,, }- , C L*(Y") be an orthonor-
mal basis consisting of eigenfunctions of the Laplacian.
(1) What measures occur as weak-* limits of tfyg,}? In particular,
when doegi,, " dp hold?

n—o0
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(2) What measures occur as weak-* limits of e, }? In particular,
when does:, " @\ hold?

n—oo

Definition 1.2. Call a measureu on S*Y a (microlocal)quantum limitif
it is a weak-* limit of a sequence of distributions,, associated, via the
microlocal lift, to a sequence of eigenfunctianswith |\,,| — oo.

In this language, the main problem is classifying the quantum limits of
the classical system, perhaps showing that the Liouville measure is the
unique quantum limit. As formalized by Zelditch [23] (for surfaces of con-
stant negative curvature) and Colin de Verdiére [2] (for gengjathe best
general result known is still:

Theorem 1.3. Let Y be a compact manifold{,,}-, € L*(Y) an or-
thonormal basis of eigenfunctions Af ordered by increasing eigenvalue.
Then:

(1) (Weyl's law; see e.qg. [9]431v Zle Lin ]\VIVL> d\ holds with no fur-

ther assumptions.
(2) (Snirelman-Zelditch-Colin de Verdiere) Under the additional as-
sumption that the geodesic flow ¢ifY is ergodic, there exists a

subsequencén; },-, of densityl s.t. 11,,, ;NL> d.

Corollary. For this subsequencg,,, kWL> dp.

It was proved by Hopf [8] that the geodesic flow on a manifold of neg-
ative sectional curvature is ergodic. In this case, Rudnick and Sarnak [17]
conjecture a simple situation:

Conjecture 1.4.(Quantum unique ergodicity) L&t be a compact manifold
of strictly negative sectional curvature. Then:

(1) (QUE onY) 1, converge weak-* to the Riemannian measuré’on
(2) (QUE onS*Y) dA is the unique quantum limit oH.

We remark that [17] also gives an example of a hyperb®loanifold
Y, apointP € Y, and a sequence of eigenfunctians with eigenvalues
An, such thati, (P)| > A/*°. The pointP is a fixed point of many
Hecke operators, and behaves in a similar fashion to the poles of a surface
of revolution. This remarkable phenomenon does not seem to contradict
Conjecture 1.4. In the sequel to this paper the scarcity of such points and
their higher-dimensional analogues will play an important role.

1.2. Past work: Quantum unique ergodicity on hyperbolic surfaces
and 3-manifolds. The quantum unique ergodicity question for hyperbolic
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surfaces has been intensely investigated over the last two decades. We recall
some important results.

Zelditch’s work [22, 24] on the case of compact surfaée®of con-
stant negative curvature provided a representation-theoretic alternative to
the original construction of the microlocal lift via the theory of pseudo-
differential operators. It is well-known that the universal cover of such a
surfaceY is the upper half-planél ~ PSL,(R)/SO2(R), soY = I'\H
for a uniform latticel' < G = PSLy(R). Then theSO,(R) ~ S* bun-
dle X = I"'\PSLy(R) — Y is isomorphic to the unit cotangent bundle of

Y. In this parametrization, the geodesic flow 8t is given by the ac-
t/2
tion of the maximal split torusd = ¢ /2 on X from the

right. Zelditch’s explicit microlocal lift starts with the observation that
an eigenfunction),, (considered as & -invariant function onX) can be
thought of as the spherical vecgoé”) in an irreducible5-subrepresentation

of L?>(X). He then constructs another (“generalized”) vector in this sub-
representation, a di distributiai”, and shows that the distribution given by

ty, (g) = 6 (ggoo ) for g € C*(X) agrees (up to terms which decay
as the), grow) with the microlocal lift. He then observes that the dis-
tribution Iy, 1S exactly annihilated by a differential operator of the form
H+ = 7 where H is the infinitesimal generator of the geodeS|c fIc»Wa

certaln (fixed) second-order differential operator, and= —1 — 72. It
is then clear that any weak-* limit taken &s,| — oo will be annlhllated
(in the sense of distributions) by the differential operakbr or in other
words be invariant under the geodesic flow. Wolpert [21] made Zelditch's
approach self-contained by showing that the limits are positive measures
without using pseudo-differential calculus. For a clear exposition of the
Zelditch-Wolpert microlocal lift see [13].

Lindenstrauss’s paper [13] considers the cas¥ of I'\ (H x --- x H)
for an irreducible latticd™ in PSLy(R) x --- x PSLy(R). The natural
candidates for),, here are not eigenfunctions of the Laplacian alone, but
rather of all the “partial” Laplacians associated to each factor separately.
Set nowG = PSLy(R)", K = SO,(R)", X = I'G, Y = I'"\G/K,
and takeA; to be the Laplacian operator associated withitheactor (so
that C [A4,...,A,] is the ring of K-bi-invariant differential operators on
G). Assume that\;y,, + A, ¢, = 0, wherelim,,_, A\,,; = oo for each
1 <4 < h separately. Generalizing the Zelditch-Wolpert construction, Lin-

denstrauss obtains distributiofi®) ¢ on X, projecting touw onY, and
so that every weak-* limit of these (a “quantum limit”) is a finite positive
measure invariant under the action of the full maximal split totlis He
then proposes the following version of QUE, also due to Sarnak:
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Problem 1.5. (QUE on locally symmetric spaces) Lét be a connected
semi-simple Lie group with finite center. L&f < G be a maximal com-
pact subgroupl’ < G a lattice,X = I'\G,Y = I'\G/K. Let{¢,} -, C
L?(Y') be a sequence of normalized eigenfunctions of the rirg-fvariant
differential operators ot/ K, with the eigenvalues w.r.t. the Casimir oper-
ator tending toxo in absolute value. Is it true that, converge weak-* to
the normalized projection of the Haar measur& @

1.3. This paper: Quantum unique ergodicity on locally symmetric spaces.
This paper is the first of two papers on this general problem. The main result
of the present paper (Theorem 1.6 below) is the construction of the microlo-
cal lift in this setting. We will impose a mild non-degeneracy condition on
the sequence of eigenfunctions (see Section 3.3; the assumption essentially
amounts to asking that all eigenvalues tend to infinity, at the same rate for
operators of the same order.)

With K andG as in Problem 1.5, letl be as in the lwasawa decompo-
sitionG = NAK, i.e. A = exp(a) wherea is a maximal abelian subspace
of p. (Full definitions are given in Section 2.1). F6r = SL,(R) and
K = S0,(R), one may takeA to be the subgroup of diagonal matrices
with positive entries. Letr: X — Y be the projection. We denote lay:
the G-invariant probability measures ox, and bydy the projection of this
measure td”.

The content of the Theorem that follows amounts, roughly, taza “
equivariant microlocal lift” ony".

Theorem 1.6. Let {¢,}>>, C L*(Y) be a non-degenerate sequence of
normalized eigenfunctions, whose eigenvalues appreachThen, after
replacing ¢,, by an appropriate subsequence, there exist functionse
L?(X) and distributionsu,, on X such that:

(1) The projection of.,, to Y coincides withyi,,, i.€. T fiy, = fin.

(2) Let ,, be the measuréy,(z)|>’dz on X. Then, for everyy €
C>(X), we havdim,, ... (0,(9) — tn(g)) = 0.

(3) Every weak-* limito,, of the measures,, (necessarily a positive
measure of mass 1) is A-invariant.

(4) (Equivariance). LetE C Endg(C*°(X)) be aC-subalgebra of
bounded endomorphisms@f°(.X), commuting with thé& -action.
Noting that eaclx € F induces an endomorphism 6f°(Y’), sup-
pose that),, is an eigenfunction fo¥ (i.e. Ev,, C Ci,,). Then we
may choose/, so thaty, is an eigenfunction foF with the same
eigenvalues ag,, i.e. for alle € E there exists\. € C such that

edjn = /\e'(vbn7 €¢n = >\e¢n-
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We first remark that the distributions, (resp. the measures,) gener-
alize the constructions of Zelditch (resp. Wolpert). Although, in view of
(2), they carry roughly equivalent information, it is convenient to work with
both simultaneously: the distributiops are canonically defined and easier
to manipulate algebraically, whereas the measuyegre patently positive
and are central to the arguments in the sequel to this paper.

Proof. For simplicity, we first write the proof in detail for the case whéte
is simple (the modifications necessary in the general case are discussed in
Section 5.1).

In Section 3.2 we define the distributiops. (In the language of Defini-
tion 3.3, we takeu,, = 1y, (0, 90)).

Claim (1) is established in Lemma 3.6.

In Section 3.3 we introduce the non-degeneracy condition. Proposition
3.13 defines),, and establishes the claims (2) and (4). (Observe that this
Proposition establishes (2) only fdf-finite test functionsy. Since the
extension to generglis not necessary for any of our applications, we omit
the proof.)

Finally, in section 4 we establish claim (3) (Corollary 4.8) by finding
enough differential operators annihilatipg. O

Remarkl.7.

(1) It is important to verify that non-degenerate sequences of eigen-
functions exist. In the co-compact case (e.g. for the purpose of
Theorem 1.10), it was shown in [5, 4] that a positive proportion
of the unramified spectrum lies in every open subcone of the Weyl
chamber (for definitions see Theorem 2.7 and the discussion in Sec-
tion 3.1). This is also expected to hold for finite-voluragth-
meticquotientsY. For example, [15, Thm. 5.3] treats the case of
SL3(Z)\SL3(R)/SO3(R).

(2) We shall use the phrasen-degenerate quantum limkit denote any
weak-* limit of o,,, where notations are as in Theorem 1.6. Note
that if o, is such a limit, then claim (2) of the Theorem shows that
there exists a subsequengg,) of the integers such that.(g) =
lim,,, .o tn,, (g) for all g € C*(X). Depending on the context,
we shall therefore use the notatien, or u., for a non-degenerate
quantum limit.

(3) It is not necessary to pass to a subsequence in Theorem 1.6. See
Remark 3.12.

(4) It is likely that the A-invariance aspect of Theorem 1.6 could be
established by standard microlocal methods; however, the equivari-
ance property does not follow readily from these methods and is
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absolutely crucial in applications. It will be used, in the sequel to
this paper, in the situation whergis an algebra of endomorphisms
generated by Hecke correspondences.

(5) The measures,, all are invariant by the compact groug =
Zk(a). In fact, Theorem 1.6 should strictly be interpreted as lift-
ing measures t& /M rather thanX.

(6) Theorem 1.6 admits a natural geometric interpretation. Informally,
the bundleX/M — Y may be regarded as a bundle parameteriz-
ing maximal flats inY’, and theA-action onX /M corresponds to
“translation along flats.” We refer to Section 5.3 for a further dis-
cussion of this point.

The existence of the microlocal lift already places a restriction on the
possible weak-* limits of the measur¢g, } onY'. In particular, Theorem
1.6 has the following corollary (in this regard see also Remark 1.7(4)).

Corollary 1.8. Let {¢,} .-, C L*(Y) be a non-degenerate sequence of
normalized eigenfunctions such that, converge in the weak-* topology
to a limit measurei,,. Thenj, is the projection taY” of an A-invariant
measureu,, on X. In particular, the support of:,, must be a union of
maximal flats.

More importantly, Theorem 1.6 allows us to pose a new version of the
problem:

Problem 1.9. (QUE on homogeneous spaces) In the setting of Problem 1.5,
is theG-invariant measure o the unique non-degenerate quantum limit?

1.4. Arithmetic QUE. Sequel to this paper. The sequel to this paper will
resolve Problem 1.9 for various higher rank symmetric spaces, in the con-
text of arithmetic quantum limits. We briefly recall their definition and
significance.

Let Y be (for example) a negatively curved manifold. In general, we
believe that the multiplicities of the Laplacianacting onL?(Y") are quite
small, i.e. thex-eigenspace has dimensieq. \°. This question seems
extremely difficult even foS1L,(Z)\H, and no better bound is known than
the generaD(\'/2/1log())), valid for all negatively curved manifolds.

However, even lacking information on the multiplicities, it transpires that
in many natural instances we haveiatinguished basifor L?(Y"). In that
context, it is then natural to ask whether Problem 1.5 or Problem 1.9 can be
resolved with respect to this distinguished basis. Since it is believed that the
A-multiplicities are small, this modification is, philosophically, not too far
from the original question. However, it is in many natural cases far more
tractable.
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The situation of having (something close to) a distinguished basis occurs
for Y = I''G/K andI' C G arithmetic. This distinguished basis is ob-
taining by simultaneously diagonalizing the action of Hecke operators. We
shall not give precise definitions here; in any case, we refer to quantum
limits arising from subsequences of the distinguished basaridsnetic
guantum limits

In the second paper we apply this results of this paper to the study of
arithmetic quantum limits. In particular we settle the conjecture in the case
wherel arises from the multiplicative group of a division algebra of prime
degree ovef). For brevity, we state the result in the language of automor-
phic forms; in particularA is the ring of adeles of).

Theorem 1.10. (QUE for division algebras of prime degree) Le{Q be

a division algebra of prime degreéand letG = PD* be the associated
projective general linear group. Assume tHatis unramified ateo, i.e.
that G(R) ~ PGL4(R). Let Ky < G(Ay) be an open compact subgroup,
and letl’ < G(R) be the (congruence) lattice such thdt= I"\G(R) ~
G(Q)\G(A)/K;. Then the normalized Haar measure is the unique non-
degenerate arithmetic quantum limit o

We expect the techniques developed for the proof of Theorem 1.10 will
generalize at least to some other locally symmetric spaces, the dadeeof
ing the simplest; but there are considerable obstacles to obtaining a theorem
for anyarithmetic locally symmetric space at present.

Let us make some remarks about the proof of Theorem 1.10. Our ap-
proach follows that of Lindenstrauss in [14] which established the above
theorem for division algebras of degree This approach is based on re-
sult toward the classification of thé-invariant measures oX. To apply
such a result one needs to show further regularity of the limit measure —
that A acts on everyA-ergodic component ofi,, with positive entropy.

This was proved forz = SL, by Bourgain and Lindenstrauss in [1]. In
the higher-rank case we rely on recent results toward the classification of
the A-invariant measures o, due to Einsiedler-Katok [6], and prove the
positive entropy property Qf ..

Establishing positive entropy in higher rank is quite involved. The equiv-
ariance (property (4) of Theorem 1.6), applied wihthe Hecke algebra,
plays a crucial role, just as in [1]. The proof utilizes a study of the behavior
of eigenfunctions on Bruhat-Tits buildings and consideration of certain Dio-
phantine questions (these questions are higher-rank versions of the ques-
tions: to what extent can CM points of bounded height cluster together?)
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2. NOTATION

Section 2.1 defines mostly standard notation and terminology pertaining
to semisimple groups and their root systems (we generally follow [12]).
Section 2.2 sets up the basic theory of spherical representations; the reader
may wish to read at least Definitions 2.3 and 2.6. Section 2.3 defines the
various function spaces we will have need of; the notation here is fairly
standard.

2.1. General notation. Let G denote a non-compact connected simple Lie
group with finite center (we discuss generalizations to this in Section 5.1).
We choose a Cartan involutiog for GG, and letK < G be the©-fixed
maximal compact subgroup. Lét= G /K be the symmetric space, with
rx € S the point with stabilizerK'. We fix a G-invariant metric onS.

To normalize it, we observe that the tangent space at the pgirt S is
identified withp (see below), and we endow it with the Killing form.

For a latticel’ < G we setX = I'\G andY = I'\G/ K, the latter being a
locally symmetric space of non-positive curvature. We normalize the Haar
measuresiz on X, dk on K anddy on Y to have total mas$ (heredy
is the pushforward offz under the the projection frorX to Y given by
averaging w.r.tdk).

Let g = Lie(G), and letd denote the differential 0B, giving the Cartan
decompositiory = ¢ @ p with ¢ = Lie(K). Fix now a maximal abelian
subalgebra C p.

We denote by the complexificatiom®g C; we shall occasionally write
ag for a for emphasis in some contexts. We denoterbyresp.ag) the real
dual (resp. the complex dual) of again, we shall occasionally write, for
a*. Forv € af, we defineRe(v), Im(v) € aj to be the real and imaginary
parts ofv, respectively.

Fora € a* setg, = {X €g|VH € a : ad(H)X = o(H)X },
A(a:g) = {a€a*\ {0} ] g # {0}} and call the latter the (restricted)
roots of g w.r.t. a. The subalgebra, is ¢ invariant, and hencg, =
(80Np)& (goNt). By the maximality ofx in p, we must then havg, = a®m
wherem = Z¢(a).

The Killing form of g induces a standard inner prodyet-) on a* w.r.t.
which A(a:g) C a* is a root system. The associated Weyl group, gen-
erated by the root reflections,, will be denotedi¥(a: g). This group is
also canonically isomorphic to the analytic Weyl groug(A)/Zqa(A)
and Nk (A)/Zk(A). The fixed-point set of any, is a hyperplane im*,
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called awall. The connected components of the complement of the union
of the walls are cones, called tliepen) Weyl chambersA subsetll C
A(a:g) will be called asystem of simple rootdy abuse of notation a
“simple system”) if every root can be uniquely expressed as an integral
combination of elements dil with either all coefficients non-negative or
all coefficients non-positive. For a simple systéimthe open con€; =
{vea |Vaell: (v,a) > 0} isan open Weyl chamber, and the niap-
Crris al — 1 correspondence between simple systems and chambers. The
Weyl group acts simply transitively on the chambers and simple systems.
The closure of an open chamber will be called a closed chamber. The ac-
tion of W (a: g) ona* extends in the complex-linear way to an actionagn
preservinga* C ag, and we call an elemente af. regularif it is fixed by
now € Wi(a:g). Weusep = 3> (dimg,)a € a* to denote half the
sum of the positive (restricted) roots.

Fixing a simple systerl we get a notion of positivity. Fot = ®,~0ga
andn = ©On we haveg = n @ a & m @ n and (Iwasawa decomposition)
g =n® a @ t. By means of the Iwasawa decomposition, we may uniquely
write every X € ginthe formX = X, + X, + X;. We sometimes also
write Hy(X) for X,.

Let N, A < G be the subgroups corresponding to the subalgebras-
g respectively, and led/ = Zx(a). Then A is a maximal split torus in
G, andm = Lie(M), thoughM is not necessarily connected. Moreover
Py = NAM is a minimal parabolic subgroup @f, with the mapN x
A x M — P, being a diffeomorphism. The map x A x K — Gisa
(surjective) diffeomorphism (lwasawa decomposition), sojfar G there
exists a uniquedy(g) € a such thaty = nexp(Ho(g))k for somen € N,
k € K. The mapH, : G — ais continuous; restricted td it is the inverse
of the exponential map.

Let gc = g ®r C denote the complexification af. It is a complex
semi-simple Lie algebra. Leéi: denote thecomplex-linearextension of
0 to gc. It is not a Cartan involution ofgc. We fix a maximal abelian
subalgebrab € m and seth = a ® b. Thenhc = h R C C gcis a
Cartan subalgebra, with the associated root systgimn:-: g¢) satisfying
Afa:g) = {alataeape o) \ 10} Moreover, we can find a system of simple
rootsIlc C A(hc:gc) and a system of simple rooi$ C A(a:g) such
that the positive roots w.r.II are precisely the nonzero restrictions of the
positive roots w.r.tIlc. We fix such a compatible pair of simple systems,
and letp, denote half the sum of the roots (¢ : gc), positive w.r.t.11c.

Let Fy C A(hc: ge) consist of the roots that restrict @on a, Fy” C Fy
those positive w.r.tllc. Letn, = @ang(g@)a, y = @QGFJ(gC),a.
Thenme = ny; & be @ nyy andge = ne G nys b he Py P ne.
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Forv € a, set||v||* = (Re(v), Re(v)) + (Im(v), Im(v)) (with the inner
products taken im}).

If [c is a complex Lie algebra, then we denote Byl:) its universal
enveloping algebra, and I3((¢) its center. In particular we s&t= 3(gc).

2.2. Spherical Representations and the mod€lVy, I,,). We recall some
facts from the representation theory of compact and semi-simple groups. At
the end of this section we analyze a model (the “compact picture”) for the
spherical dual of-.

Theorem 2.1.[12, Th. 1.12]Let K be a compact topological group and
let K, be the set of equivalence classes of irreducible finite-dimensional
unitary representations ok .

(1) (Peter-Weyl) Every e K, occurs discretely inh(K) with mul-
tiplicity equal to its dimensiori(p). Moreover,L?( K') is isomorphic
to the Hilbert direct sum of its isotypical compone{\@(K)p}pekﬁn.

(2) Letr : K — GL(W) be arepresentation df on the locally convex
complete spac@’. Then® _; W, is dense idV, wherelV, is the
p-isotypical subspace.

(3) Every irreducible representation &f on a locally convex, complete
space is finite-dimensional and hence unitarizable. In patrticular,
Ky is the unitary dual of .

(4) For K as in Section 2.1i  is countable.

Note that while [12, Th. 1.12(c-e)] are only claimed for unitary repre-
sentations on Hilbert spaces, their proofs only rely on the action of the
convolution algebra’(K') on representations df’, and hence carry over
with little modification to the more general context needed here. The last
conclusion follows from the separability é¢f(k), which in turn follows
from the separability of<.

Notation2.2 Letr : K — GL(W) be as above. The algebraic direct sum

Wi o D, W, consists precisely of these € IV which generate a finite-

dimensionali-subrepresentation. We referliox as the space ok -finite
vectors. We will uséV ¥ to denote these vectors f fixed by K.

Definition 2.3. SetV = L?(M\K), and setVx C V to be the space of
K-finite vectors. LeC>(M\ K') be the smooth subspacé&;*(M\K)' the
space of distributions o/ \ K. LetV}. (resp.V”) be the dual td/x (resp.

V). Then we have natural inclusiong, ¢ C*(M\K) Cc V andV}. D
C>*(M\K) D V’; further, we have (Riesz representation) a conjugate-
linear isomorphism

(2.1) vy



ON QUANTUM UNIQUE ERGODICITY FOR LOCALLY SYMMETRIC SPACES | 12

where the mag’: V' — V" is defined via the rul€’(f)(g) = (g, f)v =
fM\K gfdk.

Fix an increasing exhaustive sequence of finite dimensidhatable
subspaces oV, i.e. a sequenc®; C Vo, C --- C Vy C Vg C ...
of subspaces such thag®, V; = Vx and eachl; is a K -subrepresentation.

For ® € V;; and1l < N € Z, define theV-truncation of® as the unique
elementb € Vy such thatl'(® ) — ¢ annihilatesVy.

Finally let o € Vi be the function that is identicalli.

Definition 2.4. Let 1« be a regular Borel measure on a spade Call a
sequence of non-negative functiofs} € L'(u) a d-sequencat = €
X if, for everyj, [ fjdu = 1, and moreover if, for every € C(X),
limj o [ fj - gdp = g().

Lemma 2.5. There exists a sequengdd;}>~, C Vi such that| f;] is a
J-sequence o/ \ K.

Proof. Let {h;}"2, C C(M\K) be aj-sequence. By the Peter-Weyl theo-
remV is dense inC'(M\ K), so that for everyj we can choosg; € Vi

such thaﬂ\/hj(k) — fJ’-(k)HOO < 2% Then one may také; = _H;;j”__ O

Secondly, we recall the construction of the spherical principal series rep-
resentations of a semi-simple Lie group. An irreducible representation of
G is sphericalif it contains aK -fixed vector. Such a vector is necessarily
unique up to scaling.

To anyv € af. we associate the character(p) = exp(v(Hy(p)) of Fy
and the induced representation with K )-module
(2.2)

Ind§, v, = {f € C(G)yc | Vp € P,g € G : f(pg) = e W) f(g)}

By the Iwasawa decomposition, evefye Indg0 X, IS determined by its
restriction toK; this restriction defines an element of the spége Con-
versely, everyf € Vi extends uniquely to a member]tmfdlci0 Xo-

Definition 2.6. For v € af, we denote by/,, Vx) the representation of
g on Vi fixed by the discussion above; we shall also [js& denote the
corresponding action of on C*(M\ K) and of G on V. We shall denote
by I/, the dual action ofy on eitherV}. or C*°(M\K)'.

Note also thatp, € Vi (see Definition 2.3) is a spherical vector for the
representatiof/,, V).

Theorem 2.7.(The unitary spherical dual; references are drawn friir8])

(1) Foranyv € ag, ImdgO X, has a unique spherical irreducible sub-
quotient, to be denoted,. [Th. 8.37] Any spherical irreducible
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unitary representation ofs is isomorphic tor, for somev. [Th.
8.38] We haver,, ~ m,, iff there existsw € W(a:g) such that
Vo = Wl.

(2) [87.1-3]If Re(v) =0 thenIndg0 Xv IS unitarizable with the in-
variant Hermitian form given byf,g) = [, f(k g(k)dk. This
representation has a unique spherical summand (necessarily iso-
morphic tor,), and we letj, : Vi — 7, denote the orthogonal pro-
jection map. [Th. 7.2] I is regular thenIndP X IS irreducible.

(3) [816.5(7) & Th. 16.6] Ifr, is unitarizable therRe(u) belongs to
the convex hull ofwp} (,cppa.qy C @, @ compact set. Moreover,
there existav € W(a:g) such thatw? = 1 andwr = —v. In
particular if Re(r) # 0, thenw # 1, and since Infw) is w-fixed it
IS not regular.

Note that the norm om, is only unique up to scaling. Re(») = 0 and
Im(v) is regular (the main case under consideration), we chippgg. =
1.

For future reference we compute the actiongabn Vi via I,. First,
remark that the action df onV = L?*(M\K) is given by right translation,
and the action of C g on V is then given by right differentiation.

Secondly, recall that it/ C R™ is open, aifferential operatorD on U
is an expression of the fonﬁ:fil fiof* ...0%, where thef; are smooth
anda; > 0. If M is a smoothe-manifold, we say a map : C>*°(M) —
C*>(M) is a differential operator if it is defined by a differential operator in
each coordinate chart.

Lemma 2.8. Let f € Vx and letX € g. Then there exists a differential
operator Dy on M\ K (depending linearly onX and independent af)
such that for every € K,

(L (X)f) (k) = (v + p, Ho(Ad(k) X)) f (k) + (Dx f) (k).
Proof. Lett € R be small, and considgi(k exp(tX)) = f(exp(t Ad(k)X)-
k). We write the lwasawa decomposition Afl(k) X € g asAd(k)X =
Xu(k) + Xa(k) + Xe(k) where X, (k) = Ho(Ad(k)X). By the Baker-
Campbell-Hausdorff formulaxp(t Ad(k)X) = exp(tXn(k))-exp(tXq(k))-
exp(tXe(k)) + O(t?), so that:

(LT (R) = 5 7 (exp(tXa(k)) - exp(tXa(k)) - K) eco -+ (exp(Xe(k)R) feo

To conclude, observe thgt— < f (exp(tXe(k))k) .~ defines a differen-
tial operatoD x on M\ K. O

Lemma 2.8 will be used in the following way: 88| — oo, the operator
I, (” H) acts onVk in a very simple fashionmodulocertain error terms of
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order||v||~!. The simplicity of this “rescaled” action aig/|| — oo will be
of importance in our analysis.

2.3. Some functional analysis.We collect here some simple functional
analysis facts that we shall have need of.

Let C2°(X) denote the space of smooth functions of compact support on
X. Itis endowed with the usual “direct-limit” topology: fix a sequence of
K-invariant compact set§; C (5 C ... such that their interiors exhaust
X. Then theC:°(C;) exhaustC>*(X). C(C;) is endowed as usual with
a family of seminorms, viz. for anp € U(gc) we define| f||.. , =
sup,cc, |Df|. These seminorms induce a topology on eagh(C;). We
give C°(X) the topology of the union af’>°(C;), i.e. a map fronC°(X)
is continuous if and only if its restriction to eac¢k*(C;) is continuous.

In other words: a sequence of functions converge€’if(X) if their
supports are all contained in a fixed compact set, and all their derivatives
converge uniformly on that compact set.

C>(X) is alocally convex complete space in this topology. In particular,
its subspac€'> (X ) of K-finite vectors is dense. We denote ©§° (X )’
(resp. C°(X)) the topological dual t@'>°(.X) (resp. the algebraic dual
to C°(X)k). Both spaces will be endowed with the weak-* topology. We
shall refer to an element ¢f>°(X)" as adistributionon X.

Let Cy(X) be the Banach space of continuous functioncsecaying at
infinity, endowed with the supremum norm. L&§(X)’ be the continuous
dual of Cy(X); the Riesz representation theorem identifies it with the space
of finite (signed) Borel measures oa We endowC (X )’ with the weak-*
topology.

It is easy to see that>°(X)x is dense irCy(X). In particular any (alge-
braic) linear functional o> (X') x which is bounded w.r.t. theip-norm
extends to a finite signed measure &n with total variation equal to the
norm of the functional. Moreover, if this functional is non-negative on the
non-negative members 6f°(.X )k then the associated measure is a posi-
tive measure.

3. REPRESENTATIONTHEORETICLIFT

3.1. Introduction and motivation. Suppose) € L*(Y) has|¢|, = 1
and an eigenfunction @§. The aim of the present section is to construct
a distributiony,, on'Y” that lifts the measurg,, onY’, and establish some
basic properties qf,.

In the situation of Theorem 1.6, if = 1, the corresponding distribu-
tion will be the distributiong.,, discussed in the proof of Theorem 1.6. The
functions:,, will then be chosen so that the measurgs(x)|?dx approxi-
matey,; finally, both|«,, (z)|? andu, will becomeA-invariant as: — oo.
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We begin by fixing notation and providing some motivation for the rela-
tively formal definitions that follow.

Settingy(z) = ¢(zK) for anyz € X, we can think ofy) as a func-
tion on X. By the uniqueness of spherical functions [7, Th. 4.3 & 4/5],
generates an irreducible spheric¢alsubrepresentation df?(X). As dis-
cussed in Section 2.2, we can then find= a. such that this representa-
tion is isomorphic tar, (in particular,7, is unitarizable). We will assume
for the rest of this section thdte(r) = 0, i.e. n, is temperedand thatv
is regular. This will eventually be the only case of interest to us in view
of the non-degeneracy assumption made later (Definition 3.8). In this case
(Vk, I,) is irreducible and isomorphic tg,. It follows that there is a unique
G-homomorphismiy, : (V, I,,) — L*(X) such thatR, (o) = 1. The nor-
mallzatlc')nHwHLQ(X)‘: 1 now implies|| Ry (/)] 2x) = [/l 22(x) for any
f € Vg, i.e. thatR, is an isometry.

We now give the rough idea of the construction that follows in the lan-
guage of Wolpert and Lindenstrauss; the language we shall use later is
slightly different, so the discussion here also provides a translation. The
strategy of proof is similar to theirs; in a sense, the main difficulty is find-
ing the “correct” definitions in higher rank. For instance, the proofs of
Wolpert and Lindenstrauss use heavily the fact thiatypes forPSL,(RR)
have multiplicity one, and the explicit action of the Lie algebra by raising
and lowering operators. We shall need a more intrinsic approach to handle
the general case.

The measur@,, onY is defined byy — [, g(z)[¢(x)|*dz. More gener-
ally, suppose that’ € L?(X) belongs to thé&-subrepresentation generated
by, i.e.¢’ € Ry(V). We can then consider the (signed) measure

(3.1) rig [ vt

If g(x) is K-invariant, then so is the produgt(z)g(x), and it follows
that the right-hand side of (3.1) depends only on the projectiaff @into
Ry, (V). The spacez, (V)" is one-dimensional, spanned byand it fol-
lows that if)" — ¢ L 1 then the measure on X projects to the measure
My ON Y.

The distributiony:,, we shall be construct will be in the spirit of (3.1), but
with ¢ a “generalized vector” ik, (V). Suppose, in fact, that;, 5, ... ¢/, ...
are an infinite sequence of elementdf(V') that transform under different
K-types, and suppose further that C°(X)x. Then, by considerings-

types, the integraf . /() (z)g(z)dx vanishes for all sufficiently largg
It follows that, if one setg)’ to be theformal sumz;?‘;l Y%, one can make
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sense of (3.1) by interpreting it as:
7(g) = fj [ v

In other words, iy € C°(X) x, we may make sense of (3.1) while allowing

X

1’ to belong to the spacEy of “infinite formal sums of K-types.” Our
definition of 1, will, indeed, be of the form (3.1) but with’ an “infinite
formal sum” of this kind.

For a certain choice of’ (denoted®,, in [13]), we will wish to show
that (3.1) is “approximately a positive measure” and “approximatély
invariant,” where both statements become true in the large eigenvalue limit
in an appropriate sense. For the “approximate positivity,” we shall integrate
(3.1) by parts to show that there exists another unit ve¢tore R, (V)
such thatf, ¢ (z)y/'(z)g(x)dx ~ [, | (x)]*g(x)dz, where the right-hand
side is evidently a positive measure. For the “approxim&ievariance,”
we will construct differential operators that annihilatér)y’(z); this re-
duces to a purely algebraic question of constructing elemeritg g that
annihilate a vector in a certain tensor product representation.

The spacé//;< is very closely linked to the dud;. of the K -finite vectors:
the conjugate linear isorD\orphisTﬁ: V — V' (2.1) extends to a conjugate-

linear isomorphisni” : Vx — Vj.. For formal reasons, it is simpler to

work with V. tham?K; this is the viewpoint we shall take in Definition 3.1.
To motivate this viewpoint, let us rewrite (3.1) in a different fashion. Let
v" € V be chosen so that' = R, (v'), and letP be the orthogonal projec-
tion of L?(X) onto R, (V). We may rewrite (3.1) — using the notations of
Definition 2.3 — as follows:

o(g) = (¥(2)g(2), V' (%)) r2(x) = (P(¥(2)g(x)), ¥’ (%)) 12(x)
(3.2) = <R;1 o P(¢(x)g(x)),v )y =T ') o R;l o P(¢(z)g(x))

Now, if g € C®(X), then the quantity,, o P(y(z)g(x)) is K-finite, i.e.
belongs to/k. It follows that, if g € C°(X)k, the last expression of (3.2)
makes formal sense if we repla€¢v’) by any functionalb € V..

3.2. Lifting a single (non-degenerate) eigenfunction.

Definition 3.1. Let® € V}. be an (algebraic) functional, anfl € V. Let
wy (f, @) be the functional o'2°(X) x defined by the rule:

(3.3) ps(f, ®)(g) = @ o Ry o P(Ry(f) - g)

whereg € C(X)k, P : L*(X) — Ry(V) is the orthogonal projection,
and R, (f) - g denotes pointwise multiplication of functions &n
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Remark3.2 In fact, if & € C°(M\K)' (see equation (2.1)) then,(f, )
extends to an element 6£°(X ), i.e. defines a distribution aX: 1, is the
composite
— R;'P

oo (x) AT coo ) T oo\ ) 2
and it is easy to verify that each of these maps is continuous. This is never
used in our arguments: we use this observation only to refer to cerfain
as “distributions”.

Definition 3.3. Leto € V} be the distributiord(f) = f(1), and cally,, o

iy (0, 6) the (non-degeneratehicrolocal lift of .

The rest of the section will exhibit basic formal properties of this defini-
tion. We will establish most of the formal properties;of by restricting®
to be of the form’( f5), where the conjugate-linear mappifigs as defined
in (2.1). This situation will occur sufficiently often that, for typographical
ease, it will be worth making the following definition:

Definition 3.4. Let f,, fo € V. We then set), (f1, f2) = py(f1, T(f2)).
Lemma 3.5. Supposefy, f> € V. Then

34 Wl f)) = /X Ry () (@) Ry (o) (@)g ) d.

andug defines a signed measure &rof total variation at most| f1 || z2(x) || f2|| .2(x) -
If f1 = fa, thenu(f1, f1) is a positive measure of mag[[2. .

Proof. (3.4) is a consequence of the definitiongof The Cauchy-Schwarz
inequality implies thatly),(f1, f2)(9)| < [ fillz2co) | fol 2 91| e (x)
whence the second conclusion. The last assertion is immediate. [
In fact, it may be helpful to think of.,, as being given by a distributional
extension of the formula (3.4); see the discussion of Section 3.1.

Lemma 3.6. The distribution., (¢o, ) on X projects to the measute|*dy
onY.

Proof. In view of the previous Lemma, it will suffice to show that the dis-
tribution 4, (0, 8) — p3; (0, o) ON X projects to0 onY". This amounts
to showing thatu, (o, — T'(¢o)) annihilates anykK-invariant function

g € C=(X)¥. Taking into account that the function&l T'(¢,) on Vi
annihilates anys-invariant vector, the claim follows from the definition of

- u

Lemma 3.7. The mapu,, : Vk ® Vi, — C(X)) is equivariant for the
natural g-actions on both sides.
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Proof. This follows directly from the definition ofi,. O

Concretely speaking, this says thatfoe Vi, ® € V., g € CX(X )k, X €
g we have

(3.5) pp (X f1, @)(9) + s (f1, X P)(9) + g (f1, P)(Xg) = 0

whereX acts onVk via I, and onV}; via I/,. In particular, if f;, fo € Vi
we have

(3.6)  puy(Xfi, f2)(9) + my(fr, X f2)(9) + g (f1, f2)(Xg) = 0

3.3. Sequences of eigenfunctions and quantum limitsln what follows
we shall considef, } -, € L*(Y), a sequence of eigenfunctions with pa-
rameterg v, } diverging toco (i.e. leaving any compact set). Sgt= ﬁ
For fi, fo € Vx and® € V}., we abbreviatepin(fl,fz) (resp. puy, (f, ®))

to pl(f1, f2) (resp. u.(f, ®)), and we abbreviate the microlocal lt,,
(:= fn (0, 0)) 1O fiyy.

Definition 3.8. (G simple) We say a sequenggis non-degeneratéevery
limit point of the sequence, is regular.

We say that it iconveniently arrangeflit is nondegeneratdjm,, .. 7,
exists,Re(v,,) = 0 for all n, thev,, are all regular, and for allf;, fo € Vi
the measureg! (f, fo) converge inCy(X) asn — oo. In this situation
we denotéim,, .., 7, by 7.

The existence of non-degenerate sequences of eigenfunctions was dis-
cussed in Remark 1.7. This follows from strong versions of Weyl's Law on
Y. By Theorem 2.7, the non-degeneracy of a sequencas in the Def-
inition implies Re(v,,) = 0 for all large enough. For fixed f1, fo € Vi
the total variation of the measurg$( f1, f») is bounded independently of
n (Lemma 3.5); in view of the (weak-*) compactness of the unit ball in
Co(X)' it follows that this sequence of measures has a convergent subse-
guence. Combining this remark with the fact th@t has a countable basis,

a diagonal argument shows that every non-degenerate sequence of eigen-
functions has a conveniently arranged subsequence.

Now suppose{i,} is a conveniently arranged sequence andffixe
Vi, ® € Vi, g € CF(X)k. Let®y be theN-truncation ofd (see Defini-
tion 2.3). In view of (3.3), if we choos& := N(fi, g) sufficiently large,
thenu, (f1,®)(g) = ul (f1,®x)(g). Itfollows that the limitlim,, . 1, (f1, ®)(g)
exists.

We may consequently define, : Vi x Vi, — C2(X)} andul : Vi x
Vi — C*(X) by the rules:

poo(f, ®)(9) = lim pn(f1, @)(g), (9 € CZ(X)x)

3.7)
1150 (f1, f2) = oo (f1, T(f2))
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Lemma 3.9. For fixed f; € Vi, the mapd — u..(f1, P) is continuous as a
mapV}, — C*(X), both spaces being endowed with the weak topology.

Proof. This is an easy consequence of the definitions. O

It is natural to ask whether..(f;, ®) extends to an element 6f°(X )/,
especially ifé € C°(M\K)'. Indeed, it is possible to make quantitative
the argument of Remark 3.2 to obtain a uniform bound on the distributions
tn(f1,®). This will not be needed in this paper, however, since for our
choice of(f;, ®), the limiting distribution is positive (in particular a mea-
sure), a fact we will prove directly.

Henceforth{v,, } -, will be a conveniently arranged sequence. We will
show thatu. (¢o, 6) is positive and bounded w.r.t. tHe° norm onC° (X)) k.

It hence extends to a finite positive measure.

Remark. In the case of a semisimple group, one can allow the projection

of the parameter to each simple factor to tend to infinity at a different rate.

The definition of a non-degenerate limit can then remain unchanged. The
v, however must be defined with greater care — see Section 5.1.

The key to the positivity of the limits is the following lemma (cf. [21,
Prop. 3.3], [13, Th. 3.1]).

Lemma 3.10. (Integration by parts) Le{v,,} be conveniently arranged.
Then, for anyf, fi, fo € Vkx we have:

Here e.g.f - f» denotes pointwise multiplication of functions bh\ .
Proof. We start by exhibiting explicit functiong for which (3.8) is valid.
Extend every € a. to g¢ via the Iwasawa decompositign=n® a & .
ForanyX € g, letpx(k) = 1 (U, Ad(k)X). For fixedX, k — px (k)
defines ak -finite element of.?( M\ K).
By (3.6), for everyX, f1, f2, g, andn, we have
(3:9) (X f1, fo)(9) + pn (1. X f2)(9) + i (f1, f2)(Xg) = 0.

Divide by ||v,|| and apply Lemma 2.8 to see:

(3.10) i (ipn - f1, 2)(9) + pa, (frs i - £2)(9)
_ 1 (Dxf1, f2)(9) + pa (f1. Dx f2)(9) + g (f1, f2)(Xg)
[l ’

wherep, (k) = 1 <ﬂn + 525 Ad(k)X>.
As n — oo, the right-hand side of (3.10) tends to zero by Lemma 3.5.

Onthe other hang, f; (considered as continuous functionsiéhconverge
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uniformly to py f;. Another application of Lemma 3.5 shows that the left-
hand side of (3.10) converges e’ (px f1, f2) — inl (f1,px - f2). Since
px = Dpx this shows that (3.8) holds with= py.

Now letF C C(M\K) be theC-subalgebra generated by the and the
constant functiori. Clearly (3.8) holds for allf € F. This subalgebra is
K-stable sincex (kki) = paa,)x (k) and hencegFNV,, C Fforall p € K.
ShowingF is dense inL?( M\ K) suffices to conclude thaf = V.

We will prove the stronger assertion thatis dense inC'(M\ K) using
the Stone-Weierstrass theorem. Note that F, and.F is closed under
complex conjugation sincey = px. It therefore suffices to show that
separates the points dff\ K. To this end, letk;, ks € K be such that
pX(kl) = px(l{/’g) forall X € g. Then<ﬁoo,Ad(k1)X> = <I;OO,AC1(]{?2)X>
for all X € g, i.e. (Ad(ky) 00 — Ad(ky) 00, X) = 0 for all X €
g. This implies thatAd(k; ')7., = Ad(k:)™'7u; by the non-degeneracy
assumptionZy () = Zi(A) = M, S0 Mk, = Mk,, i.e. k andk,
represent the same point of\ K. O

Lemma 3.10 shows easily that, (o, §) extends to a positive measure.
Indeed, choosing; as in Lemma 2.5, we see that

(3.11) oo (20, 6) = 1im i (0o, |f517) = T peoe (f f5).

Here we have invoked Lemma 3.9 for the first equality. It is clear that
wL (f;, f;) defines a positive measure of; thus i, (o, d), initially de-
fined as an (algebraic) functional @rf°(.X ), extends to a positive mea-
sure onX. To obtain the slightly stronger conclusion implicit in (2) of
Theorem 1.6, we will analyze this argument more closely.

Corollary 3.11. Notations as in Lemma 3.10, there exist a constant;, ¢
and a seminorm - || on C2°(X) such that
(3.12)

‘NZ:(fl,f : f2)(g) - MZ:(? fl’fQ)(g)’ < C(f17f2,ng“ [Hﬂoo - ﬁn“ + HVnH_l]

Proof. This follows by keeping track of the error term in the proof of of
Lemma 3.10.

Fix a basis{X;} for g, and define a seminorm afi>*(X) by ||g|| =
gl o x) + 32, 1| Xig | o< (x)- With this seminorm, (3.12) holds fdf, f, €
Vi andf = px. This follows from (3.10), utilizing Lemma 3.5 and the fact
that{|px — pullLe@nr) < [|7oe = 2.

Next supposef, fo, f, [/ € Vg anda,o’ € C. Then, if (3.12) is valid
for (f1, f2, f) and(f1, fo, f'), itis also valid for( f1, fo, af +/f'). Further,
if (3.12) is valid for (fi, f' - fo, f) and for(f f1, f2, f'), then it is also valid

for (fi, fo. f - f').
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Consider now the set of € Vi for which (3.12) holds for allf;, f> €
Vk. The remarks above show that this is a subalgebidofhat contains
eachpy. The Corollary then follows from the equalitf = L?*(M\K),
established in the Lemma. O

Remark3.12 Infact, it is possible to obtain a bound of the fo€ ¢, 5. gl [|val
with the constant uniformly bounded if thig are uniformly bounded away

from the walls. This result can be used to avoid passing to a subsequence
in Theorem 1.6 or the following Proposition; this is unnecessary for our
applications, however.

Proposition 3.13. (Positivity and equivariance: (2) and (4) of Theorem
1.6).
Let {«,} be non-degenerate. After replaciqg,} by an appropriate
subsequence, there exist functiahson X with the following properties:
(1) Define the measure,, via the rulec,(9) = [, g(z ) [t (z)|2d.
Then, for eacly € C°(X)x we havd1mn%o(an(g) n(g )) = 0.
(2) Let E C Endg(C™(X)) be aC-subalgebra of endomorphisms of
C*(X), commuting with th&7-action. Note that each € £ in-
duces an endomorphism 6f°(Y’). Assume in addition that,, is
an eigenfunction foZ. Then we may choose, so that each),, is
an eigenfunction fo’ with the same eigenvalues ags.

Proof. Without loss of generality we may assume tHat,} are conve-
niently arranged.
Let {fj}‘;';l C Vi be the sequence of functions provided by Lemma

2.5, so thatT'(|f;|*) approximates). The main idea is, as in (3.11), to
approximatgu, = /i, (io, 0) Usingys, (f;, f;)-

For anyg € C°(X)x we have:

‘/’Ln( Mn(f]af]) ‘ < ‘:un 30076)(9)_Mn(¢07|f]‘2>(g)|

(3.13) + [ (0, | £31%)(9) = 1a(f5, ) (9)] -

Corollary (3.11) provides a seminorjm| on C°(X') and a constant’;
such that

| (0, 1 F517)(9) = 1 (s £)(@)] < Cillgll - (19 = ool + [l '] -
Choose a sequence of integéys}>° , such thatj,, — oo and:

Gy [ = Pl + )] =0

We now estimate the other term on the right-hand side of (3.13). Choos-

ing N = N(g) large enough so that, (¢, d)(9) = (o, on)(g), We
have

}/ﬁn(‘POa(S)(g) Mn(SOO, ’f3| ) ’ < H|fJ|N 6NHL2 (M\K) HQH
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As j — oo (in particular, ifj = j,),
to zero. It follows that

fil& — dn in Vi, so this term tends

(3.14) Tim 4 (g) = i, (fi £ (9)] = 0,
Settingy,, = Ry, (f;,), we deduce that
(3.15) i (1inlo) — [ 16Patoic) =0
n—oo X

holds for everyy € C>°(X)k. In particular, we obtain (1) of the Proposi-
tion.

To obtain the equivariance property note that the representétjois
irreducible as dg, K')-module. By [12, Corollary 8.11], there exisig €
U(g) such thatl,, (u,)pe = f;,. Thust, = u,i,. Now everye € E
commutes with the right7-action; in particulareu,, = u,e. It follows that
¥, transforms under the same characteFads),. 0

4. CARTAN INVARIANCE OF QUANTUM LIMITS

In this section we show that a nondegenerate quantum/igis invari-
ant under the action ot < G. This invariance follows from differential
equations satisfied by the intermediate distributiops The construction
of these differential equations is a purely algebraic problem: construct el-
ements in théJ (g¢)-annihilator ofyy ® § € Vi ® Vj., where thel(gc)-
action is byl, ® I’.

Ultimately, these differential equations are derived from the fact that each
2 € 3 = 3(gc) acts by a scalar on the representatibh, /,,, ). To motivate
the method and provide an example, we first work out the simplest case, that
of PSLy(R), in detail. In this case the resulting operator is due to Zelditch.

4.1. Example of G = PSLy(R). SetG = PSL,y(R), I' < G a lattice, and

A the subgroup of diagonal matrices. Lét(explicitly given below) be the
infinitesimal generator afl, thought of first as a differential operator acting
on X = I'\G via the differential of the regular representation{df,} is a
conveniently arranged sequence of eigenfunctions'\gr/ K, and ., the
corresponding distributions (Definition 3.3), we will exhibit a second-order
differential operatot/ such that for all € C°(X),

(.1) in((H — L)g) =0,

T'n

wherer, ~ |\,|'2. Since theu,(Jg) are bounded (they converge to
loo(Jg)), we will conclude thatu.(Hg) = 0, in other words thaf., is
A-invariant. This operator in equation (4.1) is given in [24]. Its discovery
was motivated by the proof (via Egorov’s theorem) of the invariance of the
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usual microlocal lift under the geodesic flow. We show here how it arises
naturally in the representation-theoretic approach.

By Lemma 3.7, it will suffice to find an operator annihilating the element
o ® 0§ € Vi ®@ V., whereU (gc) acts vial, @ I,

Let H = < ! 1 ),X+ = (O é)X = ((1) 0 ) be the stan-

dard generators aff,, with the commutation relationg?, X,| = £2X,
[ X, X_| = H. The roots w.r.t. the maximal split toras= R - H are given
by +a(H) = +£2. We also setV = X, — X_, sothatR - W = ¢. Letting
+a be the positive rootn = R - X, we havep(H) = ja(H) = 1. Set
exp a = A as in the introduction.

The Casimir element’ € 3(sl,C) is given by4C' = H* + 2X, X _ +
2X_X.. For the parameter € ia* given byv(H) = 2ir (r € R), C
acts onm, with the eigenvalue\ = —}l — r2. The Weyl element acts by
mappingr — —v. OnS = G/K with the metric normalized to have
constant curvature 1, C' reduces to the hyperbolic Laplacian. In particular,
every eigenfunction € L*(I'\G/K) with eigenvalue\ < —X generates a
unitary principal series subrepresentation. Definition 3.3 associatesto
distributiony,, (g, 0) onI'\G.

As in Definition 2.6, we have an actiah) of G on V' and ofg on V.
Note that forg € NA, f € Vi, (I,(g9)f) (1) = f(g) = evrHolh £(1),
Sinced(f) = f(1) and the pairing betweeVi, andV; is G-invariant, it
follows that forX € a®n, I,(X)d = — (v + p, Hy(X)) 0.

Suppressingd, from now on this means thaf - (f ® ) = (Xf) ®d —

(v + p, Hy(X)) f ® 6. Extendr + p trivially on n to obtain a functional on
a®n. Then

(4.2) (X + @ +p)(X)) - (f®) = (X[)®4.

Now sincea normalizesn andv + p is trivial on n, the mapX — X +
(v + p) (X) is a Lie algebra homomorphism® n — a @ n, and hence
extends to an algebra homomorphism,: U(ac @ nc) — U(ac ® ne).
(4.2) shows that, for. € U(ac & ne),

(4.3) Tuip(u) - (f @06) = (uf) @0

In view of (4.3) any operatot € U(ac & nc) annihilatingy, gives rise to
an operator annihilating, ® ¢.

The natural starting point is the eigenvalue equatii+1+472)p = 0.
Of course,C is not an element o/ (ne & ac). Fortunately, it “nearly” is:
there exists ad” € U(nc @ ac) such thatC — C” annihilatesy,.

In detail, we use the commutation relations and the factthat X, —
W to write 4C' = H? — 2H + 4X2 — 4X, W. Sinceg, is spherical, it
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follows thatiW ¢, = 0. Thus

(4.4) (H? —2H +4X2 + 1+ 4%) 0o =0

Since(v + p)(H) = 2ir + 1, we conclude from (4.3) that:
(H+2ir+1)*—2(H+2ir+1)+4X; + 1+ 4r%*) - oo ® 6 = 0.

Collecting terms in powers aof we see that this may be written as:

((2H)(2ir) + (H* +4X2)) po @6 =0

SettingJ = Z % and dividing by4ir we see that the operatéf + £

annihilatesp, ® d, and so also the distributiom,. One then deduces ‘the

A-invariance ofu,, as discussed in the start of this section.

Notice that the terms involving? in (4.4) canceled. This is a general
feature which will be of importance.

4.2. The general proof. We now generalize these steps in order. Notations
being as in Section 2 and Definition 3.3, we first compute the action of
U(mc @ ac @ nc) ond (Lemma 4.1) and then op, ® § (Corollary 4.2).
Secondly we find an appropriate form for the element3(gt-) (Corollary
4.4), which gives us the exact differential equation (4.6). We then show
that the elements we constructed annihilatingare (up to scaling) of an
appropriate formH + ﬁ (Lemma 4.5), and “take the limit as — o0”
(Corollary 4.6) to see that,, is invariant under a sub-torus df

A final step (not so apparent in tHi&L,(R) case) is to verify that we
have constructeénoughdifferential operators to obtain invariance under
the full split torus (Lemma 4.7). In fact, even in the rahkase one needs
to verify that the ‘HH” part is non-zero.

Given\ € af, we extend it to a linear magpc @ ac @ ng — C. Since
mc @ nc is an ideal of this Lie algebra) is a Lie algebra homomorphism;
thus it extends to an algebra homomorphismlU (m¢ @ ac @ ne¢) — C.
We denote by, the translation automorphism 6f(m¢ @ ac @ n¢) given
by X — X + A\(X) onm¢ & ac & ne. Similarly, giveny € b, we define
7 : U(he) — U(he). We shall writeU (gc)=? for the elements of/ (gc¢)
of degree< d, and similarly for other enveloping algebras ghe- 3(gc)
(€.9.3%/ = 3N U(gc)™).

Letv € af. Lety, : 3 — C be the infinitesimal character corresponding
to 7, (that is, the scalar by which acts in(Z,, Vi ).) Recall thaip, denotes
the half-sum of positive roots fdkh¢: gc), p the half-sum for(a: g).

Lemmad.l.For X cm@adn, (X)) =—(v+p, X)0.

Proof. This follows from the definitions. O
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Corollary 4.2. Foranyu € U(m¢ @ ac ® ne) and f € Vi,

L, @ I (1o4p(u)) - (f @ 0) = (L(u) f) ® 6.
Proof. This follows from the previous Lemma. O

Definition. Letpr : U(gc) — U(hc) be the projection corresponding to the
decomposition/(gc) = U(he) @ [(nc @ nar)U(ge) + Ulge) (e @ )
(arising from the decompositiofi: = nc ® nyr @ he @ ne @ nyy by the
Poincaré-Birkhoff-Witt Theorem).

Lemma 4.3. For z € 3¢ we have
z —pr(z) € Une)U(ac)>"?U (k).

Proof. It suffices to show that — pr(z) € U(ne)U(gc)=42U(kc), since
gc = nc @ ac @ Ec.

Let B(ng), B(ne), B(ny) andB(n,,) be bases fong, ne, ny, andnyy,
respectively, consisting df--eigenvectors. LeB(ac) andB(bc) be bases
for ac andbc, respectively.

By Poincaré-Birkhoff-Witt, one may uniquely expresas a linear com-
bination of terms of the form:

D=X,...X,Y1.. YA ... A4,B,...B,X,... XxY1...Y,

whereX, € B(nc), Y, € B(UM), A, € B(Cl((j), B, € B(b@),y* c B(ﬁ@)
andY, € B(ny). Thenz — pr(z) consists of the sum of all tern®

for whichn +m + k + 1 # 0. We show that each such term satisfies
D e U(l’l(@)U(Q@)SdiQU(Ec).

In view of the fact that — pr(z) commutes withac, one has: = 0 iff
k = 0. Further, ifn = k& = 0, then the fact that — pr(z) commutes with
bc impliesm = 01iff [ = 0. Alsoonehass +m+t+r+k+1<d.

We now proceed in a case-by-case basis, using either the inclugion
be®ny = me C k¢, or the observation that fo¥ € ac we haved: X € nc,
while X + 00X € € (it is 6c-stable!).

(1) k£ =1 = 0isimpossible, for this would force = m = 0.

(2)k > 1andl > 1. Thenn > 1 so thatX;... X, € U(ng),
?1...?1 € U(Ec>,andm+t+7’+k} <d-2.

(3) k =0andl > 1. Thenn = 0andm > 1, sot < d — 2. Since
[a,m] = 0 we may commute thel-terms past th& -terms, so
that D is the product of thed-terms (at most/ — 2 of them) and
Yi...Y,By...BY,...Y, € U(tc).

(4) k>1andl =0. Thenn > 1. Sets =Y, ... Y, A, .. . AB,...B,X,... X4
sothatD = X ... X,,-5-X}. Sincem-+t+r+(k—1) <d—1-n <
d—2,we haves € U(gc)=?2. Then (recalbc is the complex-linear



ON QUANTUM UNIQUE ERGODICITY FOR LOCALLY SYMMETRIC SPACES | 26

extension of the Cartan involutighto g¢),

(45) D=X,.. XusXr = Xi1...X,,-5- (X} —0c(Xp))
+ Xl ce Xne(c(yk)s
+ Xi... Xn(sé’@(yk) — 6@(7}6)5)

From the observation above, the first two terms on the right clearly
belong tol (n¢)U (gc)=?~2U (kc). Moreover,[s, 6c(X})] € U(ge)=??
(for anyp € U(ge)S%,qg € U(ge)=% the general facfp,q| €
U(gc)%*+a~1 follows by induction on the degrees from the formula
[ab, c] = a[b, c] + [a,c]b). Thus the third term of (4.5) belongs to
U(ﬂ@)U(g@)Sd_2U(Ec> also.

4

Corollary 4.4. Letz € 3= Then there exists= b(z) € U(nc)U (ac)S?
such that: — pr(z) + b(z) € U(gc) - tc.

Sincel, (¢:) annihilatesp, andz - ¢y = x.(2)¢o, We havel, (y,(z) —
pr(z) + b(z)) - ¢o = 0. In view of Corollary 4.2 we obtain:

(46) I, ® [,//(Tqup pr(z) - Tu+pb(z) - XV(Z))(QDO X 5) =0

In what follows, we shall freely identify the algebta )"V (e 9) with
the Weyl-invariant polynomial functions dy}..
GivenP € U(hc)"be:9c) we denote byP': h: — b its differential.
In other words, we |dent|f3P with a polynomial function orhg, andP’
denotes the derivative of this function; it takes values in the cotangent space
of h¢, which is canonically identified at every point wifa.
We shall use the notatidii(gc)[ac|=" to denote polynomials of degree
r ona}, valued in the vector spaéé&(gc). Note that given/ € U(gc)[ac]="
andv € af. we can speak of the “value ofatv.” We denote it by/(r) and
it belongs tol/ (gc).

Lemma 4.5. Let P € U(hc)"he:%) have degree< d. SetH = 7 H(d W e
he. Then there existd € U(gc)[ac]=¢2 such that

J(v
I, I (H—l—” |(|d)1) “ o ® 0 = 0.

(As defined in Section 3y|| denotes the norm of € aj w.r.t. the Killing
form.)

Proof. The mapyyc: 3 — U(he)™9e:99) given byyyc(z) = 7, pr(z) is
an isomorphism of algebras, the Harish-Chandra homomorphism. With the
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above identification, the infinitesimal character(d¥, /,) corresponds to
“evaluation atv + p — py,” i.e. for P € U(hc)"he:o0);

(4.7) Xv(Vae(P)) = P(v + pa — py)

(See [12, Prop 8.22]; w.r.t. the maximal tortus C mc¢, the infinitesimal
character of the trivial representation wf: is (the Weyl-group orbit of)
P — Py)-

GivenP € U(he)"e:90) of degreed, we setz = v, (P) in (4.6),
writing b(P) for the element(z). Note that: € Z(gc)=¢, as the Harish-
Chandra homomorphism “preserves degree” (see [3, 7.4.5(c)]), and hence
b(P) € U(ﬂ@)U(ac)Sd_2.

Combining (4.6) and (4.7)py ® ¢ is then annihilated by the operator

(4.8) (Tl,ﬂ),php — P+ pa— py) — Ty+pb(7))) Yo ®0=0
Letz = (z1,...,2),y = (¥1,...,yn). If @ polynomialp € C[z] has

degreed, p(z +y) — p(y) = p'(y)(x) + q(z,y) whereq € (C[z]) [y] has
degree at most — 2 in y, and the derivative’(y) is understood to act as a
linear functional onz. Bl

Applying this top = P,y = v + p — p, we see that there exist§ €

U (gc)[ac]=2 with deg(J) < d — 2 and
(4.9 TorppP—P+p—py) =P (v+p—py) + ()

Now b(P) € U(ng) - U(ac)=*2, so the maps — 7,,,b(P) can be
regarded as an elemeit € U(gc)[ac]=?2. Similarly v — P'(v + p —
py) — P'(v) defines an element;, € U(gc)[ac]=? 2.

Combining these remarks with (4.8) and (4.9), we see that

(P'(v) + h(v) + Jo(v) + J3(¥))po © 6 = 0
SetJ = J, + J, + J5 and divide by||v||* " to conclude. O

Corollary 4.6. LetP € U(hc)"beie), Notations being as in Definition 3.8
and Lemma 3.9, suppos$e,, } is conveniently arranged. Then, (¢, d) is
P’ (Do )-invariant.

Proof. It suffices to verify this for? homogeneous, say of degréeCom-
bining Lemma 4.5 and Lemma 3.7, and using the homogenei®y, afe
see that there exists € U(gc)[ac]? 2 so that

(P + k) tn ) =0

Here (P’ + ...) acts onu,(po ® ) according to the natural action of
U(ge) onCP(X ). Now fix g € C°(X) k. Letu — u' be the uniqueC-
linear anti-involution ofU(g¢) such thatX* = —X for X € gc C U(gc).
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Then we have for each

(4.10) [in (00 ® 0) ((P’(Dn) - ﬁ%) g) =0

Note that, as: varies, the quantit;(P’(ﬁn) - Hfﬁ%) g remains in a

fixed finite dimensional subspace©f°(X) . Further, it converges in that
subspace t®' (7o) g.
With these remarks in mind, we can pass to the limit- oo in (4.10) to
obtain ... (o ® §)(P'(vx)g) = 0, i.e. P’ (v ) annihilatesu., as required.
O

It remains to show that the subspace
(4.112) S={P'(V) | P € U(h(c)W(f)ccigc)} C be

containsac. By the Corollary this will show that annihilates any limit
measure, or that this measuredisnvariant.

Lemma 4.7. LetW, C W(hc: gc) be the stabilizer of,, € af, and define
S asin (4.11). TherS = h(VCVO. In particular, if 7., is regular, thenS
containsac.

Proof. This can be seen either from the fact titais the image of the
map on cotangent spaces induced by the quotient tihap> h /W, or
more explicitly: first construct many elements ii{h¢ )¢ ) by aver-
aging overlV (hc: gc), and then directly compute derivatives to obtain the
claimed equality.

W is generated by the reflections Wi (hc: gc) fixing 7. In the case
wherer, is regular as an element inj, the corresponding roots must be
trivial on all of af.. In particular, any element a¥/, fixes all ofac. 0

Corollary 4.8. Let notations be as in Proposition 3.13. Then any weak-*
limit o, of the measures,, is A-invariant.

Proof. After passing to an appropriate subsequence, we may assume that
{1, } is conveniently arranged. Proposition 3.13, (1), showsdhdly) =
too(0,0)(g) Wheneverg € C°(X)k. Corollary 4.6 and Lemma 4.7, to-
gether with the fact that'>°(X )k is dense inCy(X), show thatr., is A-
invariant. O

5. COMPLEMENTS

In this section we gather together several points complementing the main
text.
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5.1. Extensions to generalz. In practice we wish to apply our result to
groups which are slightly more general that the ones considered above.
Here we briefly discuss extensions of the present work to reductive groups.
From now on let be a linear connected reductive Lie grolip< G a
lattice. (For “linear connected reductive”, we follow the definition of [12,
Chapter 1].) We seK = TI'\G as before, and define in additioXi; =
ZT\G, with Z = Z(G). Xz has finite volume w.r.t. thé&-invariant mea-
sure. In a similar fashion we shall considér= X/K andY,; = X, /K.
Since G is linear connected reductive, we have a decomposiiica
3@; gV where; = Z,, and eacly”) is a simple Lie algebra (an orthogonal
decomposition w.r.t. the Killing form), leading to a decomposit@n=
Za x [1; GY) (almost direct product), where tti/) are connected semi-
simple or compact normal subgroups.
Choosing the Cartan involution, the subalgebyratc. compatible with
this decomposition, lek = K, <[], K be theo-fixed maximal compact

subgroup. IfGY) is compact thenk?) = GU), of course. Note that the
subgroupM = Zx (a) now includes the compact part of the center, as well
as all compact factors.

For a unitary character € Z, let L2(X,w) denote the space of all mea-
surablef : X — Csuchthatf(zg) = w(z)f(g) forall z € Z, and such that
I£II” = [y, [f(2)]Pdz < co. If wis unramified(i.e. trivial on Z(G) N K),
then setl?(Y,w) = L*(X,w)X. If wis unramified and) € L*(Y,w),
then|y(y)|? is Z-invariant, and we can define a finite measugeon Y, as
before.

An eigenfunctiony € L*(Y,w) still generates an irreducible subrepre-
sentation ofG in L?(X,w). From this we obtain, as in Section 3, a norm-
reducing intertwining operataR, : (Vi,I,) — L*(X,w), and (as in Def-
inition 3.1) a mapu,: Vx ® Vi, — (C=(Xz)k) as before (note that for
fi, f2 € Vi, Ry(f1)Ry(f2) is Z-invariant sincev is unitary, and as before
its L' norm is at most the product of tHe&f norms off;, f, € V).

Let {w, }>>, be a sequence of unramified characterg of\e now con-
sider a sequence of eigenfunctidns, } °~, such that),, € L*(Y, w,), with
intertwining operatorsk,, and parameters, € ag, and assume that the
escape to infinity.

Definition 5.1. Call the sequencron-degeneraté for every non-compact
j, the sequenc{:uﬁj)} - (a((cj))* is non-degenerate in the sense of Defini-
tion 3.8.

Remarkb.2 As before, for a non-degenerate sequence we Raye,) = 0

and Imv,,) regular for large enough. However, the rates at which the
different components af,, tend to infinity need not be the same.
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Indeed, defining a) for eachj by normalizingu,ﬁj), and passing to
a subsequence where they all converge, the non-degeneracy assumption
amounts to assuming that the limit§) are regular (i.e. do not lie on any
wall). Of course, the rate of convergence at differentay be different.

Lemma 3.10 and its subsequent Corollary continue to hold (replaeX )
with C°(Xz)). The only modification to the proof is that one should only

consider functiongx given by X € gV, rescaling b% v, The Stone-

Weierstrass argument will show that the algebra generated by these “lim-
ited” px is dense. Defining the lift as before (using thelistribution at
1 € M\ K), we obtain the positivity of the limits.

In the same vein it is clear that by usitﬁggg)) and its center (which
is contained in the center &f(gc)), the analysis of Section 4 shows that
a non-degenerate limit is”)-invariant for all non-compacj, and hence
A-invariant. As before, everyg, is M-invariant, hence so i8...

5.2. Degenerate limits. It is an interesting and natural problem to extend
the results of the present paper to degenerate limits, i.e. sequence of eigen-
functionsy,, such thaﬁ converges to one of the walls of a Weyl chamber.

The non-degeneracy assumption was used in several places in the above
arguments. The first was in the assertion that the intertwining maps from the
models(r,, Vi) to L?(X) were isometries for thé? norm onVy, so that
the total variation of the measura%(fl, f2) was bounded independently
of the parameter of ¢). Secondly, we used it in the proof of positivity of
the limit measures by integration by parts. Finally, it was used to conclude
that the limit measures is indeed invariant under the full Cartan subgroup
A.

The first use can be removed in a straightforward manner resulting in a
lift of the limit measure which is a positive measure &n However, the
guestion of invariance is more subtle, and one might expect the methods
presented here to only show invariance under an appropriate subtotus of
We hope to revisit this issue in the future.

5.3. Geometry of the Cartan flow and flats. A symmetric space comes
with a rich structure of flat subspaces; these are an important part of the
large-scale geometry of the space. Our aim here is to discuss the connection
of the Cartan flow (i.e. the action of on X/M) with the structure of flats.
Crudely speaking, the Cartan flow is analogous to the geodesic flow, but
with “geodesic” replaced by “flat.” This highlights the fact that the present
result is a generalization of the ramlsituation, where flatare geodesics.

(The present result, however, is new even in the case of hypefhspece,

on account of its equivariance.)
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Let G’ and other notations be as fixed in Section 2.1, and ket the real
rank of G, W = W (a: g) the Weyl group.

An r-flat in S is, by definition, a subspace isometrickR6 with the flat
metric. Given any--flat FF C S and a pointP € F, there is a canonical
W-conjugacy clas€p  of isometries froma to £, all mapping0 to P.
Indeed, we may assume that= x, in which case we may identiff/ (via
the inverse exponential mapping) with a subset,avhich may be shown
(see [16]) to be a maximal abelian subspace. In particular, this subset is
conjugate undekK to a, and this conjugacy is unique up to the action of the
Weyl group, whence the assertion.

An orientationy of the pair(P, ) will be an elementy € Cpr; there
are therefore precise|yV | orientations for any paitP, F'). A chambemwill
be a triple( P, F', ¢) of a point P, a flat /' containingP, and an orientation
for (P, F,¢). In the case: = 1, a chamber is equivalent to a geodesic ray:
given a chambe{P, F, ), the setp~!(]0, o)) is a geodesic ray beginning
atpP.

The chamber bundlef S, denoted’S, will be the set of all chambers.
G acts transitively or€.S and the stabilizer of a point is conjugateAg (a)

(= M). In particular,CS has the structure of a differentiable manifold, and
it is a fiber bundle ovef; each fiber is isomorphic t&'/Z (a).

The additive group ofi acts in an evident way aiS: givenX € aand a
chamber( P, F, p), one definesX (P, F, ¢) = (¢~ 1(X), F, ¢'), where there
is a unique choice op’ that makes this a continuous action. In particular,
CS carries a naturdR” action. In the case = 1 this is the geodesic flow
on the unit tangent bundle.

Finally, if I" is any discrete subgroup 6f, one sees th&" acts on"\CS,
which fibers ovei™\ S. The main result of the present paper may be phrased
as follows: a measure an\:S arising from a limit of eigenfunction mea-
sures lifts to aR”-invariant measure oh\CS.

5.4. Relation to YDOs. Zelditch’s original proof for hyperboli@-space
involved the construction of an equivariant pseudodifferential calculus based
on the non-Euclidean Fourier transform of Helgason. It is certainly reason-
able to expect that this could be generalized to higher rank; however, for
the application to quantum chaos, the methods of this paper seem more effi-
cient. In either approach, the positivity and Cartan invariance require proof.

Of course, the two methods are very closely linked. In this section we
translate the representation-theoretic methods of this paper to the microlocal
viewpoint. In fact, we will only do the bare minimum to show that the
microlocal lifts constructed in the present paper are “compatible” with the
standard construction for a general Riemannian manifold described in [2].
We will also only sketch the proof; it is more or less formal.
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From the microlocal viewpoint the system under consideration resembles
completely integrable systems, in that there are several commuting observ-
able; see e.g. [20]. Of course, the Cartan flow differs from the completely
integrable case in that it is very chaotic.

Initially let the notation be as in the introduction; in particular lét
be a compact Riemannian manifold, the Laplacian or’, S*Y the unit
cotangent bundle. We fix a quantization schebethat associates to a
smooth functiorz on S*Y a pseudo-differential operat@p(a) on Y of
order(. Let v, be a sequence of eigenfunctions &fwith eigenvalues
An — —00, S.t. the measurg,, = lim,,_. [¢,|>dp exists. Then, after
possibly passing to a subsequence, the limit (Op(a)i,,, 1,) exists for
all 0-homogeneous and defines a positive measurg that lifts ... We
shall refer to this as standard microlocal lift

Now let us follow the notation of Section 2.1. For simplicity we shall
assume’ simple and center-free arfld < G co-compact. We shall also
identify g andp with their duals by means of the Killing form, and we will
identify the tangent and cotangent bundléadby means of the Riemannian
structure (induced from the Killing form as well). We denote |pj the
norm induced ory andg* by the Killing form.

Let us recall more carefully the connection betweérand the tangent
bundle of Y. As before setX = I'\G, Y = I'\G/K, S = G/K, and
let 7: X — Y denote the natural projection. L&tS and7Y denote the
tangent bundles of andY’, and letzx € S be the point with stabilizek .
LetT'Y C TY be the unit tangent bundle; we will often implicitly identify
functions onI"'Y” with 0-homogeneous functions @ry’, and in particular
functions onIY gives rise to pseudodifferential operators of or@ler

We shall endowr x p with the leftG-action given byy(h,Y) = (gh,Y),
and with the rightK’-action given by(h, Y )k = (hk,k~'Yk). There is a
natural mapz — S given byg — gz k. This lifts to aG-equivariant map
G x p — T'S; this latter map is specified by requiring that its restriction to
{e} x p be the usual identification gf with the tangent space t® at .
Taking quotients by, we descend to a map also denotedX x p — TY.
This map is constant oR -orbits, and factors through to a mapx p/K —
TY.

In view of our identification of tangent and cotangent bundles, the symbol
of a pseudodifferential operator dhmay then be regarded agsainvariant
function onX x p. We shall fix a quantization scheni® that associates
to such a symbol a pseudo-differential operatoron

Let {wn}oo_1 C L*(Y) be a sequence of eigenfunctionsiomvith param-
etersy,, € a* and so thaﬁ”—" — . We shall assume thdt),, } is conve-
niently arranged in the sense of Definition 3.8. Welgtbe the Laplacian
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eigenvalue of), (this differs by a constant from ||, ||, in fact). We can
and will also regard the),, as K-invariant functions onX. Associated to
eachy,, is anG-intertwinerR,, : (Vi, I,,)) — L*(X).

We shall use(1) to denote quantities with go tbas||v,|| — .

Let other notations be as in Section 3.3. The relation betweex ih@
viewpoint and the methods of this paper are summarized in:

Proposition. Leta € C*°(TY") be such that is 0-homogeneous. Letc
C>°(X) be defined by(z) = a(r(z,7)). Suppose thaj is right K -finite.
Then

(5.1) (Op(@)Yn, ¥n) = ptn(wo,9)(g) + o(1).

It follows that if 1, 1y IS a standard microlocal lift them,, 11y is sup-
ported ont (X x {7}), and the restriction of.., 1y to this copy ofX is a
microlocal lift in the sense of the current paper.

Proof. In three stages.

First step.We first verify that, ifg = 0, then(Op(a)¢,, ¥n) = o(1).

Let P be aK-invariant polynomial orp of degreed and consider the
function P : (2, A) € X x p — P(A). The functionP descends td’Y,
and there is an invariant differential opera®y on Y of degreed whose
symbol agrees witt. Since, is an eigenfunction for the ring of invariant
differential operators, it follows in particular thaf, is an eigenfunction for
Dp with eigenvalueP(v,). It follows that, for anyb € C>=°(X x p)¥,

(5.2)
P(v,)

d
[l

(OP()Dptn, ¥n) _ (OP(bP)Yn, )

d d
[l [l

(5.2) implies, in particular, that iP(7) = 0 the statement of the Proposi-
tion holds fora = bP. We can deduce the claim of the first step by density:
if a|x .7y is identically0, then one can verify that may be densely ap-
proximated (in the topology induced by symbol-norm) by linear combina-
tions of functionsh - P whereP(r) = 0. We conclude usind.*-bounds on
pseudodifferential operators ([10, Thm. 18.1.11] and remarks after proof.)

Second stepWe next construct an explicit class of test functianfor
which (5.1) holds.

Leto € C*(X)k, u € U(g) of degree< d, and letr* andr, be, re-
spectively, the pull-back and push-forward operations on functions arising
from7 : X — Y. (In other wordsyr, is obtained by integrating alonfg -
orbits.) Letmult, be the operation “multiplication by” on C*°(X). We
can define by the spectral calculus of self-adjoint operators an endomor-
phism(1 — A)=%2: 0=(Y) — C*>(Y'). We then define an endomorphism
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of C>(Y") via the rule
MyOp(o) : f +— m,omult, ouon™ o (1 — A)_d/Qf

In other words, one appligs — A)~%2, lifts the resulting function tox,
appliesu and multiplies by, and pushes back down 6.

Regardu as defining (its “symbol”) a polynomial functiom, of degree
d ong* (therefore ory) and leta, , be the followingK -invariant function
onX x p:

1
(@ 4) € X xpm T / o (kg (k" Ak) i

6

We verify (5.1) fora = a,,, andg,., = a,.|X x {7}. Note that

(5.3) Gou(T) :/Ka(:vk:)ud(k:_lﬁkr)dk

The operatomult, o u is clearly a differential operator oN, and one
deduces that the operatagromult, ouon* is, in fact, a differential operator
onY. One computes that the symbol of this latter operator is associated to
the K-invariant function(z, A) € X x p — [, o(zk)uq(k~" Ak)dk. We
deduce that:

Further, if we regard),, as aK -invariant function onX:
55 (MyOp(o) ) = (1= M) [ Gulaoa) ) () da

On the other hand, recall the definition af from Section 3.2. Lef
be theN-truncation of§ (see Definition 2.3). Choosiny sufficiently large,

we havey, (o, 0)gou = 1y, (0, O )gous IN particular

(51820, 0) o = / 0 (1) - R (ON) (7) /K (ak)ua (k) dk
(5.7) _ / / 4 dk (2 R (O) (2 ) ()t a (k™ R)

(5.8) — /den(x)a(x)}z (/ dk ug(kvk=1)]I, (k)5N>

At the last step, we make the substitution— £~!, and use the fact that
the representatiof), | is just the operation of right translation.

To simplify this further, we use Lemma 2.8.

Letp, be the functiork — wy(kvk™1); it defines a function od/\ K and
thus we can regarg, € V. Denote byp, the complex conjugate of,.
Sincedy is, as a function o/ \ K/, an approximation to a-function, we
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have asN — oo: [, dkug(kvk=1)1,, (k)dn — p.. Here the convergence
occurs inC'(M\K). It follows that for anyn:

(5.9) fn (90, 0)gou = (¥n(2)0(2), Rp(Pu)) 12(x)
In view of the definitions, the right-hand side of (5.9) is justvo, p.)(0).

By (the proof of) Lemma 3.10u,,(¢0, Pu)(0) = pn(puto, ¢o)(o) + o(1).
Consequently,

(510) (0. )gow = /X Un@) Ru(pu) (@) (2)dz + o(1)

On the other hand, a computation with Lemma 2.8 shows that

Il/n<u>(p0 H 2
Pu— = n)i2 — 0in L*(M\K).

Combining this with (5.10), we obtain:

610 (oo — (1= ) [ Tlalo(o)uta(a)ds = of1)

In view of (5.4), (5.5) and (5.11) we have verified (5.1) in the case of
a = Qg y-

Third step.Note that, in the statement of the Proposition, the fungjien
necessarily righfi/-invariant. In view of what has been proved, it now suf-
fices to check that functions of the forgm,, (see (5.3)) spat’™ (X /M)k.

This is easily reduced to checking that the linear span of the functions
k — ug(k~'0k) is a dense subspace 6fM\K). This is shown in the
proof of Lemma 3.10. O
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