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Dragan Marušič · Primož Šparl

Received: 7 June 2007 / Accepted: 6 November 2007 / Published online: 5 December 2007
© Springer Science+Business Media, LLC 2007

Abstract Following Alspach and Parsons, a metacirculant graph is a graph admit-
ting a transitive group generated by two automorphisms ρ and σ , where ρ is (m,n)-
semiregular for some integers m ≥ 1, n ≥ 2, and where σ normalizes ρ, cyclically
permuting the orbits of ρ in such a way that σm has at least one fixed vertex. A half-
arc-transitive graph is a vertex- and edge- but not arc-transitive graph. In this arti-
cle quartic half-arc-transitive metacirculants are explored and their connection to the
so called tightly attached quartic half-arc-transitive graphs is explored. It is shown
that there are three essentially different possibilities for a quartic half-arc-transitive
metacirculant which is not tightly attached to exist. These graphs are extensively
studied and some infinite families of such graphs are constructed.

Keywords Graph · Metacirculant graph · Half-arc-transitive · Tightly attached ·
Automorphism group

1 Introductory and historic remarks

Throughout this paper graphs are assumed to be finite and, unless stated otherwise,
simple, connected and undirected (but with an implicit orientation of the edges when
appropriate). For group-theoretic concepts not defined here we refer the reader to
[4, 9, 34], and for graph-theoretic terms not defined here we refer the reader to [5].

Both authors were supported in part by “ARRS – Agencija za znanost Republike Slovenije”, program
no. P1-0285.

D. Marušič (�)
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Given a graph X we let V (X), E(X), A(X) and AutX be the vertex set, the edge
set, the arc set and the automorphism group of X, respectively. A graph X is said
to be vertex-transitive, edge-transitive and arc-transitive if its automorphism group
AutX acts transitively on V (X), E(X) and A(X), respectively. We say that X is half-
arc-transitive provided it is vertex- and edge- but not arc-transitive. More generally,
by a half-arc-transitive action of a subgroup G ≤ AutX on X we mean a vertex- and
edge- but not arc-transitive action of G on X. In this case we say that the graph X is
(G, 1

2 )-arc-transitive, and we say that the graph X is (G, 1
2 ,H)-arc-transitive when

it needs to be stressed that the vertex stabilizers Gv (for v ∈ V (X)) are isomorphic to
a particular subgroup H ≤ G. By a classical result of Tutte [32, 7.35, p. 59], a graph
admitting a half-arc-transitive group action is necessarily of even valency. A few
years later Tutte’s question as to the existence of half-arc-transitive graphs of a given
even valency was answered by Bouwer [6] with a construction of a 2k-valent half-
arc-transitive graph for every k ≥ 2. The smallest graph in Bouwer’s family has 54
vertices and valency 4. Doyle [10] and Holt [15] independently found one with 27
vertices, a graph that is now known to be the smallest half-arc-transitive graph [3].

Interest in the study of this class of graphs reemerged about a decade later follow-
ing a series of papers dealing mainly with classification of certain restricted classes
of such graphs as well as with various methods of constructions of new families of
such graphs [2, 3, 30, 31, 33, 36]; but see also the survey article [21] which covers
the respective literature prior to 1998. With some of the research emphasis shifting to
questions concerning structural properties of half-arc-transitive graphs, these graphs
have remained an active topic of research to this day; see [7, 8, 11–14, 16–18, 20,
22–29, 35, 37].

In view of the fact that 4 is the smallest admissible valency for a half-arc-transitive
graph, special attention has rightly been given to the study of quartic half-arc-
transitive graphs. One of the possible approaches in the investigation of their proper-
ties concerns the so called “attachment of alternating cycles” question. Layed out in
[20], the underlying theory is made up of the following main ingredients. For a quar-
tic graph X admitting a half-arc-transitive action of some subgroup G of AutX, let
DG(X) be one of the two oriented graphs associated in a natural way with the ac-
tion of G on X. (In other words, DG(X) is an orbital graph of G relative to a non-
self-paired orbital associated with a non-self-paired suborbit of length 2 and X is its
underlying undirected graph.) An even length cycle C in X is a G-alternating cy-
cle if every other vertex of C is the tail and every other vertex of C is the head (in
DG(X)) of its two incident edges. It was shown in [20] that, first, all G-alternating
cycles of X have the same length – half of this length is called the G-radius of X

– and second, that any two adjacent G-alternating cycles intersect in the same num-
ber of vertices, called the G-attachment number of X. The intersection of two ad-
jacent G-alternating cycles is called a G-attachment set. The attachment of alternat-
ing cycles concept has been addressed in a number of papers [20, 27–29, 35] with
a particular attention given to the so called G-tightly attached graphs, that is, graphs
where two adjacent G-alternating cycles have every other vertex in common. In other
words, their G-attachment number coincides with G-radius. In all the above defin-
itions the symbol G is omitted when G = AutX. Tightly attached graphs with odd
radius have been completely classified in [20], whereas the classification of tightly at-
tached graphs with even radius, dealt with also in [13, 27, 35], has been very recently
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completed in [29]. At the other extreme, graphs with G-attachment number equal to 1
and 2, respectively, are called G-loosely attached graphs and G-antipodally attached
graphs. As shown in [28], there exist infinite families of quartic half-arc-transitive
graphs with arbitrarily prescribed attachment numbers. However, in view of the fact
that every quartic half-arc-transitive graph may be obtained as a cover of a loosely,
antipodally or tightly attached graph [27], it is these three families of graphs that
deserve special attention.

Now, as it turns out, all tightly attached quartic half-arc-transitive graphs are
metacirculant graphs [20]. (For the definition of a metacirculant graph see Section 2.)
The connection between the two classes of graphs goes so far as to suggest that even if
quartic half-arc-transitive metacirculants which are not tightly attached do exist, con-
structing them will not be an easy task. Exploring this connection is the main aim of
this article. Although short of a complete classification of quartic half-arc-transitive
metacirculants, we obtain a description of the three essentially different possibilities
for a quartic half-arc-transitive metacirculant which is not tightly attached to exist,
together with constructions of infinite families of such graphs. In doing so we give
a natural decomposition of quartic half-arc-transitive metacirculants into four classes
depending on the structure of the quotient circulant graph relative to the semiregular
automorphism ρ. Loosely speaking, Class I consists of those graphs whose quotient
graph is a “double-edged” cycle, Class II consists of graphs whose quotient is a cycle
with a loop at each vertex, Class III consists of graphs whose quotient is a circulant
of even order with antipodal vertices joined by a double edge, and Class IV consists
of graphs whose quotient is a quartic circulant which is a simple graph (see Figure 1).

The paper is organized as follows. Section 2 contains some terminology together
with four infinite families of quartic metacirculants, playing an essential role in the
rest of the paper. Section 3 gives the above mentioned decomposition. Section 4 is
devoted to Class I graphs; in particular it is shown that this class coincides with
the class of tightly attached graphs (see Theorem 4.1). Next, Section 5 deals with
Class II graphs. A characterization of the graphs of this class which are not tightly
attached is given (see Theorem 5.1) enabling us to construct an infinite family of
such graphs (see Construction 5.10). Moreover, a list of all quartic half-arc-transitive
metacirculants of Class II, of order at most 1000, that are not tightly attached is given.
Finally, in Section 6 a construction of an infinite family of loosely attached (and thus
not tightly attached) half-arc-transitive metacirculants of Class IV is given.

2 Definitions and examples

We start by some notational conventions used throughout this paper. Let X be
a graph. The fact that u and v are adjacent vertices of X will be denoted by u ∼ v;
the corresponding edge will be denoted by [u,v], in short by uv. In an oriented graph
the fact that the edge uv is oriented from u to v will be denoted by u → v (as well
as by v ← u). In this case the vertex u is referred to as the tail and v is referred to
as the head of the edge uv. Let U and W be disjoint subsets of V (X). The subgraph
of X induced by U will be denoted by X[U ]; in short, by [U ], when the graph X

is clear from the context. Similarly, we let X[U,W ] (in short [U,W ]) denote the
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bipartite subgraph of X induced by the edges having one endvertex in U and the
other endvertex in W . Furthermore, if ρ is an automorphism of X, we denote the
corresponding quotient (multi)graph relative to ρ, whose vertex set is the set of orbits
of ρ with two orbits adjacent whenever there is an edge in X joining vertices from
these two orbits, by Xρ .

For the sake of completeness we include the definition of a Cayley graph. Given a
group G and an inverse closed subset S ⊆ G\{1} the Cayley graph Cay(G,S) is the
graph with vertex set G and edges of the form [g,gs], where g ∈ G, s ∈ S.

Let m ≥ 1 and n ≥ 2 be integers. An automorphism of a graph is called (m,n)-
semiregular if it has m orbits of length n and no other orbit. We say that a graph X

is an (m,n)-metacirculant graph (in short an (m,n)-metacirculant) if there exists an
(m,n)-semiregular automorphism ρ of X, together with an additional automorphism
σ of X normalizing ρ, that is,

σ−1ρσ = ρr for some r ∈ Z
∗
n, (1)

and cyclically permuting the orbits of ρ in such a way that σm fixes a vertex of X.
(Hereafter Zn denotes the ring of residue classes modulo n as well as the additive
cyclic group of order n, depending on the context.) Note that this implies that σm

fixes a vertex in every orbit of ρ. To stress the role of these two automorphisms in
the definition of the metacirculant X we shall say that X is an (m,n)-metacirculant
relative to the ordered pair (ρ,σ ). Obviously, a graph is an (m,n)-metacirculant
relative to more than just one ordered pair of automorphisms except for the triv-
ial case when m = 1 and n = 2, which corresponds to X ∼= K2. For example, the
automorphism σ may be replaced by σρ. A graph X is a metacirculant if it is an
(m,n)-metacirculant for some m and n. This definition is equivalent with the origi-
nal definition of a metacirculant by Alspach and Parsons (see [1]). For the purposes
of this paper we extend this definition somewhat. We say that a graph X is a weak
(m,n)-metacirculant (more precisely a weak (m,n)-metacirculant relative to the or-
dered pair (ρ,σ )) if it has all the properties of an (m,n)-metacirculant except that
we do not require that σm fixes a vertex of X. We say that X is a weak metacirculant
if it is a weak (m,n)-metacirculant for some positive integers m and n.

Note that there exist integers m, n and weak (m,n)-metacirculants which are not
(m,n)-metacirculants. For example, the graph Y (10,100;11,90) (see Example 2.3
below) is a weak (10,100)-metacirculant but it can be seen that it is not a (10,100)-
metacirculant. However, this graph is also a (40,25)-metacirculant. The question re-
mains if the class of weak metacirculants is indeed larger than that of metacirculants.
Nevertheless, at least for the purposes of this paper it proves natural to work in the
context of weak metacirculants.

Below we give a few infinite families of weak metacirculants that will play a cru-
cial role in the investigation of quartic half-arc-transitive metacirculants, the main
theme of this article.

Example 2.1 For each m ≥ 3, for each odd n ≥ 3 and for each r ∈ Z
∗
n, where

rm = ±1, let Xo(m,n; r) be the graph with vertex set V = {uj
i | i ∈ Zm, j ∈ Zn}

and edges defined by the following adjacencies:

u
j
i ∼ u

j±ri

i+1 ; i ∈ Zm, j ∈ Zn.
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(Note that the subscript o in the symbol Xo(m,n; r) is meant to indicate that n is an
odd integer.) The permutations ρ and σ , defined by the rules

u
j
i ρ = u

j+1
i ; i ∈ Zm, j ∈ Zn

u
j
i σ = u

rj

i+1 ; i ∈ Zm, j ∈ Zn,

are automorphisms of Xo(m,n; r). Note that ρ is (m,n)-semiregular and that
σ−1ρσ = ρr . Moreover, σ cyclically permutes the orbits of ρ and σm fixes u0

i for
every i ∈ Zm. Hence Xo(m,n; r) is an (m,n)-metacirculant. We note that graphs
Xo(m,n; r) correspond to the graphs X(r;m,n) introduced in [20]. We also note that
the Holt graph, the smallest half-arc-transitive graph (see [3, 10, 15]), is isomorphic
to Xo(3,9;2).

Example 2.2 For each m ≥ 4 even, n ≥ 4 even, r ∈ Z
∗
n, where rm = 1, and t ∈ Zn,

where t (r − 1) = 0, let Xe(m,n; r, t) be the graph with vertex set V = {uj
i | i ∈

Zm, j ∈ Zn} and edges defined by the following adjacencies:

u
j
i ∼

⎧
⎪⎨

⎪⎩

u
j

i+1, u
j+ri

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

u
j+t

0 , u
j+rm−1+t

0 ; i = m − 1, j ∈ Zn.

(In analogy with Example 2.1 the subscript e in the symbol Xe(m,n; r, t) is meant to
indicate that n is an even integer.) The permutations ρ and σ , defined by the rules

u
j
i ρ = u

j+1
i ; i ∈ Zm, j ∈ Zn

u
j
i σ =

⎧
⎪⎨

⎪⎩

u
rj

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

u
rj+t

0 ; i = m − 1, j ∈ Zn,

are automorphisms of Xe(m,n; r, t). Note that ρ is (m,n)-semiregular, that σ−1ρσ =
ρr and that σ cyclically permutes the orbits of ρ. Hence Xe(m,n; r, t) is a weak
(m,n)-metacirculant.

As noted in Section 1, a complete classification of quartic tightly attached half-
arc-transitive graphs is given in [20] for odd radius and in [29] for even radius. It
follows by this classification that a quartic tightly attached half-arc-transitive graph
is isomorphic either to some Xo(m,n; r) or to some Xe(m,n; r, t), depending on the
radius parity.

Example 2.3 For each m ≥ 3, n ≥ 3, r ∈ Z
∗
n, where rm = 1, and t ∈ Zn satisfying

t (r − 1) = 0, let Y (m,n; r, t) be the graph with vertex set V = {uj
i | i ∈ Zm, j ∈ Zn}
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and edges defined by the following adjacencies:

u
j
i ∼

⎧
⎪⎨

⎪⎩

u
j+ri

i , u
j

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

u
j+rm−1

m−1 , u
j+t

0 ; i = m − 1, j ∈ Zn.

The permutations ρ and σ , defined by the rules

u
j
i ρ = u

j+1
i ; i ∈ Zm, j ∈ Zn

u
j
i σ =

⎧
⎪⎨

⎪⎩

u
rj

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

u
rj+t

0 ; i = m − 1, j ∈ Zn,

are automorphisms of Y (m,n; r, t). Observe that ρ is (m,n)-semiregular and that
σ−1ρσ = ρr . Moreover, σ cyclically permutes the orbits of ρ, and so Y (m,n; r, t) is
a weak (m,n)-metacirculant. We note that the Holt graph, see Example 2.1, is also
isomorphic to Y (3,9;7,3).

Example 2.4 For each m ≥ 5, n ≥ 3, k ∈ Zm\{0,1,−1} and r ∈ Z
∗
n, where rm = 1,

let Z(m,n; k, r) be the graph with vertex set V = {uj
i | i ∈ Zm, j ∈ Zn} and edges

defined by the following adjacencies:

u
j
i ∼ u

j

i+1, u
j+ri

i+k ; i ∈ Zm, j ∈ Zn.

The permutations ρ and σ , defined by the rules

u
j
i ρ = u

j+1
i ; i ∈ Zm, j ∈ Zn

u
j
i σ = u

rj

i+1 ; i ∈ Zm, j ∈ Zn,

are automorphisms of Z(m,n; k, r). Observe that ρ is (m,n)-semiregular and that
σ−1ρσ = ρr . Moreover, σ cyclically permutes the orbits of ρ and σm = 1. Hence
Z(m,n; k, r) is an (m,n)-metacirculant.

3 The four classes

In this section we start our investigation of half-arc-transitivity of quartic weak
metacirculants. First, we state a result from [20] which will be used throughout the
rest of the paper.

Proposition 3.1 [20, Proposition 2.1] Let X be a half-arc-transitive graph. Then no
automorphism of X can interchange a pair of adjacent vertices in X.
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Throughout this section we let X denote a connected quartic half-arc-transitive
weak (m,n)-metacirculant relative to an ordered pair (ρ,σ ). Furthermore, we let
Xi , i ∈ Zm, denote the orbits of ρ where Xi+1 = Xiσ for each i ∈ Zm. Clearly, the
degrees of subgraphs [Xi] are all equal. We shall denote this number by dinn(X) and
call it the inner degree of X. Note that dinn(X) must be even, for otherwise n is even
and a vertex u of X is necessarily adjacent to uρ

n
2 . But then ρ

n
2 interchanges two

adjacent vertices, which contradicts Proposition 3.1. Furthermore, dinn(X) cannot be
4, for otherwise the connectedness of X implies that m = 1 and thus X is a circulant.
But no half-arc-transitive Cayley graph of an abelian group exists. Namely, if X =
Cay(G,S) choose s ∈ S, let ϕ : X → X map x to x−1 and let ρs : X → X map x to
sx. Then ϕ and ρs are automorphisms of X and ϕρs interchanges adjacent vertices 1
and s. Therefore

dinn(X) ∈ {0,2}. (2)

We now show that the number of orbits of ρ is at least 3.

Proposition 3.2 Let X be a connected quartic half-arc-transitive weak (m,n)-meta-
circulant relative to an ordered pair (ρ,σ ). Then m ≥ 3.

PROOF: By the above remarks we have dinn(X) ∈ {0,2} and m ≥ 2. Assume then that
m = 2 and let U and W be the orbits of ρ. We show that there exists an automorphism
of X fixing U and W setwise and interchanging two adjacent vertices of U which
contradicts Proposition 3.1. By [20, Proposition 2.2.], which states that a graph cannot
be half-arc-transitive if it has a (2, n)-semiregular automorphism whose two orbits
give rise to a bipartition of the graph in question, we must have dinn(X) = 2. Fix
a vertex u ∈ U and set ui = uρi , where i ∈ Zn. There exists some nonzero s ∈ Zn

such that ui ∼ ui±s for all i ∈ Zn. Next, choose a vertex w ∈ W such that u0 ∼ w

and set wi = wρi , where i ∈ Zn. Letting r ∈ Z
∗
n be as in equation (1) we have u0σ ∼

u±sσ = u0ρ±sσ = u0σρ±rs , and so wi ∼ wi±rs for all i ∈ Zn. There exists some
nonzero t ∈ Zn such that u0 ∼ wt . Therefore, we have ui ∼ wi,wi+t for all i ∈ Zn.
It is easy to see that the permutation ϕ of V (X) defined by the rule uiϕ = u−i and
wiϕ = wt−i , where i ∈ Zn, is an automorphism of X. But then ϕρs interchanges
adjacent vertices u0 and us , completing the proof of Proposition 3.2.

We now use (2) and Proposition 3.2 to show that each connected quartic half-arc-
transitive weak metacirculant belongs to at least one of the following four classes
reflecting four essentially different ways in which a quartic graph may be a half-arc-
transitive weak metacirculant (see Figure 1). These four classes are described below.
(Recall that the orbits of ρ are denoted by Xi .)

• Class I. The graph X belongs to Class I if dinn(X) = 0 and each orbit Xi is con-
nected (with a double edge) to two other orbits. In view of connectedness of X, we
have that Xρ is a “double-edge” cycle.

• Class II. The graph X belongs to Class II if dinn(X) = 2 and each orbit Xi is
connected (with a single edge) to two other orbits. In view of connectedness of X,
we have that Xρ is a cycle (with a loop at each vertex).
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Fig. 1 Every quartic
half-arc-transitive metacirculant
falls into one (or more) of the
four classes.

• Class III. The graph X belongs to Class III if dinn(X) = 0 and each orbit Xi is
connected to three other orbits, to one with a double edge and to two with a single
edge. Clearly, m must be even in this case and an orbit Xi is connected to the orbit
Xi+ m

2
with a double edge. In short, Xρ is a connected circulant with double edges

connecting antipodal vertices.
• Class IV. The graph X belongs to Class IV if dinn(X) = 0 and each orbit Xi is

connected (with a single edge) to four other orbits. In short, Xρ is a connected
circulant of valency 4 and is a simple graph.

We remark that these four classes of metacirculants are not disjoint. For instance,
it may be seen that the Holt graph Xo(3,9;2) ∼= Y (3,9;7,3) belongs to Classes I and
II but not to Classes III and IV. Its canonical double cover, the smallest example in
the Bouwer’s construction, belongs to Classes I, II and III but not to Class IV. On the
other hand, the graph Z(20,5;9,2) belongs solely to Class IV.

In the next two sections Classes I and II are analyzed in detail. In the last section
future research directions regarding interconnectedness of Classes I, II, III and IV,
are layed out.

4 Graphs of Class I

The aim of this section is to prove the following theorem.

Theorem 4.1 Connected quartic half-arc-transitive weak metacirculants of Class I
coincide with connected quartic tightly attached half-arc-transitive graphs.
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Throughout this section we let X denote a connected quartic half-arc-transitive
weak metacirculant of Class I and we let m,n,ρ and σ be such that X is a weak
(m,n)-metacirculant relative to the ordered pair (ρ,σ ). Fix a vertex u ∈ V (X) and let
u0

i = uσ i for all i ∈ {0,1, . . . ,m−1}. Then let u
j
i = u0

i ρ
j for all i ∈ Zm, j ∈ Zn. With

this notation the orbits of ρ are precisely the sets Xi = {uj
i | j ∈ Zn}, i ∈ Zm. Since

X is connected we can assume that X0 ∼ X1 in the quotient graph Xρ . Moreover,
as X is a weak (m,n)-metacirculant relative to the pair (ρ,σρj ) for any j ∈ Zn, we
can in fact assume that u0

0 is adjacent to u0
1. There exists some nonzero a ∈ Zn such

that u0
0 is adjacent also to ua

1. Therefore N(u0
0) ∩ X1 = {u0

1, u
a
1}. Let r ∈ Z

∗
n be as in

equation (1). Then ua
1σ i = u0

1ρ
aσ i = u0

1σ
iρria holds for all i ∈ Zm , and so

N(u
j
i ) ∩ Xi+1 = {uj

i+1, u
j+ria

i+1 } for all i ∈ Zm\{m − 1}, j ∈ Zn. (3)

Out of the two orientations of the edges of X induced by the half-arc-transitive action
of AutX we choose the one where u0

0 → u0
1. Denote the corresponding oriented graph

by DX . There are two possibilities depending on whether u0
0 is the tail or the head

of the edge u0
0u

a
1 in DX . In Lemma 4.2 below we show that in the former case X is

tightly attached, and in Lemma 4.3 we show that the latter actually never occurs.

Lemma 4.2 With the notation introduced in the previous paragraph, if u0
0 is the tail

of the edge u0
0u

a
1 in DX then X is tightly attached.

PROOF: Clearly in this case all the edges in DX[Xi,Xi+1] are oriented from Xi

to Xi+1. Therefore (3) implies that u
j

0 → u
j

1, u
j+a

1 and that u
j

1 → u
j

2, u
j+ra

2 for all
j ∈ Zn. Moreover, any alternating cycle of X is a subgraph of X[Xi,Xi+1] for some
i ∈ Zm. We now inspect the two alternating cycles containing u0

1. Denote the one
containing vertices from X0 and X1 with C1 and the one containing vertices from X1
and X2 with C2. In view of Proposition 3.2 we have m ≥ 3, and so C1 ∩ C2 ⊆ X1.
We have C1 ∩ X1 = {uj

1 | j ∈ 〈a〉}. (Here 〈a〉 denotes the additive subgroup of Zn

generated by a.) Moreover, C2 ∩ X1 = {uj

1 | j ∈ 〈ra〉}. But r ∈ Z
∗
n and so 〈a〉 = 〈ra〉.

Hence C1 ∩ X1 = C2 ∩ X2, which completes the proof.

Lemma 4.3 There exists no connected quartic half-arc-transitive weak meta-
circulant of Class I such that, with the notation from the paragraph preceding the
statement of Lemma 4.2, the vertex u0

0 is the head of the edge u0
0u

a
1 in DX .

PROOF: Suppose that there does exist such a graph and denote it by X. Our approach
is as follows. We first show that the stabilizer of a vertex in X cannot be Z2. We
then show that this forces m to be odd and n ≡ 2 (mod 4), which enables us to in-
vestigate the AutX-orbit of the so called generic 8-cycles of X in a greater detail. In
particular we find that (r −1)2 = 0. Then, investigating the AutX-orbit of a particular
nongeneric 8-cycle, we finally arrive at a contradiction, thus showing that X cannot
exist.

Observe that since σm fixes the orbits Xi setwise, there exists some t ∈ Zn, such
that σmρ−t fixes u0

0. Since the sets Xi are blocks of imprimitivity for 〈ρ,σ 〉, the
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particular orientation of the edges in DX implies that σmρ−t fixes the neighbors of
u0

0 pointwise. Continuing this way we have, in view of connectedness of X, that
σm = ρt . Note that equation (1) implies that σ−mρσm = ρrm

, and so

rm = 1. (4)

Moreover, (1) also implies that u
j
i σ = u0

i ρ
j σ = u0

i σρrj , and so

u
j
i σ =

⎧
⎪⎨

⎪⎩

u
rj

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

u
rj+t

0 ; i = m − 1, j ∈ Zn.

(5)

Combining together (3) and (5), we have that for any i ∈ Zm and j ∈ Zn, the two
edges connecting u

j
i to vertices from Xi+1 in DX are given by

u
j
i →

⎧
⎪⎨

⎪⎩

u
j

i+1 ; i �= m − 1

u
j+t

0 ; i = m − 1

and u
j
i ←

⎧
⎪⎨

⎪⎩

u
j+ria

i+1 ; i �= m − 1

u
j+rm−1a+t

0 ; i = m − 1.

(6)

Since σ maps the edge u0
m−1u

t
0 to the edge ut

0u
rt
1 , we also have

t (r − 1) = 0. (7)

CLAIM 1: We lose no generality in assuming that a = 1.

Observe that since X is connected, (6) implies that 〈a, t〉 = Zn. Let d = |a| denote
the order of a in the additive group Zn. Clearly Claim 1 holds if d = n, so assume that
d < n and set k = n

d
. Let ρ′ = ρa . Then ρ′ is an (mk,d)-semiregular automorphism

of X and σ−1ρ′σ = ρra = ρ′r . We now show that σ cyclically permutes the orbits
of ρ′. The orbit of ρ′ containing u0

0 is X′
0 = {uja

0 | j ∈ Zn}. Moreover, X′
i = X′

0σ
i =

{ujria
i | j ∈ Zn} for i = 0,1, . . . ,m − 1 and X′

m = X′
0σ

m = {uja+t

0 | j ∈ Zn}. Since
〈a, t〉 = Zn and 〈a〉 �= Zn, the set X′

m (which is clearly an orbit of ρ′) cannot be
equal to X′

0. Continuing this way we see that σ cyclically permutes the mk orbits
of ρ′. Thus X is a weak (mk,d)-metacirculant of Class I relative to the ordered pair
(ρ′, σ ). It is now clear that in the notation of vertices of X relative to the ordered pair
(ρ′, σ ) the corresponding parameter a′ is equal to 1. From now on we can therefore
assume that a = 1.

CLAIM 2: Let v ∈ V (X). Then |(AutX)v| > 2.

Suppose on the contrary that (AutX)v ∼= Z2 for some (and hence any) v ∈ V (X).
Let τ be the unique nontrivial automorphism of (AutX)u0

0
. Then τ interchanges

u0
1 and u−rm−1−t

m−1 and also interchanges u1
1 and u−t

m−1. We now determine the ac-
tion of τ on the vertices of X recursively as follows. Since τ /∈ 〈ρ,σ 〉 and since
u1

1τ = u−t
m−1 = u1

1σ
m−2ρ−rm−2−t we have (recall that (AutX)u1

1

∼= Z2) that u1
0τ �=
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u1
0σ

m−2ρ−rm−2−t = u−t
m−2. It follows that τ interchanges u1

0 and urm−1

0 . Now u1
0 ← u2

1

and a similar argument shows that τ interchanges u2
1 and urm−1−t

m−1 . Continuing this
way we find that τ maps according to the rule:

u
j
i τ =

⎧
⎪⎨

⎪⎩

u
jrm−1−rm−1−rm−2−···−rm−i−t
m−i ; i ∈ Zm\{0}, j ∈ Zn

u
jrm−1

0 ; i = 0, j ∈ Zn.

(8)

We leave the details to the reader. Recall now that, by assumption, τ interchanges

u−t
m−1 and u1

1. On the other hand, (8) implies that u−t
m−1τ = u−trm−1−rm−1−rm−2−···−r−t

1 .
Therefore, equation (7) implies that

1 + r + r2 + · · · + rm−1 + 2t = 0. (9)

We now define a mapping ψ on V (X) by the rule

u
j
i ψ =

⎧
⎪⎨

⎪⎩

u
−j+1+r+r2+···+ri−1

i ; i ∈ Zm\{0}, j ∈ Zn

u
−j

0 ; i = 0, j ∈ Zn.

(10)

Clearly ψ is a bijection. It is easy to check that ψ maps every edge of [Xi,Xi+1],
where i ∈ Zm\{m− 1}, to an edge of X. As for the edges of [Xm−1,X0], note that by

(6) we have that N(u
j

m−1) ∩ X0 = {uj+t

0 , u
j+rm−1+t

0 }. Observe that ψ maps the latter

two vertices to u
−j−t

0 and u
−j−rm−1−t

0 , respectively. Moreover, in view of equation

(9) we have that u
j

m−1ψ = u
−j+1+r+r2+···+rm−2

m−1 = u
−j−rm−1−2t

m−1 , and so ψ is an auto-
morphism of X. Since X is half-arc-transitive, there exists some ϕ ∈ AutX mapping
the edge u1

1u
0
0 of DX to the edge u0

0u
0
1. But then ψϕ interchanges adjacent vertices

u0
0 and u0

1, contradicting Proposition 3.1. Therefore, |(AutX)v| > 2, as claimed.

Let now A be the attachment set of X containing u0
0. In view of [27, Lemma 3.5.],

which states that in a finite connected quartic half-arc-transitive graph with attach-
ment sets containing at least three vertices, the vertex stabilizers are isomorphic to
Z2, it follows that |A| ≤ 2. We now show that m must be odd.

CLAIM 3: m is odd.

Suppose on the contrary that m is even. Consider the alternating cycle containing

the edge u0
0u

0
1. It contains vertices ur

2, u
r
3, u

r+r3
4 , . . . , ur+r3+···+rm−3

m−1 , ur+r3+···+rm−1+t
0 ,

etc., where ur+r3+···+rm−1+t
0 is the tail of the two corresponding incident edges on this

cycle. The other alternating cycle containing u0
0 contains vertices u1

1, u
1
2, u

1+r2

3 , u1+r2

4 ,

. . . , u1+r2+···+rm−2

m−1 , u1+r2+···+rm−2+t
0 , etc., where u1+r2+···+rm−2+t

0 is the head of the
two corresponding incident edges on this cycle. Observe that equation (7) implies
that r(1 + r2 + · · · + rm−2 + t) = r + r3 + · · · + rm−1 + t , and so the vertices
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ur+r3+···+rm−1+t
0 and u1+r2+···+rm−2+t

0 are both contained in A. Since |A| = 2, it fol-
lows that 1 + r2 + · · · + rm−2 + t = r + r3 + · · · + rm−1 + t and in addition either
1 + r2 + · · · + rm−2 + t = 0 or 1 + r2 + · · · + rm−2 + t = n

2 with n even. But in both
cases equation (9) holds, and so the mapping ψ defined as in (10) is an automorphism
of X which is impossible. Therefore, m is odd, as claimed.

CLAIM 4: n ≡ 2 (mod 4).

Let C1 denote the alternating cycle containing the edge u0
0u

0
1. Since m is odd,

the vertices ur+r3+···+rm−2+t
0 and u1+r+r2+···+rm−1+2t

0 are both contained in C1 with

ur+r3+···+rm−2+t
0 being the head of the two corresponding incident edges on C1. Let

C2 denote the other alternating cycle containing the vertex u0
0. Then u1+r2+···+rm−1+t

0

and u1+r+r2+···+rm−1+2t
0 are vertices of C2 with u1+r2+···+rm−1+t

0 being the tail of the
two corresponding incident edges on C2. Since |A| ≤ 2, we thus have that 1+r +r2 +
· · · + rm−1 + 2t is equal either to 0 or to n

2 , where in the latter case n must be even.
As the former contradicts half-arc-transitivity of X (see the argument immediately
after equation (9)), we have that n is even and that

1 + r + r2 + · · · + rm−1 + 2t = n

2
. (11)

Since r ∈ Z
∗
n, r is odd. But this implies that 1+ r + (r2 + r3)+· · ·+ (rm−3 + rm−2)+

rm−1 + 2t is odd too, and so equation (11) implies that n ≡ 2 (mod 4), as claimed.

CLAIM 5: C0 = u0
0u

0
1u

r
2u

r
1u

r
0u

1+r
1 u1+r

2 u1
1 is an 8-cycle of X.

We only need to see that the cardinality of the set {0,1, r, r + 1} is 4, that is, we
need to see that r �= ±1. Note first that r �= 1 for otherwise X would be a Cayley
graph of an abelian group and thus arc-transitive. Furthermore, r �= −1 for then rm =
−1 �= 1, contradicting (4). (Note that n �= 2 for otherwise X would be isomorphic to
a lexicographic product of a cycle and 2K1, and thus clearly arc-transitive.)

The 8-cycles belonging to the 〈ρ,σ 〉-orbit of C0 will be called the generic 8-cycles
of X. We now investigate which 8-cycles, apart from the generic ones, are contained
in the AutX-orbit of C0. We assume first that m ≥ 5, as in this case, since m is odd,
no 8-cycle containing edges from every subgraph [Xi,Xi+1], i ∈ Zm, exists.

By Claim 2 there exists an automorphism ϕ ∈ AutX, fixing u1
1 and u0

0 but inter-

changing u1+r
2 and u1

0. We either have u0
1ϕ = u0

1 or u0
1ϕ = u−rm−1−t

m−1 . Suppose first

that ϕ fixes u0
1. Then it also fixes ur

2. Now since C0ϕ is an 8-cycle and since u1+r
1

is the tail of both of its incident edges on C0, we must have u1+r
1 ϕ = u2

1. There-
fore, ur

0ϕ = u2
2. This leaves us with two possibilities for ur

1ϕ. If ur
1ϕ = u2−r

1 , then
u2−r

1 → ur
2, and so 2(r − 1) = 0. But r is odd, so that Claim 4 implies r − 1 = 0,

a contradiction. Thus ur
1ϕ = u2

3 and so ur
2 ← u2

3, which forces

2 − r − r2 = 0. (12)
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Suppose now that u0
1ϕ = u−rm−1−t

m−1 . It follows that ur
2ϕ = u−rm−1−t

m−2 and then a similar

argument as above shows that u1+r
1 ϕ = u1−t

m−1, and so ur
0ϕ = u1−rm−2−t

m−2 . We now

have two possibilities. Either ur
1ϕ = u1−rm−2−t

m−1 , which by (4) implies that (12) holds,

or ur
1ϕ = u1−rm−3−rm−2−t

m−3 , in which case 1 − rm−3 − rm−2 − t = −rm−1 − t , that is,

r3 + r2 = r + 1 or equivalently (r − 1)(r + 1)2 = 0. (13)

We now show that (13) cannot hold. Namely, multiplying by r2(i−1) we get that
r2i+1 + r2i = r + 1 for every i ∈ N. Furthermore, by Claim 3 there exists some
integer k such that m = 2k + 1, and so

1 + r + r2 + · · · + rm−2 + rm−1 = k(1 + r) + rm−1. (14)

By (4) we therefore have

0 = (1 + r + · · · + rm−1)(r − 1) = k(r2 − 1) + rm−1(r − 1).

Multiplying by r and using (13) we obtain

0 = k(r3 − r) + r − 1 = k(1 − r2) + r − 1 = −k(r − 1)(r + 1) + (r − 1). (15)

Now, since r − 1 �= 0 is even, Claim 4 and equation (13) imply that there exists some
odd prime q dividing r + 1 and n but not r − 1. However, equation (15) implies that
q does divide r − 1, a contradiction. Therefore, (13) cannot hold, and so (12) holds.

Again using Claim 2, there also exists an automorphism ϑ ∈ AutX fixing u0
0 and

u0
1 but interchanging u1

1 and u−t
m−1. An analysis similar to the one used above shows

that the only possibilities for the image C0ϑ are:

u0
0u

0
1u

r
2u

r+r2

3 ur+r2

2 ur+r2

1 u−1+r+r2

0 u−t
m−1 ,

u0
0u

0
1u

r
2u

r
1u

2r
2 u2r

1 u−1+2r
0 u−t

m−1 and

u0
0u

0
1u

r
2u

r
1u

r
0u

r−t
m−1u

r−rm−2−t
m−2 u−t

m−1.

The conditions for the above 8-cycles to exist are, respectively, (13),

1 + r − 2r2 = 0 (16)

and

r3 = 1. (17)

Recall that (13) cannot hold and that (12) does hold. It is easy to check that (12) and
(16) imply (17) and that (12) and (17) imply (16). Thus all three conditions hold.
From (12) and (16) we get that

(r − 1)2 = 0. (18)

Then C = u0
0u

0
1u

r
2u

r
3u

r−r2

2 ur−r2

1 u2r−r2

2 u2r−r2

1 = u0
0u

0
1u

r
2u

r
3u

1−r
2 u1−r

1 u1
2u

1
1 is an 8-

cycle of X (recall that r �= 1). By Claim 2 there exists an automorphism η ∈ AutX fix-

ing ur
2 and ur

3 but interchanging ur−r2

2 with ur
4. But this implies u0

1η = u0
1, u0

0η = u0
0
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and ur−r2

1 η = ur+r4

5 , and so Cη is not an 8-cycle, a contradiction. This shows that X

cannot exist when m ≥ 5.
Since m is odd this leaves us with m = 3 as the only other possibility. A simi-

lar analysis as in the general case shows that the only possibilities for C0ϕ (where
ϕ ∈ AutX fixes u1

1 and u0
0 but interchanges u1+r

2 and u1
0) are 8-cycles which exist only

when (12) holds. (In this analysis we get that the only possibilities not encountered in
the general case are those for which 2r + r2 +2t = 0 or 2+ r2 +2t = 0, which are of
course both impossible as n is even.) By (4) we have r3 = 1, and so multiplying by r

in (12) we get that (18) holds. Thus the 8-cycle C = u0
0u

0
1u

r
2u

r+t
0 u1−r

2 u1−r
1 u1

2u
1
1 exists

in X. Again let η ∈ AutX be an automorphism fixing ur
2 and ur+t

0 but interchanging
u1−r

2 with ur+t
1 . Then u0

1η = u0
1, u0

0η = u0
0 and u1−r

1 η = u2r+t
2 . Note that we cannot

have u1
1η = u1

1 for otherwise u1
2η = u1

2, which contradicts the fact that u1
2 ∼ ur−r2

1 . It
follows that u1

1η = u−t
2 , and so u1

2η = u−r−t
1 . Consequently −r − t = 2r + t , that is

3r + 2t = 0, which forces 1 + r + r2 + 2t = 0. As this contradicts (11), the proof is
complete.

We are now ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1:
That connected quartic half-arc-transitive weak metacirculants of Class I are tightly
attached now follows by Lemmas 4.2 and 4.3. To prove the converse observe, as al-
ready noted in Section 2, that the results of [20, 29] imply that every connected quartic
tightly attached half-arc-transitive graph is isomorphic either to some Xo(m,n; r) or
to some Xe(m,n; r, t). As these two graphs are clearly both weak metacirculants of
Class I, the proof is complete.

5 Graphs of Class II

In this section connected quartic half-arc-transitive metacirculants of Class II are
studied in great detail. The following theorem is the main result.

Theorem 5.1 Let X be a connected quartic half-arc-transitive weak (m,n)-meta-
circulant of Class II. Then the following hold:

(i) X is a Cayley graph for the group 〈ρ,σ 〉, where (ρ,σ ) is some pair of automor-
phisms of X such that X is a weak (m,n)-metacirculant of Class II relative to
(ρ,σ ),

(ii) (AutX)v ∼= Z2 for all v ∈ V (X),
(iii) m divides n and dm = n

m
> 2,

(iv) there exist r ∈ Z
∗
n and t ∈ Zn such that X ∼= Y (m,n; r, t), where parameters r

and t satisfy the following conditions:
• rm = 1,
• m(r − 1) = t (r − 1) = (r − 1)2 = 0,
• 〈m〉 = 〈t〉 in Zn,
• there exists a unique c ∈ {0,1, . . . , dm − 1} such that t = cm and m = ct and
• there exists a unique a ∈ {0,1, . . . , dm − 1} such that at = −am = r − 1,
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(v) X is tightly attached unless m and dm are both even, and n = 8n1 for some
integer n1 > 2, where n1 is even or not squarefree.

Then, using this result, we present a list of all connected quartic half-arc-transitive
weak metacirculants of Class II of order up to 1000 which are not tightly attached
(see Table 3). Finally, we construct an infinite family of such graphs (see Construc-
tion 5.10).

Throughout this section we let X denote a connected quartic half-arc-transitive
weak (m,n)-metacirculant of Class II. Choose some automorphisms ρ and σ such
that X is a weak (m,n)-metacirculant of Class II relative to the ordered pair (ρ,σ ).
Fix a vertex u ∈ V (X) and let u0

i = uσ i for all i ∈ {0,1, . . . ,m − 1}. Then let u
j
i =

u0
i ρ

j for all i ∈ Zm, j ∈ Zn. Thus Xi = {uj
i | j ∈ Zn}, i ∈ Zm, are the orbits of ρ and

Xi = X0σ
i . We shall say that an edge connecting vertices from the same orbit Xi is

an inner edge and that an edge connecting vertices from different orbits is an outer
edge.

Since dinn(X) = 2, there exists some nonzero s ∈ Zn such that u
j

0 ∼ u
j±s

0 for all
j ∈ Zn. Fix an orientation of edges induced on X by the half-arc-transitive action of
AutX and denote the corresponding directed graph by DX . Then the indegrees and
the outdegrees of the subgraphs of DX induced by Xi are all equal to 1. We will
assume that u

j−s

0 → u
j

0 → u
j+s

0 . Letting r ∈ Z
∗
n be as in equation (1), we have that

us
0σ

i = u0
0ρ

sσ i = u0
0σ

iρris , and so

u
j−ri s
i → u

j
i → u

j+ri s
i , for all i ∈ Zm, j ∈ Zn. (19)

There exists some k ∈ Zm\{0} such that the vertices from the orbit X0 are adjacent
to the vertices from the orbit Xk . Since X is connected, 〈k〉 = Zm, so that we can
assume k = 1 (otherwise take σ ′ = σk and r ′ = rk). Let a ∈ Zn be such that u0

0 ∼ ua
1.

We can assume that u0
0 → ua

1 (otherwise take ρ′ = ρ−1 and then choose the other
of the two possible orientations of the edges for DX). With no loss of generality we
can also assume that a = 0 (otherwise take σ ′ = σρa). Therefore, u

j
i → u

j

i+1 for all
i ∈ Zm\{m − 1}, j ∈ Zn. Since σ cyclically permutes the m orbits of ρ, we have that
u0

0σ
m ∈ X0. Thus, there exists a unique t ∈ Zn such that u0

0σ
mρ−t = u0

0. Since the
orbits Xi are blocks of imprimitivity for the group H = 〈ρ,σ 〉, half-arc-transitivity of
X and the orientation of the edges of DX imply that an element of H fixing a vertex
must necessarily fix all of its neighbors pointwise. By connectedness of X we then
have that

the group 〈ρ,σ 〉 acts regularly on V (X). (20)

In particular, σm = ρt . This implies that ρ = ρ−t ρρt = σ−mρσm = ρrm
, and so

rm = 1. (21)
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Moreover, u
j
i σ = u0

i ρ
j σ = u0

i σρrj = u0
i+1ρ

rj = u
rj

i+1 for i �= m−1, j ∈ Zn. By (21)

we now also have u
j

m−1σ = u
rj

0 σm−1σ = u
rj

0 ρt = u
rj+t

0 , and so

u
j
i σ =

{
u

rj

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

u
rj+t

0 ; i = m − 1, j ∈ Zn

and (22)

u
j
i →

{
u

j

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

u
j+t

0 ; i = m − 1, j ∈ Zn.
(23)

Let us now consider the edge u0
m−1u

t
0. By (22), σ maps this edge to the edge ut

0u
rt
1 ,

and so (23) implies that rt = t , that is,

t (r − 1) = 0. (24)

We claim that rs �= ±s. Suppose on the contrary that rs = s or rs = −s and
consider the permutation ϕ of V (X) defined by the rule u

j

0ϕ = u
−j

0 , where j ∈ Zn,

and u
j
i ϕ = u

−j−t
m−i , where i ∈ Zm\{0} and j ∈ Zn. Since rs = ±s, we have that either

ris = s or that ris = (−1)is for all i ∈ Zm. It is now easy to check that ϕ is an
automorphism of X. But ϕρs interchanges adjacent vertices u0

0 and us
0, which by

Proposition 3.1 contradicts half-arc-transitivity of X.
We now investigate certain 8-cycles of X in order to obtain a better understanding

of the structural properties of X. Consider the following closed walk of X:

(u0
0, u

s
0, u

s
1, u

s+rs
1 , us+rs

0 , urs
0 , urs

1 , u0
1, u

0
0). (25)

Since s �= 0, r ∈ Z
∗
n and rs �= ±s, it follows that the above 8 vertices are all distinct,

and so the closed walk (25) gives rise to an 8-cycle. Every 8-cycle of X belonging to
the H -orbit of this 8-cycle will be called a generic 8-cycle.

To every 8-cycle C of X we assign a binary sequence as follows. When travers-
ing C, we assign value 1 to each edge of X traversed along its orientation in DX ,
and we assign value 0 to each edge of X traversed against its orientation in DX .
We say that two binary sequences corresponding to 8-cycles of X are equivalent if
one can be obtained from the other using cyclic rotations and reflections. We let the
code of C be the equivalence class of its sequences and we denote it by any of the
corresponding sequences. Therefore, the code of the generic 8-cycle given in (25) is
11100100 (see Figure 2). Note that, since X is half-arc-transitive, the code of a cycle
is invariant under the action of AutX. On the other hand, there exists an automor-
phism τ ∈ AutX fixing urs

1 and interchanging u0
1 and urs

0 . Since urs
0 → us+rs

0 , we
thus have that us+rs

0 τ = u0
2. Consequently, the image under τ of the generic 8-cycle

corresponding to (25) is an 8-cycle consisting of vertices from at least three orbits
Xi and is therefore not generic. The following lemma gives all possible H -orbits of
8-cycles of X having code 11100100.

Lemma 5.2 With the notation introduced in this section the only possible H -orbits
of 8-cycles having code 11100100 in X are given in Table 1, together with the cor-
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responding representatives and the necessary and sufficient arithmetic conditions for
their existence.

PROOF: Let C = c0c1c2c3c4c5c6c7 be an 8-cycle with code 11100100. We divide our
investigation into several cases depending on the number of orbits Xi the 8-cycle C

meets.

CASE 1: C meets one orbit.

As any such 8-cycle has code 11111111, this case cannot occur.

CASE 2: C meets two orbits.

Clearly, the number of outer edges of C is even. In fact, C either has 2 or 4 outer
edges. The former case is impossible for otherwise C contains at least four consecu-
tive vertices in a single orbit and thus 1111 is a subsequence of the code of C. It is
thus clear that the inner and outer edges alternate on C. Therefore, the first and the
last 1 of the subsequence 111 of the code of C both correspond to inner edges, and
so it is clear that C is a generic 8-cycle.

CASE 3: C meets three orbits, say, with no loss of generality, X0,X1 and X2.

Suppose first that m > 3. Therefore, if ci ∈ X0 or ci ∈ X2, at least one of ci−1, ci+1
lies in the same orbit as ci . This implies that no four consecutive vertices of C are con-
tained in a single orbit. Namely, they cannot be contained in X0 or X2, for otherwise
the code of C would contain 1111 as a subsequence. Moreover, they cannot be con-
tained in X1 since there are no edges between X0 and X2. We now show that no three
consecutive vertices of C are contained in a single orbit. Suppose on the contrary that
c0, c1 and c2 are all contained in one orbit. If this orbit is X0, then c3, c7 ∈ X1, so in
order to have the required code, at least one of c4 and c6 lies in X1. But then the re-
maining two vertices lie in X2, so the code cannot be 11100100. A similar argument
shows that the orbit containing c0, c1 and c2 cannot be X2. Suppose now that the orbit
containing c0, c1 and c2 is X1. It is then clear that one of c3 and c7 lies in X0 and the
other in X2; say c3 ∈ X0 and c7 ∈ X2. It follows that c4 ∈ X0, c5 ∈ X1 and c6 ∈ X2. It
is easy to see however, that such an 8-cycle does not have code 11100100. Therefore,
no three consecutive vertices of C lie on a single orbit. Consequently, each of X0 and
X2 contains two vertices of C, and so four vertices of C are contained in X1. As C

has code 11100100, it is now clear that C lies in the H -orbit of 8-cycles from row 2
of Table 1. We say that the 8-cycles of this H -orbit are of type I (see Figure 2).

Suppose now that m = 3. With no loss of generality we can assume that the se-
quence 11100100 is obtained when traversing C according to increasing subscripts
of vertices and, in addition, that c0 ∈ X0 and that the walk (c0, c1, c2, c3) gives rise to
the subsequence 010. We first consider the possibility that c1 ∈ X0. Then c2, c3 ∈ X1.
We claim that this forces c4 ∈ X1. Namely, if this is not the case, then c4, c5 ∈ X0,
and so the fact that c5 → c6 → c7 ← c0 implies that C does not contain vertices from
X2, a contradiction. Therefore, c4 ∈ X1 and hence c5 ∈ X2. It is now easy to see that
the only way for C to have the required code is to have c6 ∈ X2 and c7 ∈ X0. Thus,
C is contained in the H -orbit of 8-cycles whose representative is given in row 3 of
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Table 1. We say that the 8-cycles of this H -orbit are of type II (see Figure 2). Con-
sider now the possibility that c1 /∈ X0, and so c1 ∈ X2. It follows that c2 ∈ X2 and
c3 ∈ X1. If c4 ∈ X1, then c5 ∈ X2, and then the only way for C to have the required
code is to have c6 ∈ X2 and c7 ∈ X0. Note that this 8-cycle is of type I. If however
c4 ∈ X0, then c5 ∈ X0, and then the only way for C to have the required code is to
have c6, c7 ∈ X1. Thus C is in the H -orbit of 8-cycles from row 4 of Table 1. We
say that such 8-cycles are of type III (see Figure 2). To summarize, if m = 3 we can
have up to four different types of 8-cycles with code 11100100: the generic ones and
8-cycles of types I, II and III.

CASE 4: C meets four orbits, say, with no loss of generality, X0,X1,X2 and X3.

Observe first that no 8-cycle with code 11100100 exists if m > 4. Namely, in this
case an 8-cycle would necessarily have to contain precisely two vertices from each
of the orbits X0, X1, X2 and X3. But then the code of C would contain 1111 as
a subsequence, which is impossible. We can therefore assume that m = 4. Because of
the particular code of C it is clear that C has at most three consecutive outer edges.
Hence, either all the outer edges of C give rise to digit 1 in the code of C or they all
give rise to digit 0. It follows that C has precisely four inner and four outer edges. If
the outer edges give rise to digit 1 in the code 11100100 of C, then C belongs to the
H -orbit of 8-cycles from row 5 of Table 1. We say that such 8-cycles are of type IV
(see Figure 2). If on the other hand the outer edges give rise to digit 0 in the code
11100100 of C, then C belongs to the H -orbit of 8-cycles from row 6 of Table 1. We
say that the 8-cycles of this H -orbit are of type V (see Figure 2).

CASE 5: C meets more than four orbits.

It is easy to see that no such 8-cycle exists.

Proposition 5.3 Let X be a connected quartic half-arc-transitive weak (m,n)-meta-
circulant of Class II and let v ∈ V (X). Then (AutX)v ∼= Z2 or possibly (AutX)v ∼=
Z2 × Z2 in which case m = 4.

PROOF: Let ρ,σ ∈ AutX be such that X is a weak (m,n)-metacirculant of Class II
relative to the ordered pair (ρ,σ ) and that all the assumptions made in the third
paragraph of this section hold. Moreover, adopt the notation introduced in this section
and let C denote the generic 8-cycle from row 1 of Table 1. We distinguish two cases
depending on whether m equals 4 or not.

Table 1 Possible H -orbits of 8-cycles of code 11100100.

Row Type A representative Condition

1 generic u0
0us

0us
1us+rs

1 us+rs
0 urs

0 urs
1 u0

1 none

2 type I u0
0u0

1usr
1 usr

2 u
s(r−r2)
2 u

s(r−r2)
1 u

s(2r−r2)
1 u

s(2r−r2)
0 s(1 − 2r + r2) = 0

3 type II u0
0u0

1usr
1 usr

2 u
s(r−r2)
2 u

s(r−2r2)
2 u

s(r−2r2)+t
0 u

s(−1+r−2r2)+t
0 m = 3 and t = s(2 − r + r2)

4 type III u0
0us

0us
1u

s(1+r)
1 u

s(1+r)
0 u

s(1+r)−t
2 u

s(1+r+r2)−t
2 u

s(1+r+r2)−t
1 m = 3 and t = s(1 + r + r2)

5 type IV u0
0u0

1u0
2u0

3u−sr3
3 u−2sr3

3 u−2sr3+t
0 u

s(−1−2r3)+t
0 m = 4 and t = s(2 + 2r3)

6 type V u0
0us

0u2s
0 u3s

0 u3s−t
3 u3s−t

2 u
s(3+r2)−t
2 u

s(3+r2)−t
1 m = 4 and t = s(3 + r2)
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Fig. 2 Possible types of
8-cycles having code 11100100.

CASE 1: m �= 4.

If the stabilizer (AutX)us
0

is not isomorphic to Z2, then there exists an automor-

phism ϕ of X which fixes u0
0 and us

0, and maps us
1 to u2s

0 . Therefore, Cϕ is an 8-cycle
(with code 11100100) containing three consecutive vertices (u0

0, u
s
0 and u2s

0 ) in a sin-
gle orbit of 〈ρ〉. It follows, by Lemma 5.2, that m = 3 and that Cϕ is of type II.
Thus we must have us+rs

1 ϕ = u2s−t
2 . But this is impossible since then us

1 → us+rs
1

and us
1ϕ ← us+rs

1 ϕ. It follows that (AutX)v ∼= Z2, as claimed.

CASE 2: m = 4.

Suppose that |(AutX)v| > 2. Then there exists an automorphism ϕ of X fix-
ing us+rs

0 and us+rs
1 , and interchanging urs

0 and us+rs−t
3 . This implies that urs

1 ϕ =
us+rs+r3s−t

3 , u0
1ϕ = us+rs+r3s−t

2 and us
1ϕ = us

1. It follows that Cϕ is of type V. There-
fore, 8-cycles of type V exist in X.

To complete the proof we now show that the only automorphism of X fixing a ver-
tex and all of its neighbors is the identity. To this end let ϕ ∈ AutX be an automor-
phism fixing u0

0 and its four neighbors u−s
0 , us

0, u
−t
3 and u0

1. There exists a unique 8-
cycle C′ with code 11100100 containing vertices u−s

0 , u0
0, u

s
0 and u2s

0 . (It is of type V.)
Since ϕ fixes the first three of these four vertices, and since u−s

0 → u0
0 → us

0 → u2s
0 ϕ

is a directed path of C′ϕ, the 8-cycle C′ϕ is of type V. Consequently, ϕ fixes all of
its vertices pointwise. In particular u2s

0 ϕ = u2s
0 . It is now clear that ϕ fixes us

0 and all

of its neighbors. Continuing inductively, we see that ϕ fixes every vertex of form u
js

0
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and all of its neighbors. Considering again the generic 8-cycle C. Since ϕ fixes its
vertices u0

0, u
s
0, u

rs
0 , us+rs

0 and all of their neighbors, it fixes C pointwise. It follows
that ϕ fixes u0

1 and all of its neighbors. Since X is connected a repeated use of the
above argument finally shows that ϕ is the identity, as required. It is now clear, that
|(AutX)v| = 4, and so (AutX)v ∼= Z2 × Z2, as claimed.

Remark: In fact, as we shall see in the proof of Theorem 5.1, the vertex stabilizer
cannot be isomorphic to Z2 × Z2.

Proposition 5.4 Let X be a connected quartic half-arc-transitive weak (m,n)-meta-
circulant of Class II. Then m divides n and moreover, there exist r ∈ Z

∗
n and t ∈ Zn,

satisfying (21) and (24), such that X ∼= Y (m,n; r, t).

PROOF: Let ρ,σ ∈ AutX be such that X is a weak (m,n)-metacirculant of Class II
relative to the ordered pair (ρ,σ ) and that all the assumptions made in the third
paragraph of this section hold. Moreover, adopt the notation introduced in this
section. Let ds denote the order of s in Zn. There exist unique integers a ≥ 0
and b ∈ {0,1, . . . ,m − 1} such that ds = am + b. Let C0 denote the directed ds -
cycle u0

0u
s
0u

2s
0 · · ·u(ds−1)s

0 . By Proposition 5.3 there exists a unique automorphism
τ ∈ AutX, which fixes u0

0, interchanges us
0 and u0

1, and interchanges u−s
0 and u−t

m−1.
We claim, that the image C0τ of C0 under τ is the directed ds -cycle at u0

0 con-
sisting only of outer edges. Suppose this does not hold. Then there exists a small-
est k ∈ {1,2, . . . , ds − 1} such that τ maps the inner edge uks

0 u
(k+1)s
0 to an inner

edge. Since H = 〈ρ,σ 〉 acts transitively on V (X), there exists an automorphism
ϕ ∈ H such that uks

0 τ = uks
0 ϕ. The orbits Xi of ρ are blocks of imprimitivity for

H , and so it is clear that ϕ maps inner edges to inner edges. Therefore, we also have
u

(k+1)s
0 τ = u

(k+1)s
0 ϕ. However, as τ /∈ H , τϕ−1 is a nontrivial automorphism of X

fixing an edge. Hence, Proposition 5.3 implies that (AutX)u0
0

∼= Z2 × Z2 and that
m = 4. Moreover, following its proof we see that 8-cycles with code 11100100 of
type V exist. In particular there exists a unique 8-cycle C1 of type V containing ver-
tices u−s

0 , u0
0, u

s
0 and u2s

0 . Since τ maps the first three vertices to u−t
3 , u0

0 and u0
1, re-

spectively, it is clear that C1τ is of type IV. It follows that u2s
0 τ = u0

2. We now repeat-

edly use this argument on 8-cycles of type V containing vertices u
(i−1)s
0 , uis

0 , u
(i+1)s
0

and u
(i+2)s
0 to finally prove that the edge uks

0 u
(k+1)s
0 gets mapped to an outer edge,

a contradiction which proves our claim.
Observe that the fact that C0τ is the directed ds -cycle at u0

0 consisting only of
outer edges implies that uat

b = u0
0, and so b = 0 and at = 0. In particular, this shows

that the order of t in Zn divides a. Since ds = am is the order of s in Zn, we have
that the order of t in Zn divides ds . Therefore, 〈t〉 is a subgroup of 〈s〉. However, the
connectedness of X implies that 〈s, t〉 = Zn, and so 〈s〉 = Zn, that is gcd(n, s) = 1. It
is now clear that X ∼= Y (m,n; r, t). Finally, the equation n = ds = am implies that m

divides n.
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Remark: Note that Proposition 5.4 implies that one can assume s = 1 in (19), that
is, u0

0 → u1
0. For the rest of this section we therefore let s = 1.

For future reference we record the nature of the action of the automorphism τ

from the proof of the above proposition.

Lemma 5.5 With the notation introduced in this section let dm be the unique integer
such that n = mdm. Then for every i ∈ Zm and every j ∈ Zn there exist unique inte-
gers a ∈ {0,1, . . . , dm −1} and b ∈ {0,1, . . . ,m−1} such that j = (am+b)ri in Zn.
Moreover, the unique automorphism τ of X fixing u0

0, interchanging u1
0 and u0

1, and

interchanging u−1
0 and u−t

m−1, maps according to the rule u
j
i τ = ui+at

b .

PROOF: Observe first that since r ∈ Z
∗
n the existence of unique a and b is clear. The

proof of Proposition 5.4 shows that τ maps the inner edges of X0 to outer edges.
Therefore it maps the outer edges connecting X0 to X1 to inner edges. Continuing
inductively we can see that τ interchanges inner edges with outer edges. It is now

clear that u0
i τ = ui

0 and that uri

i τ = ui
1, u2ri

i τ = ui
2, etc. Finally, u

(am+b)ri

i τ = ui+at
b ,

which completes the proof.

The fact that the permutation τ from Lemma 5.5 is an automorphism of X puts
some further restrictions on parameters m,n, r, t of X ∼= Y (m,n; r, t). Consider the
generic 8-cycle C from row 1 of Table 1. Lemma 5.5 implies that τ maps C to the
8-cycle from row 2 of Table 1, in particular Cτ is of type I. Therefore, 8-cycles of
type I exist in X, and so

(r − 1)2 = 0. (26)

Consequently,

rm = ((r −1)+1)m = (r −1)m +m(r −1)m−1 +· · ·+m(r −1)+1 = m(r −1)+1,

and so (21) implies that

m(r − 1) = 0. (27)

Let dm be as in Lemma 5.5. Then τ maps the directed n-cycle u0
0u

1
0u

2
0 . . . un−1

0 to

u0
0u

0
1u

0
2 . . . u

(dm−1)t
m−1 , and so dmt = 0. Moreover, dm is the smallest such positive inte-

ger. It is thus clear that

|m| = |t | in Zn, and so 〈m〉 = 〈t〉. (28)

We now show that

|m| = |t | > 2. (29)

Consider the permutation ψ of V (X) defined by the rule: u
j
i ψ = u

−j
i for i ∈ Zm,

j ∈ Zn. It is easy to see that ψ is an automorphism of X if and only if 2t = 0. But as
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ψρ interchanges adjacent vertices u0
0 and u1

0, Proposition 3.1 implies that ψ cannot
be an automorphism of X, and so 2t �= 0, as claimed. Note also that

r2 /∈ {±1}, (30)

for otherwise rm−i = ±ri for all i ∈ Zm, and so the permutation ϕ of V (X) mapping
according to the rule u

j

0ϕ = u
−j

0 and u
j
i ϕ = u

−j−t
m−i , where i ∈ Zm\{0} and j ∈ Zn,

is an automorphism of X. But this is impossible, since then the automorphism ϕρ

inverts adjacent vertices u0
0 and u1

0, which contradicts Proposition 3.1.
Another immediate consequence of the existence of the automorphism τ from

Lemma 5.5 is the following lemma.

Lemma 5.6 With the notation introduced in this section let n = mdm, where m and
dm have the same role as in the statement of Lemma 5.5. Let a ∈ {0,1, . . . , dm −
1} and let b ∈ {0,1, . . . ,m − 1}. Then there exists a unique a′ ∈ {0,1, . . . , dm − 1}
such that (a − a′)m = (a′ − a)t = b(r − 1). In particular, there exists a unique a′ ∈
{0,1, . . . , dm − 1} such that −a′m = a′t = r − 1, and so m divides r − 1, that is,
r − 1 ∈ 〈m〉 ≤ Zn.

PROOF: Lemma 5.5 implies that there exist unique a′ ∈ {0,1, . . . , dm − 1} and b′ ∈
{0,1, . . . ,m − 1} such that am + b = (a′m + b′)r in Zn. Let τ be as in Lemma 5.5.
Since τ maps the outer edge uam+b

0 u
(a′m+b′)r
1 to the inner edge uat

b u1+a′t
b′ , we have

that b′ = b and that 1+a′t = at + rb . By (26) we have rb −1 = b(r −1). Taking into
account equations (24) and (27), we see that (a − a′)m = b(r − 1) and (a′ − a)t =
b(r − 1), as required. Plugging in the values b = 1 and a = 0 we get that −a′m =
r − 1 = a′t in Zn. Since m divides n, this implies that m divides r − 1, completing
the proof.

We are now ready to investigate possible attachment numbers of X. To this end
let us inspect the two alternating cycles containing u0

0. The directions of edges on the
one on which u0

0 is the tail of the two incident edges are

u0
0 → u0

1 ← u−r
1 → u−r

2 ← ·· · → ut−r−r2−···−rm−1

0 ← ut−1−r−···−rm−1

0 → ·· ·

The directions of edges on the other alternating cycle containing u0
0 are

u0
0 ← u−1

0 → u−1
1 ← u−1−r

1 → ·· · ← u−1−r−···−rm−1

m−1 → ut−1−r−···−rm−1

0 ← ·· ·

It is therefore clear that X is tightly attached if and only if there exists some k ∈ Zn

such that −1 = k(t − (1 + r + r2 + · · · + rm−1)) − r , that is, if and only if

r − 1 = k
(
t − (1 + r + r2 + · · · + rm−1)

)
for some k ∈ Zn. (31)



J Algebr Comb (2008) 28: 365–395 387

Let us also note that (26) implies that

1 + r + · · · + rm−1 = 1 + (r − 1) + 1 + · · · + ((r − 1) + 1)m−1

= m + (1 + 2 + · · · + m − 1)(r − 1)

= m + m(m−1)
2 (r − 1).

(32)

Lemma 5.7 With the notation introduced in this section let n = mdm, where m and
dm have the same role as in the statement of Lemma 5.5. If either m or dm is odd then
X is tightly attached.

PROOF: We claim that in each of these two cases 1 + r + · · ·+ rm−1 = m and 〈2(r −
1)〉 = 〈r −1〉. Suppose first that m is odd. Then (27) and (32) imply that 1+ r +· · ·+
rm−1 = m. Moreover, (27) and the fact that m is odd imply that 〈2(r − 1)〉 = 〈r − 1〉.
Suppose now that dm is odd but m is even. Then Lemma 5.6 implies that 〈2(r −1)〉 =
〈r − 1〉. Therefore, m

2 (r − 1) = 0, and so 1 + r + · · · + rm−1 = m, which proves our
claim.

By Lemma 5.6 there exists a unique integer a′ ∈ {0,1, . . . , dm − 1} such that
−a′m = a′t = r − 1, and so a′(t − m) = 2(r − 1). Combining together the above
claim and (31), we see that X is tightly attached.

Lemma 5.8 With the notation introduced in this section let n = mdm, where m and
dm have the same role as in the statement of Lemma 5.5. Further, let n = 2in1 where
n1 is odd. If i ≤ 2 then X is tightly attached.

PROOF: By Lemma 5.7 we can assume that both m and dm are even. Hence i = 2 and
m ≡ 2 (mod 4). As m(r − 1) = 0, we either have m

2 (r − 1) = 0 or m
2 (r − 1) = n

2 . We
consider these two cases separately.

CASE 1: m
2 (r − 1) = 0.

Then (32) implies that 1 + r + · · · + rm−1 = m. Moreover, as m
2 is odd we have

〈2(r − 1)〉 = 〈r − 1〉. By Lemma 5.6 there exists a unique a′ ∈ {0,1, . . . , dm − 1}
such that −a′m = a′t = r − 1, and so, as in the proof of Lemma 5.7, X is tightly
attached by (31).

CASE 2: m
2 (r − 1) = n

2 .
Since n is even, r is odd, and so r − 1 is even. Moreover, as m

2 (r − 1) = n
2 , we have

that r − 1 ≡ 2 (mod 4). Let c = t − m + n
2 , that is, c = t − (1 + r + · · · + rm−1) in

view of (32). By (31), X is tightly attached if and only if r − 1 ∈ 〈c〉. By Lemma 5.6
there exists a unique a′ ∈ {0,1, . . . , dm − 1} such that −a′m = a′t = r − 1. Note
that a′ is odd, and so a′ n

2 = n
2 . Consequently a′c = 2(r − 1) + n

2 . To show that X is
tightly attached it thus suffices to see that 〈2(r − 1) + n

2 〉 = 〈r − 1〉. It is clear that
2(r − 1) + n

2 ≡ 2 (mod 4). Moreover, n
2 ∈ 〈r − 1〉, and so 2(r − 1) + n

2 ∈ 〈r − 1〉.
Finally, let pt be any odd prime power dividing 2(r − 1) + n

2 and n. Since p is odd,
pt divides n

2 , and so it also divides r − 1. Therefore, a prime power pt dividing n

divides r − 1 if and only if it divides 2(r − 1) + n
2 . Since Zn is a cyclic group, we

indeed have 〈2(r − 1) + n
2 〉 = 〈r − 1〉, as required.
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Combining together the results of this section, the proof of Theorem 5.1 is now at
hand.

PROOF OF THEOREM 5.1:
Throughout this proof we adopt the notation of this section. Except for the existence
of a unique c ∈ {0,1, . . . , dm − 1} for which t = cm and m = ct , claims (i), (iii)
and (iv) follow from (20), (21), (24), Proposition 5.4, Lemma 5.6 and (29). To show
that a unique such c exists, observe that there exists a unique c ∈ {0,1, . . . , dm − 1}
for which t = cm. Plugging in the values i = 0 and j = t in Lemma 5.5 we get that
ut

0τ = ucm
0 τ = uct

0 . On the other hand, letting i = 0 and j = m, we get that um
0 τ = ut

0,
and so ut

0τ = um
0 τ 2 = um

0 , which gives m = ct , as required.
Let us now prove (ii). By contradiction, assume that (AutX)v is not isomorphic

to Z2. Then by Proposition 5.3, (AutX)v ∼= Z2 × Z2 and m = 4. Moreover, the proof
of Proposition 5.3 reveals that 8-cycles of type V exist (see Table 1). In particular
3 + r2 = t , and so equation (26) implies that 2 + 2r = t . Note also that (26) and (30)
combined together imply that 2(r − 1) �= 0. By (27) we thus have

2(r − 1) = n

2
and t = n

2
+ 4. (33)

Furthermore, Lemma 5.6 and (27) combined together imply that n = 16n1 for some
integer n1. Thus either r − 1 = n

4 = 4n1 or r − 1 = 3n
4 = 12n1. Let a′ be the

unique element of {0,1, . . . ,4n1 − 1} such that −a′m = a′t = r − 1, which exists
by Lemma 5.6. As −a′m = r − 1, we either have a′ = 3n1 or a′ = n1. But then a′t
equals either to 3n1(8n1 + 4) = 12n1 + 8n2

1 or to n1(8n1 + 4) = 4n1 + 8n2
1, respec-

tively. Thus, in view of the equality r −1 = a′t , we have 8n2
1 = 8n1 = n

2 in either case,
and so n1 is odd, that is n ≡ 16 (mod 32). Note that this also forces r ≡ 5 (mod 8).

We now introduce a certain mapping ϕ : V (X) → V (X), which will be shown
below to be an automorphism of X. The nature of the action of ϕ will contradict
half-arc-transitivity of X, which thus proves that (AutX)v ∼= Z2, as claimed. Note
that (26) and (33) imply that r2 = n

2 + 1, and so 1 + r + r2 + r3 + t = 1 + r + n
2 +

1 + n
2 + r + t = 2t = 8. Let j ∈ Zn. Then there exist unique a ∈ {0,1, . . . ,2n1 − 1}

and b ∈ {0,1, . . . ,7} such that j = 8a + b. The action of ϕ on u
j
i , i ∈ Zm, j ∈ Zn, is

given in Table 2 and it depends on i and b.
To see that ϕ is in fact a permutation of V (X), we only need to observe that it

is injective. Consider the vertices of Table 2, which are of the form u
j

0. There are
precisely eight such vertices. It can be seen that the congruencies modulo 8 of their
superscripts are precisely the eight possibilities 0,1, . . . ,7. For instance, for u−8a

0

we have 0, for u−1−r−r3−t−8a
0 we have 1, etc. Similarly, one can check that there

are precisely eight vertices of the form u
j
i in Table 2 for each i = 1,2,3, and that

the corresponding congruencies modulo 8 of their superscripts are again the eight
possibilities 0,1, . . . ,7. This shows that ϕ is indeed injective and thus also bijective.
It remains to be seen that ϕ preserves adjacency in X. For the outer edges connecting
Xi to Xi+1, where i �= 3, and for the inner edges of X0, this is clear, as one only needs
to check that two consecutive vertices in a row or in column 0, respectively, of Table 2
are adjacent. As for the other edges, using the facts that t = n

2 + 4, that r2 = n
2 + 1,
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Table 2 The entry in b-th row and i-th column represents the image u
j
i
ϕ in the case when

j = 8a + b, where a ∈ {0,1, . . . ,2n1 − 1} and b ∈ {0,1, . . . ,7}.
b \ i 0 1 2 3

0 u−8a
0 u−t−8a

3 u−r3−t−8a
3 u−r3−t−8a

2

1 u−1−8a
0 u−2−8a

0 u−2−t−8a
3 u−2−r3−t−8a

3

2 u−1−t−8a
3 u−1−t−8a

2 u−1−r2−t−8a
2 u−1−r2−t−8a

1

3 u−1−r3−t−8a
3 u−1−2r3−t−8a

3 u−1−2r3−t−8a
2 u−1−r2−2r3−t−8a

2

4 u−1−r3−t−8a
2 u−1−r3−t−8a

1 u−1−r−r3−t−8a
1 u−1−r−r3−t−8a

0

5 u−1−r2−r3−t−8a
2 u−1−2r2−r3−t−8a

2 u−1−2r2−r3−t−8a
1 u

−r2−8(a+1)
1

6 u−1−r2−r3−t−8a
1 u−1−r2−r3−t−8a

0 u−2−r2−r3−t−8a
0 u−2−r2−r3−2t−8a

3

7 u
−8(a+1)
1 u

−r−8(a+1)
1 u

−r−8(a+1)
0 u

−1−r−8(a+1)
0

and that r ≡ 5 (mod 8), checking that they are indeed mapped to edges of X is
just a matter of tedious computation. We leave the details to the reader. Therefore
ϕ is an automorphism of X. Since it fixes u0

0 and maps u1
0 to u−1

0 , it follows that
ϕρ interchanges adjacent vertices u0

0 and u1
0 of X, which contradicts Proposition 3.1.

Thus (AutX)v ∼= Z2 for all v ∈ V (X), as claimed.
Finally, we prove (v). Let us suppose that X is not tightly attached. By Lemma 5.7

m and dm are both even and by Lemma 5.8, there exists some positive integer n1

such that n = 8n1. We show that n1 > 2. Note first that part (iii) of this theorem,
Proposition 3.2 and (29) combined together imply that n1 > 1. Moreover, if n1 = 2,
then m = 4, and so combining together (27) and (30) we have that r ∈ {5,13}.
Therefore, (28) and Lemma 5.6 combined together imply that t = 12 = n

2 + 4. But
then the mapping ϕ introduced in the proof of part (ii) is an automorphism of X,
a contradiction. Thus n1 > 2, as claimed. Suppose now, that n1 > 2 is odd and
squarefree. Then (26) implies that r − 1 = n

2 (recall that r �= 1). It follows that
r2 = ((r − 1) + 1)2 = (r − 1)2 + 2(r − 1) + 1 = 1, which contradicts (30). This
completes the proof of Theorem 5.1.

There do exist connected quartic half-arc-transitive weak metacirculants of
Class II which are not tightly attached. Using Theorem 5.1, a computer search has
been performed revealing that there are precisely 18 such graphs of order not ex-
ceeding 1000. The smallest such graph is isomorphic to Y (4,48;13,44), and is of
order 192, has radius 12 and attachment number 3. Table 3 contains some information
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about these 18 graphs. Observe that in view of existence of these graphs, Theorem 5.1
is best possible.

Table 3 All connected quartic
half-arc-transitive weak
metacirculants of Class II of
order up to 1000 which are not
tightly attached.

order graph radius att. num.

192 Y (4,48;13,44) 12 3

256 Y (8,32;9,24) 16 8

320 Y (4,80;21,76) 20 5

432 Y (6,72;13,66) 18 9

448 Y (4,112;29,108) 28 7

512 Y (8,64;9,56) 32 16

512 Y (8,64;25,56) 32 16

576 Y (12,48;13,36) 12 3

576 Y (4,144;37,140) 36 9

704 Y (4,176;45,172) 44 11

768 Y (8,96;25,56) 16 8

768 Y (8,96;25,88) 48 24

832 Y (4,208;53,204) 52 13

864 Y (12,72;13,60) 36 18

864 Y (6,144;25,30) 18 9

960 Y (4,240;61,44) 12 3

960 Y (4,240;61,76) 20 5

960 Y (4,240;61,236) 60 15

Recall that a weak (m,n)-metacirculant is not necessarily an (m,n)-metacirculant.
However, as the next proposition shows, quartic half-arc-transitive weak metacircu-
lants of Class II which are not tightly attached do have this property.

Proposition 5.9 Let X be a connected quartic half-arc-transitive weak (m,n)-meta-
circulant of Class II which is not tightly attached. Then X is an (m,n)-metacirculant.

PROOF: Let r, t ∈ Zn satisfy part (iv) of Theorem 5.1, in particular X ∼= Y (m,n; r, t),
and let the corresponding automorphisms be ρ and σ . By part (v) of Theorem 5.1 we
have that m and dm, where n = mdm, are both even and that n = 8n1, where n1 > 2
is even or not squarefree. Observe that X is a weak (m,n)-metacirculant relative to
the ordered pair (ρ,σρk) for any k ∈ Zn. We show that there exists some k ∈ Zn for
which σρk is of order m, which then completes the proof.

Let k ∈ Zn. Since σm = ρt , equation (1) implies that

(σρk)m = σmρk(1+r+···+rm−1) = ρt+k(1+r+···+rm−1).

Combining together (27) and (32), we have two possibilities for 1 + r + · · · + rm−1.
If 1 + r + · · · + rm−1 = m, then an appropriate k exists by (28). We can thus assume
that 1 + r + · · · + rm−1 = m + n

2 , that is, m
2 (r − 1) = n

2 . Since dm is even, it is clear
that 〈m + n

2 〉 ≤ 〈m〉. If the order d0 of m + n
2 in Zn is also even, then d0 = dm. Thus



J Algebr Comb (2008) 28: 365–395 391

〈m + n
2 〉 = 〈m〉, and we are done in view of (28). Suppose then that d0 is odd, that

is dm = 2d0. Since mr−1
2 = n

2 , we have that r − 1 ≡ 2 (mod 4). But then (r − 1)2 ≡
4 (mod 8) which contradicts (26) and the fact that n ≡ 0 (mod 8). This shows that an
appropriate k ∈ Zn does exist, as claimed.

To wrap up this section we construct an infinite family of connected quartic half-
arc-transitive weak metacirculants of Class II which are not tightly attached. These
graphs are constructed as regular Zp-covers, p a prime, of the graph Y (4,48;13,44),
the smallest example of such graphs.

Construction 5.10 Let X denote the graph Y (4,48;13,44) and let DX denote the
oriented graph corresponding to the half-arc-transitive action of AutX on X in which
u0

0 → u1
0. Let p ≥ 5 be a prime. Following the theory developed in [19] we construct

a regular Zp-cover of X by voltage assignments from the cyclic group Zp , letting the
voltage of each dart corresponding to an oriented edge of DX be 1. Let Cp(X) denote
the obtained Zp-cover. Note that since X is half-arc-transitive, any automorphism of
X maps a cycle of X with trivial net voltage to a cycle of X with trivial net voltage. By
[19, Corollary 7.2], the automorphism group AutX lifts, that is, there exists a group
Ã ≤ AutCp(X) projecting to AutX and acting half-arc-transitively on Cp(X). We
now show that Cp(X) is a connected quartic half-arc-transitive weak metacirculant of
Class II with radius 12 and attachment number 3. This will establish the existence of
infinitely many connected quartic half-arc-transitive weak metacirculants of Class II
which are not tightly attached.

Denote the vertices of Cp(X) by {kuj
i | i ∈ Z4, j ∈ Z48, k ∈ Zp}. Let DCp(X) be

the oriented graph corresponding to the half-arc-transitive action of Ã on Cp(X) such
that 0u0

0 → 1u1
0. The orientations of the edges of DCp(X) are thus

ku
j
i →

{
k+1u

j

i+1 ; i �= 3
k+1u

j+44
0 ; i = 3

and ku
j
i → k+1u

j+13i

i (34)

where i ∈ Z4, j ∈ Z48 and k ∈ Zp . We proceed by proving a series of claims.

CLAIM 1: There exist r ∈ Z
∗
48p and t ∈ Z48p such that Cp(X) ∼= Y (4,48p; r, t).

For any l ∈ {0,1, . . . ,48p − 1} let α(l) = (j, k), where j ∈ {0,1, . . . ,47} and
k ∈ {0,1, . . . , p − 1} are such that l ≡ j (mod 48) and l ≡ k (mod p). Note that α is a
well defined mapping. Moreover, since p ≥ 5 is a prime we have GCD(48,p) = 1,
and so α gives a 1-1 correspondence of {0,1, . . . ,48p − 1} and {0,1, . . . ,47} ×
{0,1, . . . , p − 1}, and so it also gives a 1-1 correspondence of Z48p and Z48 × Zp .
In fact, α is an isomorphism of these Abelian groups. Let r ∈ Z48p be the unique
element given by this bijective correspondence such that α(r) = (13,1). Note that
then r ∈ Z

∗
48p . Similarly let t ∈ Z48p be the unique element such that α(t) = (44,4).

We now show that Cp(X) ∼= Y (4,48p; r, t). Let the vertex set of Y (4,48p; r, t)
be {vj

i | i ∈ Z4, j ∈ Z48p}, with edges as in Example 2.3. We let ϕ : Cp(X) →
Y (4,48p; r, t) be the mapping defined by the rule ϕ : ku

j
i �→ vl

i , where l ∈ Z48p is
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the unique element such that α(l) = (j, k− i). Since α is a bijection ϕ is a bijection as
well. We leave the easy verification that ϕ is an isomorphism of graphs to the reader.

CLAIM 2: AutCp(X) = Ã.
By Claim 1 we have that Cp(X) ∼= Y (4,48p; r, t). It may be checked that X has girth
8. As Cp(X) is a regular Zp-cover of X and since generic 8-cycles of X have trivial
net voltage, it is clear that Cp(X) also has girth 8. Moreover, any 8-cycle of Cp(X)

projects to an 8-cycle of X via the corresponding covering projection. It thus follows
that the only 8-cycles of Cp(X) are the lifts of 8-cycles of X with net voltage 0. We
now investigate all such 8-cycles of X.

It turns out that X has precisely four AutX-orbits of 8-cycles with net voltage 0.
These are the AutX-orbit H1, which contains generic 8-cycles and 8-cycles of type I

(see Table 1), the AutX-orbit H2 containing the 8-cycle u0
0u

1
0u

2
0u

2−t
3 u2−t

2 u2−r2−t
2

u2−2r2−t
2 u2−2r2−t

3 , the AutX-orbit H3 containing the 8-cycle u0
0u

1
0u

1
1u

1
2u

1+r2

2 u1+r2

1

u1−r+r2

1 u1−2r+r2

1 and the AutX-orbit H4 containing the 8-cycle u0
0u

1
0u

1
1u

1−r
1 u1−2r

1

u1−2r
2 u1−2r+r2

2 u0
1. As the covering projection p : Cp(X) → X gives a 1-1 correspon-

dence between the 8-cycles of Cp(X) and the 8-cycles of X with voltage 0, we see
that Cp(X) has four Ã-orbits of 8-cycles. They are the lifts of the AutX-orbits Hi ,
and so we denote the Ã-orbits of 8-cycles of Cp(X) with H̃i where Hi = p(H̃i ).

Observe that Cp(X) has precisely four Ã-orbits of 2-paths (where no distinction
is made on the orientation of these paths). Let P1 be the orbit containing the 2-path
0u0

0
1u1

0
2u2

0, let P2 be the orbit containing the 2-path 0u0
0

1u1
0

2u1
1, let P3 be the or-

bit containing the 2-path 0u0
0

1u1
0

0u5
3 and let P4 be the orbit containing the 2-path

1u1
0

0u0
0

1u0
1. We now consider the bipartite graph Bip2,8 whose vertex set is the union

of the set of 8-cycles of Cp(X) and the set of 2-paths of Cp(X) with a 2-path P being
adjacent to an 8-cycle C if and only if C contains P . It is straightforward to check
that the valency in Bip2,8 of any 2-path from any one of P2, P3 and P4 is 8, whereas
the valency of any 2-path from P1 is 4.

Suppose now that Cp(X) is arc-transitive. Following [22], we assign a letter D,
A+ or A− to an internal vertex v of a 2-path P in Cp(X) depending on whether v

is the head of one and tail of the other, head of both, or tail of both of the two in-
cident edges in P , respectively. In such a way a code of length 2 can be assigned
to each 3-path in Cp(X). For example, a directed 3-path is assigned the code D2.
Now, by [22, Lemma 2.1] either every automorphism of Cp(X) preserves or reverses
the orientation of every edge or any two codes of length 2 are permutable (by an
automorphism of Cp(X)). If the latter occurs then there exists an automorphism of
Cp(X) mapping some 3-path with code DA+ to some 3-path with code A−A+. It
can be seen that any 3-path with code DA+ lies on some 8-cycle from H̃4, whereas
the only 8-cycles of Cp(X) which contain 3-paths with code A−A+ are the 8-cycles
from H̃1. Therefore, some automorphism of Cp(X), mapping an 8-cycle from H̃4

to an 8-cycle from H̃1 exists. However, it may be verified that 8-cycles from H̃4
contain two 2-paths from P1, whereas 8-cycles from H̃1 contain none, which con-
tradicts the fact that the 2-paths from P1 are the only 2-paths of Cp(X) of valency
4 in Bip2,8. Therefore, every automorphism of Cp(X) either preserves the orien-
tation of every edge of Cp(X) or reverses the orientation of every edge of Cp(X).
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More precisely, by assumption about arc-transitivity of Cp(X), there must exist an
automorphism reversing the edge orientations. Let G̃ be the subgroup of index 2
of AutCp(X) consisting of all the automorphisms preserving the orientation of the
edges. If Ã = G̃, then Ã is an index 2 subgroup of AutCp(X) and is thus normal.
Since |AutX| = 2 · 4 · 48 = 27 · 3, we have that |Ã| = p · 27 · 3, and so the group
of covering transformations CTX = Zp is the unique p-Sylow subgroup of Ã. It is
now clear that CTX is normal in AutCp(X), and so AutCp(X) projects. Thus X is
arc-transitive, a contradiction. Therefore |G̃0u0

0
| ≥ 4. However, this is also impossible

as then P1 and P2 are contained in the same G̃-orbit which is clearly impossible in
view of the valencies of the respective 2-paths in Bip2,8. This contradiction finally
proves that AutCp(X) = Ã, and so Cp(X) is half-arc-transitive, as claimed.

CLAIM 3: Yp has radius 12 and attachment number 3.
By Claim 2 the orientation of the edges of Cp(X) given by Ã is in fact an orientation
given by the half-arc-transitive action of AutCp(X), and so it is clear that an alternat-
ing cycle of X is lifted into an alternating cycle of Cp(X). Therefore, the radius of
Cp(X) is 12. The fact that the attachment number is 3 is now also clear.

Combining together Claims 1, 2 and 3 we thus see that Cp(X) is a connected quar-
tic half-arc-transitive weak metacirculant of Class II with radius 12 and attachment
number 3, as claimed. Note that the graph Y (4,240;61,44) from Table 3 is isomor-
phic to C5(X).

6 Conclusions

Half-arc-transitive metacirculants of Classes III and IV will be studied in a sequel
to this paper, together with their connection to graphs in Classes I and II.

Let us mention, however, the existence of an infinite family of connected quartic
half-arc-transitive metacirculants of Class IV, which are loosely attached, and thus
not in Class I. They arise as certain Zp-covers, p ≥ 7 a prime, in the following way.
We start with X = Z(20,5;9,2), a loosely attached half-arc-transitive metacirculant
of Class IV, as our base graph. (Recall that the graphs Z(m,n; r, t) were defined in
Section 2.) Of the two possible AutX-admissible orientations of the edges of X, we
choose the one in which u0

0 is the tail of the edges u0
0u

0
1 and u0

0u
0
9, and denote the

corresponding oriented graph by DX . Next, to every arc of X assign voltage 1 or −1
in Zp depending on whether its orientation is or is not compatible with the orientation
of the corresponding edge in DX . Call the obtained covering graph Cp(X). Using
similar techniques as in Construction 5.10 one can show that Cp(X) is isomorphic to
Z(20p,5; k,2), where k ∈ Z20p is the unique element such that k ≡ 9 (mod 20) and
k ≡ 1 (mod p). Moreover, one can also see that Cp(X) is a loosely attached half-arc-
transitive graph, thus giving an infinite family of half-arc-transitive metacirculants of
Class IV which are not tightly attached. The technical details are omitted.
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