On Quasi-Hemi-Slant Riemannian Maps

${ }^{1}$ Department of Mathematics and Astronomy, University of Lucknow, Lucknow-India
${ }^{2}$ Department of Mathematics, Shri Jai Narain Misra Post Graduate College, Lucknow-India
${ }^{3}$ Gazi University, Faculty of Science, Department of Mathematics,06500, Ankara, Turkey

Highlights

- This paper focuses on quasi-hemi-slant Riemannian maps.
- Distributions to be integrable and parallel investigated.
- A quasi-hemi-slant Riemannian map to be totally geodesic investigated.

Article Info

Received:05 June 2020
Accepted:09 Sep 2020

Keywords

Riemannian maps
Semi-invariant maps
Quasi bi-slant maps
Quasi hemi-slant

Abstract

In this paper, quasi-hemi-slant Riemannian maps from almost Hermitian manifolds onto Riemannian manifolds are introduced. The geometry of leaves of distributions that are involved in the definition of the submersion and quasi-hemi-slant Riemannian maps are studied. In addition, conditions for such distributions to be integrable and totally geodesic are obtained. Also, a necessary and sufficient condition for proper quasi-hemi-slant Riemannian maps to be totally geodesic is given. Moreover, structured concrete examples for this notion are given.

1. INTRODUCTION

A differentiable map F between Riemannian manifolds $\left(N_{1}, g_{1}\right)$ and $\left(N_{2}, g_{2}\right)$ is said to be a Riemannian map if
$\mathrm{g}_{2}\left(\mathrm{~F}_{*} \mathrm{Z}_{1}, \mathrm{~F}_{*} \mathrm{Z}_{2}\right)=\mathrm{g}_{1}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)$, for $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\text { ker } \mathrm{F}_{*}\right)^{\perp}$.
The theory of smooth maps between Riemannian manifolds plays a preeminent role in differential geometry and also in physics. It is useful for comparing geometric structures between the source manifolds and the target manifolds. A conspicuous property of Riemannian map provides the generalized eikonal equation \| $\mathrm{F}_{*} \|^{2}=\operatorname{rank} \mathrm{F}$ [1]. Since rank F is an integer value function and $\left\|\mathrm{F}_{*}\right\|^{2}$ is continuous function on the Riemannian manifold. Since energy density $2 \mathrm{e}(\mathrm{F})=\left\|\mathrm{F}_{*}\right\|^{2}=\operatorname{rank} \mathrm{F}$, i.e. density is quantized to integer if the Riemannian manifold is connected. In addition, complex manifolds are very useful tools for studying spacetime geometry [2]. In fact, Calabi-Yau manifolds and Teichmuller spaces are two interesting classes of Kähler manifold, which have applications in superstring theory [3] and in general relativity [4, 5]. Thus, the notion of Riemannian maps deserves through study from different perspectives.

In addition, O'Neills [6] and Gray [7] studied Riemannian submersions. Watson introduced almost Hermitian submersions as follows: A Riemannian submersion F: $\left(\mathrm{N}_{1}, \mathrm{~g}_{1}, \mathrm{~J}_{\mathrm{N}_{1}}\right) \rightarrow\left(\mathrm{N}_{2}, \mathrm{~g}_{2}, \mathrm{~J}_{\mathrm{N}_{2}}\right)$ is said to be an almost Hermitian submersion if $\mathrm{F}_{*} \mathrm{~J}_{\mathrm{N}_{1}}=\mathrm{J}_{\mathrm{N}_{2}} \mathrm{~F}_{*}$ [8]. Watson also showed that, in most cases [8] and [9], each fiber and base manifold have the same kind of structure as the total space.

After that, several kinds of Riemannian submersions were introduced and studied, some of them are like: contact-submersions [10], semi-slant and generic submersions [11, 12], semi-invariant ξ^{\perp}-Riemannian submersions [13], hemi-slant submersions [14] etc. Sayar, Akyol and Prasad studied on bi slant submersions [15], and Prasad, Shukla and Kumar introduce quasi-bi slant submersions [16]. Recently, Longwap, Massamba and Homti introduce and study quasi-hemi slant Riemannian submersions which generalizes hemi-slant, semi-slant and semi-invariant Riemannian submersions [17]. It is well known that Riemannian submersion is a particular Riemannian map with $\left(\text { range } \mathrm{F}_{*}\right)^{\perp}=\{0\}$, so we generalize the notion of quasihemi slant Riemannian submersions to quasi-hemi slant Riemannian maps in the present paper and study its geometry.

The notion of Riemannian map between Riemannian manifolds was introduced by Fischer [18]. Let F : (N_{1}, $\left.\mathrm{g}_{1}\right) \rightarrow\left(\mathrm{N}_{2}, \mathrm{~g}_{2}\right)$ be a differentiable map with $0<\operatorname{rank} \mathrm{F}_{*}<\min (\mathrm{m}, \mathrm{n})$. If the kernal space of F_{*} is denoted by ker F_{*}, and the orthogonal complementary space of ker F_{*} is denoted by $\left(\operatorname{ker} \mathrm{F}_{*}\right)^{\perp}$ in TN_{1}, then
$\mathrm{TN}_{1}=\operatorname{ker} \mathrm{F}_{*} \oplus\left(\text { ker } \mathrm{F}_{*}\right)^{\perp}$.
Also, if the range of F_{*} is denoted by range F_{*}, and for a point $q \in N_{1}$ the orthogonal complementary space of range $\mathrm{F}_{* \mathrm{~F}(\mathrm{q})}$ is denoted by (range $\left.\mathrm{F}_{* \mathrm{~F}(\mathrm{q})}\right)^{\perp}$ in $\mathrm{T}_{\mathrm{F}(\mathrm{q})} \mathrm{N}_{2}$ then the tangent space $\mathrm{T}_{\mathrm{F}(q)} \mathrm{N}_{2}$ has the following orthogonal decomposition:
$\mathrm{T}_{\mathrm{F}(q)} \mathrm{N}_{2}=\left(\right.$ range $\left._{* \mathrm{~F}(\mathrm{q})}\right) \oplus\left(\text { range } \mathrm{F}_{* \mathrm{~F}(\mathrm{q})}\right)^{\perp}$.
A differentiable map $\mathrm{F}:\left(\mathrm{N}_{1}, \mathrm{~g}_{1}\right) \rightarrow\left(\mathrm{N}_{2}, \mathrm{~g}_{2}\right)$ is called a Riemannian map at $\mathrm{q} \in \mathrm{N}_{1}$ if $\mathrm{F}^{h}{ }^{h}:\left(\mathrm{ker} \mathrm{F}_{* q}\right)^{\perp} \rightarrow$ (range $\mathrm{F}_{* \mathrm{Fq}}$) is linear isometry.

In this paper, we study the quasi-hemi-slant Riemannian maps from an almost Hermitian manifolds to Riemannian manifolds. In section 3, quasi-hemi-slant Riemannian maps are defined, and the geometry of leaves of distributions that are involved in the definition of such maps is studied. In addition, a necessary and sufficient condition for quasi-hemi-slant Riemannian maps to be totally geodesic is given. Finally, concrete examples for this setting are provided.

2. PRELIMINARIES

If J is a $(1,1)$ tensor field on an even-dimensional differentiable manifold N_{1} such that

$$
\begin{equation*}
\mathrm{J}^{2}=-\mathrm{I} \tag{1}
\end{equation*}
$$

then $\left(\mathrm{N}_{1}, \mathrm{~J}\right)$ is said to be an almost complex manifold where I is identity operator [19, 20]. Nijenhuis tensor N of J is described as:

$$
\begin{equation*}
\mathrm{N}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\left[\mathrm{JX}_{1}, \mathrm{JX}_{2}\right]-\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]-\mathrm{J}\left[\mathrm{~J} \mathrm{X}_{1}, \mathrm{X}_{2}\right]-\mathrm{J}\left[\mathrm{X}_{1}, \mathrm{~J} \mathrm{X}_{2}\right] \tag{2}
\end{equation*}
$$

for all $X_{1}, X_{2} \in \Gamma\left(\mathrm{TN}_{1}\right)$. If $N=0$, then N_{1} is said to be a complex manifold. If g_{1} is a Riemannian metric on N_{1} such that

$$
\begin{equation*}
\mathrm{g}_{1}\left(\mathrm{JX}_{1}, \mathrm{~J} \mathrm{X}_{2}\right)=\mathrm{g}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \text { for all } \mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\mathrm{TN}_{1}\right) \tag{3}
\end{equation*}
$$

then $\left(N_{1}, g_{1}, J\right)$ is said to be an almost Hermitian manifold, and if $\left(\nabla_{x_{1}} J\right) X_{2}=0$ for all $X_{1}, X_{2} \in \Gamma\left(\mathrm{TN}_{1}\right)$ then $\left(N_{1}, g_{1}, J\right)$ is said to be a Kähler manifold where ∇ is the Levi-Civita connection on N_{1}.

O'Neill's tensors T and A are defined by

$$
\begin{equation*}
\mathcal{A}_{\mathbb{E}_{1}} \mathcal{E}_{2}=\mathcal{H} \nabla_{\mathcal{H}_{1}} \mathcal{V E}_{E_{2}}+\mathcal{V} \nabla_{\mathcal{H E}_{1}} \mathcal{H} E_{2}, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{T}_{\mathcal{E}_{1}} E_{2}=\mathcal{H} \nabla_{\mathcal{E}_{1}} \mathcal{V E}_{2}+\mathcal{V} \nabla_{\mathcal{V}_{1}} \mathcal{H} E_{2} \tag{5}
\end{equation*}
$$

for any $\mathcal{E}_{1}, \mathcal{E}_{2} \in \Gamma\left(\mathrm{TN}_{1}\right)$. From Equations (4) and (5), we have

$$
\begin{align*}
& \nabla_{\mathrm{x}_{1}} \mathrm{X}_{2}=\mathcal{T}_{\mathrm{x}_{1}} \mathrm{X}_{2}+\mathcal{V} \nabla_{\mathrm{x}_{1}} \mathrm{X}_{2}, \tag{6}\\
& \nabla_{\mathrm{x}_{1}} \mathrm{Z}_{1}=\mathcal{T}_{\mathrm{x}_{1}} \mathrm{Z}_{1}+\mathcal{H} \nabla_{\mathrm{x}_{1}} \mathrm{Z}_{1} \tag{7}\\
& \nabla_{\mathrm{Z}_{1}} \mathrm{X}_{1}=\mathcal{A}_{\mathrm{z}_{1}} \mathrm{X}_{1}+\mathcal{V} \nabla_{\mathrm{z}_{1}} \mathrm{X}_{1} \tag{8}\\
& \nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}=\mathcal{H} \nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}+\mathcal{A}_{\mathrm{Z}_{1}} \mathrm{Z}_{2} \tag{9}
\end{align*}
$$

for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)$ and $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$, where $\mathrm{H} \nabla_{\mathrm{X}_{1}} \mathrm{Z}_{1}=\mathrm{A}_{\mathrm{Z}_{1}} \mathrm{X}_{1}$, if Z_{1} is basic. For $\mathrm{q} \in \mathrm{N}_{1}, \mathrm{X}_{1} \in \mathcal{V}_{\mathrm{q}}$ and $\mathrm{Z}_{1} \in \mathrm{H}_{\mathrm{q}}$ the linear operators
$\mathcal{A}_{\mathrm{Z}_{1}}$ and $\mathcal{T}_{\mathrm{X}_{1}}: \mathrm{T}_{\mathrm{q}} \mathrm{N}_{1} \rightarrow \mathrm{~T}_{\mathrm{q}} \mathrm{N}_{1}$
are skew-symmetric, that is
$\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{z}_{1}} \mathcal{E}_{1}, \mathcal{E}_{2}\right)=-\mathrm{g}_{1}\left(\mathcal{E}_{1}, \mathcal{A}_{\mathrm{z}_{1}} \mathcal{E}_{2}\right)$ and $\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \mathcal{E}_{1}, \mathcal{E}_{2}\right)=-\mathrm{g}_{1}\left(\mathcal{E}_{1}, \mathcal{T}_{\mathrm{X}_{1}} \mathcal{E}_{2}\right)$
for each $\mathcal{E}_{1}, \mathcal{E}_{2} \in \mathrm{~T}_{\mathrm{q}} \mathrm{N}_{1}$.

Let $F:\left(\mathrm{N}_{1}, \mathrm{~g}_{1}\right) \rightarrow\left(\mathrm{N}_{2}, \mathrm{~g}_{2}\right)$ is a smooth map. F is said to be a totally geodesic if
$\left(\nabla \mathrm{F}_{*}\right)\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=0$, for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\mathrm{TN}_{1}\right)$.
The differential map F_{*} of F can be observed a section of the bundle $\operatorname{Hom}\left(\mathrm{TN}_{1}, \mathrm{~F}^{-1} \mathrm{TN}_{2}\right) \rightarrow \mathrm{N}_{1}$, where $\mathrm{F}^{-1} \mathrm{TN}_{2}$ is the bundle which has fibers $\left(\mathrm{F}^{-1} \mathrm{TN}_{2}\right)_{x}=\mathrm{T}_{\mathrm{F}(\mathrm{x})} \mathrm{N}_{2}$, has a connection ∇ induced from the Riemannian connection $\nabla^{N_{1}}$ and the pullback connection. In addition, the second fundamental form of F is given by

$$
\begin{equation*}
\left(\nabla \mathrm{F}_{*}\right)\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\nabla_{X_{1}}^{F} \mathrm{~F}_{*}\left(\mathrm{X}_{2}\right)-\mathrm{F}_{*}\left(\nabla_{X_{1}}^{N_{1}} \mathrm{X}_{2}\right) \tag{10}
\end{equation*}
$$

for vector field $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\mathrm{TN}_{1}\right)$, where ∇^{F} is the pullback connection. Bi-harmonic Riemannian maps and the second fundamental form $\left(\nabla F_{*}\right)\left(U_{1}, U_{2}\right)$, for all $U_{1}, U_{2} \in \Gamma\left(\text { ker } F_{*}\right)^{\perp}$ of a Riemannian map has components in range F_{*} [21].

Lemma 1. Let $\mathrm{F}:\left(\mathrm{N}_{1}, \mathrm{~g}_{1}\right) \rightarrow\left(\mathrm{N}_{2}, \mathrm{~g}_{2}\right)$ be a Riemannian map. Then $\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right), \mathrm{F}_{*}\left(\mathrm{U}_{3}\right)\right)=0$ for all $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$.

As a consequence of the above lemma, we get $\left(\nabla F_{*}\right)\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right) \in \Gamma$ (range $\left.\mathrm{F}_{*}\right)^{\perp}$, for all $\mathrm{U}_{1}, \mathrm{U}_{2}$, $\in \Gamma$ (ker $\left.\mathrm{F}_{*}\right)^{\perp}$.

Let F: $\left(\mathrm{N}_{1}, \mathrm{~g}_{1}, \mathrm{~J}\right) \rightarrow\left(\mathrm{N}_{2}, \mathrm{~g}_{2}\right)$ be Riemannian map from an almost Hermitian manifold onto a Riemannian manifold.

F is said to be a semi-invariant Riemannian map if there is a distribution $\mathrm{D}_{1} \subseteq \mathrm{kerF}_{*}$ such that
$\operatorname{ker} \mathrm{F}_{*}=\mathrm{D}_{1} \oplus \mathrm{D}_{2}, \mathrm{~J}\left(\mathrm{D}_{1}\right)=\mathrm{D}_{1}$,
where $\mathrm{D}_{1} \oplus \mathrm{D}_{2}$ is an orthogonal decomposition of $\operatorname{ker} \mathrm{F}_{*}[1]$. The complementary orthogonal subbundle to $\mathrm{J}\left(\right.$ ker $\left.\mathrm{F}_{*}\right)$ in $\left(\text { ker } \mathrm{F}_{*}\right)^{\perp}$ is denoted by μ. Thus, we get $\left(\text { ker } \mathrm{F}_{*}\right)^{\perp}=\mathrm{J}\left(\mathrm{D}_{2}\right) \oplus \mu$. It is clear that μ is an invariant subbundle.

If Ker $\mathrm{F}_{*}=\mathrm{D}^{\theta} \oplus \mathrm{D}^{\perp}$ with D^{θ} is slant distribution and D^{\perp} is anti-invariant distribution then an F is said to be a hemi-slant map, and θ is said to be the hemi-slant angle [14].

If $\operatorname{Ker}^{F_{*}}=\mathrm{D} \oplus \mathrm{D}_{1} \oplus \mathrm{D}_{2}, \mathrm{~J}(\mathrm{D})=\mathrm{D}, \mathrm{JD}_{2} \subseteq\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$ the angle θ between JZ and the space $\left(\mathrm{D}_{1}\right)_{\mathrm{p}}$ is constant for any non-zero vector Z in $\left(\mathrm{D}_{1}\right)_{\mathrm{p}}$ then F is said to be quasi-hemi-slant Riemannian map and the angle θ is said to be the quasi-hemi-slant angle of the map [17].

3. QUASI-HEMI-SLANT RIEMANNIAN MAPS

Let F be quasi-hemi-slant Riemannian map from an almost Hermitian manifold $\left(\mathrm{N}_{1}, \mathrm{~g}_{1}\right.$, J$)$ onto a Riemannian manifold ($\mathrm{N}_{2}, \mathrm{~g}_{2}$). Thus, we get
$\mathrm{TN}_{1}=\operatorname{kerF}_{*} \oplus\left(\mathrm{kerF}_{*}\right)^{\perp}$.
Let P, Q and R be projection morphisms of kerF_{*} onto $\mathrm{D}, \mathrm{D}_{1}$ and D_{2} respectively. For any vector field $\mathrm{X}_{1} \in \Gamma\left(\mathrm{kerF}_{*}\right)$, we put

$$
\begin{equation*}
\mathrm{X}_{1}=\mathrm{PX}_{1}+\mathrm{QX}_{1}+\mathrm{RX}_{1} \tag{11}
\end{equation*}
$$

For all $Z_{1} \in \Gamma\left(\right.$ ker $\left.F_{*}\right)$, we get

$$
\begin{equation*}
\mathrm{JZ}_{1}=\phi \mathrm{Z}_{1}+\omega \mathrm{Z}_{1} \tag{12}
\end{equation*}
$$

where $\phi \mathrm{Z}_{1} \in \Gamma\left(\operatorname{kerF}_{*}\right)$ and $\omega \mathrm{Z}_{1} \in \Gamma\left(\omega \mathrm{D}_{1} \oplus \omega \mathrm{D}_{2}\right)$. The horizontal distribution $\left(\mathrm{kerF}_{*}\right)^{\perp}$ is decomposed as $\left(\operatorname{kerF}_{*}\right)^{\perp}=\omega \mathrm{D}_{1} \oplus \omega \mathrm{D}_{2} \oplus \mu$.

Here μ is an invariant distribution of $\omega \mathrm{D}_{1} \oplus \omega \mathrm{D}_{2}$ in $\left(\mathrm{kerF}_{*}\right)^{\perp}$. From Equations (11) and (12), we have
$\mathrm{JX}_{1}=\mathrm{J}\left(\mathrm{PX}_{1}\right)+\mathrm{J}\left(\mathrm{QX}_{1}\right)+\mathrm{J}\left(\mathrm{RX}_{1}\right)$
$=\phi\left(\mathrm{PX}_{1}\right)+\omega\left(\mathrm{PX}_{1}\right)+\phi\left(\mathrm{QX}_{1}\right)+\omega\left(\mathrm{QX}_{1}\right)+\phi\left(\mathrm{RX}_{1}\right)+\omega\left(\mathrm{RX}_{1}\right)$.
Since JD $=\mathrm{D}$, we have $\omega \mathrm{PX}_{1}=0$ and $\phi\left(\mathrm{RX}_{1}\right)=0$. Thus, we get
$\mathrm{JX}_{1}=\phi\left(\mathrm{PX}_{1}\right)+\phi \mathrm{QX}_{1}+\omega \mathrm{QX}_{1}+\omega \mathrm{RX}_{1}$.
Hence we get the below decomposition
$\mathrm{J}\left(\mathrm{kerF}_{*}\right)=\mathrm{D} \oplus \phi\left(\mathrm{D}_{1}\right) \oplus\left(\omega \mathrm{D}_{1} \oplus \omega \mathrm{D}_{2}\right)$
where \oplus denotes orthogonal direct sum. Further, let $X_{1} \in \Gamma\left(D_{1}\right)$ and $X_{2} \in \Gamma\left(D_{2}\right)$. Then
$\mathrm{g}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=0$.

From above equation, we have
$\mathrm{g}_{1}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right)=-\mathrm{g}_{1}\left(\mathrm{X}_{1}, \mathrm{~J} \mathrm{X}_{2}\right)=0$.
Now, consider
$\mathrm{g}_{1}\left(\phi \mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{g}_{1}\left(\mathrm{~J} \mathrm{X}_{1}-\omega \mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{g}_{1}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{X}_{2}\right)$.
Similarly, we have $\mathrm{g}_{1}\left(\mathrm{X}_{1}, \phi \mathrm{X}_{2}\right)=0$.
Let $V_{1} \in \Gamma(D)$ and $V_{2} \in \Gamma\left(D_{1}\right)$. Then we have
$\mathrm{g}_{1}\left(\phi \mathrm{~V}_{1}, \mathrm{~V}_{2}\right)=\mathrm{g}_{1}\left(\mathrm{~J} \mathrm{~V}_{1}-\omega \mathrm{V}_{1}, \mathrm{~V}_{2}\right)=\mathrm{g}_{1}\left(\mathrm{~J} \mathrm{~V}_{1}, \mathrm{~V}_{2}\right)=-\mathrm{g}_{1}\left(\mathrm{~V}_{1}, \mathrm{JV} \mathrm{V}_{2}\right)=0$
as D is invariant i.e., $\mathrm{JV}_{1} \in \Gamma(\mathrm{D})$.
Similarly, for $Z_{1} \in \Gamma(D)$ and $Z_{2} \in \Gamma\left(D_{2}\right)$, we obtain $g_{1}\left(\phi Z_{2}, Z_{1}\right)=0$. From above equations, we have
$\mathrm{g}_{1}\left(\phi \mathrm{Y}_{1}, \phi \mathrm{Y}_{2}\right)=0$ and $\mathrm{g}_{1}\left(\omega \mathrm{Y}_{1}, \omega \mathrm{Y}_{2}\right)=0$
for all $\mathrm{Y}_{1} \in \Gamma\left(\mathrm{D}_{1}\right)$ and $\mathrm{Y}_{2} \in \Gamma\left(\mathrm{D}_{2}\right)$. Since $\omega \mathrm{D}_{1} \subseteq\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}, \omega \mathrm{D}_{2} \subseteq\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$. So we can write
$\left(\operatorname{kerF}_{*}\right)^{\perp}=\omega \mathrm{D}_{1} \oplus \omega \mathrm{D}_{2} \oplus \mathcal{V}$
where \mathcal{V} is orthogonal complement of $\left(\omega D_{1} \oplus \omega D_{2}\right)$ in $\left(\operatorname{kerF}_{*}\right)^{\perp}$. For any $X_{1} \in \Gamma(\operatorname{ker} \mathrm{~F})^{\perp}$, we get

$$
\begin{equation*}
\mathrm{JX}_{1}=\mathrm{BX}_{1}+\mathrm{CX}_{1} . \tag{13}
\end{equation*}
$$

where $\mathrm{BX}_{1} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)$ and $\mathrm{CX}_{1} \in \Gamma(\mathcal{V})$.
Lemma 2. If F is a quasi-hemi-slant Riemannian map then we have
$\phi^{2} \mathrm{~V}_{1}+\mathrm{B} \omega \mathrm{V}_{1}=-\mathrm{V}_{1}, \omega \phi \mathrm{~V}_{1}+\mathrm{C} \omega \mathrm{V}_{1}=0$,
$\omega B V_{2}+C^{2} V_{2}=-V_{2}, \phi B V_{2}+B C V_{2}=0$
for all $\mathrm{V}_{1} \in \Gamma\left(\right.$ ker $\left.\mathrm{F}_{*}\right)$ and $\mathrm{V}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$.
Proof. The desired results are obtained by using Equations (1), (12) and (13).
Evidence of the following result is the same as given in [1], so we will skip the proof.
Lemma 3. If F is a quasi-hemi-slant Riemannian map then we have
i) $\phi^{2} V_{1}=-\left(\cos ^{2} \theta_{1}\right) V_{1}$,
ii) $g_{1}\left(\phi V_{1}, \phi V_{2}\right)=\cos ^{2} \theta_{1} g_{1}\left(V_{1}, V_{2}\right)$,
iii) $g_{1}\left(\omega V_{1}, \omega V_{2}\right)=\sin ^{2} \theta_{1} g_{1}\left(V_{1}, V_{2}\right)$,
for all $\mathrm{V}_{1}, \mathrm{~V}_{2} \in \Gamma\left(\mathrm{D}_{1}\right)$.

From now on we will denote a quasi-hemi-slant Riemannian map from a Kähler manifold ($\left.\mathrm{N}_{1}, \mathrm{~g}_{1}, \mathrm{~J}\right)$ onto a Riemannian manifold $\left(\mathrm{N}_{2}, \mathrm{~g}_{2}\right)$ by F .

Lemma. 4. If F is a quasi-hemi-slant Riemannian map then, we have
$\mathcal{V} \nabla_{\mathrm{x}_{1}} \phi \mathrm{X}_{2}+\mathcal{T}_{\mathrm{x}_{1}} \omega \mathrm{X}_{2}=\mathrm{B} \mathcal{T}_{\mathrm{x}_{1}} \mathrm{X}_{2}+\phi \mathcal{V} \nabla_{\mathrm{x}_{1}} \mathrm{X}_{2}$,
$\mathcal{T}_{\mathrm{X}_{1}} \phi \mathrm{X}_{2}+\mathcal{H} \nabla \mathrm{x}_{1} \omega \mathrm{X}_{2}=\mathrm{C} \mathcal{T}_{\mathrm{X}_{1}} \mathrm{X}_{2}+\omega \mathcal{V} \nabla_{\mathrm{x}_{1}} \mathrm{X}_{2}$,
$\mathcal{V} \nabla \mathrm{x}_{1} \mathrm{BZ}_{1}+\mathcal{T}_{\mathrm{x}_{1}} \mathrm{CZ} \mathrm{Z}_{1}=\phi \mathcal{T}_{\mathrm{x}_{1}} \mathrm{Z}_{1}+\mathrm{B} \mathcal{H} \nabla \mathrm{x}_{1} \mathrm{Z}_{1}$,
$\mathcal{T}_{\mathrm{X}_{1}} \mathrm{BZ}_{1}+\mathcal{H} \nabla_{\mathrm{x}_{1}} \mathrm{CZ}_{1}=\omega \mathcal{T}_{\mathrm{x}_{1}} \mathrm{Z}_{1}+\mathrm{CH} \nabla_{\mathrm{x}_{1}} \mathrm{Z}_{1}$.
$\mathcal{V} \nabla_{\mathrm{Z}_{1}} \phi \mathrm{X}_{1}+\mathcal{A}_{\mathrm{Z}_{1}} \omega \mathrm{X}_{1}=\mathrm{B} \mathcal{A}_{\mathrm{Z}_{1}} \mathrm{X}_{1}+\phi \mathcal{V} \nabla_{\mathrm{Z}_{1}} \mathrm{X}_{1}$,
$\mathcal{A}_{\mathrm{Z}_{1}} \phi \mathrm{X}_{1}+\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{X}_{1}=\omega \mathcal{V}_{\mathrm{Z}_{1}} \mathrm{X}_{1}+\mathrm{C} \mathcal{A}_{\mathrm{Z}_{1}} \mathrm{X}_{1}$,
$\mathcal{V} \nabla_{\mathrm{Z}_{1}} \mathrm{BZ}_{2}+\mathcal{A}_{\mathrm{Z}_{1}} \mathrm{CZ} \mathrm{Z}_{2}=\mathrm{B} \mathcal{H} \nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}+\phi \mathcal{A}_{\mathrm{z}_{1}} \mathrm{Z}_{2}$,
$\mathcal{A}_{\mathrm{z}_{1}} \mathrm{BZ}_{2}+\mathcal{H} \nabla_{\mathrm{Z}_{1}} \mathrm{CZ}_{2}=\omega \mathcal{A}_{\mathrm{z}_{1}} \mathrm{Z}_{2}+\mathrm{CH} \nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}$,
for any $X_{1}, X_{2} \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z_{1}, Z_{2} \in \Gamma\left(\operatorname{ker} F_{*}\right)^{\perp}$.
Proof. Using Equations (3), (6), (7), (8), (9), (12) and (13), we get the lemma completely.
Now, we define
$\left(\nabla_{\mathrm{X}_{1}} \phi\right) \mathrm{X}_{2}=\mathcal{V} \nabla_{\mathrm{X}_{1}} \phi \mathrm{X}_{2}-\phi \mathcal{V} \nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}$,
$\left(\nabla_{\mathrm{X}_{1}} \omega\right) \mathrm{X}_{2}=\mathcal{H} \nabla_{\mathrm{X}_{1}} \omega \mathrm{X}_{2}-\omega \mathcal{V} \nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}$,
$\left(\nabla_{\mathrm{Z}_{1}} \mathrm{C}\right) \mathrm{Z}_{2}=\mathcal{H} \nabla_{\mathrm{Z}_{1}} \mathrm{CZ}_{2}-\mathrm{CH} \nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}$,
$\left(\nabla_{\mathrm{Z}_{1}} \mathrm{~B}\right) \mathrm{Z}_{2}=\mathcal{V} \nabla_{\mathrm{Z}_{1}} \mathrm{BZ} \mathrm{Z}_{2}-\mathrm{B} \mathcal{H} \nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}$
for any $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)$ and $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$.
Lemma 5. If F is a quasi-hemi-slant Riemannian map then, we have
$\left(\nabla_{\mathrm{X}_{1}} \phi\right) \mathrm{X}_{2}=\mathrm{B} \mathcal{T}_{\mathrm{X}_{1}} \mathrm{X}_{2}-\mathcal{T}_{\mathrm{X}_{1}} \omega \mathrm{X}_{2}$,
$\left(\nabla_{\mathrm{X}_{1}} \omega\right) \mathrm{X}_{2}=\mathrm{C} \mathcal{T}_{\mathrm{X}_{1}} \mathrm{X}_{2}-\mathcal{T}_{\mathrm{X}_{1}} \phi \mathrm{X}_{2}$,
$\left(\nabla_{\mathrm{Z}_{1}} \mathrm{C}\right) \mathrm{Z}_{2}=\omega \mathcal{A}_{\mathrm{Z}_{1}} \mathrm{Z}_{2}-\mathcal{A}_{\mathrm{Z}_{1}} \mathrm{BZ} \mathrm{Z}_{2}$,
$\left(\nabla_{\mathrm{Z}_{1}} \mathrm{~B}\right) \mathrm{Z}_{2}=\phi \mathcal{A}_{\mathrm{Z}_{1}} \mathrm{Z}_{2}-\mathcal{A}_{\mathrm{Z}_{1}} \mathrm{CZ} \mathrm{Z}_{2}$,
for any vectors $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)$ and $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$.

Proof. The proof is straightforward, so we omit its proof.
If ϕ and ω are parallel with respect to ∇ on N_{1} respectively, then
$\mathrm{B} \mathcal{T}_{\mathrm{X}_{1}} \mathrm{X}_{2}=\mathcal{T}_{\mathrm{X}_{1}} \omega \mathrm{X}_{2}$ and $\mathrm{C} \mathcal{T}_{\mathrm{X}_{1}} \mathrm{X}_{2}=\mathcal{T}_{\mathrm{X}_{1}} \phi \mathrm{X}_{2}$
for any $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\mathrm{TN}_{1}\right)$.
Theorem 1. D is integrable if and only if
$\mathrm{g}_{1}\left(\mathcal{T}_{2} \mathrm{JX}_{1}-\mathcal{T}_{\mathrm{x}_{1}} \mathrm{JX} \mathrm{X}_{2}, \omega \mathrm{QZ} \mathrm{Z}_{1}+\omega \mathrm{RZ}_{1}\right)=\mathrm{g}_{1}\left(\mathcal{L} \mathrm{X}_{1} \mathrm{JX}_{2}-\mathcal{V} \nabla \mathrm{x}_{2} \mathrm{JX}_{1}, \phi Q Z_{1}\right)$
for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma(\mathrm{D})$ and $\mathrm{Z}_{1} \in \Gamma\left(\mathrm{D}_{1} \oplus \mathrm{D}_{2}\right)$.
Proof. For all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma(\mathrm{D}), \mathrm{Z}_{1} \in \Gamma\left(\mathrm{D}_{1} \oplus \mathrm{D}_{2}\right)$ and $\mathrm{Z}_{2} \in\left(\operatorname{kerF}_{*}\right)^{\perp}$, since $\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right] \in\left(\mathrm{kerF}_{*}\right)$, we have $\mathrm{g}_{1}\left(\left[\mathrm{X}_{1}\right.\right.$, $\left.\left.X_{2}\right], Z_{2}\right)=0$. Thus D is integrable $\Leftrightarrow g_{1}\left(\left[X_{1}, X_{2}\right], Z_{1}\right)=0$. Now, using Equations (2), (3), (6), (7), (11), (12) and (13), we have

$$
\begin{aligned}
& \mathrm{g}_{1}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right], \mathrm{Z}_{1}\right)=\mathrm{g}_{1}\left(\mathrm{~J} \nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{JZ} \mathrm{I}_{1}\right)-\mathrm{g}_{1}\left(\mathrm{~J} \nabla \mathrm{x}_{2} \mathrm{X}_{1}, \mathrm{JZ} \mathrm{I}_{1}\right) \\
& =\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{JX} 2, \mathrm{JZ}_{1}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{x}_{2} \mathrm{JX}_{1}, \mathrm{JZ}_{1}\right) \\
& =\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \mathrm{JX} \mathrm{X}_{2}-\mathcal{T}_{\mathrm{x}_{2}} \mathrm{JX} \mathrm{X}_{1}, \omega \mathrm{QZ}_{1}+\omega R Z_{1}\right)-\mathrm{g}_{1}\left(\mathcal{L} \nabla_{\mathrm{X}_{1}} \mathrm{JX} \mathrm{X}_{2}-\mathcal{V} \mathrm{x}_{2} \mathrm{JX}_{1}, \mathrm{QZ}_{1}\right) .
\end{aligned}
$$

Theorem 2. D_{1} is integrable if and only if
$\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}-\mathcal{T}_{2} \omega \phi \mathrm{Z}_{1}, \mathrm{~V}_{1}\right)=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}-\mathcal{T}_{\mathrm{Z}_{2}} \omega \mathrm{Z}_{1}, \phi \mathrm{PV}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}-\mathcal{H} \nabla \mathrm{z}_{2} \omega \mathrm{Z}_{1}, \omega R \mathrm{~V}_{1}\right)$
for all $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\mathrm{D}_{1}\right)$ and $\mathrm{V}_{1} \in \Gamma\left(\mathrm{D}_{1} \oplus \mathrm{D}_{2}\right)$.
Proof. For all $Z_{1}, Z_{2} \in \Gamma(D)$ and $V_{1} \in \Gamma\left(D_{1} \oplus D_{2}\right)$ and $V_{2} \in\left(\operatorname{kerF}_{*}\right)^{\perp}$, since $\left[Z_{1}, Z_{2}\right] \in\left(\operatorname{kerF}_{*}\right)$, we have $\mathrm{g}_{1}\left(\left[Z_{1}\right.\right.$, $\left.\left.Z_{2}\right], V_{2}\right)=0$. Thus D_{1} is integrable $\Leftrightarrow g_{1}\left(\left[Z_{1}, Z_{2}\right], V_{1}\right)=0$. Using Equations (2), (3), (6), (7), (11), (12), (13) and the Lemma 4, we have

$$
\begin{aligned}
& \mathrm{g}_{1}\left(\left[\mathrm{Z}_{1}, \mathrm{Z}_{2}\right], \mathrm{V}_{1}\right)=\mathrm{g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{JZ}_{2}, \mathrm{JV} \mathrm{~V}_{1}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{z}_{2} \mathrm{JZ}_{1}, \mathrm{JV} \mathrm{~V}_{1}\right) \\
& =\mathrm{g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \phi \mathrm{Z}_{2}, \mathrm{JV}_{1}\right)+\mathrm{g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{JV} \mathrm{~V}_{1}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{z}_{2} \phi \mathrm{Z}_{1}, \mathrm{JV} \mathrm{~V}_{1}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{z}_{2} \omega \mathrm{Z}_{1}, \mathrm{JV} \mathrm{~V}_{1}\right) \\
& =\cos ^{2} \theta_{1} \mathrm{~g}_{1}\left(\nabla_{\mathrm{z}_{1}} \mathrm{Z}_{2}, \mathrm{~V}_{1}\right)-\cos _{2} \theta_{1} \mathrm{~g}_{1}\left(\nabla \mathrm{z}_{2} \mathrm{Z}_{1}, \mathrm{~V}_{1}\right)-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}-\mathcal{T}_{2} \omega \phi \mathrm{Z}_{1}, \mathrm{~V}_{1}\right) \\
& +\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}+\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{JPV} V_{1}+\omega R V_{1}\right)-\mathrm{g}_{1}\left(\mathcal{H} \nabla \mathrm{Z}_{2} \omega \mathrm{Z}_{1}+\mathcal{T}_{\mathrm{Z}_{2}} \omega \mathrm{Z}_{1}, \mathrm{JPV} V_{1}+\omega \mathrm{RV}_{1}\right) .
\end{aligned}
$$

Now, we have
$\operatorname{Sin}^{2} \theta_{1} \mathrm{~g}_{1}\left(\left[\mathrm{Z}_{1}, \mathrm{Z}_{2}\right], \mathrm{V}_{1}\right)=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}-\mathcal{I}_{\mathrm{Z}_{2}} \omega \mathrm{Z}_{1}, J P V_{1}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}-\mathcal{H} \nabla \mathrm{z}_{2} \omega \mathrm{Z}_{1}, \omega \mathrm{RV}_{1}\right)$
$-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \not \mathrm{Z}_{2}-\mathcal{T}_{\mathrm{Z}_{2}} \omega \mathrm{Z}_{1}, \mathrm{~V}_{1}\right)$
which proofs the assertion.
Theorem 3. D_{2} is always integrable.
Theorem 4. $\left(\mathrm{kerF}_{*}\right)^{\perp}$ is integrable if and only if
$\mathrm{g}_{1}\left(\mathcal{V} \nabla_{\mathrm{x}_{1}} B \mathrm{X}_{2}-\mathcal{V} \nabla \mathrm{x}_{2} B \mathrm{X}_{1}, \phi \mathrm{Z}_{1}\right)=-\mathrm{g}_{2}\left(\mathrm{~F}_{*}\left(\mathrm{CX}_{2}\right),\left(\nabla \mathrm{F}_{*}\right)\left(\mathrm{X}_{1}, \phi \mathrm{Z}_{1}\right)\right)+\mathrm{g}_{2}\left(\mathrm{~F}_{*}\left(\mathrm{CX}_{1}\right),\left(\nabla \mathrm{F}_{*}\right)\left(\mathrm{X}_{2}, \phi \mathrm{Z}_{1}\right)\right)$, $\mathrm{g}_{1}\left(\mathcal{A}_{1} \mathrm{BX}_{2}-\mathcal{A} \mathrm{x}_{2} \mathrm{BX}_{1}, \omega \mathrm{QZ}_{2}\right)=\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{1}, \mathrm{CX}_{2}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{2}\right)\right)+\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{2}, \mathrm{CX}_{1}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{2}\right)\right)$,
$\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{X}_{1}} \mathrm{BX}_{2}-\mathcal{A x}_{2} \mathrm{BX}_{1}, \omega \mathrm{QZ}_{3}\right)=\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{1}, \mathrm{CX}_{2}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{3}\right)\right)+\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{2}, \mathrm{CX}_{1}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{3}\right)\right)$,
for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}, \mathrm{Z}_{1} \in \Gamma(\mathrm{D}), \mathrm{Z}_{2} \in \Gamma\left(\mathrm{D}_{1}\right)$ and $\mathrm{Z}_{3} \in \Gamma\left(\mathrm{D}_{3}\right)$.
Proof. For $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\text { ker } \mathrm{F}_{*}\right)^{\perp}, \mathrm{Z}_{1} \in \Gamma(\mathrm{D}), \mathrm{Z}_{2} \in \Gamma\left(\mathrm{D}_{1}\right)$ and $\mathrm{Z}_{3} \in \Gamma\left(\mathrm{D}_{3}\right)$ and using Equations (2), (3), (8), (12) and (13), we have
$\left.\mathrm{g}_{1}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]\right), \mathrm{Z}_{1}\right)=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \phi \mathrm{X}_{2}, \phi \mathrm{Z}_{1}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{x}_{2} \phi \mathrm{X}_{1}, \phi \mathrm{Z}_{1}\right)$
$=g_{1}\left(\mathcal{V} \nabla_{x_{1}} B X_{2}-\mathcal{V} \nabla x_{2} B X_{1}, \phi Z_{1}\right)-g_{1}\left(C X_{2}, \nabla_{x_{1}} \phi Z_{1}\right)+g_{1}\left(C X_{1}, \nabla x_{2} \phi Z_{1}\right)$.
Using Equation (10), we get
$\left.\mathrm{g}_{1}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]\right), \mathrm{Z}_{1}\right)=\mathrm{g}_{1}\left(\mathcal{V} \nabla_{\mathrm{X}_{1}} B \mathrm{X}_{2}-\mathcal{V} \nabla \mathrm{x}_{2} \mathrm{BX}_{1}, \phi \mathrm{Z}_{1}\right)+\mathrm{g}_{2}\left(\mathrm{~F}_{*}\left(\mathrm{CX}_{2}\right),\left(\nabla \mathrm{F}_{*}\right)\left(\mathrm{X}_{1}, \phi \mathrm{Z}_{1}\right)\right)$
$-\mathrm{g}_{2}\left(\mathrm{~F}_{*}\left(\mathrm{CX}_{1}\right),\left(\nabla \mathrm{F}_{*}\right)\left(\mathrm{X}_{2}, \phi \mathrm{Z}_{1}\right)\right)$.
From Equations (2), (3), (8), (9), (11), (12), (13) and the Lemma 4, we obtain
$\left.\mathrm{g}_{1}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]\right), \mathrm{Z}_{2}\right)=\mathrm{g}_{1}\left(\phi \nabla_{\mathrm{x}_{1}} \mathrm{X}_{2}, \phi \mathrm{QZ}_{2}\right)+\mathrm{g}_{1}\left(\phi \nabla_{\mathrm{x}_{1}} \mathrm{X}_{2}, \omega \mathrm{QZ}_{2}\right)-\mathrm{g}_{1}\left(\phi \nabla \mathrm{x}_{2} \mathrm{X}_{1}, \phi \mathrm{QZ}_{2}\right)-\mathrm{g}_{1}\left(\phi \nabla \mathrm{x}_{2} \mathrm{X}_{1}, \omega \mathrm{QZ}_{2}\right)$
$=\cos ^{2} \theta_{1} \mathrm{~g}_{1}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right], \mathrm{Z}_{2}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{x}_{1} \mathrm{X}_{2}, \omega \phi \mathrm{QZ}_{2}\right)+\mathrm{g}_{1}\left(\nabla \mathrm{x}_{2} \mathrm{X}_{1}, \omega \phi \mathrm{QZ}_{2}\right)+\mathrm{g}_{1}\left(\nabla_{\mathrm{x}_{1}} B \mathrm{X}_{2}, \omega \mathrm{QZ}_{2}\right)$
$+\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} C X_{2}, \omega \mathrm{QZ}_{2}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{x}_{2} B X_{1}, \omega \mathrm{QZ}_{2}-\mathrm{g}_{1}\left(\nabla \mathrm{x}_{2} \mathrm{CX}_{1}, \omega \mathrm{QZ}_{2}\right)\right.$.
Using Equation (10), we have
$\sin ^{2} \theta_{1} \mathrm{~g}_{1}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right], \mathrm{Z}_{2}\right)=\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{X}_{1}} B \mathrm{X}_{2}-\mathcal{A x}_{2} B \mathrm{X}_{1}, \omega \mathrm{QZ}_{2}\right)-\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{1}, \mathrm{CX}_{2}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{2}\right)\right)$
$+\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{2}, \mathrm{CX}_{1}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{2}\right)\right)$.
Similarly, we get
$\sin ^{2} \theta_{2} \mathrm{~g}_{1}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right], \mathrm{Z}_{3}\right)=\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{x}_{1}} B \mathrm{X}_{2}-\mathcal{A} \mathrm{x}_{2} \mathrm{BX}_{1}, \omega \mathrm{QZ}_{3}\right)-\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{1}, \mathrm{CX}_{2}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{3}\right)\right)$
$+\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{X}_{2}, \mathrm{CX}_{1}\right), \mathrm{F}_{*}\left(\omega \mathrm{QZ}_{3}\right)\right)$.
Theorem 5. $\left(\mathrm{kerF}_{*}\right)^{\perp}$ is totally geodesic if and only if
$\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{x}_{1}} \mathrm{X}_{2}, \mathrm{PZ}_{1}+\cos ^{2} \theta_{1} \mathrm{QZ} \mathrm{Z}_{1}\right)=\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \omega \phi \mathrm{PZ}_{1}+\omega \phi \mathrm{QZ} \mathrm{Z}_{1}\right)-\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{X}_{1}} \mathrm{BX}_{2}+\mathcal{H} \nabla_{\mathrm{X}_{1}} \mathrm{CX}_{2}, \omega \mathrm{QZ}_{1}+\omega \mathrm{RZ} \mathrm{Z}_{1}\right)$
for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$ and $\mathrm{Z}_{1} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)$.
Proof. For all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)^{\perp}$ and $\mathrm{Z}_{1} \in \Gamma\left(\mathrm{kerF}_{*}\right)$ and using Equations (2), (3), (8), (9), (11), (12), (13) and the Lemma 4, we have
$\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{Z}_{1}\right)=\mathrm{g}_{1}\left(\mathrm{~J} \nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{JZ} \mathrm{Z}_{1}\right)$
$=-\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \phi^{2} \mathrm{PZ}_{1}+\omega \phi \mathrm{PZ}_{1}+\omega \phi \mathrm{QZ}_{1}\right)+\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{BX}_{2}, \omega \mathrm{QZ}_{1}+\omega \mathrm{RZ}_{1}\right)+\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{CX}_{2}, \omega \mathrm{QZ}_{1}+\omega \mathrm{RZ}_{1}\right)$
$=\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{x}_{1}} \mathrm{X}_{2}, \mathrm{PZ}_{1}+\cos ^{2} \theta_{1} \mathrm{QZ}_{1}\right)-\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \mathrm{X}_{2}, \omega \phi \mathrm{PZ}_{1}+\omega \phi \mathrm{QZ}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{x}_{1}} \mathrm{BX}_{2}, \omega \mathrm{QZ}_{1}+\omega \mathrm{RZ}_{1}\right)$
$+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{X}_{1}} \mathrm{CX}_{2}, \omega \mathrm{QZ}_{1}+\omega \mathrm{RZ}_{1}\right)$
which shows our assertion.
Theorem 6. $\operatorname{ker} \mathrm{F}_{*}$ is parallel if and only if
$\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{x}} \mathrm{PX}_{2}, \mathrm{X}_{3}\right)+\cos ^{2} \theta_{1} \mathrm{~g}_{1}\left(\mathcal{T}_{1} \mathrm{Qx}_{2}, \mathrm{X}_{3}\right)=\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \phi \mathrm{PX}_{2}, \mathrm{X}_{3}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \phi \mathrm{QX}_{2}, \mathrm{X}_{3}\right)$
$-\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \mathrm{QX}_{2}+\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \mathrm{RX}_{2}, \mathrm{CX}_{3}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \omega \mathrm{QX}_{2}+\mathcal{T}_{\mathrm{X}_{1}} \omega \mathrm{RX}_{2}, \mathrm{BX}_{3}\right)$
for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)$ and $\mathrm{Z}_{1} \in \Gamma\left(\operatorname{kerF}_{*}\right)^{\perp}$.
Proof. For all $X_{1}, X_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)$ and $X_{3} \in \Gamma\left(\operatorname{kerF}_{*}\right)^{\perp}$, using Equations (2), (3), (8), (9), (11), (12), (13) and the Lemma 4, we have
$\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{X}_{3}\right)=\mathrm{g}_{1}\left(\mathrm{~J} \nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{~J} \mathrm{X}_{3}\right)$
$=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \phi \mathrm{PX}_{2}, \mathrm{JX}_{3}\right),+\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \phi \mathrm{QX}_{2}, \mathrm{JX}_{3}\right)+\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \omega \mathrm{QX}_{2}, \mathrm{JX}_{3}\right)+\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \omega \mathrm{RX}_{2}, \mathrm{JX}_{3}\right)$
$=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{x}_{1}} \mathrm{PX}_{2}, \mathrm{X}_{3}\right)+\cos ^{2} \theta_{1} \mathrm{~g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \mathrm{QX}, \mathrm{X}_{3}\right)-\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \phi \mathrm{PX}_{2}, \mathrm{X}_{3}\right)-\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \phi \mathrm{QX}_{2}, \mathrm{X}_{3}\right)$
$+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \mathrm{QX}_{2}+\mathcal{H} \nabla \mathrm{x}_{1} \omega \mathrm{RX}_{2}, \mathrm{CX}_{3}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \omega \mathrm{QX}_{2}+\mathcal{T}_{\mathrm{x}_{1}} \omega \mathrm{RX}_{2}, \mathrm{BX}_{3}\right)$
which completes the proof.
Theorem 7. D is parallel if and only if
$\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \mathrm{JPX}_{2}, \omega \mathrm{QZ}_{1}+\omega \mathrm{RZ}_{1}\right)=-\mathrm{g}_{1}\left(\mathcal{V} \nabla_{\mathrm{x}_{1}} \mathrm{JPX}_{2}, \phi \mathrm{Z}_{1}\right)$
and
$\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \mathrm{JPX}_{2}, \mathrm{CZ}_{2}\right)=-\mathrm{g}_{1}\left(\mathcal{V} \nabla_{\mathrm{X}_{1}} \mathrm{JPX}_{2}, \mathrm{BZ}_{2}\right)$
for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma(\mathrm{D}), \mathrm{Z}_{1} \in \Gamma\left(\mathrm{D}_{1} \oplus \mathrm{D}_{2}\right)^{\perp}$ and $\mathrm{Z}_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)^{\perp}$.
Proof. For all $X_{1}, X_{2} \in \Gamma(D), Z_{1} \in \Gamma\left(D_{1} \oplus D_{2}\right)^{\perp}$ and $Z_{2} \in \Gamma\left(\text { ker } F_{*}\right)^{\perp}$, using Equations (2), (3), (7), (11), (12) and (13), we have
$\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{Z}_{1}\right)=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{JX} \mathrm{X}_{2}, \mathrm{JZ} \mathrm{I}_{1}\right)$
$=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{JPX}_{2}, \mathrm{JQZ}_{1}+\mathrm{JRZ}_{1}\right)$
$=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \phi \mathrm{PX}_{2}, \omega \mathrm{QZ}_{1}+\omega \mathrm{RZ}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{V} \nabla_{\mathrm{X}_{1}} \phi \mathrm{PX}_{2}, \phi \mathrm{QZ}_{1}\right)$.
Using equations (2), (3), (7), (11) and (13), we obtain
$\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{Z}_{2}\right)=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{JX}_{2}, \mathrm{JZ}_{2}\right)$
$=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{JPX}_{2}, \mathrm{BZ}_{2}+\mathrm{CZ}_{2}\right)$
$=\mathrm{g}_{1}\left(\mathcal{V}_{\mathrm{X}_{1}} \mathrm{JPX}_{2}, \mathrm{BZ}_{2}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \mathrm{JPX}_{2}, \mathrm{CZ}_{2}\right)$
which completes the assertion.
Theorem 8. D_{1} is parallel if and only if
$\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}, \mathrm{X}_{1}\right)=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \phi \mathrm{PX}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \omega \mathrm{RX}_{1}\right)$
and
$\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}, \mathrm{X}_{2}\right)=\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{CX}_{2}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{BX}_{2}\right)$
for all $Z_{1}, Z_{2} \in \Gamma\left(D_{1}\right), X_{1} \in \Gamma\left(D \oplus D_{2}\right)$ and $X_{2} \in \Gamma\left(\operatorname{ker} F_{*}\right)^{\perp}$.
Proof. For all $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\mathrm{D}_{1}\right), \mathrm{X}_{1} \in \Gamma\left(\mathrm{D} \oplus \mathrm{D}_{2}\right)$ and $\mathrm{X}_{2} \in \Gamma\left(\text { ker } \mathrm{F}_{*}\right)^{\perp}$, using Equations (2), (3), (8), (11), (13) and the Lemma 4, we have
$\mathrm{g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}, \mathrm{X}_{1}\right)=\mathrm{g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{JZ}_{2}, \mathrm{JX}_{1}\right)$
$=g_{1}\left(\nabla_{Z_{1}} \phi Z_{2}, J X_{1}\right)+g_{1}\left(\nabla_{Z_{1}} \omega Z_{2}, J X_{1}\right)$
$=\cos ^{2} \theta_{1} g_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}, \mathrm{X}_{1}\right)-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}, \mathrm{X}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \phi \mathrm{PX}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \omega \mathrm{RX}_{1}\right)$.
That is,
$\sin ^{2} \theta_{1} \mathrm{~g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}, \mathrm{X}_{1}\right)=-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}, \mathrm{X}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{JPX}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \omega \mathrm{RX}_{1}\right)$.
From Equations (2), (3), (8), (12), (13) and the Lemma 4, we have
$g_{1}\left(\nabla_{Z_{1}} Z_{2}, X_{2}\right)=g_{1}\left(\nabla_{Z_{1}} J Z_{2}, J X_{2}\right)=g_{1}\left(\nabla_{Z_{1}} \phi Z_{2}, J X_{2}\right)+g_{1}\left(\nabla_{Z_{1}} \omega Z_{2}, J X_{2}\right)$
$=\cos ^{2} \theta_{1} g_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}, \mathrm{X}_{2}\right)-\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}, \mathrm{X}_{2}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{CX}_{2}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{BX}_{2}\right)$.
So, we have
$\operatorname{Sin}^{2} \theta_{1} g_{1}\left(\nabla_{Z_{1}} \mathrm{Z}_{2}, \mathrm{X}_{2}\right)=-\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \phi \mathrm{Z}_{2}, \mathrm{X}_{2}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{CX}_{2}\right)+\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{Z}_{2}, \mathrm{BX}_{2}\right)$,
which completes the proof.
Similarly as above, we get the following theorem:
Theorem 9. D_{2} is parallel if and only if
$\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \mathrm{RX} \mathrm{X}_{2}, \omega \mathrm{QZ}_{1}\right)=-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{x}_{1}} \omega \mathrm{RX}_{2}, \phi \mathrm{PZ}_{1}+\phi \mathrm{QZ}_{1}\right)$
and
$\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{X}_{1}} \omega \mathrm{RX}_{2}, \mathrm{CZ}_{2}\right)=-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \omega \mathrm{RX}_{2}, \mathrm{BZ}_{2}\right)$
for all $\mathrm{X}_{1}, \mathrm{X}_{2} \in \Gamma\left(\mathrm{D}_{2}\right), \mathrm{Z}_{1} \in \Gamma\left(\mathrm{D} \oplus \mathrm{D}_{1}\right)$ and $\mathrm{Z}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$.
Proof. For all $X_{1}, X_{2} \in \Gamma\left(D_{2}\right), Z_{1} \in \Gamma\left(D \oplus D_{1}\right)$ and $Z_{2} \in \Gamma\left(\text { Ker } F_{*}\right)^{\perp}$. Using Equations (2), (3), (8), (11) and (12), we have
$\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{Z}_{1}\right)=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{JX}_{2}, \mathrm{JZ}_{1}\right)$
$=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \omega \mathrm{RX}_{2}, \phi \mathrm{PZ}_{1}+\phi \mathrm{QZ}_{1}+\omega \mathrm{QZ}_{1}\right)$
$=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{X}_{1}} \omega \mathrm{RX}_{2}, \phi \mathrm{PZ}_{1}+\phi \mathrm{QZ}_{1}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{X}_{1}} \omega \mathrm{RX}_{2}, \omega \mathrm{QZ}_{1}\right)$.
Using Equations (2), (3), (8), (11) and (13), we have
$\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{X}_{2}, \mathrm{Z}_{2}\right)=\mathrm{g}_{1}\left(\nabla_{\mathrm{X}_{1}} \mathrm{JX} \mathrm{X}_{2}, \mathrm{JZ}_{2}\right)$
$=g_{1}\left(\nabla_{X_{1}} \omega R X_{2}, B Z_{2}+Z_{2}\right)$
$=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{x}_{1}} \omega \mathrm{RX}_{2}, \mathrm{BZ}_{2}\right)+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{x}_{1}} \omega \mathrm{RX}_{2}, \mathrm{CZ}_{2}\right)$
which shows our assertion.
Theorem 10. F is a totally geodesic map if and only if
$\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \mathrm{PZ}_{2}+\cos ^{2} \theta_{1} \mathcal{I}_{\mathrm{Z}_{1}} \mathrm{QZ}_{2}-\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \phi \mathrm{PZ}_{2}-\mathcal{H} \nabla \mathrm{Z}_{1} \omega \phi \mathrm{QZ}_{2}, \mathrm{~V}_{1}\right)=\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{QZ}_{2}+\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{RZ}_{2}, \mathrm{BV}_{1}\right)$
$+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \phi \mathrm{QZ}_{2}+\mathcal{H} \nabla_{\mathrm{Z}_{1}} \omega \phi \mathrm{RZ}_{2}, \mathrm{~V}_{1}\right)$
and
$\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{v}_{1}} \mathrm{PZ}_{1}+\cos ^{2} \theta_{1} \mathcal{A}_{\mathrm{v}_{1}} \mathrm{QZ}_{1}-\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \phi \mathrm{PZ}_{1}-\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \phi \mathrm{QZ} \mathrm{Z}_{1}, \mathrm{~V}_{2}\right)=\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{v}_{1}} \omega \mathrm{QZ} \mathrm{Z}_{1}+\mathcal{A}_{\mathrm{v}_{1}} \omega \mathrm{RZ}_{1}, \mathrm{BV}_{2}\right)$
$+\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \mathrm{QZ}_{1}+\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \mathrm{RZ}_{1}, \mathrm{CV}_{2}\right)$
for all $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)$ and $\mathrm{V}_{1}, \mathrm{~V}_{2} \in \Gamma\left(\operatorname{ker} \mathrm{~F}_{*}\right)^{\perp}$.
Proof. For F is a Riemannian map, we have
$\left(\nabla \mathrm{F}_{*}\right)\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)=0$
for all $\mathrm{V}_{1}, \mathrm{~V}_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)^{\perp}$. For all $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)$ and $\mathrm{V}_{1}, \mathrm{~V}_{2} \in \Gamma\left(\operatorname{kerF}_{*}\right)^{\perp}$, using Equations (2), (3), (7), (8), (10), (11), (12), (13) and the Lemma 4, we have
$\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right), \mathrm{F}_{*}\left(\mathrm{~V}_{1}\right)\right)=-\mathrm{g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{Z}_{2}, \mathrm{~V}_{1}\right)$
$=-\mathrm{g}_{1}\left(\nabla_{\mathrm{Z}_{1}} \mathrm{JZ}_{2}, \mathrm{JV}_{1}\right)$
$=-g_{1}\left(\nabla_{Z_{1}} J P Z_{2}, J V_{1}\right)-g_{1}\left(\nabla_{Z_{1}} J Q Z_{2}, J V_{1}\right)-g_{1}\left(\nabla_{Z_{1}} J R Z_{2}, J V_{1}\right)$
$=-g_{1}\left(\nabla_{Z_{1}} \phi P Z_{2}, J V_{1}\right)-g_{1}\left(\nabla_{Z_{1}} \phi Q Z_{2}, J V_{1}\right)-g_{1}\left(\nabla_{Z_{1}} \omega Q Z_{2}, J V_{1}\right)-g_{1}\left(\nabla_{Z_{1}} \omega R Z_{2}, J V_{1}\right)$
$=-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \mathrm{PZ}_{2}+\cos ^{2} \theta_{1} \mathcal{I}_{\mathrm{Z}_{1}} \mathrm{QZ}_{2}-\mathcal{H} \nabla \mathrm{Z}_{1} \omega \phi \mathrm{PZ}_{2},-\mathcal{H} \nabla \mathrm{Z}_{1} \omega \mathrm{QZ}_{2}, \mathrm{~V}_{1}\right)-\mathrm{g}_{1}\left(\mathcal{T}_{\mathrm{Z}_{1}} \omega \mathrm{QZ}_{2}+\mathcal{I}_{\mathrm{Z}_{1}} \omega \mathrm{RZ}_{2}, \mathrm{~V}_{1}\right)$
$-\mathrm{g}_{1}\left(\mathcal{H} \nabla \mathrm{z}_{1} \omega \phi \mathrm{QZ}_{2}+\mathcal{H} \nabla \mathrm{z}_{1} \omega \phi \mathrm{RZ}_{2}, \mathrm{~V}_{1}\right)$.
Similarly, from Equations (2), (3), (7), (8), (10), (11), (12), (13) and the Lemma 4, we get
$\mathrm{g}_{2}\left(\left(\nabla \mathrm{~F}_{*}\right)\left(\mathrm{V}_{1}, \mathrm{Z}_{1}\right), \mathrm{F}_{*}\left(\mathrm{~V}_{2}\right)\right)=-\mathrm{g}_{1}\left(\nabla \mathrm{v}_{1} \mathrm{Z}_{1}, \mathrm{~V}_{2}\right)$
$=-\mathrm{g}_{1}\left(\nabla \mathrm{v}_{1} \mathrm{JZ}_{1}, \mathrm{JV}_{2}\right)$
$=-\mathrm{g}_{1}\left(\nabla_{\mathrm{v}_{1}} J P Z_{1}+J V_{2}\right)-\mathrm{g}_{1}\left(\nabla_{\mathrm{v}_{1}} J Q Z_{1}, J V_{2}\right)-\mathrm{g}_{1}\left(\nabla \mathrm{v}_{1} \mathrm{JRZ}_{1}, J V_{2}\right)$
$=-g_{1}\left(\nabla_{\mathrm{v}_{1}} \phi P Z_{1}, J V_{2}\right)-\mathrm{g}_{1}\left(\nabla_{\mathrm{v}_{1}} \phi \mathrm{QZ}_{1}, J V_{2}\right)-\mathrm{g}_{1}\left(\nabla_{\mathrm{v}_{1}} \omega \mathrm{QZ}_{1}, J V_{2}\right)-\mathrm{g}_{1}\left(\nabla_{\mathrm{v}_{1}} \omega R Z_{1}, \mathrm{JV}_{2}\right)$
$=-\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{v}_{1}} \mathrm{PZ} \mathrm{Z}_{1}+\cos ^{2} \theta_{1} \mathcal{A}_{\mathrm{v}_{1}} \mathrm{QZ}_{1}-\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \phi \mathrm{PZ}_{1}-\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \phi \mathrm{QZ}_{1}, \mathrm{~V}_{2}\right)-\mathrm{g}_{1}\left(\mathcal{A}_{\mathrm{v}_{1}} \omega \mathrm{QZ}_{1}+\mathcal{A}_{\mathrm{v}_{1}} \omega \mathrm{RZ} \mathrm{Z}_{1}, \mathrm{BV}_{2}\right)$
$-\mathrm{g}_{1}\left(\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \mathrm{QZ}_{1}+\mathcal{H} \nabla_{\mathrm{v}_{1}} \omega \mathrm{RZ}_{1}, \mathrm{CV}_{2}\right)$
which completes the proof.

4. EXAMPLE

Let $\left(x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right)$ be coordinates on Euclidean space $\mathbb{R}^{2 n}$.An almost complex structure J on $\mathbb{R}^{2 n}$ is defined by
$J\left(a_{1} \frac{\partial}{\partial x_{1}}+a_{2} \frac{\partial}{\partial x_{2}}+\ldots+a_{2 n-1} \frac{\partial}{\partial x_{2 n-1}}+a_{2 n} \frac{\partial}{\partial x_{2 n}}\right)$
$=\left(-a_{2} \frac{\partial}{\partial x_{1}}+a_{1} \frac{\partial}{\partial x_{2}}+\ldots-a_{2 n} \frac{\partial}{\partial x_{2 n-1}}+a_{2 n-1} \frac{\partial}{\partial x_{2 n}}\right)$
where $a_{1}, a_{2}, \ldots, a_{2 n}$ are C^{∞} functions defined on $\mathbb{R}^{2 n}$. This notation will use throughout this section.
Example 1. Let $\left(\mathbb{R}^{14}, g_{14}, \mathrm{~J}\right)$ be an almost Hermitian manifold as defined above. $F: \mathbb{R}^{14} \rightarrow \mathbb{R}^{8}$ is defined by
$\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{14}\right)=\left(\mathrm{x}_{3} \sin \alpha+\mathrm{x}_{5} \cos \alpha, \mathrm{x}_{6}, \mathrm{x}_{7}, \mathrm{x}_{10}, \mathrm{a}, \mathrm{b}, \mathrm{x}_{13}, \mathrm{x}_{14}\right)$
where $\theta_{1} \in\left(0, \frac{\pi}{2}\right)$ and $\mathrm{a}, \mathrm{b} \in \mathbb{R}$. Then F is a quasi-hemi-slant Riemannian map (where rank $\mathrm{F}_{*}=6$) such that
$\mathrm{X}_{1}=\frac{\partial}{\partial x_{1}}, X_{2}=\frac{\partial}{\partial x_{2}}, X_{3}=\cos \alpha \frac{\partial}{\partial x_{3}}-\sin \alpha \frac{\partial}{\partial x_{5}}, X_{4}=\frac{\partial}{\partial x_{4}}, X_{5}=\frac{\partial}{\partial x_{8}}, X_{6}=\frac{\partial}{\partial x_{9}}, X_{7}=\frac{\partial}{\partial x_{11}}, X_{8}=\frac{\partial}{\partial x_{12}}$,
$\operatorname{kerF}_{*}=\mathrm{D} \oplus \mathrm{D}_{1} \oplus \mathrm{D}_{2}$
where
$\mathrm{D}=\left\langle\mathrm{X}_{1}=\frac{\partial}{\partial x_{1}}, X_{2}=\frac{\partial}{\partial x_{2}}, X_{7}=\frac{\partial}{\partial x_{11}}, X_{8}=\frac{\partial}{\partial x_{12}}\right\rangle$,
$\mathrm{D}_{1}=\left\langle\mathrm{X}_{3}=\cos \alpha \frac{\partial}{\partial x_{3}}-\sin \alpha \frac{\partial}{\partial x_{5}}, X_{4}=\frac{\partial}{\partial x_{4}}\right\rangle$,
$\mathrm{D}_{2}=\left\langle\mathrm{X}_{5}=\frac{\partial}{\partial x_{8}}, X_{6}=\frac{\partial}{\partial x_{9}}\right\rangle$,
and
$\left(\operatorname{kerF}_{*}\right)^{\perp}=\left\langle\frac{\partial}{\partial x_{6}}, \sin \alpha \frac{\partial}{\partial x_{3}}+\cos \alpha \frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{13}}, \frac{\partial}{\partial x_{14}}>\right.$
which $D=\operatorname{Span}\left\{X_{1}, X_{2}, X_{7}, X_{8}\right\}$ is invariant, $D_{1}=\operatorname{Span}\left\{X_{3}, X_{4}\right\}$ is slant with slant angle $\theta_{1}=\alpha$ and D_{2} $=\operatorname{Span}\left\{\mathrm{X}_{5}, \mathrm{X}_{6}\right\}$ is anti-invariant.

Example 2. Let ($\mathbb{R}^{12}, \mathrm{~g}_{12}$, J) be an almost Hermitian manifold as defined above. $\mathrm{F}: \mathbb{R}^{12} \rightarrow \mathbb{R}^{8}$ is defined by
$\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{12}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{c}, \mathrm{x}_{5}, \frac{x_{7}+\sqrt{3} x_{9}}{2}, \mathrm{x}_{10}, \mathrm{~d}, \mathrm{x}_{12}\right)$
where $\theta_{1} \in\left(0, \frac{\pi}{2}\right)$ and $c, d \in \mathbb{R}$. Then F is a quasi-hemi-slant Riemannian map (where rank $F_{*}=6$) such that $\mathrm{X}_{1}=\frac{\partial}{\partial x_{3}}, X_{2}=\frac{\partial}{\partial x_{4}}, X_{3}=\frac{\partial}{\partial x_{6}}, \mathrm{X}_{4}=\frac{1}{2}\left(\sqrt{3} \frac{\partial}{\partial x_{7}}-\frac{\partial}{\partial x_{9}}\right), X_{5}=\frac{\partial}{\partial x_{8}}, X_{6}=\frac{\partial}{\partial x_{11}}$,
$\operatorname{kerF}_{*}=\mathrm{D} \oplus \mathrm{D}_{1} \oplus \mathrm{D}_{2}$,
where
$\mathrm{D}=\left\langle\mathrm{X}_{1}=\frac{\partial}{\partial x_{3}}, X_{2}=\frac{\partial}{\partial x_{4}}\right\rangle$,
$\mathrm{D}_{1}=\left\langle\mathrm{X}_{4}=\frac{1}{2}\left(\sqrt{3} \frac{\partial}{\partial x_{7}}-\frac{\partial}{\partial x_{9}}\right), X_{5}=\frac{\partial}{\partial x_{8}}\right\rangle$,
$\mathrm{D}_{2}=\left\langle\mathrm{X}_{3}=\frac{\partial}{\partial x_{6}}, X_{6}=\frac{\partial}{\partial x_{11}}\right\rangle$
and
$\left(\operatorname{kerF}_{*}\right)^{\perp}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{5}}, \frac{1}{2}\left(\frac{\partial}{\partial x_{7}}+\sqrt{3} \frac{\partial}{\partial x_{9}}\right), \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{12}}\right\rangle$
which $D=\operatorname{span}\left\{X_{1}, X_{2}\right\}$ is invariant, $D_{1}=\operatorname{Span}\left\{X_{4}, X_{5}\right\}$ is slant with slant angle $\theta_{1}=\frac{\pi}{6}$ and $D_{1}=$ Span $\left\{\mathrm{X}_{3}, \mathrm{X}_{6}\right\}$ is anti-invariant.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Sahin, B., "Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications", Elsevier: Academic Press (2017).
[2] Lerner, D.E., Sommers, P.D., "Complex Manifold Techniques in Theoretical Physics", Research Notes in Mathematics; 32, Pitman Advanced Publishing, (1979).
[3] Chandelas, P., Horowitz, G.T., Strominger, A., Witten, E., "Vacuum configurations for super-strings", Nuclear Physics B, 258: 46-74, (1985).
[4] Tromba, A.J. "Teichmuller Theory in Riemannian Geometry", Lectures in Mathematics: ETH Zurich, Birkhauser, Basel, (1992).
[5] Esposito, G., "From spinor geometry to complex general relativity", International Journal of Geometric Methods in Modern Physics., 2: 675-731, (2005).
[6] O'Neill's B., "The fundamental equations of a submersion", The Michigan Mathematical Journal, 33(13): 459-469, (1966).
[7] Gray, A., "Pseudo-Riemannian almost product manifolds and submersions", Journal of Mathematics and Mechanics, 16: 715-738, (1967).
[8] Watson, B., "Almost Hermitian submersions", Journal of Differential Geometry, 11(1): 147-165, (1976).
[9] Falcitelli, M., Ianus, S., Pastore, A.M., "Riemannian Submersions and Related Topics". World Scientific: River Edge, NJ, (2004).
[10] Chinea, D., "Almost contact metric submersions", Rendiconti del Circolo Matematico del Palermo, 34(1): 89-104, (1985).
[11] Park, K.S., Prasad, R., "Semi-slant submersions", Bulletin of the Korean Mathematical Society., 50: 951-962, (2013).
[12] Sahin, B.," Generic Riemannian maps", Miskolc Mathematical Notes 18(1): 453-467, (2017).
[13] Akyol, M.A., Sari, R., Aksoy, E., "Semi-invariant $\xi \perp$ Riemannian submersions from almost Contact metric manifolds", International Journal of Geometric Methods in Modern Physics, 14(5): 1750075, (2017).
[14] Tastan, H.M., Sahin, B., Yanan, S., "Hemi-slant submersions", Mediterranean Journal of Mathematics., 13(4): 2171-2184, (2016).
[15] Sayar, C., Akyol, M.A., Prasad, R., "Bi-slant submersions in complex geometry", International Journal of Geometric Methods in Modern Physics, 17(4): 2050055-44, (2020).
[16] Prasad, R., Shukls, S. S., Kumar, S., "On Quasi-bi-slant Submersions", Mediterranean Journal of Mathematics 16(6): December, (2019).
[17] Longwap, S., Massamba, F., Homti, N.E., "On Quasi-Hemi-Slant Riemannian Submersion" Journal of Advances in Mathematics and Computer Science, 34(1): 1-14, (2019).
[18] Fischer, A.E., "Riemannian maps between Riemannian manifolds", Contemporary Mathematics., 132: 331-366, (1992).
[19] Blair, D. E., "Riemannian geometry of contact and symplectic manifolds", Progress in Mathematics:203, Birkhauser Boston, Basel, Berlin, (2002).
[20] De, U.C., Sheikh, A.A., "Complex manifolds and Contact manifolds", Narosa publishing: January, (2009).
[21] Baird, P., Wood, J.C., "Harmonic Morphism between Riemannian Manifolds", Oxford science publications: Oxford. (2003).

