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Highlights 

• This paper focuses on quasi-hemi-slant Riemannian maps. 

•  Distributions to be integrable and parallel investigated.  

• A quasi-hemi-slant Riemannian map to be totally geodesic investigated. 
 

Article Info 

 

Abstract 

In this paper, quasi-hemi-slant Riemannian maps from almost Hermitian manifolds onto 

Riemannian manifolds are introduced. The geometry of leaves of distributions that are involved 

in the definition of the submersion and quasi-hemi-slant Riemannian maps are studied. In addition, 

conditions for such distributions to be integrable and totally geodesic are obtained. Also,  a 

necessary and sufficient condition for proper quasi-hemi-slant Riemannian maps to be totally 

geodesic is given. Moreover, structured concrete examples for this notion are given. 
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1. INTRODUCTION 

 

A differentiable map F between Riemannian manifolds (N1, g1) and (N2, g2) is said to be a Riemannian 

map if 

 

g2(F∗Z1, F∗Z2) = g1(Z1, Z2), for Z1, Z2(ker F∗)⊥. 

 

The theory of smooth maps between Riemannian manifolds plays a preeminent role in differential geometry 

and also in physics. It is useful for comparing geometric structures between the source manifolds and the 

target manifolds. A conspicuous property of Riemannian map provides the generalized eikonal equation || 

F∗||2 = rank F [1]. Since rank F is an integer value function and || F∗ ||2 is continuous function on the 

Riemannian manifold. Since energy density 2e(F ) = || F∗ || 2 = rank F, i.e. density is quantized to integer if 

the Riemannian manifold is connected. In addition, complex manifolds are very useful tools for studying 

spacetime geometry [2]. In fact, Calabi-Yau manifolds and Teichmuller spaces are two interesting classes 

of Kähler manifold, which have applications in superstring theory [3] and in general relativity [4, 5]. Thus, 

the notion of Riemannian maps deserves through study from different perspectives. 

 

In addition, O’Neills [6] and Gray [7] studied Riemannian submersions. Watson introduced almost 

Hermitian submersions as follows: A Riemannian submersion F : (N1, g1, JN 1
)  →  (N2, g2, JN 2

) is said to 

be an almost Hermitian submersion if  F∗JN 1
= JN 2

F∗  [8]. Watson also showed that, in most cases [8] and 

[9], each fiber and base manifold have the same kind of structure as the total space.
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After that, several kinds of Riemannian submersions were introduced and studied, some of them are like:  

contact-submersions [10], semi-slant and generic submersions [11, 12], semi-invariant ⊥-Riemannian 

submersions [13], hemi-slant submersions [14] etc. Sayar, Akyol and Prasad studied on bi slant submersions 

[15], and Prasad, Shukla and Kumar introduce quasi-bi slant submersions [16]. Recently, Longwap, 

Massamba and Homti introduce and study quasi-hemi slant Riemannian submersions which generalizes 

hemi-slant, semi-slant and semi-invariant Riemannian submersions  [17]. It is well known that Riemannian 

submersion is a particular Riemannian map with (range F∗)⊥ = {0}, so we generalize the notion of quasi-

hemi slant Riemannian submersions to quasi-hemi slant Riemannian maps in the present paper and study 

its geometry. 

 

The notion of Riemannian map between Riemannian manifolds was introduced by Fischer [18]. Let F : (N1, 

g1) → (N2, g2) be a differentiable map with 0 < rank F∗< min (m, n). If the kernal space of F∗ is denoted by 

ker F∗, and the orthogonal complementary space of ker F∗ is denoted by (ker F∗)⊥ in TN1, then  

 

TN1 = ker F∗(ker F∗)⊥. 

 

Also, if the range of F∗ is denoted by range F∗, and for a point qN1 the orthogonal complementary space 

of range F∗F(q) is denoted by (range F∗F(q))⊥ in TF(q)N2  then the tangent space TF(q)N2 has the following 

orthogonal decomposition: 

 

TF(q)N2 = (rangeF∗F(q))(range F∗F(q))⊥. 

 

A differentiable map F: (N1, g1) → (N2, g2) is called a Riemannian map at qN1 if  F
h

q*  : (ker F∗q)⊥→ 

(range F∗F(q)) is linear isometry.  

 

In this paper, we study the quasi-hemi-slant Riemannian maps from an almost Hermitian manifolds to 

Riemannian manifolds. In section 3, quasi-hemi-slant Riemannian maps are defined, and the geometry of 

leaves of distributions that are involved in the definition of such maps is studied. In addition, a necessary 

and sufficient condition for quasi-hemi-slant Riemannian maps to be totally geodesic is given. Finally, 

concrete examples for this setting are provided. 

 

2. PRELIMINARIES 

 

If J is a (1, 1) tensor field on an even-dimensional differentiable manifold N1 such that 

 

J2 = −I  (1)  

 

then (N1,J) is said to be an almost complex manifold where I is identity operator [19, 20]. Nijenhuis tensor 

N of J is described as: 

 

N(X1, X2) = [JX1, JX2] − [X1, X2]− J[JX1, X2]− J[X1, JX2] (2) 

 

for all X1, X2(TN1). If  N =0, then  N1 is said to be a complex manifold. If g1 is a Riemannian metric 

on N1 such that 

 

g1 (JX1, JX2) = g1(X1, X2),  for all X1, X2 (TN1) (3) 

 

then (N1, g1, J) is said to be an almost Hermitian manifold, and if  (X 1
J) X2= 0 for all X1, X2(TN1) then 

(N1, g1, J) is said to be a Kähler manifold where  is the Levi-Civita connection on N1. 

 

O’Neill’s tensors T and A are defined by 

 



479  Rajendra PRASAD et al. / GU J Sci, 34(2): 477-491 (2021) 

 

 

 E 1
E2 = E 1

E2 + E 1E2,  (4) 

  

E 1 E2 = E 1E2 + E 1E2                                                                   (5) 

 

for any E1, E2(TN1).   From Equations (4) and (5), we have 

 

X 1
X2 = X 1

X2 + X 1
X2,.      (6) 

  

X 1
Z1 = X 1

Z1 + X 1
Z1, (7) 

  

Z 1
X1 = Z 1

X1 + z 1 X1, (8) 

  

Z 1 Z2 = Z 1 Z2 + Z 1
Z2, (9) 

 

for all X1, X2(ker F∗) and Z1, Z2(ker F∗)⊥, where HX 1
Z1 = AZ 1

X1, if Z1 is basic. For q  N1, X1q 

and Z1Hq the linear operators 

 

Z 1
and X 1

: TqN1 → TqN1 

 
are skew-symmetric, that is 

 

g1(Z 1
E1, E 2) = − g1(E 1, Z 1

 E 2) and g1(X 1
E 1, E 2) = −g1 (E 1, X 1

E 2) 

 

for each E 1, E 2 TqN1.  

 

Let F : (N1, g1)→ (N2, g2) is a smooth map.  F is said to be a totally geodesic if  

 

(F∗) (X1, X2) = 0, for all X1, X2(TN1).  

 

The differential map F∗  of  F can be observed a section of  the bundle  Hom (TN1, F-1TN2)→ N1,  where  

F-1TN2 is the bundle which has fibers (F-1TN2)x = TF(x)N2, has a connection  induced from the Riemannian 

connection 𝑁1 and the pullback connection. In addition, the second fundamental form of F is given by  

 

(F∗) (X1, X2) =  𝑋1

𝐹 F∗ (X2) – F∗(𝑋1

𝑁1X2)   (10) 

 

for vector field X1, X2(TN1), where F is the pullback connection. Bi-harmonic Riemannian maps and 

the second fundamental form (F∗)(U1, U2), for all U1, U2(ker F∗)⊥ of a Riemannian map has 

components in range F∗ [21].  

 

Lemma 1. Let F : (N1, g1) → (N2, g2) be a Riemannian map. Then g2((F∗)(U1, U2), F∗(U3)) = 0 for all 

U1, U2, U3(ker F∗)⊥. 

 

As a  consequence of the above lemma, we get (F∗)(U1, U2)  (range F∗)⊥,   for all U1, U2,  (ker 

F∗)⊥. 

 

Let F: (N1, g1, J)  → (N2, g2) be Riemannian map from an almost Hermitian manifold onto a Riemannian 

manifold.  
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F is said to be  a semi-invariant Riemannian map if there is a distribution D1 kerF∗ such that  

 

ker F∗ = D1 D2, J (D1) = D1, 

 

where D1 D2 is an orthogonal decomposition of ker F∗ [1]. The complementary orthogonal subbundle to 

J(ker F∗) in (ker F∗)⊥ is denoted by . Thus, we get (ker F∗)⊥ = J(D2) . It is clear that  is an invariant 

subbundle. 

 

 If  Ker F∗ = D D⊥ with  D is slant distribution and D⊥  is anti-invariant distribution then an F is said to 

be a hemi-slant map, and   is said to be the hemi-slant angle [14]. 

 

 If  Ker F∗= D  D1 D2,  J (D) = D, JD2  (ker F∗)⊥  the angle   between JZ and the space (D1)p is 

constant for any non-zero vector Z in (D1)p then F is said to be quasi-hemi-slant Riemannian map and the 

angle  is said to be the quasi-hemi-slant angle of the map [17]. 

 

3. QUASI-HEMI-SLANT RIEMANNIAN MAPS 

 

Let F be quasi-hemi-slant Riemannian map from an almost Hermitian manifold (N1, g1, J) onto a 

Riemannian manifold (N2, g2). Thus, we get 

 

TN1 = kerF∗ (kerF∗)⊥. 

 

Let P, Q and R be projection morphisms of kerF∗ onto D, D1 and D2 respectively. For any vector field 

X1(kerF∗), we put 

 

X1 = PX1 + QX1 + RX1.                       (11) 

 

For all Z1(ker F∗), we get 

 

JZ1=Z1+ωZ1  (12) 

 

where Z1(kerF∗) and ωZ1(ωD1 ωD2). The horizontal distribution (kerF∗)⊥ is decomposed as  

 

(kerF∗)⊥ = ωD1ωD2. 

 

Here  is an invariant distribution of ωD1 ωD2 in (kerF∗)⊥. From Equations (11) and (12), we have 

 

JX1 = J (PX1) + J (QX1) + J (RX1) 

 

=  (PX1) + ω (PX1) +  (QX1) + ω (QX1) +  (RX1) + ω (RX1). 

 

Since JD = D, we have ωPX1=0 and (RX1) = 0. Thus, we get 

 

JX1 = (PX1) + QX1 + ωQX1 + ωRX1. 

 

Hence we get the below decomposition 

 

J(kerF∗) = D  (D1)  (ωD1 ωD2) 

 

where  denotes orthogonal direct sum. Further, let X1 (D1) and X2 (D2). Then 

 

g1 (X1, X2) = 0. 
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From above equation, we have 

 

g1 (JX1, X2) = −g1 (X1, JX2) = 0. 

 

Now, consider 

 

g1 (X1, X2) = g1 (JX1 – ωX1, X2) = g1 (JX1, X2). 

 

Similarly, we have g1 (X1, X2) = 0. 

 

Let V1(D) and V2(D1). Then we have 

 

g1 (V1, V2) = g1 (JV1 – ωV1, V2) = g1 (JV1, V2)  = – g1 (V1, JV2) = 0 

 

as D is invariant i.e., JV1(D). 

 

Similarly, for Z1 (D) and Z2 (D2), we obtain g1 (Z2, Z1) = 0. From above equations, we have 

 

g1 (Y1, Y2) = 0 and g1 (ωY1, ωY2) = 0 

 

for all Y1 (D1) and Y2 (D2). Since ωD1 (ker F∗)⊥, ωD2 (ker F∗)⊥. So we can write 

 

(kerF∗)⊥ = ωD1 ωD2 

 

where  is orthogonal complement of (ωD1 ωD2) in (kerF∗)⊥. For any X1(ker F)⊥, we get 

 

JX1 = BX1 + CX1 .       (13) 

 

where BX1(ker F∗) and CX1().  

 

Lemma 2. If F is a quasi-hemi-slant Riemannian map then we have 

 

2V1 + BωV1 = −V1, ωV1 + CωV1 = 0, 

 

ωBV2 + C2V2 = −V2, BV2 + BCV2 = 0 

 

for all V1 (ker F∗) and V2 (ker F∗)⊥. 

     

Proof. The desired results are obtained by using Equations (1), (12) and (13). 

 

Evidence of the following result is the same as given in [1], so we will skip the proof. 

 

Lemma 3.  If F is a quasi-hemi-slant Riemannian map then we have 

 

i) 2V1 = −(cos21)V1, 

 

ii) g1 (V1, V2) = cos2 1g1 (V1, V2), 

 

iii) g1 (ωV1, ωV2) = sin21g1 (V1, V2), 

 

for all V1, V2 (D1). 
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From now on we will denote a quasi-hemi-slant Riemannian map from a Kähler manifold (N1, g1, J) onto 

a Riemannian manifold (N2, g2) by F. 

 

Lemma. 4. If F is a quasi-hemi-slant Riemannian map then, we have 

 

X 1
X2 + X 1

ωX2 = BX 1
X2 +X 1

X2, 

 

X 1
X2 + x1ωX2 = CX 1

X2 + ωX 1
X2, 

 

x1 BZ1 +X 1
CZ1 = X 1

Z1 + BX 1
Z1, 

 

X 1
BZ1 + X 1

CZ1 = ωX 1
Z1 +CX 1

Z1. 

 

Z 1
X1 + Z 1

ωX1 = BZ 1
X1 + Z 1

X1, 

 

Z 1
X1 + Z 1

ωX1 = ωZ 1
X1 + CZ 1

X1, 

 

Z 1
BZ2 + Z 1

CZ2 = BZ 1
Z2 + Z 1

Z2, 

 

Z 1
BZ2 + Z 1

CZ2 =ωZ 1
Z2 + CZ 1

Z2, 

 

for any X1, X2(ker F∗) and Z1, Z2(ker F∗)⊥. 

 

Proof. Using Equations (3), (6), (7), (8), (9), (12) and (13), we get the lemma completely. 

 

 Now, we define  

 

(X 1
)X2 = X 1

X2−X 1
X2, 

 

(X 1
ω)X2 = X 1

ωX2− ωX 1
X2, 

 

(Z 1
C)Z2 = Z 1

CZ2− CZ 1
Z2, 

 

(Z 1
B)Z2 = Z 1

BZ2− BZ 1
Z2 

 

for any X1, X 2 (ker F∗) and Z1, Z2(ker F∗)⊥. 

 

Lemma 5. If F is a quasi-hemi-slant Riemannian map then, we have 

 

(X 1
)X2 = BX 1

X2 – X 1
ωX2, 

 

(X 1
ω)X2 = CX 1

X2 – X 1
X2, 

 

(Z 1
C)Z2 = ωZ 1

Z2 – Z 1
BZ2, 

 

(Z 1
B)Z2 = Z 1

Z2 – Z 1
CZ2, 

 

for any vectors X1, X2(ker F∗) and Z1, Z2(ker F∗)⊥. 
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Proof. The proof is straightforward, so we omit its proof. 

 

If  and ω are parallel with respect to  on N1 respectively, then 

 

BX 1
X2 =X 1

ωX2  and CX 1
X2 = X 1

X2 

 

for any X1, X2(TN1). 

 

Theorem 1. D  is integrable if and only if  

 

g1 (x2JX1 – X 1
JX2, ωQZ1 + ωRZ1) = g1 (X 1

JX2 - x2JX1, QZ1) 

 

for all X1, X2 (D) and Z1 (D1 D2).  

 

Proof. For all X1, X2(D), Z1(D1 D2) and Z2(kerF∗)⊥ , since [X1, X2] (kerF∗), we have   g1 ([X1, 

X2], Z2) = 0. Thus D is integrable ⟺ g1 ([X1, X2], Z1) = 0. Now, using Equations (2), (3), (6), (7), (11), (12) 

and (13), we have 

 

g1 ([X1, X2], Z1) = g1 (JX 1
X2, JZ1) – g1 (Jx2X1, JZ1) 

 

= g1 (X 1
JX2, JZ1) – g1 (x2 JX1, JZ1) 

 

 = g1 (X 1
JX2 – x2 JX1, ωQZ1 + ωRZ1) − g1 (X 1

JX2−x2JX1, QZ1). 

 

Theorem 2. D1 is integrable if and only if 

 

g1(Z 1
ωZ2 – 𝑧2 ωZ1, V1) = g1(Z 1

ωZ2 – 𝑧2ωZ1, PV1) + g1 (Z 1
ωZ2 - z2ωZ1, ωRV1) 

 

for all Z1, Z2(D1) and V1(D1 D2). 

 

Proof. For all Z1, Z2(D) and V1(D1 D2) and V2(kerF∗)⊥, since [Z1, Z2](kerF∗), we have g1 ([Z1, 

Z2], V2) = 0. Thus D1 is integrable  g1 ([Z1, Z2], V1) = 0. Using Equations (2), (3), (6), (7), (11), (12), (13) 

and the Lemma 4, we have  

 

g1 ([Z1, Z2], V1) = g1 (Z 1
 JZ2, JV1) – g1 (z2 JZ1, JV1) 

 

= g1(Z 1
Z2, JV1) + g1(Z 1

ωZ2, JV1) – g1(z2Z1, JV1) – g1(z2ωZ1, JV1) 

 

= cos21g1 (Z 1
Z2, V1) – cos21g1(z2Z1, V1)–g1(Z 1

ωZ2–z2ωZ1,V1) 

  

+g1(Z 1
ωZ2+Z 1

ωZ2,JPV1+ωRV1) −g1(z2ωZ1+ z2ωZ1, JPV1 + ωRV1). 

 

Now, we have 

 

Sin21g1 ([Z1, Z2], V1) = g1 (Z 1
ωZ2 – Z

2
ωZ1, JPV1) + g1 (Z 1

ωZ2−z2ωZ1, ωRV1) 

 

− g1(Z 1
ωZ2 – Z

2
ωZ1,V1) 
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 which proofs the assertion. 

 

Theorem 3. D2 is always integrable. 

 

Theorem 4.  (kerF∗)⊥ is integrable if and only if  

 

g1 (X 1
BX2−x2 BX1, Z1) = −g2 (F∗ (CX2), (F∗)(X1, Z1)) + g2(F∗(CX1), (F∗) (X2, Z1)), 

 

g1 (X 1
BX2 – x2BX1, ωQZ2) = g2((F∗) (X1, CX2), F∗(ωQZ2)) + g2 ((F∗) (X2, CX1), F∗(ωQZ2)), 

 

g1 (X 1
BX2 – x2BX1, ωQZ3) = g2((F∗) (X1, CX2), F∗(ωQZ3)) + g2 ((F∗) (X2, CX1), F∗(ωQZ3)), 

 

for all X1, X2(ker F∗)⊥, Z1(D), Z2(D1) and Z3(D3). 

 

Proof. For X1, X2(ker F∗)⊥, Z1 (D), Z2(D1) and Z3(D3) and using Equations (2), (3), (8), (12) 

and (13), we have  

 

g1 ([X1, X2]), Z1) = g1(X 1
X2, Z1) – g1 (x2X1, Z1) 

 

 = g1 (X 1
BX2−x2BX1, Z1) − g1(CX2, X 1

Z1) + g1 (CX1, x2Z1). 

 

Using Equation (10), we get  

 

g1 ([X1, X2]), Z1) = g1 (X 1
BX2−x2BX1, Z1)+ g2 (F∗ (CX2), (F∗) (X1, Z1)) 

 

 – g2(F∗(CX1), (F∗) (X2, Z1)). 

 

From Equations (2), (3), (8), (9), (11), (12), (13) and the Lemma 4, we obtain 

 

g1 ([X1, X2]), Z2) = g1 (X 1
X2, QZ2) + g1(X 1

X2, ωQZ2) − g1 (x2X1, QZ2) − g1(x2X1, ωQZ2) 

 

 = cos21g1 ([X1,X2], Z2) – g1 (x1X2, ωQZ2) + g1(x2X1, ωQZ2) +g1 (X 1
BX2, ωQZ2)  

 

+ g1(X 1
C X2, ωQZ2) – g1 (x2BX1, ωQZ2− g1 (x2CX1, ωQZ2). 

 

Using Equation (10), we have 

 

sin21g1 ([X1,X2], Z2) = g1 (X 1
BX2 –x2BX1, ωQZ2) – g2 ((F∗)(X1, CX2), F∗ (ωQZ2)) 

 

+g2 ((F∗) (X2, CX1), F∗ (ωQZ2)). 

 

Similarly, we get 

 

sin22g1 ([X1, X2], Z3) = g1 (X 1
 BX2 –x2BX1, ωQZ3) – g2 ((F∗)(X1, CX2), F∗ (ωQZ3)) 

 

+g2 ((F∗) (X2, CX1), F∗ (ωQZ3)). 

 

Theorem 5.  (kerF∗)⊥ is totally geodesic if and only if  

 

g1 (X 1
X2, PZ1 + cos21QZ1) = g1(X 1

X2, ωPZ1 + ωQZ1)− g1 (X 1
BX2 + X 1

CX2, ωQZ1 + ωRZ1) 
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for all X1, X2(ker F∗)⊥ and  Z1(ker F∗). 

 

Proof.  For all X1, X2(kerF∗)⊥ and Z1(kerF∗) and using Equations (2), (3), (8), (9), (11), (12), (13) 

and the Lemma 4, we have 

 

g1 (X 1
X2, Z1) = g1 (JX 1

X2, JZ1) 

 

= − g1 (X 1
X2, 2PZ1 + ωPZ1 + ωQZ1)+ g1 (X 1

BX2, ωQZ1 + ωRZ1) + g1(X 1
CX2, ωQZ1 + ωRZ1) 

 

= g1 (X 1
X2, PZ1 + cos21QZ1) – g1 (X 1

X2, ωPZ1 + ωQZ1)+ g1 (X 1
BX2, ωQZ1 + ωRZ1)  

 

+ g1(X 1
CX2, ωQZ1 + ωRZ1) 

 

which shows our assertion. 

 

Theorem 6.  ker F∗ is parallel if and only if  

 

g1 (x1 PX2, X3) + cos21g1(x1 Qx2, X3) = g1 (X 1
ωPX2, X3) + g1(X 1

ωQX2, X3) 

 

−g1 (X 1
ωQX2 + X 1

ωRX2, CX3)+ g1 (X 1
ωQX2 + X 1

ωRX2, BX3) 

 

for all X1, X2(kerF∗) and Z1(kerF∗)⊥. 

 

Proof. For all X1, X2(kerF∗) and X3(kerF∗)⊥, using Equations (2), (3), (8), (9), (11), (12), (13) and 

the Lemma 4, we have 

 

g1 (X 1
X2, X3)= g1 (JX 1

X2, JX3) 

 

= g1 (X 1
 PX2, JX3), + g1(X 1

QX2, JX3) +g1 (X 1
ωQX2, JX3) + g1(X 1

ωRX2, JX3) 

 

= g1(X 1
PX2, X3) + cos21g1(X 1

QX2, X3) – g1 (X 1
ωPX2, X3)− g1 (X 1

ωQX2, X3)  

 

+ g1 (X 1
ωQX2 + x1ωRX2, CX3) +g1(X 1

ωQX2 + X 1
ωRX2, BX3) 

 

which completes the proof. 

 

Theorem 7.  D is parallel if and only if  

 

g1(X 1
JPX2, ωQZ1 + ωRZ1) = − g1 (X 1

JPX2, Z1) 

 

and 

 

g1 (X 1
JPX2, CZ2) = −g1 (X 1

JPX2, BZ2) 

 

for all X1, X2 (D), Z1 (D1 D2)⊥  and Z2(kerF∗)⊥. 

 

Proof. For all X1, X2(D), Z1 (D1 D2)⊥ and Z2(ker F∗)⊥,  using Equations (2), (3), (7), (11), (12) 

and (13), we have 
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g1 (X 1
X2, Z1) = g1 (X 1

JX2, JZ1) 

 

= g1 (X 1
JPX2, JQZ1 + JRZ1) 

 

= g1 (X 1
PX2, ωQZ1 + ωRZ1) + g1 (X 1

PX2, QZ1). 

 

Using equations (2), (3), (7), (11) and (13), we obtain 

 

g1(X 1
X2, Z2) =g1 (X 1

JX2, JZ2) 

 

= g1 (X 1
JPX2, BZ2 + CZ2) 

 

= g1 (X 1
JPX2, BZ2) + g1(X 1

JPX2, CZ2) 

 

which completes the assertion. 

 

Theorem 8. D1 is parallel if and only if  

 

g1(Z 1
ωZ2, X1) = g1 (Z 1

ωZ2, PX1) + g1 (Z 1
ωZ2, ωRX1) 

 

and 

 

g1(Z 1
ωZ2, X2) = g1 (Z 1

ωZ2, CX2) + g1 (Z 1
ωZ2, BX2) 

 

for all Z1, Z2(D1), X1(D  D2) and X2(ker F∗)⊥. 

 

Proof. For all Z1, Z2 (D1), X1(D  D2) and X2(ker F∗)⊥, using Equations (2), (3), (8), (11), (13) 

and the Lemma 4, we have 

 

g1 (Z 1
Z2, X1) = g1 (Z 1

JZ2, JX1) 

 

= g1 (Z 1
Z2, JX1) + g1 (Z 1

ωZ2, JX1) 

 

= cos21g1 (Z 1
Z2, X1) – g1 (Z 1

ωZ2, X1)+ g1(Z1
ωZ2, PX1) + g1 (Z1

ωZ2, ωRX1). 

 

That is, 

 

sin21g1(Z 1
Z2, X1)= − g1(Z 1

ωZ2,X1) + g1 (Z1
ωZ2, JPX1)+ g1 (Z1

ωZ2, ωRX1). 

 

From Equations (2), (3), (8), (12), (13) and the Lemma 4, we have 

 

g1 (Z 1
Z2, X2)= g1 (Z 1

JZ2, JX2) = g1 (Z 1
Z2, JX2) + g1 (Z 1

ωZ2, JX2) 

 

= cos21g1 (Z 1
Z2, X2) – g1 (Z1

ωZ2, X2)+ g1 (Z 1
ωZ2, CX2) + g1 (Z 1

ωZ2, BX2). 

 

So, we have 

 

Sin21g1 (Z 1
Z2, X2)= − g1 (Z1

ωZ2,X2) + g1 (Z 1
ωZ2, CX2)+ g1 (Z 1

ωZ2, BX2), 

 



487  Rajendra PRASAD et al. / GU J Sci, 34(2): 477-491 (2021) 

 

 

which completes the proof. 

 

Similarly as above, we get the following theorem: 

 

Theorem 9.  D2 is parallel if and only if  

 

g1 (X 1
ωRX2, ωQZ1) = − g1 (X 1

ωRX2, PZ1 + QZ1) 

 

and 

 

g1 (X 1
ωRX2, CZ2) = − g1 (X 1

ωRX2, BZ2) 

 

for all X1, X2(D2), Z1(D  D1) and Z2(ker F∗)⊥. 

 

Proof. For all X1, X2(D2), Z1(D  D1) and Z2 (Ker F∗)⊥. Using Equations (2), (3), (8), (11) and 

(12), we have 

 

g1 (X 1
X2, Z1) = g1 (X 1

JX2, JZ1) 

 

 = g1 (X 1
ωRX2, PZ1+ QZ1 + ωQZ1) 

 

= g1 (X 1
ωRX2, PZ1 + QZ1) + g1 (X 1

ωRX2, ωQZ1). 

 

Using Equations (2), (3), (8), (11) and (13), we have 

 

g1 (X 1
X2, Z2) = g1 (X 1

 JX2, JZ2) 

 

 = g1(X 1
ωRX2, BZ2+ CZ2) 

 

= g1 (X 1
ωRX2, BZ2) + g1 (X 1

ωRX2, CZ2) 

 

which shows our assertion. 

 

Theorem 10. F is a totally geodesic map if and only if  

 

g1 (Z 1
PZ2 + cos21Z 1

QZ2 – Z 1
ωPZ2−z1ωQZ2, V1) = g1 (Z1

ωQZ2 + Z 1
ωRZ2, BV1) 

 

+g1 (Z 1
ωQZ2 + Z 1

ωRZ2, V1) 

 

and 

 

g1 (V 1
PZ1 +cos21V 1

QZ1 – V 1
ωPZ1 – V 1

ωQZ1, V2) = g1 (V 1
ωQZ1 + V 1

ωRZ1, BV2) 

 

+g1 (V 1
ωQZ1 + V 1

ωRZ1, CV2) 

 

for all Z1, Z2(kerF∗) and V1,V2(ker F∗)⊥. 

 

Proof. For F is a Riemannian map, we have  

 

(F∗) (V1, V2) = 0 
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for all V1, V2(kerF∗)⊥. For all Z1, Z2(kerF∗) and V1, V2(kerF∗)⊥, using Equations (2), (3), (7), (8), 

(10), (11), (12), (13) and the Lemma 4, we have 

g2 ((F∗) (Z1, Z2), F∗ (V1)) = −g1 (Z 1
 Z2, V1) 

 

= −g1 (Z 1
JZ2, JV1) 

 

= −g1 (Z 1
 JPZ2, JV1) – g1 (Z 1

JQZ2, JV1) – g1 (Z 1
JRZ2, JV1) 

 

= −g1 (Z 1
PZ2, JV1) – g1 (Z 1

QZ2, JV1)−g1 (Z 1
ωQZ2, JV1) – g1 (Z 1

ωRZ2, JV1) 

 

 = −g1 (Z 1
PZ2 + cos21Z 1

QZ2 – z1ωPZ2, −z1ωQZ2,V1)−g1 (Z 1
ωQZ2 +Z 1

ωRZ2,V1) 

 

−g1 (z1ωQZ2 + z1ωRZ2,V1). 

 

Similarly, from Equations (2), (3), (7), (8), (10), (11), (12), (13) and the Lemma 4, we get 

 

g2 ((F∗) (V1, Z1), F∗ (V2))=  − g1 (v1 Z1, V2) 

 

 = −g1 (v1 JZ1, JV2) 

 

= −g1 (V 1
JPZ1 + JV2) – g1 (V 1

 JQZ1, JV2) – g1 (v1 JRZ1, JV2) 

 

= −g1 (V 1
PZ1, JV2) – g1 (V 1

QZ1, JV2) −g1 (V 1
ωQZ1, JV2) – g1 (V 1

ωRZ1, JV2)  

 

 = −g1 (V 1
PZ1 + cos21V 1

QZ1−V 1
ωPZ1−V 1

ωQZ1,V2)− g1 (V 1
ωQZ1+V 1

ωRZ1, BV2)  

 

−g1 (V 1
ωQZ1 + V 1

ωRZ1, CV2) 

 

which completes the proof. 

 

4. EXAMPLE 

 

Let (x1, x2,…, x2n–1, x2n) be coordinates on Euclidean space ℝ2𝑛 .An almost complex structure J on ℝ2𝑛 is 

defined by  

 

𝐽(𝑎1

𝜕

𝜕𝑥1
+ 𝑎2

𝜕

𝜕𝑥2
+. . . +𝑎2𝑛−1

𝜕

𝜕𝑥2𝑛−1
+ 𝑎2𝑛

𝜕

𝜕𝑥2𝑛
) 

 

= (−𝑎2

𝜕

𝜕𝑥1
+ 𝑎1

𝜕

𝜕𝑥2
+. . . −𝑎2𝑛

𝜕

𝜕𝑥2𝑛−1
+ 𝑎2𝑛−1

𝜕

𝜕𝑥2𝑛
) 

 

where a1, a2,…, a2n are C functions defined on ℝ2𝑛. This notation will use throughout this section. 

 

Example 1. Let (ℝ 14, g14, J) be an almost Hermitian manifold as defined above. F: ℝ 14→ℝ 8 is defined 

by 

 

F (x1, x2,…,x14) = (x3 sin  + x5 cos , x6, x7, x10, a, b, x13, x14) 

 

where 1 (0,


2
 ) and a, b ℝ. Then  F is a quasi-hemi-slant Riemannian map (where rank F∗ = 6) such that 
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X1 = 
𝜕

𝜕𝑥1
, 𝑋2 =

𝜕

𝜕𝑥2
, 𝑋3 = cos

𝜕

𝜕𝑥3
− sin

𝜕

𝜕𝑥5
, 𝑋4 =

𝜕

𝜕𝑥4
, X5 =

𝜕

𝜕𝑥8
, 𝑋6 =

𝜕

𝜕𝑥9
, 𝑋7 =

𝜕

𝜕𝑥11
, 𝑋8 =

𝜕

𝜕𝑥12
, 

 

kerF∗= D  D1 D2 

 

where 

 

D = < X1=
𝜕

𝜕𝑥1
, 𝑋2 =

𝜕

𝜕𝑥2
, 𝑋7 =

𝜕

𝜕𝑥11
, 𝑋8 =

𝜕

𝜕𝑥12
>, 

 

D1 = < X3= cos𝛼
𝜕

𝜕𝑥3
− sin𝛼

𝜕

𝜕𝑥5
, 𝑋4 =

𝜕

𝜕𝑥4
>, 

 

D2 = < X5=
𝜕

𝜕𝑥8
, 𝑋6 =

𝜕

𝜕𝑥9
>, 

 

and 

 

(kerF∗)⊥= <
𝜕

𝜕𝑥6
, sin𝛼

𝜕

𝜕𝑥3
+ cos

𝜕

𝜕𝑥5
,

𝜕

𝜕𝑥7
,

𝜕

𝜕𝑥10
,

𝜕

𝜕𝑥13
,

𝜕

𝜕𝑥14
> 

 

 

which D = Span {X1, X2, X7, X8} is invariant,  D1 = Span {X3, X4} is slant with slant angle 1 =  and D2 

= Span {X5, X6} is anti-invariant. 

 

Example 2.  Let (ℝ 12, g12, J) be an almost Hermitian manifold as defined above. F: ℝ 12→ℝ 8 is defined 

by 

 

F (x1, x2,..,x12) = (x1, x2, c, x5, 
𝑥7+√3𝑥9

2
, x10, d, x12) 

 

where 1 (0,


2
) and c, d ℝ. Then F is a quasi-hemi-slant Riemannian map (where rank F∗ = 6) such that 

 

X1=
𝜕

𝜕𝑥3
, 𝑋2 =

𝜕

𝜕𝑥4
, 𝑋3 =

𝜕

𝜕𝑥6
, X4=

1

2
(√3

𝜕

𝜕𝑥7
−

𝜕

𝜕𝑥9
), 𝑋5 =

𝜕

𝜕𝑥8
, 𝑋6 =

𝜕

𝜕𝑥11
, 

 

kerF∗= D  D1 D2, 

 

where 

 

D = < X1=
𝜕

𝜕𝑥3
, 𝑋2 =

𝜕

𝜕𝑥4
>, 

 

D1 = < X4=
1

2
(√3

𝜕

𝜕𝑥7
−

𝜕

𝜕𝑥9
), 𝑋5 =

𝜕

𝜕𝑥8
>, 

 

D2 = < X3=
𝜕

𝜕𝑥6
, 𝑋6 =

𝜕

𝜕𝑥11
> 

 

and 

 

(kerF∗)⊥= <
𝜕

𝜕𝑥1
,

𝜕

𝜕𝑥2
,

𝜕

𝜕𝑥5
,

1

2
(

𝜕

𝜕𝑥7
+ √3

𝜕

𝜕𝑥9
),

𝜕

𝜕𝑥10
,

𝜕

𝜕𝑥12
> 

 

which D = span {X1, X2} is invariant, D1 = Span {X4, X5} is slant with slant angle 1 = 


6
 and D1 = Span 

{X3, X6} is anti-invariant. 
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