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ON QUASI-METRIC AND METRIC SPACES

MACIEJ PALUSZYŃSKI AND KRZYSZTOF STEMPAK

(Communicated by Nigel J. Kalton)

Abstract. Given a space X with a quasi-metric ρ it is known that the so-

called p-chain approach can be used to produce a metric in X equivalent to
ρp for some 0 < p ≤ 1, hence also a quasi-metric ρ̃ equivalent to ρ with better
properties. We refine this result and obtain an exponent p which is, in general,
optimal.

1. Introduction

A quasi-metric on a nonempty set X is a mapping ρ : X × X → [0,∞) which
satisfies the following conditions:

(i) for every x, y ∈ X, ρ(x, y) = 0 if and only if x = y;
(ii) for every x, y ∈ X, ρ(x, y) = ρ(y, x);
(iii) there is a constant K ≥ 1 such that for every x, y, z ∈ X,

ρ(x, y) ≤ K
(
ρ(x, z) + ρ(z, y)

)
.

The pair (X, ρ) is then called a quasi-metric space; if K = 1, then ρ is a metric and
(X, ρ) is a metric space.

Condition (iii) can be replaced by

(iii)′ there is a constant Ko ≥ 1 such that for every x, y, z ∈ X,

ρ(x, y) ≤ Ko max{ρ(x, z), ρ(z, y)},
which is equivalent to (iii) if we do not care about constants entering into both
conditions, but is slightly more restrictive than (iii) if we do: (iii)′ implies (iii) with
K = Ko, while (iii) implies (iii)′ with Ko = 2K. It should be pointed out that
in the area of general topology a quasi-metric is often understood as a mapping ρ
which violates the symmetry condition (ii) rather than the triangle inequality (i.e.
(i) and (iii) with K = 1 are assumed to hold). In the present paper we adhere to
the definition given above.

Two quasi-metrics ρ1 and ρ2 on X are said to be equivalent if c−1ρ2(x, y) ≤
ρ1(x, y) ≤ cρ2(x, y) with some c > 0 independent of x, y ∈ X.

Maćıas and Segovia proved [8, Theorem 2] that given a quasi-norm ρ it is possible
to construct a quasi-metric ρ′ equivalent to ρ and such that the quasi-metric balls
related to ρ′ are open in the topology Fρ′ = Fρ; see Section 2 for the definition of
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Fρ. More precisely, they proved that for a given ρ there exist a quasi-metric ρ′, a
number 0 < α < 1 and C > 0 such that ρ′ is equivalent to ρ and

|ρ′(x, z)− ρ′(y, z)| ≤ Cρ′(x, y)α
(
max{ρ′(x, z), ρ′(y, z)}

)1−α
, x, y, z ∈ X.

A direct computation then shows that the above inequality indeed implies the fact
that the quasi-metric balls related to ρ′ are open in Fρ′ = Fρ.

Then Aimar, Iaffei and Nitti [1] furnished a direct proof of the aforementioned
result. In [1] a construction of Frink [5] was adapted to produce from a given ρ, with
appropriately chosen p, 0 < p < 1, the metric dp (see (2.1)) equivalent to ρp. The
question of finding some p so that ρp is equivalent to a metric is also discussed in [6,
p. 110]. The analogous result for quasi-normed spaces is called the Aoki-Rolewicz
theorem; see [2], [10], and also [7] and [9].

The aim of this paper is to refine the result of [1]; see the comments at the end
of Section 2 that explain the refinement. Also, we take the opportunity to furnish
an example and make some remarks related to the question, when is it that quasi-
metric balls related to a given quasi-metric ρ are open sets in the topology induced
in X by ρ.

Quasi-metric spaces are naturally involved in a part of harmonic analysis related
to the theory of spaces of homogeneous type (see [3, Chapter 6] as an introduction
to this theory) and enjoy continued interest. To be more specific let us mention
that if we extend a fundamental theory of Calderón-Zygmund singular integral
operators to a more abstract setting, it turns out that the essential arguments are
measure theoretic rather than Fourier analytic. The fundamental notion here is
that of a space of homogeneous type which is, first of all, a quasi-metric space
equipped in addition with a regular Borel measure that respects the quasi-metric
in an appropriate way.

2. Main result

Let (X, ρ) be a quasi-metric space. Given p, 0 < p ≤ 1, define dp : X × X →
[0,∞) by letting

(2.1) dp(x, y) = inf

{ n∑
j=1

ρ(xj−1, xj)
p : x = x0, x1, . . . , xn = y, n ≥ 1

}
.

Clearly, dp is symmetric and satisfies the triangle inequality

dp(x, y) ≤ dp(x, z) + dp(z, y), x, y, z ∈ X;

in addition, dp ≤ ρp. It is reasonable to refer to this process of producing dp
from ρ as the p-chain approach. It was shown in [1] that with p chosen properly,
dp(x, y) �= 0 for x �= y; thus dp becomes a metric, in fact equivalent to ρp.

A similar approach in the context of quasi-normed spaces is known; see [2], [10],
[7] and [9]. Although the argument which is presented in [9] to prove a “quasi-
normed” result analogous to that from the proposition below doesn’t seem to be
directly applicable in the quasi-metric case, it gives a hint about how p should be
chosen.

Proposition. Let (X, ρ) be a quasi-metric space and let 0 < p ≤ 1 be given by
(2K)p = 2. Then dp obtained from ρ by the p-chain approach is a metric on X
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equivalent to ρp. In other words, ρ̃ = ρ̃(p) = d
1/p
p is a quasi-metric on X equivalent

to ρ and satisfying, in addition, the so-called p-triangle inequality

ρ̃(x, y) ≤ (ρ̃(x, z)p + ρ̃(z, y)p)1/p , x, y, z ∈ X.

The same conclusions hold if ρ satisfies (i), (ii) and (iii) ′ with Ko ≥ 2 and if
0 < p ≤ 1 is then determined by Kp

o = 2.

Proof. Clearly, it is sufficient to consider the case where ρ satisfies (iii)′ withKo ≥ 2.
It has already been mentioned that d = dp given by (2.1) is symmetric, satisfies the
triangle inequality and verifies the left hand side of the inequalities

(2.2) d(x, y) ≤ ρ(x, y)p ≤ 4 d(x, y), x, y ∈ X.

Showing the right hand side of (2.2) will complete the proof that d is a metric
(equivalent to ρp). Obviously, the statements concerning ρ̃ then follow.

We prove by induction on n that for any given sequence of n + 1 points x =
x0, x1, . . . , xn = y, n ≥ 2,

(2.3) ρ(x, y)p ≤ 2
(
ρ(x0, x1)

p + 2

n−2∑
j=1

ρ(xj , xj+1)
p + ρ(xn−1, xn)

p
)

(if n = 2, then the middle term on the right hand side of (2.3) is absent). Conse-
quently, ρ(x, y)p ≤ 4 d(x, y) follows.

If n = 2 and three points x, x1, y are given, then using Kp
o = 2 gives

ρ(x, y)p ≤ Kp
o max{ρ(x, x1)

p, ρ(x1, y)
p}

= 2max{ρ(x, x1)
p, ρ(x1, y)

p}.

Observe that, as a consequence, we obtain the starting point for the induction. As-
sume now that the induction hypothesis holds, (i.e. (2.3) is satisfied), and consider
a sequence of n+ 2 points x = x0, x1, . . . , xn+1 = y. Let m be the largest number
among {0, 1, . . . , n} with the property

(2.4) ρ(x, y)p ≤ 2ρ(xm, y)p.

Since ρ(x, y)p ≤ 2max{ρ(x, xm+1)
p, ρ(xm+1, y)

p}, therefore

(2.5) ρ(x, y)p ≤ 2ρ(x, xm+1)
p

(this is clear if m ≤ n− 1 and obvious for m = n). Combining (2.4) and (2.5) gives

ρ(x, y)p ≤ 2min{ρ(x, xm+1)
p, ρ(xm, y)p}

≤ ρ(x, xm+1)
p + ρ(xm, y)p.

If it happens that m = 0 or m = n, then the first inequality above readily gives
the required conclusion, i.e. (2.3) with n replaced by n + 1, and there is actually
no need to invoke the induction hypothesis. Assume therefore that 1 ≤ m ≤ n− 1.
Then, applying the induction hypothesis to the sequences x = x0, x1, . . . , xm+1 and
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xm, xm+1, . . . , xn+1 = y (both of length ≤ n+ 1) gives

ρ(x, y)p ≤ ρ(x, xm+1)
p + ρ(xm, y)p

≤ 2
(
ρ(x0, x1)

p + 2

m−1∑
j=1

ρ(xj , xj+1)
p + ρ(xm, xm+1)

p
)

+ 2
(
ρ(xm, xm+1)

p + 2

n−1∑
j=m+1

ρ(xj , xj+1)
p + ρ(xn, xn+1)

p
)

= 2
(
ρ(x0, x1)

p + 2
n−1∑
j=1

ρ(xj , xj+1)
p + ρ(xn, xn+1)

p
)
.

This completes the induction step and thus the proof of the Proposition. �

If (X, ρ) is a quasi-metric space, then Fρ, the topology in X induced by ρ, is
canonically defined by means of the theory of uniform structures; in case ρ is a
metric this procedure leads to the usual metric topology in X. We refer the reader
to the monograph [4], where in Chapter 8 this way of introducing a topology is
discussed.

The uniform structure Uρ generated by ρ is defined to consist of all subsets
V ⊂ X × X, symmetric in the sense that (x, y) ∈ V if and only if (y, x) ∈ V
and containing a set of the form Rε = {(x, y) : ρ(x, y) < ε} for some ε > 0 (in
particular V contains the diagonal {(x, x) : x ∈ X}). Since the countable family
{R1/n}n≥1 is a basis for the uniform structure Uρ, it follows from a general result
(see [4, Chapter 8, Theorem 9]) that the topology Fρ generated by Uρ in X is
metrizable.

Given r > 0 and x ∈ X, let

B(x, r) = {y ∈ X : ρ(x, y) < r}
be the quasi-metric ball related to ρ of radius r and with center x. According
to the procedure of defining a topology by means of a uniform structure (see [4,
Chapter 8]), in this case G ⊂ X is defined to be open, i.e. G ∈ Fρ, if and only if
for every x ∈ G there exists r > 0 such that B(x, r) ⊂ G (at this point one easily
checks directly that the topology axioms are satisfied for such a definition). It is
clear that if ρ1 is a quasi-metric equivalent to ρ, then Fρ1

= Fρ; also, for any a > 0,
ρa is a quasi-metric as well and Fρa = Fρ. Thus the Proposition furnishes a direct
argument showing that Fρ is metrizable [1], [8].

The quasi-metric balls themselves need not be open (unless ρ is a genuine metric)
as the following simple example shows.

Example. Let X = {0, 1, 2, . . . }. Given ε > 0, we define ρ = ρε on X ×X in the
following way. For 0 ≤ n < m, we set ρ(n,m) as

ρ(0, 1) = 1, ρ(0,m) = 1 + ε if m ≥ 2,

ρ(1,m) =
1

m
, ρ(n,m) =

1

n
+

1

m
if n ≥ 2.

We then extend ρ onto X ×X by putting ρ(n, n) = 0 for any n ≥ 0 and ρ(n,m) =
ρ(m,n) if 0 ≤ m < n. We will show that

(2.6) ρ(k, n) ≤ (1 + ε)
(
ρ(k,m) + ρ(m,n)

)
, k,m, n ∈ X,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON QUASI-METRIC AND METRIC SPACES 4311

and thus ρ is a quasi-metric with K = 1+ ε. It is clear that it suffices to check (2.6)
for pairwise distinct k,m, n only. Let L and R denote the left and the right hand
sides of the inequality (2.6), respectively. If one of k, n,m is 0, then L ≤ 1+ ε ≤ R.
If none of k,m, n are 0, then we consider subcases. First, assume 1 appears among
k,m, n. If k = 1, then L = 1

n while R = (1 + ε)( 2
m + 1

n ). Similarly if n = 1. If

m = 1, then L = 1
k + 1

n while R = (1+ ε)( 1k + 1
n ). Next, assume 1 does not appear

among k, n,m. Then L = 1
k + 1

n and R = (1 + ε)( 1k + 2
m + 1

n ). This finishes our
checking that ρ is indeed a quasi-metric with constant K = 1 + ε.

Now, note that B(0, 1 + ε/2) = {0, 1} while B(1, η) contains infinitely many
elements, for any η > 0. Hence, none of B(1, η) are contained in B(0, 1 + ε/2),
which shows that B(0, 1 + ε/2) is not open.

The metric dp, produced from ρ = ρε by the p-chain approach, can be computed
directly. Let p be defined as in the Proposition, with 1 + ε in place of K. It is not

hard to see that with the notation x0 =
(
(1 + ε)p − 1

)−1/p
, dp is given by

(2.7) dp(k, n) =

{
1 + max{k, n}−p, if min{k, n} = 0 and max{k, n} > x0,

ρ(k, n)p, otherwise.

It is easily seen that if for a quasi-metric space (X, ρ) there exists a function
K(ε), ε > 0, such that K(ε) → 1 as ε → 0+, and

∀ x, y, z ∈ X ρ(y, z) < ερ(x, y) ⇒ ρ(x, z) ≤ K(ε)
(
ρ(x, y) + ρ(y, z)

)
,

then the quasi-metric balls B(x, r), x ∈ X, r > 0, are open sets in the topology Fρ.
In particular, if a quasi-metric ρ which, for some p, 0 < p ≤ 1, satisfies the

p-triangle inequality

(2.8) ρ(x, z) ≤
(
ρ(x, y)p + ρ(y, z)p

)1/p
, x, y, z ∈ X,

then K(ε) = (1 + εp)1/p is appropriate. Consequently, a quasi-metric space (X, ρ)
with ρ satisfying (2.8) has all its quasi-metric balls open; hence this also happens
for the quasi-metric ρ̃ = ρ̃(p) from the Proposition.

It is clear that the quasi-metric space (X, ρ) from the Example must fail to
satisfy (2.8) for any p, 0 < p ≤ 1. To see this by a direct argument note that for
x = 0, y = 1 and z = n ≥ 2 we have ρ(0, n) = 1 + ε, while(

ρ(0, 1)p + ρ(1, n)p
)1/p

=
(
1 + n−p

)1/p → 1, as n → ∞.

Given a quasi-metric space (X, ρ), let K(ρ) denote the smallest constant K for
which (iii) holds, and let p(ρ) denote the largest p ∈ (0, 1] for which (2.8) holds; if
such p does not exist, then we set p(ρ) = 0. For instance, for the quasi-metric ρε
from the example we have K(ρε) = 1 + ε and p(ρε) = 0. Also, let p̃(ρ) denote the
supremum of the set of p ∈ (0, 1] with the property that there exists a quasi-metric
ρ̃ equivalent to ρ and such that (2.8) is satisfied with ρ̃ replacing ρ. Equivalently,

p̃(ρ) = sup{p ∈ (0, 1] : dp is a metric equivalent to ρp}.

It follows from the Proposition that for any given (X, ρ) one has

(2.9) p̃(ρ) ≥ 1

log2(2K(ρ))
.
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Note that in [1] the weaker estimate

p̃(ρ) ≥ 1

(log2(3K(ρ)))2

was proved. A simple example of the usual �p spaces, 0 < p < 1, shows that the
estimate (2.9) cannot, in general, be improved.

It can happen, however, that the inequality (2.9) is strict. In fact, for the quasi-
metric ρε from the above example one can apply the p-chain approach for any
0 < p ≤ 1 and obtain a metric. Thus for this rather pathological example, actually
p̃(ρ) = 1.
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