PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 12, December 2009, Pages 4307-4312 S 0002-9939(09)10058-8 Article electronically published on August 7, 2009

ON QUASI-METRIC AND METRIC SPACES

MACIEJ PALUSZYŃSKI AND KRZYSZTOF STEMPAK

(Communicated by Nigel J. Kalton)

ABSTRACT. Given a space X with a quasi-metric ρ it is known that the socalled *p*-chain approach can be used to produce a metric in X equivalent to ρ^p for some $0 , hence also a quasi-metric <math>\tilde{\rho}$ equivalent to ρ with better properties. We refine this result and obtain an exponent *p* which is, in general, optimal.

1. INTRODUCTION

A quasi-metric on a nonempty set X is a mapping $\rho : X \times X \to [0, \infty)$ which satisfies the following conditions:

- (i) for every $x, y \in X$, $\rho(x, y) = 0$ if and only if x = y;
- (ii) for every $x, y \in X$, $\rho(x, y) = \rho(y, x)$;
- (iii) there is a constant $K \ge 1$ such that for every $x, y, z \in X$,

$$\rho(x, y) \le K(\rho(x, z) + \rho(z, y)).$$

The pair (X, ρ) is then called a quasi-metric space; if K = 1, then ρ is a metric and (X, ρ) is a metric space.

Condition (iii) can be replaced by

(iii)' there is a constant $K_o \ge 1$ such that for every $x, y, z \in X$,

 $\rho(x, y) \le K_o \max\{\rho(x, z), \rho(z, y)\},\$

which is equivalent to (iii) if we do not care about constants entering into both conditions, but is slightly more restrictive than (iii) if we do: (iii)' implies (iii) with $K = K_o$, while (iii) implies (iii)' with $K_o = 2K$. It should be pointed out that in the area of general topology a quasi-metric is often understood as a mapping ρ which violates the symmetry condition (ii) rather than the triangle inequality (i.e. (i) and (iii) with K = 1 are assumed to hold). In the present paper we adhere to the definition given above.

Two quasi-metrics ρ_1 and ρ_2 on X are said to be equivalent if $c^{-1}\rho_2(x,y) \le \rho_1(x,y) \le c\rho_2(x,y)$ with some c > 0 independent of $x, y \in X$.

Macías and Segovia proved [8, Theorem 2] that given a quasi-norm ρ it is possible to construct a quasi-metric ρ' equivalent to ρ and such that the quasi-metric balls related to ρ' are open in the topology $\mathcal{F}_{\rho'} = \mathcal{F}_{\rho}$; see Section 2 for the definition of

©2009 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors January 18, 2009, and, in revised form, May 12, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54E35; Secondary 54E15.

Key words and phrases. Quasi-metric, p-chain approach.

The authors' research was supported in part by grants KBN #1P03A03029 and MNiSW #N201 054 32/4285, respectively.

 \mathcal{F}_{ρ} . More precisely, they proved that for a given ρ there exist a quasi-metric ρ' , a number $0 < \alpha < 1$ and C > 0 such that ρ' is equivalent to ρ and

$$|\rho'(x,z) - \rho'(y,z)| \le C\rho'(x,y)^{\alpha} \left(\max\{\rho'(x,z), \rho'(y,z)\} \right)^{1-\alpha}, \quad x,y,z \in X.$$

A direct computation then shows that the above inequality indeed implies the fact that the quasi-metric balls related to ρ' are open in $\mathcal{F}_{\rho'} = \mathcal{F}_{\rho}$.

Then Aimar, Iaffei and Nitti [1] furnished a direct proof of the aforementioned result. In [1] a construction of Frink [5] was adapted to produce from a given ρ , with appropriately chosen $p, 0 , the metric <math>d_p$ (see (2.1)) equivalent to ρ^p . The question of finding some p so that ρ^p is equivalent to a metric is also discussed in [6, p. 110]. The analogous result for quasi-normed spaces is called the Aoki-Rolewicz theorem; see [2], [10], and also [7] and [9].

The aim of this paper is to refine the result of [1]; see the comments at the end of Section 2 that explain the refinement. Also, we take the opportunity to furnish an example and make some remarks related to the question, when is it that quasimetric balls related to a given quasi-metric ρ are open sets in the topology induced in X by ρ .

Quasi-metric spaces are naturally involved in a part of harmonic analysis related to the theory of *spaces of homogeneous type* (see [3, Chapter 6] as an introduction to this theory) and enjoy continued interest. To be more specific let us mention that if we extend a fundamental theory of Calderón-Zygmund singular integral operators to a more abstract setting, it turns out that the essential arguments are measure theoretic rather than Fourier analytic. The fundamental notion here is that of a space of homogeneous type which is, first of all, a quasi-metric space equipped in addition with a regular Borel measure that respects the quasi-metric in an appropriate way.

2. Main result

Let (X, ρ) be a quasi-metric space. Given $p, 0 , define <math>d_p : X \times X \rightarrow [0, \infty)$ by letting

(2.1)
$$d_p(x,y) = \inf \left\{ \sum_{j=1}^n \rho(x_{j-1}, x_j)^p : x = x_0, x_1, \dots, x_n = y, \quad n \ge 1 \right\}.$$

Clearly, d_p is symmetric and satisfies the triangle inequality

$$d_p(x,y) \le d_p(x,z) + d_p(z,y), \quad x,y,z \in X;$$

in addition, $d_p \leq \rho^p$. It is reasonable to refer to this process of producing d_p from ρ as the *p*-chain approach. It was shown in [1] that with *p* chosen properly, $d_p(x, y) \neq 0$ for $x \neq y$; thus d_p becomes a metric, in fact equivalent to ρ^p .

A similar approach in the context of quasi-normed spaces is known; see [2], [10], [7] and [9]. Although the argument which is presented in [9] to prove a "quasinormed" result analogous to that from the proposition below doesn't seem to be directly applicable in the quasi-metric case, it gives a hint about how p should be chosen.

Proposition. Let (X, ρ) be a quasi-metric space and let $0 be given by <math>(2K)^p = 2$. Then d_p obtained from ρ by the p-chain approach is a metric on X

equivalent to ρ^p . In other words, $\tilde{\rho} = \tilde{\rho}(p) = d_p^{1/p}$ is a quasi-metric on X equivalent to ρ and satisfying, in addition, the so-called p-triangle inequality

$$\tilde{\rho}(x,y) \le \left(\tilde{\rho}(x,z)^p + \tilde{\rho}(z,y)^p\right)^{1/p}, \quad x,y,z \in X.$$

The same conclusions hold if ρ satisfies (i), (ii) and (iii)' with $K_o \geq 2$ and if $0 is then determined by <math>K_o^p = 2$.

Proof. Clearly, it is sufficient to consider the case where ρ satisfies (iii)' with $K_o \geq 2$. It has already been mentioned that $d = d_p$ given by (2.1) is symmetric, satisfies the triangle inequality and verifies the left hand side of the inequalities

(2.2)
$$d(x,y) \le \rho(x,y)^p \le 4 d(x,y), \quad x,y \in X.$$

Showing the right hand side of (2.2) will complete the proof that d is a metric (equivalent to ρ^p). Obviously, the statements concerning $\tilde{\rho}$ then follow.

We prove by induction on n that for any given sequence of n + 1 points $x = x_0, x_1, \ldots, x_n = y, n \ge 2$,

(2.3)
$$\rho(x,y)^p \le 2\left(\rho(x_0,x_1)^p + 2\sum_{j=1}^{n-2}\rho(x_j,x_{j+1})^p + \rho(x_{n-1},x_n)^p\right)$$

(if n = 2, then the middle term on the right hand side of (2.3) is absent). Consequently, $\rho(x, y)^p \leq 4 d(x, y)$ follows.

If n = 2 and three points x, x_1, y are given, then using $K_o^p = 2$ gives

$$\rho(x,y)^p \le K_o^p \max\{\rho(x,x_1)^p, \rho(x_1,y)^p\} = 2 \max\{\rho(x,x_1)^p, \rho(x_1,y)^p\}.$$

Observe that, as a consequence, we obtain the starting point for the induction. Assume now that the induction hypothesis holds, (i.e. (2.3) is satisfied), and consider a sequence of n + 2 points $x = x_0, x_1, \ldots, x_{n+1} = y$. Let *m* be the largest number among $\{0, 1, \ldots, n\}$ with the property

(2.4)
$$\rho(x,y)^p \le 2\rho(x_m,y)^p.$$

Since $\rho(x, y)^p \le 2 \max\{\rho(x, x_{m+1})^p, \rho(x_{m+1}, y)^p\}$, therefore

(2.5)
$$\rho(x,y)^p \le 2\rho(x,x_{m+1})^p$$

(this is clear if $m \le n-1$ and obvious for m=n). Combining (2.4) and (2.5) gives

$$\rho(x, y)^{p} \leq 2 \min\{\rho(x, x_{m+1})^{p}, \rho(x_{m}, y)^{p}\}$$
$$\leq \rho(x, x_{m+1})^{p} + \rho(x_{m}, y)^{p}.$$

If it happens that m = 0 or m = n, then the first inequality above readily gives the required conclusion, i.e. (2.3) with n replaced by n + 1, and there is actually no need to invoke the induction hypothesis. Assume therefore that $1 \le m \le n - 1$. Then, applying the induction hypothesis to the sequences $x = x_0, x_1, \ldots, x_{m+1}$ and $x_m, x_{m+1}, \ldots, x_{n+1} = y$ (both of length $\leq n+1$) gives

$$\rho(x,y)^{p} \leq \rho(x,x_{m+1})^{p} + \rho(x_{m},y)^{p}$$

$$\leq 2\Big(\rho(x_{0},x_{1})^{p} + 2\sum_{j=1}^{m-1}\rho(x_{j},x_{j+1})^{p} + \rho(x_{m},x_{m+1})^{p}\Big)$$

$$+ 2\Big(\rho(x_{m},x_{m+1})^{p} + 2\sum_{j=m+1}^{n-1}\rho(x_{j},x_{j+1})^{p} + \rho(x_{n},x_{n+1})^{p}\Big)$$

$$= 2\Big(\rho(x_{0},x_{1})^{p} + 2\sum_{j=1}^{n-1}\rho(x_{j},x_{j+1})^{p} + \rho(x_{n},x_{n+1})^{p}\Big).$$

This completes the induction step and thus the proof of the Proposition.

If (X, ρ) is a quasi-metric space, then \mathcal{F}_{ρ} , the topology in X induced by ρ , is canonically defined by means of the theory of *uniform structures*; in case ρ is a metric this procedure leads to the usual metric topology in X. We refer the reader to the monograph [4], where in Chapter 8 this way of introducing a topology is discussed.

The uniform structure U_{ρ} generated by ρ is defined to consist of all subsets $V \subset X \times X$, symmetric in the sense that $(x, y) \in V$ if and only if $(y, x) \in V$ and containing a set of the form $R_{\epsilon} = \{(x, y) : \rho(x, y) < \epsilon\}$ for some $\epsilon > 0$ (in particular V contains the diagonal $\{(x, x) : x \in X\}$). Since the countable family $\{R_{1/n}\}_{n\geq 1}$ is a basis for the uniform structure U_{ρ} , it follows from a general result (see [4, Chapter 8, Theorem 9]) that the topology \mathcal{F}_{ρ} generated by U_{ρ} in X is metrizable.

Given r > 0 and $x \in X$, let

$$B(x, r) = \{ y \in X : \rho(x, y) < r \}$$

be the quasi-metric ball related to ρ of radius r and with center x. According to the procedure of defining a topology by means of a uniform structure (see [4, Chapter 8]), in this case $G \subset X$ is defined to be open, i.e. $G \in \mathcal{F}_{\rho}$, if and only if for every $x \in G$ there exists r > 0 such that $B(x, r) \subset G$ (at this point one easily checks directly that the topology axioms are satisfied for such a definition). It is clear that if ρ_1 is a quasi-metric equivalent to ρ , then $\mathcal{F}_{\rho_1} = \mathcal{F}_{\rho}$; also, for any a > 0, ρ^a is a quasi-metric as well and $\mathcal{F}_{\rho^a} = \mathcal{F}_{\rho}$. Thus the Proposition furnishes a direct argument showing that \mathcal{F}_{ρ} is metrizable [1], [8].

The quasi-metric balls themselves need not be open (unless ρ is a genuine metric) as the following simple example shows.

Example. Let $X = \{0, 1, 2, ...\}$. Given $\epsilon > 0$, we define $\rho = \rho_{\epsilon}$ on $X \times X$ in the following way. For $0 \le n < m$, we set $\rho(n, m)$ as

$$\rho(0,1) = 1, \qquad \rho(0,m) = 1 + \epsilon \quad \text{if } m \ge 2,$$

$$\rho(1,m) = \frac{1}{m}, \qquad \rho(n,m) = \frac{1}{n} + \frac{1}{m} \quad \text{if } n \ge 2.$$

We then extend ρ onto $X \times X$ by putting $\rho(n, n) = 0$ for any $n \ge 0$ and $\rho(n, m) = \rho(m, n)$ if $0 \le m < n$. We will show that

(2.6)
$$\rho(k,n) \le (1+\epsilon) \left(\rho(k,m) + \rho(m,n)\right), \quad k,m,n \in X,$$

and thus ρ is a quasi-metric with $K = 1 + \epsilon$. It is clear that it suffices to check (2.6) for pairwise distinct k, m, n only. Let L and R denote the left and the right hand sides of the inequality (2.6), respectively. If one of k, n, m is 0, then $L \leq 1 + \epsilon \leq R$. If none of k, m, n are 0, then we consider subcases. First, assume 1 appears among k, m, n. If k = 1, then $L = \frac{1}{n}$ while $R = (1 + \epsilon)(\frac{2}{m} + \frac{1}{n})$. Similarly if n = 1. If m = 1, then $L = \frac{1}{k} + \frac{1}{n}$ while $R = (1 + \epsilon)(\frac{1}{k} + \frac{1}{n})$. Next, assume 1 does not appear among k, n, m. Then $L = \frac{1}{k} + \frac{1}{n}$ and $R = (1 + \epsilon)(\frac{1}{k} + \frac{2}{m} + \frac{1}{n})$. This finishes our checking that ρ is indeed a quasi-metric with constant $K = 1 + \epsilon$.

Now, note that $B(0, 1 + \epsilon/2) = \{0, 1\}$ while $B(1, \eta)$ contains infinitely many elements, for any $\eta > 0$. Hence, none of $B(1, \eta)$ are contained in $B(0, 1 + \epsilon/2)$, which shows that $B(0, 1 + \epsilon/2)$ is not open.

The metric d_p , produced from $\rho = \rho_{\epsilon}$ by the *p*-chain approach, can be computed directly. Let *p* be defined as in the Proposition, with $1 + \epsilon$ in place of *K*. It is not hard to see that with the notation $x_0 = ((1 + \epsilon)^p - 1)^{-1/p}$, d_p is given by

(2.7)
$$d_p(k,n) = \begin{cases} 1 + \max\{k,n\}^{-p}, & \text{if } \min\{k,n\} = 0 \text{ and } \max\{k,n\} > x_0, \\ \rho(k,n)^p, & \text{otherwise.} \end{cases}$$

It is easily seen that if for a quasi-metric space (X, ρ) there exists a function $K(\epsilon), \epsilon > 0$, such that $K(\epsilon) \to 1$ as $\epsilon \to 0^+$, and

$$\forall x, y, z \in X \quad \rho(y, z) < \epsilon \rho(x, y) \Rightarrow \rho(x, z) \le K(\epsilon) \big(\rho(x, y) + \rho(y, z) \big),$$

then the quasi-metric balls $B(x,r), x \in X, r > 0$, are open sets in the topology \mathcal{F}_{ρ} .

In particular, if a quasi-metric ρ which, for some p, 0 , satisfies the*p*-triangle inequality

(2.8)
$$\rho(x,z) \le \left(\rho(x,y)^p + \rho(y,z)^p\right)^{1/p}, \quad x,y,z \in X,$$

then $K(\epsilon) = (1 + \epsilon^p)^{1/p}$ is appropriate. Consequently, a quasi-metric space (X, ρ) with ρ satisfying (2.8) has all its quasi-metric balls open; hence this also happens for the quasi-metric $\tilde{\rho} = \tilde{\rho}(p)$ from the Proposition.

It is clear that the quasi-metric space (X, ρ) from the Example must fail to satisfy (2.8) for any p, 0 . To see this by a direct argument note that for <math>x = 0, y = 1 and $z = n \geq 2$ we have $\rho(0, n) = 1 + \epsilon$, while

$$(\rho(0,1)^p + \rho(1,n)^p)^{1/p} = (1+n^{-p})^{1/p} \to 1, \quad \text{as } n \to \infty.$$

Given a quasi-metric space (X, ρ) , let $K(\rho)$ denote the smallest constant K for which (iii) holds, and let $p(\rho)$ denote the largest $p \in (0, 1]$ for which (2.8) holds; if such p does not exist, then we set $p(\rho) = 0$. For instance, for the quasi-metric ρ_{ϵ} from the example we have $K(\rho_{\epsilon}) = 1 + \epsilon$ and $p(\rho_{\epsilon}) = 0$. Also, let $\tilde{p}(\rho)$ denote the supremum of the set of $p \in (0, 1]$ with the property that there exists a quasi-metric $\tilde{\rho}$ equivalent to ρ and such that (2.8) is satisfied with $\tilde{\rho}$ replacing ρ . Equivalently,

 $\tilde{p}(\rho) = \sup\{p \in (0,1] : d_p \text{ is a metric equivalent to } \rho^p\}.$

It follows from the Proposition that for any given (X, ρ) one has

(2.9)
$$\tilde{p}(\rho) \ge \frac{1}{\log_2(2K(\rho))}.$$

Note that in [1] the weaker estimate

$$\tilde{p}(\rho) \ge \frac{1}{(\log_2(3K(\rho)))^2}$$

was proved. A simple example of the usual ℓ^p spaces, 0 , shows that the estimate (2.9) cannot, in general, be improved.

It can happen, however, that the inequality (2.9) is strict. In fact, for the quasimetric ρ_{ϵ} from the above example one can apply the *p*-chain approach for any 0 and obtain a metric. Thus for this rather pathological example, actually $<math>\tilde{p}(\rho) = 1$.

Acknowledgements

The authors would like to thank Professor Roberto Macías for pointing out to them reference [1] and the referee for bringing to their attention references [6] and [7] as well as for suggesting numerous improvements in the presentation.

References

- H. Aimar, B. Iaffei and L. Nitti, On the Macías-Segovia metrization of quasi-metric spaces, Revista U. Mat. Argentina 41 (1998), 67–75. MR1700292 (2000e:54019)
- T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), 588– 594. MR0014182 (7:250d)
- M. Christ, Lectures on Singular Integral Operators, CBMS Reg. Conf. Ser. Math., vol. 77, Amer. Math. Soc., Providence, RI, 1990. MR1104656 (92f:42021)
- [4] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. MR1039321 (91c:54001)
- [5] A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 133-142. MR1563501
- [6] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001. MR1800917 (2002c:30028)
- [7] N. J. Kalton, N. T. Peck, and J. W. Roberts, An F-space Sampler, London Math. Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984. MR808777 (87c:46002)
- [8] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257–270. MR546295 (81c:32017a)
- [9] J. Peetre and G. Sparr, Interpolation of normed abelian groups, Ann. Mat. Pura Appl. (4) 92 (1972), 217–262. MR0322529 (48:891)
- [10] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 471–473. MR0088682 (19:562d)

Instytut Matematyczny, Uniwersytet Wrocławski, Pl. Grunwaldzki 2/4, 50–384 Wrocław, Poland

E-mail address: mpal@math.uni.wroc.pl

INSTYTUT MATEMATYKI I INFORMATYKI, POLITECHNIKA WROCŁAWSKA, WYB. WYSPIAŃSKIEGO 27, 50–370 WROCŁAW, POLAND – AND – KATEDRA MATEMATYKI I ZASTOSOWAŃ INFORMATYKI, POLITECHNIKA OPOLSKA, UL. MIKOŁAJCZYKA 5, 45-271 OPOLE, POLAND

E-mail address: Krzysztof.Stempak@pwr.wroc.pl