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ON QUASI-STATIONARY MODELS OF MIXTURES OF
COMPRESSIBLE FLUIDS

J. FREHSE AND W. WEIGANT

ABSTRACT. We consider mixtures of compressible viscous fluids consisting of two miscible
species. In contrast to mixture - models considered by the french school where one has
only one velocity field the mixture equation considered here have densities and velocity
fields assigned to each species of the fluid.

1. STATEMENT OF THE PROBLEM AND MAIN RESULTS

In this article we deal with mixtures of compressible viscous fluids consisting of two miscible
species. In contrast to some mixture - models considered by the french school where one
has only one velocity field the mixture equation considered here have densities and velocity
fields assigned to each species of the fluid. For the derivation of the constitutive equations
from the physical model see the books of Rajagopal and Haupt [12], [7]. We consider here
the quasi-stationary model which is a reasonable approximation of the general case if the
accelerations are small.

The one component quasi-stationary model as an approximation to the Navier-Stokes-system
has been considered in the works [1], [9], [11], [10].

The stationary Stokes-like-case with two components has been considered in [2], [3] and
[5]. In these papers the exictence of weak solutions with additional L? - properties of the
densities has been achieved.

We establish in the present article existence of global classical solutions to the initial -
boundary value problem for the system of equations which follow immediately by using new
a priori estimates. This is remarkable since the system is nonlinear and of first order with
respect to the densities.

The partial differential equations of the quasi-stationary model which describe the motion
of the mixture in a bounded domain Q C RY, N > 1, read:
Balance of momentum for the i-th species (i = 1,2) :

(uijAu(j) + (ij + Xij)V divu(j)) + (=) w®? —uWyg — vp = 0.
1

(1)

2
i=

Conservation of mass for the i-th species (i = 1,2):
o . L
(2) 5P+ div(pPu®) = 0.
The equations (1) and (2) have to hold in Qr = Q x (0,T) , T = const > 0.

The quantities in equation (1) and (2) have the following meaning:
e p(z,t) mass density for the i-th component of the mixture, i = 1,2;

e p(pM) p®)) pressure for the i-th component of the mixture, i = 1,2;
° ug-z) (x,t) the j-th component of the i-th velocity field, j =1,..., N;
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o u® = (ugi)7 . ,ug\i,)) , x=(1,...,TN), t—time;
® [i;; , Aij - Viscosity constants;

Bui
ox; *

N
e A - Laplacian in RN, V = (8%’ ceey afN) - gradient operator, divu = 21
i=

For simplicity we start with the case where the flow domain is taken to be the N-dimensional
parallelepiped €:

N
Q=JJ0,dp) ={z eR"0 <y <dy, k=1,...,N}.
k=1

The boundary 92 of Q consists of the parts
N
Sk =({zr =0} U{zp =di}) NQ, 02 = ] S.
k=1
For the viscosity constants we require
3) { i1 >0, po2 >0, v11 >0, va >0, vy =205 + Ay, 1 <4, j <2,
Apnipon — (a2 + p21)® > 0, dviyvey — (12 +v21)” > 0.
The pressure law has the form

PO (o™, p®) = kD pDp(p™, @), kY = const >0, i=1,2,
1
(™M) = (o /ol + 0P /pZ)" ", 5 = const. > 1.

The factor g in the interaction term is assumed to satisfy

(4)

gt 2,0V, 0@ u® D) = ag + ar (0D + p@)* + ap(1 + [u® — w2,
a) ag = const. > 0, a; = const. > 0, ag = const. >0,

2
b) 61 = const. >0, 0; € [O,N)7
¢) B = const. >0, 6, € [O,ﬁ) for N >2, 6, € [0,27%2) for N =1.

(5)

‘We have the initial condition

(6) P (z,)|4=0 = péi)(ac) , reQ,i=12.

We consider the following mixed boundary condition for the velocity fields u(?):
u! =0on S x[0,T], k=1,...,N

@) %Z%)ZOODSICX[O,T], m#k, mk=1,2,...,N.

Remark 1.1. a) If N =1, then k = 1, S; = 99, and we have just the Dirichlet boundary
condition

u =0 on 9Q x [0,T].
b) If N = 2 the boundary conditions (7) have the form
u® . =0on 90 x [0,7],
curlu® =0 on 9N x [0,T].
¢) If N = 3 the boundary conditions (7) read
u® . =0on 00 x [0,7],
n x curlu® =0 on dQ x [0,7].

Here 7 is the outer normal vector at the boundary.

Remark 1.2. We treat all dimensions N > 1. The results and methods of proof hold and
work analogously in the case of periodic boundary conditions and can be simply extended
to the case of a mixture of [ species, [ > 3.



Definition 1.1. A classical solution to problem (1)-(7) is a quadrupel of functions (u")
u® , p | p2Y such that

uM u® e P (Qx [0,1]); pM,p? e CH(Qx[0,T);

p(z,t) >0, p@(z,t) >0 in Qx [0,T].

The main results of the article are contained in the following

Theorem 1.1. Let the initial data p(()l), p((f) satisfy pél), pé2) ewhr(Q), r>1,1>1,

r(l-1)> N ,0<mg < p((f) < My ,i=1,2, where mg , My are constants. Then there exists

a global unique classical solution (u(l),u(2),p(1),p(2)) of the boundary-initial-value problem
(1)—(7), and there holds

o (2)

a) afk € L0, T; Whr(Q), i =1,2
ok (2)

b) T?k € L (0,T; WHI=kr(Q)) | i =1,2

for0 <k <I.

Furthermore, there exist numbers my and My such that

0<my <pD(x,t) <My <oo, (x,t) e Xx[0,T], i=1,2.

Strategy of Proof

The existence and uniqueness for classical solutions in a sufficiently small time interval
is well-known and follows from the theory of [13],[14],[15]. Therefore, the main difficulty
in studying the “global in time” problem is connected in obtaining a priori estimates with
constants depending only on the data of the problem and the duration T of the time interval,
but independent of the interval of existence of a local solution. Then a local solution can be
extended to the whole interval [0, T7].

In section 2 the system for the effective viscous fluxes is established. Section 3 contains first
estimates for the velocities and the densities. In section 4 we prove a global L*> - bound for
the densities from above and from below. In the last section we establish W?2? - estimates
for the velocities and WP - estimates for the densities, using an approach for obtaining
Whee _ estimates for linear elliptic systems due to Yudovich [17], [18].

2. AUXILIARY RESULTS

We state some assertions that are used later. The lemmata (2.2) - (2.5) are simple inequalities
for real numbers which are used for the proof of the boundedness assertions in section 4.
The consideration concerning the effective viscous fluxes start with (15).

Lemma 2.1. Let Q C RY(N > 1) be an arbitrary bounded domain satisfying the cone
condition.

1) Then the following inequality is valid for every function w € WHP(Q) N LI(Q), I > 1,
p>1,q>1:

(8) lullwer@) < erllullfyrne - 1l »

1_ k& 11 l—a &
where s = p+a-(;—x)+ %, fSasl

Ifl—k—%integer,l—k—%ZOand1<p<oo, then 0 < a < 1.



2) Furthermore, the following inequality is valid for every function u € I/Io/l’m(Q) oru €
wbtm(Q), [udz =0 orue WH™(Q) , u|ls, =0, So C N, messaSo > 0
Q

(9) [ullLag@) < Ca - [IVul|Emq) - lull -
where o = (% - %)(% - % + %)_1; moreover, if m < N then q € [r, 728] for r < 728
and q € [{F5=, 7] forr > 7. If m > N then q € [r,00) is arbitrary; moreover, if m > N

then mequalzty (9) is also valzd forq=

The positive constants C; , C5 in inequalities (8), (9) are independent of the function u(z).
Inequalities (8) and (9) are particular case of the more general multiplicative inequalities
proven in [4], [8], [6].

Lemma 2.2. Let v;;(i,j = 1,2) be constants such that
vi1 >0, vay >0, dvigvgy — (12 +v21)? > 0.

Then there exists a number vog > 0 such that

1- 2270 59 125
V92 ’ Yoo V11

Proof: We consider the following four cases:

(1) If V12, V21 S O, then choose Voo = 1.

(ii) If 119 <0, 91 > 0, choose vgy = 2—.

(iii) If v12 > 0, v2; < 0, choose vy = %L

(iv) If v12 > 0, vo1 > 0, choose vpg = (Zﬁ + Zﬁ)
With these choices the statement of Lemma 2.2 is satisfied in all cases. ([l
For further use we define
(10) M = min{1,1 — 22700 ;"2 M € (0,1]

Va2 Voo V11

Lemma 2.3. Letv;; , 4,5 =1,2 , be constants such that
vi1 >0, va2 >0, dvyives — (V12 4 121)° > 0,

and let m > 1, kM >0, k3 > 0, be constants. Then there exist numbers D) > 0 |
D®) >0 such that for all >0, y > 0 the inequality

DWW i+l 4 D@y g+l D@, amy DR, my
> M(D(l)k(l)l/ 21,m+1 + D(Z)k(Z) m+1)
holds, where M is the constant from (10).

Proof: To prove the Lemma we define

1 _ Vi1 jAeY m+1 9
(11) D) = Voo (k@) Yoo 1, DA = 1, 1
a =z (D(l)k“'(l)l/m)m , b=y (D(z)]{;@)yu)m

where vy comes from Lemma 2.2.

The left hand side of the inequality stated in Lemma 2.3 has the form

Voo V12 V21
F(a,b) = ™! 4 pmHtt - 2 22gmp — ab™
V22 Voo V11
Vo0 V12 V21
=™t 7t gmy — ab™ + (1 - )amb + (1 - )abm
V22 Yool11

> M(a™ ") + (1= M)(a™ —b™)(a ),




where M has been defined in (10). Thus
F(a,b) > M(a™" + ™t

and the lemma is proved. ([
Lemma 2.4. Let v > 1, m > 1 and DY , D@ > 0 be constants. Then there holds, for
all x,y > 0, the inequality

(z +1)7 < Koo [(DD2™ 1 4+ DOy 41y (2 4 )1 (x4 )t =0,
where

vo1  [((pWym 4 (p@yr/my™ o

00— DD

1 m+7717

Proof: It is easy to see that the statement follows from the inequality
(x+y)mt < Kééél (DWgm+t 4 pR)ym+1y z>0,y>0.
For proving this, one considers the minimization problem: Find (a, b) such that
DWgmtl L D@+t —minl | a4+b=1, a>0, b>0.
One finds that

D1 @)
min (DWgm+ 4 D@ty = — PR
J?B{’bzzlo ((D< ) + (D ))m)
and Lemma 2.4 follows. O

Lemma 2.5. Let v>1,m>1, and DY >0, D® > 0 be constants. Then there holds
forallz >0, y >0 the inequality

(12)  DDa™ + DAy < Koy [(DW™ 1+ D@y 1) (@ 4 )71 (@ + )%

Here b5 , b4 are positive constants, 0 < 03 < o=, 04 =m — (m+)d3 and

K01 _ 21/(m+1)(D(1) _’_D(l))lfﬁg )

Proof: By homogenity, it suffices to prove (12) for all z > 0, y > 0 such that  + y = 1.
By a convexity argument we have

m m m+1 m+11/(m+1
e
2 2

Hence we conclude
(D(l)am+p(2)bm 1/m< (DMWY mgm+l (D)) I+1/mpm+l 1/ (m+1)
) =( ; )

, r1>0,r2>0, m>1.

and we continue to estimate
DWam™ + D@y < 2m51 (DM 4 p@)mrr (DWgm+! 4 pRpm+1)wts
< QT (D(l) +D(2))#+1(D(1)am+1 +D(2)bm+1)53(D(1)am+1 +D(2)bm+1)#—53
< 2wt (DM + D@)y1=ds(D) gm+1 | pR)pm+1)ds

Here we have used, that 5 =03 >0,a>0,b>0,a+b=1. Thus (12) is proved and
the Lemma follows. O

Remark 2.1. ;From Lemma 2.5 there follows

(13)  (DWa™ 4+ DPy™) < Koo (DD + D@y (2 4 )71 (2 + )%,

where §9 = m”j—;il and Koy = 21/(m+1)(D(1) + D(2))’y/(m+'~/71) .



Remark 2.2. During our consideration we use that the differential equations (1) and the
boundary conditions (7) imply the additional natural boundary conditions ( in the generalized
sense)

2. (V11 divu® + vy dive® — p) 4 pgl)) loo =0,
o]

on
(14) = (var div ™ + vy divu® — p® + P )oa =0,
p(lz) = melsﬂ fp(i) (p1), p?)) dz i=1,2, forallte|0,T].
Q

We now derive an “algebraic” equation between the quantities divu(?, p(¥) which corre-
sponds to the equation of effective viscous flux in the one component case.

We introduce the following function ¢ defined by

Ap = div ((u(2) — u(l))g) ,
(15) %2lpa =0,  [pde=0, forallte0,T].
n Q

(From (1) and (15) we deduce

2
—A(Z Vij divu(j)) +A((=)ip+p? —p") =0, i=1,2.

Jj=1

Then we find from (14) and (15) after some calculation

(16) {VU div u(l) + V1o div u(2) = —p + p(l) - pgl)

vo1 divuV) + vey divu® = v+ p(2) — pg2)

(From (16) we eliminate div u) using the number D©) = v11159 — vig1e; > 0. Then we
find the equations for the effective viscous fluzes:

{D(O) divu® = —(v9y + v12)@ + voa(pt) — Pgl)) —v12(p® — PEQ)) )

(17) .
DO divu® = (vi1 + va1)p + v11(p® — p{?) — a1 (p® — p{M)y.

3. THE FIRST A PRIORI ESTIMATE FOR THE VELOCITIES AND THE DENSITIES

Differently to the usual procedure in compressible flow theory, we do not start with the usual
energy estimate coming from the momentum equation by testing with «(¥, i = 1,2, but we
establish in the first step , L? - bounds for the densities via the equation of the effective
viscous fluxes.

Let (uM,u®, pM) | p?)) be a classical solution of the problem under consideration.
1) From (2) and (7) there follows

(18) /p(i) (z,t)dx = /p(()i) (x)dx, 1=1,2,, forallte[0,T].
Q Q

2) Let m = const. > v > 1. From (2) and (7) we obtain the equations (i = 1,2):

(19) % : %/ (p(i))mdx + / (p(i))m ~divu® dz =0, forall t €[0,T].
m—
Q Q

This will be used for a certain sequence of numbers m — oo; the aim is to obtain an L> -

bound p(* (which reminds us to Moser’s iteration technique).
JAC)

Let D® =1 and D) = BN ( k(;’)oo) (see Lemma 2.3 where these constants have

been introduced.).



Now, we substitute divu( (i = 1,2) in formula (19) by the terms in (17). Then we obtain
the following identities:

1 %S{D(l)(p(l))m + D(2)(p(2))m dx

m—1
+ 5557 S DO (o)™ [vag (pV) — M) = v (p® = pP) — (122 + v12)g] da
(20) e
+ 507 S D@ (o)™ [v11 (p? ) = v (PO = p{V) + (11 + ve1 )] dw = 0,
Q

mesS mes)

DO = v11v55 — Vo1 > 0, pgl) =1 fp(l) dz, p?) L5 fp(Z) dz.
Q Q

Let us define (for all ¢ € [0,T]):

I = % fD(l)(p(l))m [y22p(11) — 1/12p§2)] + D(Q)(p(z))m[ 52)’/11 *Pgl)’/m} dx,
Q
I = D%O) J [D(l)(P(l))m(Vm +v12) — DA (p@)™ (1 + V21)] “pdr,
Q
@) L = g [ DO [rap® — 11op®] + DO (o) [p@ gy — py] dor,

Q

y(t) = [ DO (W)™ + DB (p@)m da,
Q

A(t) :f [D(l)(p(l))mﬂ+D(2)(P(2))m+1}(p(1)+p(2))7_1dx.
Q

In the rest of this section we confine ourselves to the case m = 7.

2a) By (4) we have the estimate

I < Cy(t) /(p(” +p@) 7 da.
Q
Furthermore, from Lemma 2.4, Lemma 2.5 and Holder’s inequality:

=1 1—%
/(pu) DY de < C(A() BT [/(pm n p<2>)d4
Q Q

) < CLA®) T [+ ) d]
Q

=1
27 —1

Hence we obtain the inequality

2y—2

(22) L <C(A@)> T,

with positive constants C'.

2b) Now, we look at the term which can be estimated in the following way

L<C / (DD - (D) 4 DD . (@) . || da
Q

. -1
<C {/(P(l) +p@yrasT dﬂ?] ez @)
o

q -3
e {/(p(l) el qg%flx} " lezllze @

(23) 2

1
14 L
el -%—q1

<C {/(p(l) + p(2))27 dx} et ||@1||LQI(Q)
Q

1
141
il +q2

+C [/(p(l) _|_p(2))2'y dl‘} et o2/l paz () »
Q



with positive constants C, ¢ = const. > 2, g3 = const. > 2.

The functions ¢; and @9 are defined in the following way: We write ¢ = @1 + 2 and define
1, 2 as solutions to the problems:

Ay, = div ((ao + a1(p™ + p@)o1)(u® — uM)),

7 | e o Jerde=0, Ve[0T,
(25) Ao = div (ag(1 + [u® —u® ]2 . (U@ — W),
25 P

on =0 de =0, Vte[0,T].

T | o , S{@z x €[0,T]

On account of Lemma 2.3 we find:

M (1) (2) (-1
I3 > 7/ [DWED uy (pWO)HL 4 DOy (p)1+1] (% + ”(T))7 da
(26) ¢

pref pref
ZC/[D(l)(p(l))vﬂ+D(2)(p(2))7+1}(p(1)+p(2))7,1dx
Q

where M = const. > 0 comes from Lemma 2.3, C' = const. > 0. So, we conclude from (20)
in the case m = ~ the inequality
L 4 t)+CAl)<C (A(t))%—i—
v—1 dty -
2w(w—1+ﬁ) 2w(w—1+%>

+C 1o + oD iyt lerllza) + Clo + 0Pl iyt - llezllzeo) -

(From this, there follows

2v—1 2y—1
1 1

d ’Y—H ’Y—E
(27) ZY(®) + CA®) < C (1+ ol Ll + I2ll1lh))

with C being a positive constant.

3) From (1) and the boundary condition (7) one obtains via (3):

IVuD ey + 196y + [ glu® = uOP do
(28) 2
1 2
<C(IpV = pV 1320 + PP = 2P [320y) < C (1410 + 9?72 ) -

4) Let ¢1 > 2, g2 > 2. Then the problems (24), (25) are solvable and by the usual LP-theory
for elliptic operators (see also Lemma 2.1) we have the following estimates:

(29)  lle1lla @) < ClVerlln ) < Cll(ao + a1 - (0 + p)0) - [u® — ||| 1r (o,

(30)  llpallLe () < Cf[Vea|

where r1 , 79 € (1,400) for N =1 and r; € []\J,Vfél , +00) , 19 € []\I,Vf; , +o0) for N > 2.
J\],Vfél >1, 1\];’_522 > 1for N > 2, since ¢1,¢2 € (2,+00).
Now, we estimate the terms at the right hand side of (29), (30):

4a) In the case N =1 we set (observing that here 0 < 6; < 2):

Lr2(Q) < Cllag - (14 |u(2) _ u(1)|2)92 . |u(2) . u(1)| |

Lm2(Q) »

The numbers satisfy

_ __4(6=0.) ¥ .
q1 —m>2, since 0 < 61 < 2;
2

T1 :ﬁ, if 0<91<1,
roo=50, if  1<6,<2.



JFrom this there follows:

1) 1<r<2;

(31) 2) 01T1§277’1, if0<01<1;
3) 2-rm <O <2y(2—-mr), if1 <6, <2;
4) q%+91<%, if1<6;, <2.

In the case N > 2, we set (observe 0 < 61 < £):

_ 2N 2N  2/N—6; .
{Tl =Ntz 6 0<es N5 T

@ =2+0,6=c-(1+2)".

(From this we get

q1

51<r-(++L 1;
@) pemclwta), s
6)01T1§2—T1.

Furthermore, from (29) and Holder’s inequality (1 < 1 < 2) we have
lerllzar @) < Cao[u® = uM||z2(q)

1/2 P
+ Cal (/(p(l) + p(2))91|u(2) _ u(l)‘? dz) (/(p(l) p(2))217‘11 dx>

Q Q

If N>2o0r (N =1and 0 < 6, < 1) we conclude from (31) and (32) the property
01r1 <2 —ry. Thus, using also the estimate (18) and the inequality (28) we obtain

277-1

4o )Y
(33) lerlzn@ <€ (14100 + 97k )) -
If N=1and 1 <#; < 2. Then there holds the representation
01711 291T1 —
= 2. 1-— =" __ <(0,1).
sy, Tl T =S (0,1)
This gives
Q Q
where
_ 81/2 — (2 — 7’1)/(27’1)
2y -1 '
Hence we conclude via inequality (28) that
3+n
(34) lerllza@ < C (14 160 + 9Pk )" -
It is important to note that
1 2v -1 1 1 0 1 1
S+ = (v-5+3-=+5)<1.
) 3w = U2t

In fact, this estimate follows from (31).

4b) In the case N = 1 we define (taking into account that 0 < 6y < 27%2)
4(1 +62) 205 + 2
— > 2y =
1 —205(y - 1) 205 + 1
Then, from (30), we derive the inequality
H<P2||Lq2(g) <C (1 + / (1 + |u(2) _ u(1)|2)02|u(2) _ u(1)|2 da
(35) Q

<C(1+1pM + 0@ g

q2 =

) (202+1)/(202+2)



It is important to observe that
2, +1 2y—1 4(1 + 6,)
20, +2 v—1/g W(*)'
In the case N = 2 we define (taking into account that 0 < 03 <
W) o 2
1—=62(2y—1) 24 ¢
Then we obtain from (30), (28) and Sobolev’s imbedding theorem the estimates

1/q2
2]l ez (@) < Cllvg [u® = uM] | L2 - {/ (1+ [u® — u)|2a2) dx]
(36) )
(1/2)+(0/2)
<C(1+1pM + 0?7 ) .

< 1, since g3 =

2y— 1)

qo = > 1, since gg > 2.

Here it is important to note that

1 6y, 2y—1 . 4(1 +062)
(+7) ———<1,sinceqp=—7—""—.
220 y-1/g 1—92'(27—1)
In the case N > 3 we define (here we have 0 < 65 < N~, 5T )
7 205 + 2 2N 1
0=— = . . (1-19);
0 g1 N2 g1 LT
N
(37) g = 2 2, since the inequalities
]V._’TQ

2N 1
<N,0<¥
N_2<7’2 , <2<N7—1

Then we have from (30), (28) and Sobolev’s imbedding theorem:

1/r
llpallLaz () < C (1 + / |u(2) _ u(1)|(292+1)rz dx) 2
Q

and N > 3 are satisfied .

<C (1 + {/ |u(2) _ u(1)|202+2 dxr ) {/ |u(2) B u(1)|(2N)/(N—2) dx] 1—5)1/r2

(2N)(1-6)
6/r —2)r

< O (14 Ivg u® — u®] 55, -1V @ — W) 57 )

)5/T2+%(175)/7’2

<C (14 16D + o7

It is important that

6 1-96 N 2y —1
(D10 Ny
r9 ro N—=2/ v—1/¢

5) From the above considerations in all cases there holds the estimate

<1.

2y—1 2y—1

sl 7y + ool < € (14100 + 5@ 12 )" 1 € 0,1).

Hence, we find from (27) the inequality

Y y(t) + C1 A(t) < Ca,

where C7 , Cs are positive constants.

(From this we conclude

sup 00 Bl + 16D Oll@)] <€,
O<t<T

(39) 2
f ||p(1) sz(Q) + ||p(2)(t)||sz(Q) dt <C.



Further we obtain from (39), (28) and boundary condition (7) that

ﬂwm 2120y + [P O 2y dt < C,
(40)
of||gl/2|“(2) = u|(t)]1 220 dt <C.

4. ESTIMATES FOR THE DENSITIES OF THE MIXTURE FROM ABOVE AND BELOW

In this section, we derive L - bounds for the densities and its inverses from the effective
viscous flux equations. The technique of proof reminds to the method of J. Moser for elliptic
equations. In our case, the interaction term needs some additional treatment.

First, let us present some estimates for the function (z,t).
1) If we are in the case N = 1, then we set (observe 0 < 0; < 2,0 < 6y <

12—
= mi — 2 , €(0,1).
€1 = min %0, + 1 %+1 e1 € (0,1)

2y— 2)

Then we have

20 +2 14+
< 240, .
20, +1 1—g; =
(From the imbedding theorem and equation (15) we find

146 <

Il < C IVl pi+a () < Cllglu® —u®] || prves @)

1/(1+e1)
<C |1+4+ag |:/ ‘u(2) — u(1)|1+51 daj:| /(1+e1

+C | a2 |:/ |u(2) _ u(1)|(292+1)(1+51) dx} 1/14¢1
“+aq {/(p(l) + p(2))91(1+61) . ‘u(2) o u(l)‘l/(1+51) e 1/1+4¢e;
Q
(From the choice of e1 and inequality (28) we have
1/2
ao HU(Q) — u(l) HL1+61 (Q) < C(]_ + ||p(1) + P(Q)Hi”;w(m) ,
(202+1)/(2602+2)
as Hu(2) - u(l)Hiaétle)(HEl) <C (1 + Hp(l) + p(g)HQLZW(Q)) |
1/2+0, /4~

alH( (1) + p )91|’u,(2) _ u( )| ||L1+51(Q) <C (1 + ||p(1) n ,0(2)HL2 o ) |

Therefore

B1
el <0 (1416 + 512 )
260-+1 1

20,427 2 477 3h<l
(From this and (39) we have

where 3; = max{

(41) le(®)ll o=@y € L'(0,T).
2) In the case N = 2 we set (observe 0 < ;1 <1,0< 6y < 5 1)'
€9 = % -min{l,v— 1},
T = 27 >1,7’2:7n71 1+071 1.

201(1 + e2) ri—1"2 2y



By Sobolev’s imbedding theorem and equation (15) we find the following estimates:

1/(242¢2)
ol ) < C I9¢lla0sen < C | 1+ a0 [/ ) - 0052 4]

2(1tes 1/(2+2¢2)
+ | / ((p) + p@)P [u®) — w22 g | +aal|u® — uM |25 )

Q
where gz = 2(202 + 1)(1 + €2).

By the choice of g5 , 1 , and by inequality (28) we obtain

1/2
aollu® = uV||p212s() < C (14 100 + 9P L)

01/(27)+1/2
a1||(p(1) _|_p(2))01|u(2) u(1)| ||L2+2€2 (@) < C(l + Hp(l) + p(2 ”L"’W Q)) 7
Vo
azu® — OB pra gy < C(1 4100 4+ p 2>||Lm)) ,
where vy = (1:_5522) + 02(1;(13_?65262 < 1since 0 < fy < 5 and g2 = 3 min{l,fy —1}. Thus,

in this case, we have the estimate

B2
Il < C(1+ 110 + p<2>||izm>) ,
where B2 = const. > 0, B2 € (0,1). ;From this and (39) there follows:
(42) o)l z=(0) € Ll(oaT)'
3) In the case N > 3 we set (observe that 0 < 6; < 5,0 <6y < Nv 1)
§ =min{i, 5+ X NFL L. (146, —Nbs)};
r = (1+(5)N
ry = max{l +N(1—601/7)- (1 - N6 /2y)71,
1+ N1+6)(1—(N-1)6) "},
Then the following estimates hold:
32) 0<20<1,0<20<y—1;r1,r9 € (N,400);
3b) r10; < 2y since r1 - 01 = N(146) - 61 <2+ 20 < 2v;
3¢) N(14+6)/ra <2420 — 205N + 6 - (1 — 2Nb5) since

N+1

24205 — 20N +5- (1 —2N6y) =2+ 205 —20,N —§ - r:
2N N+1
+0( g —2N02) > 2420, - 20, N =5

>1460—N-03>(14+6) N/ry.

Now we conclude from the imbedding theorem and equation (15) the following estimates:
02
Il < CIV@ln@ < C (1+as [u® — a2t o+

+ag [u® — w1 @ ta1 (™ + o) [u® — u®| || (Q)) .

Furthermore, from (1) and the boundary condition (7) and on account of (3) there follows
the estimate

IVuD | s ) + VU || 2 0
<C (1 + Hp(l)szw(Q) + HP(Q)Hsz(Q) +ao ||U(2) - u(1)||LN"‘2/(N+'f2)(Q)

+a [[(pM + p®)P [ — V] || pvrasvrn ) + a2 [[u® — D[ 725G )



(262+1)NT2

N+, - From the inequality r1 > Nry/(N + r2) we obtain

where ¢4 =
el Loo (@) + HVU(DHLW @ + IVu®)| s )

<43) S ¢ (1 + Hp ||L“W2 () + ||p(2 ”L'wz () + ap ||’LL(2) — u(1)|

L (Q))
T an [0+ p?) [u® —u] [y + az - u® a5 0
Finally, we look at the last three expressions which we estimate in the following way:

A) ag|[u® —uW o) <e (lqu(1)||U~2(Q) + \lVU(2)||m(Q))

+ Cao [u® = V|| o) < ¢ (|70

Lraqa) + [Vu)
1/2

LT'2(Q)>
+C (14 10D10 ) + 162175 )

Here

a) the number ¢ € (0, 1) will be determined later;
b) the estimate (28) has been used;

B) a1 [[(p™ + p)" - [u® —u V|| 0

1/r
< Cu® —uW| 1~ (/(p(l) + pA)r dx)
Q

01/(27) —a
(1 + ||,0(1)HL27(Q + ||p(2)HL27(Q)> Hv(u(z) - u(l))H%Tz(Q) ||u(2) - U(l)Hle\?g

2()

a) 11 - 01 < 27, since 3b) is satisfied;
b) a=5822 (82 — (N - rg)/(Nrg))fl =(3-%)-(3- %)71 € (0,1) comes from

2

Using (28) and the imbedding theorem we find

ar [|(p™ + pP) " [u® — a1 ) < (VU] pra () + [Vl

) 1/24601/(2v(1-))

L7'2(Q))
2
+C (14 16D 3% 0 + 10117 o)

It is important that we have 2 5+ 27( o < 1.

)(202+1
C) an ||U(2) - U(l)”?g;;:_ll)Tl (Q) S CaQ ||V(u(2) - u(l))| 1)HL292+2(QZ)+ ) )

Lm2(Q)

where

a) the inequality follows from Lemma 2.1,
b) B =[1/(202 +2) = 1/(2r102 +11)] (1/(202 +2) — (N —12)/(Nr2)) " € (0,1).

Using (28) we find v3 = (}:gzgozzjﬁ) 2921+2 such that

az [u® — |2t o) < e (IVa®)]

L) + [ Vu?)|

L7'2(Q))
v3
+C (14113 oy + 10217 )

Here it is important, that 3 (262 + 1)? < 1. This inequality gives us the estimates
B(202+1) <1, (1—p)(202+1) < (1 —3(202 + 1)) (262 + 2).



Therefore, choosing € € (0, 1) appropriately we achieve the inequality
(44)
el oo () + Ve | Lra ) + [Ve® | L2 @)

T r 1/rs B2
< C (11PN Ry + 102N ) +C (1 16Dy + 162 ey)

where
(1-p)(262+1) 1
a) fr=max{3, 3+ mtwy T e € (01).

4) Here we look at the terms Iy , I , I3 from (21) in the case m >y > 1, N > 1. On
account of (21) and (39) we find, for all ¢ € [0, T,

L <Oy / PV + o) dz < Cy(t),
Q

where C'is a positive constant not depending on m. Furthermore, there holds the inequality

IQ < Cy(t) ||(i0(t)HL°C(Q) ) te [OvT} )
and, again, the positive constant C' does not depend on m.

On account of Lemma 2.3 the term I3 can be estimated from below in the following way:

I3

| \%

44{*l/1l)u)k(DLQQp(D)m+lAFl)Q)k@)Vllﬂﬁm)m*i)((1/p”#4+/)ﬂ/p())7 1 gy

> C’/ 1) mt+1 4 p2) . (p(2))m+l) (p(l) _'_p(g))%l dr = CA(t),

where M = const > 0 comes from Lemma 2.3 and C' is a positive constant not depending
on m. Hence we conclude from (20) the following inequality for all ¢ € (0,T):

1

— Sy + CLA() < Co (y(t) + () - ()] o
T @V T ARG < Co (O +y() - le®) =) -
where C, Cy are positive constants independent of m.

4a) In the cases N = 1, N = 2 we obtain from (45) and (41), (42), for all m > v > 1,
€ (0,7), the inequality

(45)

(16) 20 = Gl (1),

where G1(t) = Cy (14 ||¢(t)||r=()) € L'(0,T) and where the function G;(t) does not
depend on m.

4b) In the case N = 3 we obtain from (45) and (44) that, for all m > max (v, (r2 — 1)) > 1,
€ (0,T), the following inequality holds:

(47)
1 e
m—1 dt

I8 I8 /T2
(1+(||p<”<>|L27(m+p(2)< )+ (PO O @ + 102 O ) )

Due to the estimates for the densities (39) one easily checks the inequality

y(t) + C3 A(t) < Cay(t):

- - 1/rg
[ DO G 4 D@ () da | - (14 10O oy + 162 o)

<o ((a0) ™ +y) |



where C is a positive constant not depending on m.
Hence we obtain from (47) that

(48) L () < 07 4 Galt) () te (0,1,

with C' being a positive constant not depending on m, and so does the function defined by
Galt) = € (14 10V D12 gy + 10O O key)

We have Ga(t) € L*(0,T).
Now we find from (46) and (48), for all N > 1, m > myg , t € [0,T], the estimate

£ = /D<1> Py 4 D@ . (p2)ym gy
Q

m 1 2 m
< (@@)™ - (1416 emie + 166 llmeey)

where C(T) is a positive constant not depending on m. From this, there follows:

(49)  sup (DOl + 1P Olm@) < C (141108 @) + 106 =) ) -
0<t<T

Now, we present an estimate from below for the densities of the mixture:

5) Let n € (0,400) be a positive number. Then,analogously to equation (20), we find

1 d
(1) (2)y—n
o dt/(p )+ (p) M da
O
1 —n
Do /(P(l)) (220 = 1) = 1126 = p?) = (22 + 12)0] o
)
1 —n
) /(P(z)) {Vll(P(z) =) = v (P = piV) + (1 + V21)<P} de=0.
)
We define for all ¢ € [0, 7] the function Z(t) = [(pM)~" + (p'?) ™" dax.
)

Then the estimate (49) implies the inequality
1 d

n+1 dt

where C again is a positive constant not depending on n.

On account of (41), (42), (43) and (49) we derive from the differential inequality the estimate
for all n > 0:

Z(t) = / (0D)" + (o)~ de < (C(T)" (14 [11/p7)

Z(t) <CZ(t) 1+ lle®)lLew)

2 n
e + 10 lee)
where C(T) is a positive constant not depending on n. {From this there follows
0<t<T

1 1 1 1
(50) s (=gl + =g lee@) < C (1+ Il + g e ) -
P (t) L>(Q) p(t) Le=(Q) Pg)l) Le(Q) p82) Le(Q)

5. ESTIMATES FOR GRADIENTS OF THE VELOCITIES AND THE DENSITIES

In this section w show that it is possible to estimate the first derivatives of the functions
u®(z,t) , u®(2,t) , pM(z,t) , pP(z,t). Let s € (N, +00) be any number.



1) First we have by equation (1) and the boundary condition (7) the following estimate:
[u 2o @) + [[u® [lw.e ()

<C (llg- @® —u®))

Ls() + [VptV|

L) + ||VP(2)”LS(Q)) :
Having completed (49) one proceeds with the inequality
[P w2.s () + 6P w20
< 0 (14 1 —u®) 5L 0 + 196Dl oo + 1962 ey
We take into account, that from (28) follows that
(52) ||VU(1)||L2(Q) + ||VU(2)HL2(Q) <C.
la) If we have the case N =1, N = 2, then there holds the estimate
1@ = u®)| sy < €IV ~u®) ey
and thus we find from (51) and (52) the estimate

(53) [uM w2 ) + [[u® w2y < C (1 + VeV | Loy + IVAP| LS(Q)> ~

1b) In the case N > 3 then there holds the inequality (Lemma 2.1):

||u(2) _ u(1)|

Ls20s+1(Q) = c HV(U(Q) - U(l))H%w(Q) ’ ||U(2) - U(I)H;s/mfz)(m )

where a € (0,1), v = 1— 2 —2/(2s02+5), if 5(202+1) > 28 and o = 0if (202 +1) < 2.

Here, we take into account that o - (262 +1) < 1, since 0 < 8 < 1/(N~vy —1).
Therefore, by (52) and the estimate
[ — M| ponyv-2) () < ||V (@® = uM)| L2,

we conclude the following inequality, for all £ > 0,

(54) [u® — V)] ZLifjs;n(Q) <e|[V(® —uM)||pe o) + Cle).
JFrom this, we obtain further:
(55 [ — O < [IuPllwese + 1@ weem] +CE).

Now, we find from (51) and (55) the estimate

Lo + V2|

(56) [z () + |6 w2y < C (1 + Vet Ls(Q)) :

Hence we have proven the estimate (53), (56) in all cases N > 1.

2) In our considerations we use an important estimate for the velocities from [17], [18], [16],
[10]. On account of the estimates for the densities (49), (50) we have p() € L>(Q x (0,T))
for i = 1,2 and in view of the inequality from [17], [18], [16], [L0] we conclude from (1), for
all s > N, the estimate

[Vu | oo () + [VU?| e ()
<C (1 +In (2 + VoD e + V@]

LS(Q)) +llg- (@® - u(l))HLS(Q)) :
Because of (49), (52) and (54) we have

7)) [IVuY | ey + | VUP | Lo (@) < C (1 +In2 + VeV | ey + VP Ls(Q))) .

@ . . .

3) The estimates for the derivatives %”T(x, t);i=1,2; j=1...,N are derived from the
J

equation

%(Vp(i)) + V((u® - V)pD) + V(p - divu?) =0,



which, in turn, follows from (2). Therefore, we obtain from (49) for s € (N, co0) the estimate

d
f(/|Vp(1)|s + |Vp(2)|sda:) <c (/ (\Vp(1)|s + |Vp(2)|s) (\Vu<1>| + |Vu(2)|) dx)
Q Q
([ (V1 4+ 191 (9 diva® |49 diva®]) o)
Q

Using (56) and (57) we proceed and get
L)
dt

with L defined by L(t) = [|VpD(#)|* + |V ()P dz,  te€[0,T).
Q

L(t) < C(1+4 L(t) + L(t) In(2 + L(1)))

(From the last differential inequality we receive, for s € (N, +00), the estimate

(58) sup_(IVo™M(t) D)) < C.
o<t<T

Furthermore, from (2) and (56):

(59)

apH op?
sup (||W(t)||Ls(Q) + ”W(t)' Ls() t ||u(1)(t)||W2~S(Q) + ||U(2)(t)\|wzvs(9)) <C.

0<t<T

4) The estimates for the derivatives 7; (8“( ) ) 1=1,2; 7=1,...,N; come from the

following system which is, in turn, derived from 1):

ot (Z“U Aul) + (pg; + A )V div )>
(60)

) Og aop(d)
i, 2 (2) (1) Y92 ()N —
+ (1) (g (@ —u)+ (@ )) v( 6t) 0.

Firstly, from (60), in view of the estimates (49), (50) and (59), there follows the inequality
ou?
(61) v (%= ) ey + 19 (25 2ace < €

since g = g(z,t) > 0.

Finally, by the properties of the system (60) and the imbedding theorem, we have for s €
(N, 400) the estimate

oult op?®
| ot ||W1 @) + | 6t <| ot ||L s() 1 || | L#(Q)
ou®  guM) g
_ouN, 99 0@ _ Vo)
+H9( D ot >|L(Q)+||at(u u )|L(Q)>
JFrom this, applying (49), (50) and (59) we find the estimate
Out ou?® 9y
s y<Cf(1 - —
155 ey + 12 o (112~ 2 )

Therefore, we conclude with Lemma 2.1 and (61):

du® ou?
(62) sup ( Bl + 175 (t)HWl,s(Q)) <cC.

0<t<T ot

5) In the case p( ) PP ewhm Q) ,r>1,1>1,7-(—1) > N it is easy to see, using
(49), (50), (58), (59) and (62), that for all k = 1,2,...,l and 7 = 1, 2 the following inclusions



hold:

(63)

LN 9k p(®)
Loo T- +1—k,r Q

€ L>(0,T; W'=Fm(Q)).

Thus we have proven all a priori estimates stated in the theorem.
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