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Introduction. From a variational point of view it is natural to consider quasi-

conformal selfmappings of a domain which are equal to the identity on the bound-

ary. We say that a function ¡i in the unit disk U={z | \z\ < 1} belongs to the class J*"

if and only if it is the complex dilatation of a quasiconformal selfmapping/of U

which satisfies f(ew) = eie, 0^0<2w. Using the Teichmüller metric |g(z)|1,2|i/z|

arising from a holomorphic quadratic differential g(z) dz2 with finite L1-norm

||g|| =JJU|<1 \g{z)\dxdy we get a necessary integral condition for (jef (§1).

From this inequality one easily derives a uniqueness theorem (§3) which can be

thought of as a generalization of the known result (Strebel [5]) that a Teichmüller

mapping/^, k) which belongs to a quadratic differential <f> of finite norm (i.e. has

acomplex dilatation k ■^>{z)/\^{z)\, k = const, 0<k< 1) is unique extremal within the

class of mappings which coincide with/on dU.

Because of the importance of the class of Teichmüller mappings it is desirable to

characterize those quadratic differentials for which there exists a. k>0 such that

k($/\<j>\) elF. The last section of the present work is devoted to this question. A

measurable and bounded complex valued function v in U is said to belong to the

class N (Ahlfors [1]) if ¡$v v(z)g(z) dx dy=0 for every holomorphic function g in U

with || g I <oo. Let </> denote a holomorphic quadratic differential in U, necessarily

of infinitenorm. It easily follows from our main inequality that if k{<f>/\<¡>\) e J^fora

sequence of positive numbers k tending to zero then <f>/\</>\ e N. Can one say

conversely that J>/\</>\ e N implies k{<f>/\<j>\) e J5"? Restricting ourselves to quadratic

differentials <f> of the form ^ = (0')2 where O is rational, we get a partial positive

answer to this question in §4: If OVO in U and <f>/\</>\ e N, then k(<f>/\<f>\) e ÍF for

every k>0(2).

1. The main inequality.

Theorem 1. Let f be a quasiconformal selfmapping of the unit disk U which keeps

the boundary fixed. Then for every holomorphic function g in U with finite L1-norm the

complex dilatation /x of f satisfies the inequality
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(2) Results which have in the meanwhile been obtained for the more general case when i>'

is allowed to vanish will be presented in a future paper.
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Equality holds for g0 iff there is a 6, 0 ¿ 6 < 2-n, such that f maps every trajectory of the

quadratic differential ewg0(z) dz2 onto itself (3).

Proof. We first discuss the case when £ = G(z)=J"!;o (g(z))1/2 dz (z0 a fixed point

of U) is single valued and, moreover, a schlicht mapping of U onto a Jordan

domain U* = G(U) in the £ = £ +/77-plane. We consider the mapping/* = G 0/0 G"1

of U* onto itself. With the notation w=f(z), dw=p dz+q dz, w* = u* + iv*=f*(Q,

dw*=p* d£+q* dl,, the length element \dw*\ becomes

\dw*\ = \p*di+q*dl\ = \G\w)\ \dw\ = \G'(w)\ \p dz+q dz\

\G\w)\

\G\z)\
px+iMx

which is, for the direction d£=d£>0,

\dw*\ = \p*+q*\ dt; =
\G'(w)\

\G'(z)\
p + q

|S(*)I
dl

The   various   Jacobians   are  J(z/Q=\/\g(z)\,  /(w*/w) = |g(H')|,   and   therefore

J(w*li)=\p*\2-\q*\2 = {\g{w)\/\g{z)\)(\p\2-\q\2).

Let now a(r¡)= U* o {£ | Im i=y]}, y(v)=f*(a(y)) with Euclidean length \a(r¡)\,

|y(ij)| respectively. (Interpret these lengths to be zero if a(r¡) is empty.) The set a(r¡)

is a countable union of straight line segments. In view of the hypothesis on/ y(rj)

consists of Jordan arcs the endpoints of which coincide with the endpoints of the

segments. Hence

(1.2) |«(,)| . f     dÇû \y(V)\ =  f     \p*+q*\dl
Jain) Juin)

Integrating with respect to 77 we get

(1.3) ||g|| á   ff    \p*+q*\dido=  ff   \p*+q*\\g(z)\dxdy
JJu* JJu

where we have interpreted  ||g|| = |i/*| as the area of U*. Application of the

Schwarz inequality yields

I g ||2 5; jj J(w*lz)dxdyjj \p*+q*\2\g(zW
J{w*/z)

dxdy

(1.4) = llfl i'*i2  ¡n*l2\g(z)\dxdy
JJu \p 1 —\q 1

I |l+M(z)(g(z)/|g(z)|)|s

\-W)\2
|g(z)| dxdy

(3) Every zero of g=ei("go is then necessarily a fixed point off.
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with ¡x(z)=q(z)lp(z). Thus

which is equivalent to

(1.6) 0 £ ¡¡JKm^f^L2>*W

This holds for every g. Replacing g by eieg with an appropriate constant 6,0^8<2tt,

we obtain (1.1).

Suppose equality holds in (1.1) for some g0. Then there is a 6 such that equality

holds in (1.6) for* = eiö*0 and therefore in (1.2) for a.a. values of -q. It follows that

y(rj) = a(rj) for all r¡. Thus/* maps each interval of a(r¡) (i.e. each trajectory of

g(z) dz2) onto itself, with the same orientation (because it keeps the endpoints

fixed).

Conversely, let this be the case. Then/* is of the form w* = u*(£, rf) + irj. We get

\dw*\ =u* d£ and J(w*/Ç) = uf. The inequality (1.4) now reads

(1.7) ||*|| = jjo ^ \g(z)\ dx dy = JJ^ uf de dr, = \\g\\.

Thus equality holds in (1.6) and a fortiori in (1.1).

In the general case we make use of the following facts about quadratic differ-

entials (for the proofs see [5]). Let /be an open interval on an orthogonal trajectory

of g(z) dz2. The trajectories a through the points of / cover a simply connected

domain which we call an open horizontal strip E. Any branch G of the integral

| (g(z))112 dz is a 1-1 conformai mapping of E onto a domain E* in the £-plane

swept out by horizontal straight line segments through I* = G(I). E* has finite

area \E*\=$$E \g(z)\ dx dy, and almost every trajectory in £ is a Jordan arc

tending to a boundary point of U in either direction. By a horizontal strip we mean

the set of points of U covered by the trajectories through a measurable subset of/.

U can be exhausted up to a set of measure zero by a sequence of nonoverlapping

horizontal strips En. We introduce a parameter £ in every strip En, i.e. we map it onto

E* by means of a branch of j (g(z))112 dz in En. Of course we can no longer speak

of the mapping/* in E*, as j (g(z))112 dz will in general not have a single valued

branch in/(£„), but the differentials \dw*\ = |g(w)|1,2| dw\, du* dv* = \g(w)\ dudv,

and \p*+q*\, still are single valued. They represent the length and the area ele-

ments in terms of the g-metric in U.

In the definition of a(r¡) preceding inequality (1.2) U* has to be replaced by E*,

\a(r¡)\ = |ce(r7)|9 is the length of the corresponding trajectory of* in the ^-metric, and
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\y(r¡)\ = \y(r¡)\g has to be interpreted as the g-length off(a(r¡)). The inequality is then

true for every n, (cf. [5, §9]) and integration over -r¡, followed by summation over n

yields

(1.3') ||g|| Ú jju\p*+q*\\g(z)\dxdy.

We then proceed as before.

In the case of equality in (1.6) we conclude from (1.2) that almost every trajectory

of g(z) dz2 is mapped onto itself by/ and by continuity this must be true for every

trajectory. Conversely, if this is the case,/* = G «/o G"1, with G a given branch of

J* (g(z))1'2 dz, mapping En onto E* is a selfmapping of E* for every n and thus

(1.7) becomes

(1.7') «g|| Ú J£ ut\g(z)\ dx dy = J JJri k* # <*, = ||g||.

The next theorem is the analogue of Theorem 1 for quasiconformal mappings

with a finite number of fixed points z; = exp (id¡),j=\,..., «2:4, on 8U. Let g be a

rational function which is holomorphic except for possible poles at the points z¡

and such that g(z) dz2 is real along BU—{z¡}. This is equivalent to saying that

g(z) dz2 is a holomorphic quadratic differential with finite norm on the bordered

surface U, punctured at the points z¡. It can be continued by symmetry to the

whole sphere(4). The set of critical trajectories (i.e. the trajectories ending at points

z¡ or at zeroes of g) partitions U into finitely many open "horizontal" strips En

which are mapped onto rectangles E* by J" (g(z))1/2 dz. The image/(a) of a trajectory

ac£Bisa Jordan arc ending at the same intervals on dU—{z¡} as a and therefore

has length |/(a)|g^ |a|9, where the equality sign holds iff /(a) is a trajectory of g

belonging to the same strip En. (For more details see Strebel [5], [6].) We can thus

apply the same reasoning as before. In the case of equality we conclude from (1.2)

that / maps every trajectory of En onto another such trajectory, for every n. The

mapping/* then maps E* onto itself and has the form/*(£) = u*(i, rj) + iv*(ri).

Thus \dw*\ =m* de, and /(w*/£) = i/*i>*. From the Schwarz inequality (1.4) we

conclude

J(w*/z) = \\p*+q*\ |g(z)|,

or equivalently

J{w*/i) = w*i>* = X\p*+q*\ = Ah*,    A = const.

Thus v* = X and therefore v*(r]) = X ■ r¡ + const. Evidently A must be equal to 1 and

(4) The linear space of all such g has real dimension n — 3. It is most easily described after a

transformation of U onto the upper half plane Im Ç > 0, which takes the points z¡ into real

points fy^oo. We get a rational function which is real along the real axis and vanishes with at

least the fourth order at infinity.
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therefore /*(£) = "*(£; ,?) + '7? as before. The converse is now obvious. We have

proved

Theorem 2. Let f be a quasiconformal self mapping of U which keeps «^4

boundary points z¿ fixed. Then for every quadratic differential g(z) dz2 with finite

norm, which is holomorphic outside the z¡ and real along BU—{zj} inequality (1.6)

holds, with the same remarks about the equality case.

We observe that Theorem 1 continues to hold when U is replaced by an

arbitrary simply connected domain 2 of hyperbolic type. This follows by replacing

ix(z) by

M(z)F'(z)/ñi),

and g(z) by g(z)/(F'(z))2, where F denotes the function mapping U conformally

onto 2.

2. Corollaries and examples. As pointed out in the Introduction the following

fact follows as an immediate corollary of Theorem 1 : Suppose p. e ¡F, and fi

depends on a complex parameter t in such a manner that as t -> 0

¡x(z, t) = tv(z) + o(t),       sup \v(z)\ < 00.
zeU

Then v e N. Recall that Ahlfors [1] proved that the condition v e N is necessary and

sufficient for(5)

lim7 K   '        =0,       0 ^ 6 < 2t7.
i-0 t

Thus our Theorem 1 can be interpreted as generalizing the necessary part of

Ahlfors' condition from "small" p. to arbitrary fi.

A trivial illustration of (1.1) is the following observation: If >(z) is analytic then

either ¡í$íF, or /x(z) = 0. (Proof: Put g=fi.)

Another simple application is a short proof of the following known fact [3]:

The hypothesis ¡xelF does not imply tpe!F, 0 < t < 1. Namely, consider the

function

(2.1) Tp(z) = z-(l-\z\)p,

where p is an arbitrary real number, — 1 </>< 1. It is easy to verify that TD(z) is a

homeomorphism(6) between the closures of U, Tp(ew) = ew, 0^6<2tt, and hence

the complex dilatation

n i '\ r,\     8T" l8To -      pz
(2A) ^z) = ifIjz-~2\zT^

(5) f"(z) denotes the quasiconformal mapping of U onto U with complex dilatation ¡i(z),

normalized so that/" keeps the points 1, (', —1 fixed.

(6) The mapping T0{z) shifts the point 0 to — p. In fact, for small p, T0(z) approximates

the Teichmüller shift function [7] within an error o(p).
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belongs to the class !F. On the other hand, if g(z) is holomorphic in U, and || g|| < oo,

then

i-gMM*** - j\* J^.»^* .-il„ (_ç)*.
Choosing, say /o = i, g(z) = 1, we obtain 7^0; i.e. n$N. Therefore, t¡i$¿F for

all sufficiently small r.

The example

(2.2) uz) = tz,       (0 < / < 1)

shows that (1.1) is not sufficient to guarantee that ¡>.e3F. For, evaluating the left

side of (1.1) in polar coordinates we obtain the value 0. On the other hand, we will

now verify that \l$^. The function w* = Q(z) = z exp (tz), zeU, is a quasi-

conformal function with complex dilatation tz. Since arg Q(ew) is monotonie, Q is

actually a homeomorphism. Let ^^(w) map U conformally onto Q(U), normal-

ized in such a manner that/"(z) = T"1 ° Q(z). Since 8Q(U) is an analytic curve,

Y(w) is analytic in a neighborhood of, say, w=\. Suppose now that f(z) = z,

|«|-1. Then

T(z) = zexp(iz) = z exp (i/z),        |z| = 1.

By the uniqueness of analytic extension it follows that x¥(z) = z exp (t/z), z e U— {0},

an evident impossibility as T(z) must have an analytic extension to all of U, and

thus cannot have a singularity at z = 0.

The above example (2.2) also provides an illustration of the fact that it is possible

to have ^ e N, and at the same time t¡x £ ß\ 0 < / < 1.

3. A uniqueness theorem. Motivated by the known variational techniques for

quasiconformal mappings ([2], [4]) we can produce variations within the class of

mappings of U onto itself with a specified boundary correspondence by composing

one such mapping with mappings which keep the boundary points fixed. Theorem 1

then imposes a certain restriction on the complex dilatation of the composed

mapping which in certain cases may serve to identify an extremal function. As an

illustration of this technique we prove the following extremal and uniqueness

theorem. It generalizes [5] in the sense that the absolute value of the complex

dilatation A of the extremal mapping h need not be constant. The interesting point

is that it is the inverse mapping h "l which is associated with a quadratic differential ;

in the special case |A|=£=const it makes no difference whether we consider

h or A-1, as is easily seen.

Theorem 3. Let h and h ̂ h be quasiconformal selfmappings of U which coincide

on dU, and denote by A and A their complex dilatations. If the complex dilatation k

of the inverse h'1 of h is of the form K(yv) = k{w){^{w)/\^{w)\) with k(w)^0 and </>

holomorphic with finite norm, then |A(z)| > |A(z)| on a set of positive measure.
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Proof. Let f=h o h'1 and denote the complex dilatation of/by ¡j.. Expressing A"

in terms of p. and A we get

n n IM      A(z) + m(w)t(z)

(11) A(Z) =  l+X(zMw)r(z)

with

r(z) = hz(z)lhz(z), w = Â(z).

Assume |A(z)| ̂  |A(z)| a.e. in U. A short computation shows that this inequality is

equivalent to

(3.2) |,x(w)|2(l + |A(z)|2) + 2 Re [\(z)h(w)t(z)] ï 0.

The complex dilatation k of h'1 expressed by means of A is k(w) = -A(z)f(z),

which yields

(3.3) K*)|2(l + l«(w)|2)-2 Re [i(»Mw)] Ú 0.

Making use of the hypothesis we get

(3.4) |^(w)| \n(w)\2(l +k2(w))-2k(w) Re ^w^)] ^ 0.

Let E0 be the set of points w with A(w) = 0. On E0 we conclude from (3.4) that

¡j.(w) = 0. Therefore this set gives no contribution to the integral (1.1). For almost

all points we U—E0 we have 0<A(w)^A0, k0 = supweU k(w)< 1, and thus

(3.5) (1 +A»)/2A(w) ^ (1 +A2)/2A:0 = 1 + (1 -k0)2/2k0.

Dividing (3.4) by 2A(w)(l - |/¿(h0|2) and applying (3.5) gives

nM |0(w)| K*)l2   Re K^WM , (1 -ko)2 MhQI |Mw)|2 ̂ n
VM) I-Wh»)!1  "" l-|M(w)|a        2A0       1-Kw)|2    =

Integration over t/—iTo and application of (1.1) in the version (1.6) with *= — >fi

finally yield

(IrWff     lJÍ»)lM>*)l'dudcí0WÍL■E0       1-|^)|2

and therefore /x(w) = 0, w e U—E0.    Q.E.D.

In exactly the same way Theorem 2 can be applied to prove the following

Theorem 4. Suppose we are given finitely many points z¡ e 8U, j= 1,..., n^4,

and a quasiconformal selfmapping h of U, the inverse h'1 of which has a complex

dilatation K(w) = k(w)(<jj(w)l\t/j(w)\), A(w)äO, where <fi is a holomorphic quadratic

differential ofU—{z¡) with finite norm. If h is a quasiconformal selfmapping of U with

complex dilatation À such that h~(z,) = h(zj), |À(z)| <; [ A(z)| a.e. in U, thenh = h.

Proof. The quadratic differentials mentioned in Theorems 2 and 4 are of the

same nature. It is thus again possible to put *= -0 in the main inequality.
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Further generalizations, where some intervals on dU or even an arbitrary closed

point set is kept fixed are of course possible.

4. Some remarks on Teichmüller mappings which keep the boundary fixed.    Let

f(</>, k) be a Teichmüller mapping which is equal to the identity on 8U. The complex

dilatation of/is n(z) = k-<j>(z)/\<j>(z)\. Introducing this expression in (1.1) we get

(4.1) \lm\s{z)dxdy ^ k\\g\\

If a given holomorphic quadratic differential </> admits a sequence of values kn -*■ 0

(fcn>0) such that f(<f>, kn), when normalized at three points on 81], keeps the

boundary fixed, we get

(4.2) £1^)^ = 0

for every holomorphic function g which has finite norm in U. Such a </> must clearly

satisfy the necessary condition

(4.3) U\\ = oo,

as otherwise (4.2), with g(z) = <f>(z), would imply <£(z) = 0. We now make the further

restriction <f> = <&'2, <J> rational. Equality (4.2) then reads

(4-4) SSM)8(z)dxdy=o-

The next theorem gives a characterization of the class of functions <I> satisfying

(4.4).

Theorem 5. A nonconstant rational function O which is holomorphic in U satisfies

the orthogonality relation

ÍÍ,,  .gdxdy = 0,       j> = <D'2,

for every g which is holomorphic in U and has finite norm \\g\\ = jju \g(z)\ dx dy

if and only if the following conditions hold.

(a) All the poles of í> are on \z\ — 1.

(b) If <5(z) - <£(z0) has a zero of multiplicity m (m^2) at z0 (|z0| < 1) then 0(z)

- O(z0) has a zero of multiplicity at least m-\atz=\/z0. (7/í>'(z0) ^ 0, this condition

is of course void.)

Proof. (1) Let Ä(z) = ($(z)-Ö(l/z))/<D'(z). We have Ri(z) = ^(z)/\<j>(z)\ and

therefore

= ^-.1^ Rgdz-^y lim Rgdz,
¿I r~l J|2|=r ¿'   k   0-0 J|2-2fc|=p
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where the zk are the singularities of R, i.e. \zk\ < 1, \\zk a pole of í>, or zk a zero of

<I>'. The limits evidently exist because of the absolute convergence of the integral

J.fi*i<i R-&dx dy and Green's theorem.

We first show that

(4.5) lim f       R(z)g(z) dz = 0.
r->l J\g\ =r

It follows from JT \g(reie)\r dr dd< co that there exists a sequence r„ -> 1 such that

( 1 — /-„) f \g(rnew)\rnd6^0. The result then follows from R(z) = 0(1 -r) forr-* 1.

To this end we write R(z)/(l— r) = R(z)(l+r)/(l — zz) and show that to every

point i, |£| = 1, there exists a neighborhood £/(£) and a bound M such that

\R(z)\j(\ — zz) < M for z e £/(£). We can then cover {|z| = 1} with finitely many such

neighborhoods, choose the largest bound M and r0 < 1 such that for r0 < \z\ < 1 the

point z is in at least one of the neighborhoods. Let {, \t\ = 1, be a regular point of O.

In some neighborhood of { <P has an expansion

<D(z) = aQHz-Qm(am+am+i(z-0+ ■ ■ ■).       (a» * 0, m = 1).

Thus

*(z)
âm[(z--cr-(l-y]+am+1[(z--cr^-(l-c)m+1] +

l-zz (l-zz)(z-0m"1(wöm+---)

The general term in the numerator reads

zz—1
am + i —

[(r-0m+J-1 + (^-0m + y-a(|-C)+ • • • +^-^)mH

which, since |l/z—£| = |(£—z)/£z| = |£ —z|/|z|, has the upper bound

í\m-\m+j){j^f-)z-tr-Km + Mi-j-F)'      j = 0,1,2,.

Thus for sufficiently small |z —£| we have a finite bound

|ü(z)| <_1       1    v i        i /    .. -Jlz-flV <- XA

Now let £ be a pole of í> of order « = 1 :

<I)(Z) = (z3f)-n+---+^ + «0+--, (û-„#0).

We have

^[(^ir'ai/^-o^
l-zz"      (l-zz-)(l/(z-0" + 1)[-«u_n+---]"
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The general singular term of the numerator has the form

¿(i-z¿) r    i     ,     i       _l
"(z-oa-zjuz-O"-'-1 (f-0"-y-a'(o/2)-o"

r      i

and has upper bound

1—zz       n—ji      i ft j r\ i

lfl-n + j|   |j._     i2 |__r|n-/-l' J =  U> • • •' n~ L

For the regular terms we get an upper bound similar to the one before, which

completes the proof of (4.5). Therefore, for any g with ||g|| <oo we have

f f       Rig dx dy - 5j V lim f Rg dz.
JJ|z|<l z<   k   o->0 J\z-ak\-p

(2) Let us now consider the term Ak = limB^0 ̂ Z_B^ = D Rg dz for arbitrary zk.

Making use of polynomials of the form g(z) = Y\k {z—zk)n"we first derive necessary

conditions such that J.kAk = 0 for every g. At zk O has an expansion

O(z) = a0 + (z-zk)m(am + am+1(z-zk)+ ■ ■ ■)

where am^0 and w^ 1 is the multiplicity of a0 = <b(zk). Assume first that O has a

pole of order «^ 1 at the mirror point l/zfc:

^(z) = (z-l"/ffc)n+   "'   è-«^°'near1/^-

Then

fl0 + (z-zfc)'"(âm+ • ■ -)-(zzto/(zfc-z))"(¿_n+ • ■ ■)
*(z) =

(z-zfc)m"1(wam+---)

If we choose the factor (z — zk)n* of g with nk = m + n— 1, this point zfc will give no

contribution to the sum 2fc -4*. whereas, if we choose nk = m + n — 2 its contribution

will be different from zero. Therefore, if O has a pole outside |z| ^ 1 (for a pole at

infinity the computation is similar) we can choose a function g such that

JÍ R¡g dx dy ¿ 0.
|2|<1

We have proved the necessity of the condition (a).

To prove the necessity of (b) let the development of ^(z) at l/zfc be

«D(z) = è0 + (z-l/zk)i(è1 +...),    ô,*0.

We have

ä0 + (z-zk)m(äm+ ■ ■ ■)-[E0 + ((zk-z)/zzk)l(bl+- ■ ■)]
R(z) =

(z-zk)m-\mam+--)

Choosing nk = m— 1 as exponent of the factor z — zk of g the integral vanishes in the

limit ; if m ̂  2 and we choose nk=m — 2, the integral only vanishes if a0 = b0. Let this
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be the case. Then the first remaining term in the numerator does not give a con-

tribution in the limit, for any*. If I^m — 2, we choose nk such that nk + l—(m— 1)

= —1, i.e. nk = m —2 — 1^0 to get a nonvanishing contribution. This shows the

necessity of (b).

(3) Now let conditions (a) and (b) be satisfied. Then at an arbitrary zero zk of <t>',

|zfc|<l, we have the above expansion with a0 = b0 and l^m-l. But then for

arbitrary holomorphic * evidently limi_0 ^z_Zk] = p Rgdz=0. This completes the

proof.

We will now see that if í> satisfies the hypothesis of Theorem 5, and <t>'(z)^0 in

U, a much stronger conclusion follows.

Theorem 6. Let 0/const be a rational function which is holomorphic in the

extended plane except possibly on {\z\ = 1} and has a nonvanishing derivative when

|z|<l. Then for every k, 0<k<\, the normalized Teichmüller mapping f(<f>, A),

<£ = O'2 of U onto U keeps the boundary fixed.

Proof. After a linear transformation we may assume that U is the upper half

plane {z=x + iy \ y>0} and $ has the form

(4.6) «DOO = 2 Hlz),       ff/z) = 2 J~^'
y=i v = o  \z    xi)

Xj, ajv, bjv real. We consider the function

(4.7) Y(z> =  2 m(z),   Hf(z) = | ^'iffi >   K = |±| •

For z=x^Xj we have

(4.8) Im Y(x) = Im <P(x), Re Y(x) = K Re <D(x).

Let x0 ̂  Xj. If the power series for <P is

(4.9) 4>(z) = (z-x0)'((^ + 'Bi) + (A, + i + iBl + 1)(z-x0)+ ■ ■ ■)

the power series for Y at the same point must be

(4.10) Y(z) = (z-x0)l((KAl + iBl) + (KAl + 1 + iBl + 1)(z-x0)+ ■ ■ ■),

because for z = x this is the only power series which satisfies (4.8). The radius of

convergence of both series is the same. Let F denote a horizontal stretching by a

factor K. Every point x0 on the closed real axis, including the points x¡ and the

zeroes of 3>', has a circular neighborhood V in which Y"1 o fo 0), with Y"1 a

properly chosen branch, is single valued and schlicht, and keeps the points on the

real axis fixed. In the intersection of two such neighborhoods the two mappings

coincide. Thus a sufficiently large circle y in the upper half plane which intersects a

small neighbourhood of the origin is mapped byw=Y~1oF° 0(z) onto a Jordan

curve y in {Im w > 0}. As $>'(z) ̂  0 in {Im z > 0} :

(4.11) ±-[ d arg O' = J- f (</ arg (d<b)-d arg (dz)) = 0;
Z7T Jy LIT     Jy
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thus J"y d arg (d<&) = 2tt, where d<î> is the tangent vector of the 3>-image of y. The

winding number of the tangent vector of the curve F ° 0(y) evidently is the same

(by continuity, letting K increase from one to its final value). Thus jy. d arg (dY)

= 2tt and we conclude that Y' has no zero inside y and by exhaustion in the entire

upper half plane.

Now F ° $ maps the interior of y onto a covering surface R which (considered

e.g. as a surface lying over the plane) is spanned by the curve F ° <D(y) and which

has no branching. The same is true for *P and the interior of /, with Y(y') = F ° 4>(y).

As may be verified there is only one such covering surface R, and from this we

conclude that the boundary mapping Y'1 o F<> <t> of y onto y can be extended to a

quasiconformal mapping of the disk Z> = Inty onto Inty'. Expanding D to the

upper half plane we get the result that Y'1 o F ° $> maps U onto U keeping every

point on the real axis fixed.

Examples. If the restriction of 0(z) to U is schlicht, then the restriction of Y(w)

to U is also schlicht, and the poles can be at most second order. A trivial example is

obtained when ®(t/) is the right half plane, or the plane slit along the positive real

axis. In this case F° <P(C/) = <I>(t/).

To consider a less obvious example let <&(z) = (z— l)/(z+1)2, which is schlicht in

U, and maps U onto the "exterior" of a parabola. The affine mapping stretches the

parabola, but the mapping Y(w) depends on k in such a manner that the composed

mapping Y'1 o f o (p keeps all points of {|z| = 1} fixed.

Remark. For complex dilatations ix = k<f>/\</>\ where </> is of the form considered

in Theorem 6 it is clear, in contrast with (2.1'), that not only is /x e& but also

tfie J^0<i<l.
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