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Abstract

Quasitoric spaces were introduced by Davis and Januskiewicz in their 1991 Duke
paper. There they extensively studied topological invariants of quasitoric manifolds.
These manifolds are generalizations or topological counterparts of nonsingular pro-
jective toric varieties. In this article we study structures and invariants of quasitoric
orbifolds. In particular, we discuss equivalent definitions and determine the orbifold
fundamental group, rational homology groups and cohomology ring of a quasitoric
orbifold. We determine whether any quasitoric orbifold can be the quotient of a
smooth manifold by a finite group action or not. We prove existence of stable al-
most complex structure and describe the Chen–Ruan cohomology groups of an al-
most complex quasitoric orbifold.

1. Introduction

Quasitoric spaces were introduced by Davis and Januskiewicz in [8] where topo-

logical invariants of quasitoric manifolds were extensively studied. The term quasitoric

however first appeared in the survey [4] which is also a good reference for many inter-

esting developments and applications. Quasitoric manifolds enjoy many cohomological

properties of nonsingular toric varieties. But they do not necessarily have algebraic or

complex structure. For instance, the connected sum CP 2 C CP 2 is a quasitoric mani-

fold that is not even almost complex. Hence these properties of toric varieties are not

contingent upon such structures but a consequence of the torus action.

In this article we study topological invariants and stable almost complex structure

on quasitoric orbifolds. In particular, we discuss equivalent definitions and determine

the orbifold fundamental group, rational homology groups and cohomology ring of a

quasitoric orbifold. We prove existence of stable almost complex structure and describe

the Chen–Ruan cohomology groups of an almost complex quasitoric orbifold. Some of

these results are analogues of well known facts about complete simplicial toric varieties

in algebraic geometry. However in the tradition of Davis and Januskiewicz, our proofs

are purely topological. In the sequel we will study existence of almost complex struc-

ture and almost complex morphisms. We expect this to be an interesting category.

A quasitoric manifold X2n may be defined as an even dimensional smooth mani-

fold with a locally standard action of the compact torus T n D U (1)n such that the

orbit space has the structure of an n-dimensional polytope. Locally standard means
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that locally the action is �-equivariantly diffeomorphic to the standard action of T n onCn , where � is an automorphism of T n . That is, every point x 2 X has a T n-invariant

neighborhood Vx and a diffeomorphism h W Vx ! U , where U is an open set in Cn

invariant under the standard action of T n , and an automorphism �x W T n ! T n such

that h(t � y) D �x (t) � h(y) for all y 2 Vx . We point out that there are even dimensional

compact manifolds with locally standard T n action for which the orbit space is not a

homology polytope; see Example 4.3 of [12].

The standard action of U (1)n on Cn has orbit space RnC D f(r1, : : : , rn) 2 Rn j
ri � 0g. The orbit space of the torus action on a quasitoric manifold is therefore a

simple polytope in Rn; that is, exactly n facets meet at each vertex. This leads to a

combinatorial model where a quasitoric manifold is defined as the quotient of a trivial

torus bundle Pn � T n on a polytope Pn by the action of certain torus subgroups of

T n on the fibers over the faces of the polytope. The dimension of the isotropy torus

subgroup over the relative interior of a face matches the codimension of the face.

More precisely, T n can be identified with (Zn 
Z R)=Zn . The isotropy subgroup

of each facet Fi is a circle subgroup corresponding to a primitive vector �i in Zn ,

which is determined up to choice of sign. The vector �i is called a characteristic vec-

tor. The isotropy subgroup corresponding to a face which is the intersection of facets

Fi1
, : : : , Fik

is the subtorus of T n corresponding to the subgroup of Zn generated by�i1
, : : : , �ik

. To ensure smoothness, it has to be assumed that for every vertex of the

polytope the corresponding collection of n characteristic vectors forms a basis of Zn

over Z. It turns out that different choices of signs of the �i correspond to different

stable almost complex structures on the quasitoric manifold, see [2]. A characteristic

vector with a definite choice of sign is called a dicharacteristic vector. A quasitoric

manifold whose characteristic vectors have been assigned definite signs is called omni-

oriented. We will apply the same terminology in the case of orbifolds. Throughout,

we will denote an orbifold by a bold upper-case letter and its underlying topological

space by the same letter in normal font.

Our first definition of a quasitoric orbifold is constructive and will readily yield

a differentiable orbifold atlas. Namely, the underlying topological space X of an

n-dimensional quasitoric orbifold X is defined to be the quotient of Pn � T n by the

action of k-dimensional tori on the fibers over codimension k faces of Pn , via some

finite covering homomorphisms onto subtori of T n . The precise definition is given in

Section 2. The implication for the characteristic vectors is that they need no longer be

primitive, and the collection of characteristic vectors corresponding to any vertex of Pn

need not form a basis of Zn over Z, but should be Z-linearly independent.

We follow this up with an equivalent axiomatic definition of a (differentiable) quasi-

toric orbifold akin to the definition of a quasitoric manifold via locally standard action.

We also give a classification result, Lemma 2.2. Later, in Section 6, it will be evident

that our definitions of a quasitoric orbifold are more general than the original defin-

ition in [8], as the quotient Z(P)=TK of a higher dimensional manifold by a smooth
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torus action. Note that Hattori and Masuda [11] have introduced an even more general

class of spaces called torus orbifolds, relaxing the constraint of local standardness on the

T n action.

Since we restrict the orbit space P to be compact, quasitoric orbifolds are compact

by definition. However this restriction is made mainly to match established terminology

and state the results in a convenient form. We occasionally take the liberty of using

combinatorial model with noncompact base space P like at the beginning of Section 6.

A differentiable orbifold X is called a global quotient if it is diffeomorphic as an

orbifold to the quotient orbifold [M=G], where M is a smooth manifold and G is a

finite group acting smoothly on M . It is an interesting problem to decide whether a

given orbifold is a global quotient or not. In Section 3 we solve the problem com-

pletely for quasitoric orbifolds by determining their orbifold fundamental group and

orbifold universal cover. These invariants were introduced by Thurston [18].

In Section 4 we compute the homology of quasitoric orbifolds with coefficients inQ. We need to generalize the notion of CW-complex a little bit for this purpose. In

Section 5 we compute the rational cohomology ring of a quasitoric orbifold and show

that it is isomorphic to a quotient of the Stanley–Reisner face ring of the base poly-

tope P . These results are analogous to similar formulae for simplicial toric varieties.

Our proofs are adaptations of the proofs in [8] for quasitoric manifolds and are purely

topological.

In Section 6 we show the existence of a stable almost complex structure on a

quasitoric orbifold corresponding to any given omniorientation, following the work of

Buchstaber and Ray [2] in the manifold case. The universal orbifold cover of the quasi-

toric orbifold is used here. As in the manifold case, we show that the cohomology ring

is generated by the first Chern classes of some complex rank one orbifold vector bun-

dles, canonically associated to facets of Pn . We compute the top Chern number of an

omnioriented quasitoric orbifold. We give a necessary condition for existence of torus

invariant almost complex structure. Whether this condition is also sufficient remains

open. Finally we compute the Chen–Ruan cohomology groups of an almost complex

quasitoric orbifold. These will be used in the sequel.

We refer the reader to [1] and references therein for definitions and facts concern-

ing orbifolds. The reader may also consult [14] for an excellent exposition of the foun-

dations of the theory of (reduced) differentiable orbifolds.

2. Definition and orbifold structure

For any Z-module L denote L 
Z R by L R . Let N be a free Z-module of rank

n. The quotient TN D NR=N is a compact n-dimensional torus. Suppose M is a free

submodule of N of rank m. Let TM denote the torus MR=M . Let j W MR ! NR and

j� W TM ! NR=M be the natural inclusions. The inclusion i W M ! N induces a homo-

morphism i� W NR=M ! NR=N D TN defined by i�(aCM) D aC N on cosets. Denote

the composition i� Æ j� W TM ! TN by �M . ker i� ' N=M . If m D n, then j� is identity
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and i� is surjective. In this case �M W TM ! TN is a surjective group homomorphism

with kernel G M D N=M , a finite abelian group.

2.1. Definition by construction. A 2n-dimensional quasitoric orbifold may be

constructed from the following data: a simple polytope P of dimension n with facets

Fi indexed by I D f1, : : : , mg, a free Z-module N of rank n, an assignment of a vector�i in N to each facet Fi of P such that whenever Fi1
\� � �\ Fik

¤ ; the corresponding

vectors �i1
, : : : , �ik

are linearly independent over Z. These data will be referred to as

a combinatorial model and abbreviated as (P , N , f�i g). The vector �i is called the

dicharacteristic vector corresponding to the i-th facet.

Each face F of P of codimension k � 1 is the intersection of a unique set of k

facets Fi1
, : : : , Fik

. Let I (F) D fi1, : : : , ikg � I . Let N (F) denote the submodule of

N generated by the characteristic vectors f� j W j 2 I (F)g. TN (F) D N (F)R=N (F) is a

torus of dimension k. We will adopt the convention that TN (P) D 1.

Define an equivalence relation � on the product P�TN by (p, t) � (q, s) if p D q

and s�1t belongs to the image of the map �N (F) W TN (F) ! TN where F is the unique

face of P whose relative interior contains p. Let X D P�TN=� be the quotient space.

Then X is a TN -space and let � W X ! P defined by �([p, t]�) D p be the associated

map to the orbit space P . The space X has the structure of an orbifold, which we

explain next.

Pick open neighborhoods Uv of the vertices v of P such that Uv is the comple-

ment in P of all facets that do not contain v. Let Xv D ��1(Uv) D Uv � TN=�.

For a face F of P containing v the inclusion f�i W i 2 I (F)g in f�i W i 2 I (v)g in-

duces an inclusion of N (F) in N (v) whose image will be denoted by N (v, F). Sincef�i W i 2 I (F)g extends to a basis f�i W i 2 I (v)g of N (v), the natural map from the torus

TN (v, F) D N (v, F)R=N (v, F) to TN (v) D N (v)R=N (v) defined by aCN (v, F) 7! aCN (v)

is an injection. We will identify its image with TN (v, F). Denote the canonical iso-

morphism TN (F) ! TN (v, F) by i(v, F).

Define an equivalence relation �v on Uv � TN (v) by (p, t) �v (q, s) if p D q and

s�1t 2 TN (v, F) where F is the face whose relative interior contains p. Then Wv D Uv �
TN (v)=�v is �-equivariantly diffeomorphic to an open ball in Cn where � W TN (v) ! U (1)n

is an isomorphism, see [8]. Note that the map �N (F) factors as �N (F) D �N (v) Æ i(v, F).

Since i(v, F) is an isomorphism, t 2 TN (v, F) if and only if �N (v)(t) 2 im �N (F). Hence

the map �N (v) W TN (v) ! TN induces a map �v W Wv ! Xv defined by �v([(p, t)]�v ) D
[(p, �N (v)(t))]

� on equivalence classes. Gv D N=N (v), the kernel of �N (v), is a finite

subgroup of TN (v) and therefore has a natural smooth, free action on TN (v) induced by

the group operation. This induces smooth action of Gv on Wv . This action is not free

in general. Since TN � TN (v)=Gv , Xv is homeomorphic to the quotient space Wv=Gv .

(Wv , Gv , �v) is an orbifold chart on Xv . To show the compatibility of these charts as v
varies, we introduce some additional charts.

For any proper face E of dimension k � 1 define UE D TUv , where the inter-

section is over all vertices v that belong to E . Let X E D ��1(UE ). For a face F con-
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taining E there is an injective homomorphism TN (F) ! TN (E) whose image we denote

by TN (E , F).

Let

(2.1) N�(E) D (N (E)
Z Q) \ N and G E D N�(E)=N (E).

G E is a finite group. Let ��, E W TN (E) ! TN�(E) be the natural homomorphism. ��, E has

kernel G E . Denote the quotient N=N�(E) by N?(E). It is a free Z-module and N �
N�(E)� N?(E). Fixing a choice of this isomorphism (or fixing an inner product on

N ) we may regard N?(E) as a submodule of N . Consequently TN D TN�(E) � TN?(E).

Define an equivalence relation �E on UE�TN (E)�TN?(E) by (p1, t1, s1)�E (p2, t2, s2)

if p1 D p2, s1 D s2 and t�1
2 t1 2 TN (E , F) where F is the face whose relative interior con-

tains p1. Let WE D UE � TN (E) � TN?(E)=�E . It is diffeomorphic to Cn�k � (C�)k . There

is a natural map �E W WE ! X E induced by ��, E W TN (E) ! TN�(E) and the identity maps

on UE and TN?(E). (WE , G E , �E ) is an orbifold chart on X E .

Given E , fix a vertex v of P contained in E . N (v) D N (E) � M where M

is the free submodule of N (v) generated by the dicharacteristic vectors � j such that

j 2 I (v) � I (E). Consequently TN (v) D TN (E) � TM . We can, without loss of general-

ity, assume that M � N?(E). Thus we have a covering homomorphism TM ! TN?(E).

For a point x D [p, t , s] 2 X E , choose a small neighborhood B of s in TN?(E) such

that B lifts to TM . Choose any such lift and denote it by l W B ! TM . Let Wx D
UE � TN (E) � B=�E . (Wx , G E , �E ) is an orbifold chart on a neighborhood of x , and it

is induced by (WE , G E , �E ). The natural map Wx ,! Wv induced by the map l and the

identification TN (v) D TN (E) � TM , and the natural injective homomorphism G E ,! Gv
induce an injection (also called embedding) of orbifold charts (Wx , G E , �E ) !
(Wv , Gv , �v).

The existence of these injections shows that the charts f(Wv , Gv , �v)W v any vertex of

Pg are compatible and form part of a maximal 2n-dimensional orbifold atlas A for X .

We denote the pair fX , Ag by X. We say that X is the quasitoric orbifold associated to

the combinatorial model (P , N , f�i g).
REMARK 2.1. Note that the orbifold X is reduced, that is, the group in each

chart has effective action. Also note that changing the sign of a dicharacteristic vector

gives rise to a diffeomorphic orbifold.

Recall that for any point x in an orbifold, the isotropy subgroup Gx is the stabi-

lizer of x in some orbifold chart around x . It is well defined up to isomorphism. We

recall the following definition for future reference.

DEFINITION 2.1. A point x 2 X is called a smooth point if Gx is trivial, other-

wise x is called singular.
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In the case of a quasitoric orbifold X, for any x 2 X , �(x) belongs to the relative

interior of a uniquely determined face E x of P . The isotropy group Gx D G E x (see

(2.1)). We adopt the convention that G P D 1.

DEFINITION 2.2. A quasitoric orbifold is called primitive if all its characteristic

vectors are primitive.

Note that in a primitive quasitoric orbifold the local group actions are devoid of

complex reflections (that is maps which have 1 as an eigenvalue with multiplicity n� 1)

and the classification theorem of [16] for germs of complex orbifold singularities applies.

2.2. Axiomatic definition. Analyzing the structure of the quasitoric orbifold as-

sociated to a combinatorial model, we make the following axiomatic definition. This

is a generalization of the axiomatic definition of a quasitoric manifold using the notion

of locally standard action, as mentioned in the introduction.

DEFINITION 2.3. A 2n-dimensional quasitoric orbifold Y is an orbifold whose

underlying topological space Y has a TN action, where N is a fixed free Z-module of

rank n, such that the orbit space is (diffeomorphic to) a simple n-dimensional polytope

P . Denote the projection map from Y to P by � W Y ! P . Furthermore every point

x 2 Y has

A1) a TN -invariant neighborhood V ,

A2) an associated free Z-module M of rank n with an isomorphism � W TM ! U (1)n

and an injective module homomorphism �W M ! N which induces a surjective covering

homomorphism �M W TM ! TN ,

A3) an orbifold chart (W , G, � ) over V where W is �-equivariantly diffeomorphic to

an open set in Cn , G D ker �M and � W W ! V is an equivariant map i.e. � (t � y) D�M (t) � � (y) inducing a homeomorphism between W=G and V .

It is obvious that a quasitoric orbifold defined constructively from a combinatorial

model satisfies the axiomatic definition. We now demonstrate that a quasitoric orbifold

defined axiomatically is associated to a combinatorial model. Take any facet F of P and

let F0 be its relative interior. By the characterization of local charts in A3), the isotropy

group of the TN action at any point x in ��1(F0) is a locally constant circle subgroup of

TN . It is the image under �M of a circle subgroup of TM . Thus it determines a locally

constant vector, up to choice of sign, � in N . Since ��1(F0) is connected, we get a

characteristic vector �, unique up to sign, for each facet of P . That the characteristic

vectors corresponding to all facets of P which meet at a vertex are linearly independent

follows from the fact that their preimages under the appropriate � form a basis of M .

Thus we recover a combinatorial model (P , N , f�i g) starting from Y.

Let X be the quasitoric orbifold obtained from (P , N , f�i g) by the construction

in the previous subsection. We need to show that X and Y are diffeomorphic orbi-
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folds. The hard part is to show the existence of TN -equivariant a continuous map from

X ! Y . This can be done following Lemma 1.4 of [8]. The idea is to stratify Y ac-

cording to normal orbit type, see Davis [7]. Here we need to use the fact that the

orbifold Y being reduced, is the quotient of a compact smooth manifold by the foli-

ated action of a compact Lie group. Then one can blow up (see [7]) the singular strata

of Y to get a manifold OY equivariantly diffeomorphic to TN � P . One has to modify

the arguments of Davis slightly in the orbifold case. The important thing is that by the

differentiable slice theorem each singular stratum has a neighborhood diffeomorphic to

its orbifold normal bundle, and is thus equipped with a fiberwise linear structure so

that the constructions of Davis go through. Finally there is a collapsing map OY ! Y

and by composition with the above diffeomorphism a map TN � P ! Y . It is easily

checked that this map induces a continuous equivariant map X ! Y .

DEFINITION 2.4. Let X1 and X2 be quasitoric orbifolds whose associated base

polytope Pn and free Z-module N are identical. Let � be an automorphism of TN . A

map fW X1 ! X2 of quasitoric orbifolds is called a �-equivariant diffeomorphism if f is

a diffeomorphism of orbifolds and the induced map on underlying spaces f W X1 ! X2

satisfies f (t � x) D �(t) � f (x) for all x 2 X1 and t 2 TN .

Two �-equivariant diffeomorphisms f and g are said to be equivalent if there exist

equivariant diffeomorphisms hi W Xi ! Xi , i D 1, 2, such that g Æ h1 D h2 Æ f. We

also define, for � as above, the �-translation of a combinatorial model (P , N , f�i g) to

be the combinatorial model (P , N , f�(�i )g). The following lemma classifies quasitoric

orbifolds over a fixed polytope up to �-equivariant diffeomorphism.

Lemma 2.2. For any automorphism � of TN , the assignment of combinatorial

model defines a bijection between equivalence classes of �-equivariant diffeomorphisms

of quasitoric orbifolds and �-translations of combinatorial models.

Proof. Proof is similar to Proposition 2.6 of [2]. The existence of a section sW P !
Y for an axiomatically defined quasitoric orbifold Y follows from the blow up construc-

tion above.

2.3. Characteristic subspaces. Of special importance are certain TN -invariant

subspaces of X corresponding to the faces of the polytope P . If F is a face of P

of codimension k, then define X (F) WD ��1(F). With subspace topology, X (F) is a

quasitoric orbifold of dimension 2n � 2k. Recall that N�(F) D (N (F) 
Z Q) \ N

and N?(F) D N=N�(F). Let %F W N ! N?(F) be the projection homomorphism. Let

J (F) � I be the index set of facets of P , other than F in case k D 1, that intersect

F . Note that J (F) indexes the set of facets of the n � k dimensional polytope F . The

combinatorial model for X (F) is given by (F , N?(F), f%F (�i ) j i 2 J (F)g). X (F) is

called a characteristic subspace of X , if F is a facet of P .
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3. Orbifold fundamental group

A covering orbifold or orbifold cover of an n-dimensional orbifold Z is a smooth

map of orbifolds p W Y ! Z whose associated continuous map p W Y ! Z between un-

derlying spaces satisfies the following condition: Each point z 2 Z has a neighborhood

U � V =0 with V homeomorphic to a connected open set in Rn , for which each com-

ponent Wi of p�1(U ) is homeomorphic to V =0i for some subgroup 0i � 0 such that

the natural map pi W V =0i ! V =0 corresponds to the restriction of p on Wi .

Given an orbifold cover p W Y ! Z a diffeomorphism h W Y ! Y is called a deck

transformation if p Æ h D p. An orbifold cover p W Y ! Z is called a universal orbi-

fold cover of Z if given any orbifold cover p1 W W ! Z, there exists an orbifold cover

p2 W Y ! W such that p D p1 Æp2. Every orbifold has a universal orbifold cover which

is unique up to diffeomorphism, see [18]. The corresponding group of deck transform-

ations is called the orbifold fundamental group of Z and denoted �orb
1 (Z).

Suppose Z D [Y=G] where Y is a manifold and G is a finite group. Then the

following short exact sequence holds.

(3.1) 1 ! �1(Y ) ! �orb
1 (Z) ! G ! 1.

This implies that an orbifold Z can not be a global quotient if �orb
1 (Z) is trivial,

unless Z is itself a manifold.

We first give a canonical construction of a quasitoric orbifold cover O for any given

quasitoric orbifold X. We will prove later that O is the universal orbifold cover of X.

DEFINITION 3.1. Let ON be the submodule of N generated by the characteristic

vectors of X. Let O�i denote the characteristic vector �i as an element of ON . Let O be

the quasitoric orbifold associated to the combinatorial model (P , ON , fO�i g). Denote the

corresponding equivalence relation by O� so that the underlying topological space of O

is O D P � T ON= O�. Denote the quotient map P � T ON ! O by O� .

Proposition 3.1. The quasitoric orbifold O is an orbifold cover of the quasitoric

orbifold X with deck group N= ON.

Proof. The inclusion �W ON ,!N induces a surjective group homomorphism ��W T ON D
( ON 
R)= ON ! TN D (N 
R)=N with kernel N= ON . In fact for any face F of P we have

commuting diagram

T ON (F)

� ON (F)K
�0 K

T ON
�� K

TN (F)

�N (F)K TN

(3.2)



ON QUASITORIC ORBIFOLDS 1063

where ON (F) is N (F) viewed as a sublattice of ON and �
0

is an isomorphism induced

by �. Thus there is an induced surjective map

(3.3) �1 W T ON=im(� ON (F)) ! TN=im(�N (F)).

We obtain a torus equivariant map f W O ! X defined fiberwise by (3.3), that is,

for any point q 2 P belonging to the relative interior of the face F , the restriction of

f W O��1(q) ! ��1(q) matches �1.

The map f lifts to a smooth map of orbifolds fW O ! X. Consider orbifold charts

on X and O corresponding to vertex v. Identifying ON (v) and ON (v, F) with N (v) and

N (v, F) respectively, we note that OWv D Uv � T ON (v)= O�v may be identified with Wv D
Uv � TN (v)=�v . Hence Ov D Wv= OGv and f W Ov ! Xv is given by the projection

Wv= OGv ! Wv=Gv where OGv D ON=N (v) is a subgroup of Gv D N=N (v). So fW O ! X

is in fact an orbifold covering. The deck group for this covering is clearly N= ON .

Theorem 3.2. The quasitoric orbifold O is the orbifold universal cover of the

quasitoric orbifold X. The orbifold fundamental group �orb
1 (X) of X is isomorphic

to N= ON.

Proof. Let 6 denote the singular loci of X (refer to Definition 2.1). The set 6
has real codimension at least 2 in X . Note that �(6) is a union of faces of P . Let

P6 D P � �(6).

Observe that X �6 D ��1(P6) D P6 � TN= �. Since P6 is contractible, �1(P6 �
TN ) � �1(TN ) � N . When we take quotient of P6 � TN by the equivalence relation�, certain elements of this fundamental group are killed. Precisely, if P6 contains a

point p which belongs to the intersection of certain facets F1, : : : , Fk of P , then the

elements �1, : : : , �k of N given by the corresponding characteristic vectors map to the

identity element of �1(X � 6). Let I (6) be the collection of facets of P that have

nonempty intersection with P6 . Let N (6) be the submodule generated by those �i for

which i 2 I (6). Then the argument above suggests that �1(X�6) D N=N (6). Indeed,

this can be established easily by systematic use of the Seifert–van Kampen theorem.

It is instructive to first do the proof in the case X is primitive (see Definition 2.2).

Here G Fi
D 1 (see (2.1)) for each facet Fi . Hence I (6) D I and N6 D ON . Therefore�1(X �6) D N= ON . Hence by Proposition 3.1, f0 W O � f �1(6) ! X �6, where f0 is

the restriction of f , is the universal covering. Now if pW W ! X is any orbifold cover

then the induced map p0W W � p�1(6) ! X�6 is a manifold cover. Since p�1(6) has

real codimension at least two in W , W � p�1(6) is connected. By a metric completion

argument it follows that f0 factors through p0 and f factors through p.

For the general case we will use an argument which is similar to that of Scott

[17] for orbifold Riemann surfaces. The underlying idea also appeared in remarks after

Proposition 13.2.4 of Thurston [18].
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The group N= ON is naturally a quotient of �1(X � 6) D N=N (6) and the corres-

ponding projection homomorphism has kernel K D ON=N (6). Consider the manifold

covering f0 W f �1(X �6) ! X �6 obtained by restricting the map f W O ! X . Note

that �1( f �1(X � 6)) D K and the deck group of f0 is N= ON . Let W be any orbifold

covering of X with projection map p. Then W0 D W � p�1(6) is a covering of X �6
in the usual sense. We claim that �1(W0) contains K as a subgroup.

Let N�i denote the image of �i in N=N (6). Obviously fN�i W i 2 I � I (6)g generate

K . Physically such a N�i can be represented by the conjugate of a small loop ci in

X �6 going around some point xi 2 ��1(FÆ
i ) once in a plane transversal to ��1(Fi ),

where FÆ
i denotes the relative interior of the facet Fi . The point xi has a neighborhood

U in X homeomorphic to Cn�1� (C=G Fi
). Therefore a connected component V of the

preimage p�1(U ) � W is homeomorphic to Cn�1 � (C=G 0
Fi

) where G 0
Fi

is a subgroup

of G Fi
. We may assume, without loss of generality, that ci lies in the plane f0g �C=G Fi
. By the definition of G Fi

, N�i is trivial in G Fi
and hence in G 0

Fi
. Identifying

G Fi
with the deck group of the covering C� ! C�=G Fi

, we infer that ci lifts to a

loop in C� and consequently in C�=G 0
Fi

. Hence ci lifts to a loop in V � p�1(6). Thus

each generator and therefore every element of K is represented by a loop in W0. This

induces a homomorphism K ! �1(W0). This homomorphism is injective since K is a

subgroup of the fundamental group of the space X �6 which has W0 as a cover.

For any orbifold covering W of X, the associated covering W0 of X � 6 admits

a covering by f �1(X � 6) � O since �1( f �1(X � 6)) D K is a normal subgroup of�1(W0). Thus O is an orbifold cover of W. Hence O is the universal orbifold cover

of X and N= ON is the orbifold fundamental group of X.

REMARK 3.3. Note that the orbifold fundamental group of a quasitoric orbifold

is always a finite group. It follows that a quasitoric orbifold is a global quotient if

and only if its orbifold universal cover is a smooth manifold. Therefore Theorem 3.2

yields a rather easy method for determining if a quasitoric orbifold is a global quotient

or not.

EXAMPLE 3.4. If ON D N , then X is not a global quotient unless X is a mani-

fold. For instance, let P be a 2-dimensional simplex with characteristic vectors (1, 1),

(1, �1), (�1, 0) and let X be the quasitoric orbifold corresponding to this model. Then

N D ON , but X has an orbifold singularity at ��1(v) where v D F1 \ F2. Therefore

X is not a global quotient. In fact X is equivariantly diffeomorphic to the weighted

projective space p(1, 1, 2).

4. Homology with rational coefficients

Following Goresky [9] one may obtain a CW structure on a quasitoric orbifold.

However it is too complicated for easy computation of homology. We introduce the

notion of q-CW complex where an open cell is the quotient of an open disk by ac-
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tion of a finite group. Otherwise the construction mirrors the construction of usual CW

complex given in Hatcher [10]. We show that our q-cellular homology of a q-CW

complex is isomorphic to its singular homology with coefficients in Q. We then fol-

low the main ideas of the computation for the manifold case in [8] to compute the

rational homology groups of X .

4.1. q-Cellular Homology.

DEFINITION 4.1. Let G be a finite group acting linearly, preserving orientation,

on an n-dimensional disk NDn centered at the origin. Such an action preserves Sn�1.

We call the quotient NDn=G an n-dimensional q-disk. Call Sn�1=G a q-sphere. An

n-dimensional q-cell en
G D en(G)=G is defined to be a copy of Dn=G where Nen(G)

is G-equivariantly homeomorphic to NDn . We will denote the boundary of Nen(G) by

Sn�1 without confusion.

Start with a discrete set X0, where points are regarded as 0-dimensional q-cells. In-

ductively, form the n-dimensional q-skeleton Xn from Xn�1 by attaching n-dimensional

q-cells en
G� via continuous maps �� W Sn�1� =G� ! Xn�1. This means that Xn is the

quotient space of the disjoint union Xn�1 t� Nen
G� of Xn�1 with a finite collection of

n-dimensional q-disks Nen�(G�)=G� under the identification x � ��(x) for x 2 Sn�1� =G� .

Assume X D Xn for some finite n. The topology of X is the quotient topology

built inductively. We call a space X constructed in this way a finite q-CW complex.

By Proposition 2.22 and Corollary 2.25 of [10],

Hp((Xn , Xn�1)IQ) DM� QHp

� NDn�=G�
Sn�1� =G� IQ

�
.(4.1)

Note that

QHp

� NDn�=G�
Sn�1� =G� IQ

� D �Hp�1(Sn�1� =G�IQ) if p � 2,

0 otherwise.
(4.2)

Lemma 4.1. Let NDn=G be a q-disk. Then Sn�1=G is a Q-homology sphere.

Proof. Sn�1 admits a simplicial G-complex structure. Apply Theorem 2.4 of Bredon

[3] and Poincaré duality for orbifolds.

Lemma 4.2. If X is a q-CW complex, then

(1)

Hp((Xn , Xn�1)IQ) D
8�<
�:

0 for p ¤ n,M
i2In

Q for p D n,
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where In is the set of n-dimensional q-cells in X.

(2) Hp(Xn IQ) D 0 for p > n. In particular, Hp(X IQ) D 0 for p > dim(X ).

(3) The inclusion i W Xn ,! X induces an isomorphism i� W Hp(Xn IQ) ! Hp(X IQ) if

p < n.

Proof. Proof is similar to the proof of Lemma 2.3.4 of [10]. The key ingredient

is Lemma 4.1.

Using Lemma 4.2 we can define q-cellular chain complex (Hp(X p, X p�1), dp) and

q-cellular groups H
q-CW
p (X IQ) of X in the same way as cellular chain complex is de-

fined in [10], p. 139.

Theorem 4.3. H
q-CW
p (X IQ) � Hp(X IQ) for all p.

Proof. Proof is similar to the proof of Theorem 2.35 of [10].

4.2. Rational homology of quasitoric orbifolds. Realize P as a convex poly-

tope in Rn and choose a linear functional � W Rn ! R which distinguishes the vertices

of P , as in proof of Theorem 3.1 in [8]. The vertices are linearly ordered according to

ascending value of �. We make the 1-skeleton of P into a directed graph by orienting

each edge such that � increases along it. For each vertex of P define its index f(v),

as the number of incident edges that point towards v.

Let Fv denote the smallest face of P which contains the inward pointing edges

incident to v. Then dim Fv D f(v) and if F 0 is a face of P with top vertex v then F 0
is a face of Fv . Let OFv be the union of the relative interiors of those faces F 0 of P ,

P included, whose top vertex is v.

For each vertex v put ev D ��1( OFv). ev is a contractible subspace of X (Fv) homeo-

morphic to the quotient of an open disk D2f(v) in R2f(v) by a finite group G(v) deter-

mined by the orbifold structure on X (Fv) described in Subsection 2.3. OFv is homeo-

morphic to the intersection of the unit disk in Rf(v) with Rf(v)C . Since the action of

the group G(v) is obtained from a combinatorial model, see Subsection 2.3, ev is a

2f(v)-dimensional q-cell.

X can be given the structure of a q-CW complex as follows. Define the k-skeleton

X2k WD Sf(v)Dk X (Fv) for 0 � k � n. X2kC1 D X2k for 0 � k � n � 1 and X2n D
X . X2k can be obtained from X2k�1 by attaching those q-cells ev for which f(v) D k.

The attaching maps are to be described. Let � be the equivalence relation such that

X (Fv) D Fv�TN?(Fv)=�. The q-disk ND2f(v)=G(v) can be identified with Fv�TN?(Fv)=�
where (p, t) � (q, s) if p D q 2 F 0 for some face F 0 whose top vertex is v and (p, t) �
(q, s). The attaching map �vW S2f(v)�1=G(v) ! X2f(v)�1 is the natural quotient map from

(Fv � OFv) � TN?(Fv)=�! (Fv � OFv) � TN?(Fv)=�.
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X is a q-CW complex with no odd dimensional cells and with f�1(k) number of

2k-dimensional q-cells. Hence by q-cellular homology theory

(4.3) H q-CW
p (X IQ) D

8�<
�:
M

f�1(p=2)

Q if p � n and p is even,

0 otherwise.

Hence by Theorem 4.3

(4.4) Hp(X IQ) D
8�<
�:
M

f�1(p=2)

Q if p � n and p is even,

0 otherwise.

5. Cohomology ring of quasitoric orbifolds

Again we will modify some technical details but retain the broad framework of the

argument in [8] to get the anticipated answer. All homology and cohomology modules

in this section will have coefficients in Q.

5.1. Gysin sequence for q-sphere bundle. Let �W E ! B be an orientable rank

n vector bundle with paracompact base space B. Restricting � to the space E0 of

nonzero vectors in E , we obtain an associated projection map �0W E0 ! B. Fix a finite

group G and an orientation preserving representation of G on Rn . Such a representa-

tion induces a fiberwise linear action of G on E and E0 that preserves orientation.

Consider the two fiber bundles �G W E=G ! B and �G
0 W E0=G ! B. There exist

natural fiber bundle maps f1 W E ! E=G and f2 W E0 ! E0=G. These induce iso-

morphisms f �1 W H p(E=G) ! H p(E) and f �2 W H p(E0=G) ! H p(E0) for each p. The

second isomorphism is obtained by applying Theorem 2.4 of [3] fiberwise and then

using Kunneth formula, Mayer–Vietoris sequence and a direct limit argument as in the

proof of Thom isomorphism in [13]. The commuting diagram

E0

i1 K
f2 K

E
j1 K

f1 K
(E , E0)

f3K
E0=G

i2 K E=G
j2 K (E=G, E0=G)

induces a commuting diagram of two exact rows

� � � K H p�1(E0)
Æ�1 K H p(E , E0)

j�1 K H p(E)
i�1 K H p(E0) K � � �

� � � K H p�1(E0=G)
Æ�2 K

f �2 K
H p(E=G, E0=G)

j�2 K
f �3K

H p(E=G)
i�2 K

f �2K
H p(E0=G) K � � � .
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By the five lemma f �3 is an isomorphism. Using the Thom isomorphism [u W H p�n(E) !
H p(E , E0) we get the isomorphism [uG

W H p�n(E=G) ! H p(E=G, E0=G) where [uG
D

f �3 �1 Æ [u Æ f �1 . Substituting the isomorphic module H p�n(E=G) in place of

H p(E=G, E0=G) in the second row of the above diagram, we obtain an exact sequence

� � � ! H p�n(E=G)
g�! H p(E=G) ! H p(E0=G) ! H p�nC1(E=G) ! � � � ,

where g D j�2 Æ [uG
. The pull back of cohomology class uG j(E=G) in H n(B) by the

zero section of �G will be called the Euler class e of �G . Now substitute the iso-

morphic cohomology ring H�(B) in place of H�(E=G) in the above sequence. This

yields the Gysin exact sequence for the q-sphere bundle �G
0 W E0=G ! B

� � � ! H p�n(BIQ)
[e�! H p(BIQ) ! H p(E0=GIQ) ! H p�nC1(BIQ) ! � � � .(5.1)

REMARK 5.1. Euler classes of �W E ! B and �G W E=G ! B are the same since

f �1 is an isomorphism.

5.2. A Borel construction. Let K be the simplicial complex associated to the

boundary of the dual polytope of P . Then P is the cone on the barycentric subdivision

of K . P can be split into cubes P� where � varies over (n � 1)-dimensional faces of

K . These correspond bijectively to vertices of P . We regard the k-cube as the orbit

space of standard k-dimensional torus action on the 2k-disk

ND2k D f(z1, : : : , zk) 2 Ck W jzi j � 1g.(5.2)

Define B P� D ETN �TN
((P� � TN )=�) � ETN �TN

( ND2n=G� ), where G� D Gv� ,v� being the vertex in P dual to � . If �1 is another (n � 1) simplex in K such that� \ �1 is an (n � 2) simplex then B P� and B P�1
are glued along the common part of

the boundaries of P� and P�1
. In this way B P� fit together to yield B P D ETN �TN

X .

Let p W B P ! BTN be the Borel map which is a fibration with fiber X . The fibration

p W B P ! BTN induces a homomorphism p� W H�(BTN IQ) ! H�(B P IQ).

The face ring or Stanley–Reisner ring S R(P) of a polytope P over Q is the quo-

tient of the ring Q[w1, : : : , wm], where the variables wi correspond to the facets of

P , by the ideal I generated by all monomials wi1
� � � wik

such that the corresponding

intersection of facets Fi1
\ � � � \ Fik

is empty. The face ring is graded by declaring the

degree of each wi to be 2. The following result resembles Theorem 4.8 of [8].

Theorem 5.2. Let P be an n-polytope and S R(P) be the face ring of P with

coefficients in Q. The map p� W H�(BTN IQ) ! H�(B P IQ) is surjective and induces

an isomorphism of graded rings H�(B P IQ) � S R(P).

Proof. Suppose � is an (n � 1)-simplex in K with vertices w1, : : : , wn . Note that

there is a one-to-one correspondence between facets of P meeting at v� and vertices
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of � . Let P� be the corresponding n-cube in P . Then B P� D ETN �TN
( ND2n=G� ) is

a ND2n=G� fiber bundle over BTN . Hence ETN �TN
(S2n�1=G� ) ! BTN give the asso-

ciated q-sphere bundle p� W B P�� ! BTN . Also consider the disk bundle r W ETN �TNND2n ! BTN . It is bundle homotopic to the complex vector bundle r0 W ETN �TN
Cn !

BTN . Since TN acts diagonally on Cn , the last bundle is the sum of line bundles

L1 � � � � � Ln where L j corresponds to j-th coordinate direction in Cn and hence

to w j . Without confusion, we set c1(Li ) D wi 2 H 2(BTN IQ). By the Whitney prod-

uct formula cn(r0) D w1 � � �wn . Hence from Section 5.1 the Euler class of the q-sphere

bundle p� is e D w1 � � � wn .

Now consider the Gysin exact sequence for q-sphere bundles

� � � ! H�(B P�� ) ! H�(BTN )

[e�! H�C2n(BTN )
p���! H�C2n(B P�� ) ! H�C2n(BTN ) ! � � � .

Since the map [e is injective, by exactness p�� is surjective and we get the follow-

ing diagram

(5.3)

0 K H�(BTN )
[e K

id K
H�C2n(BTN )

p�� K
id K

H�C2n(B P�� ) K 0

Q[w1, : : : , wn]
w1 ���wnKQ[w1, : : : , wn].

Hence from diagram (5.3) H�(B P�� ) D Q[w1, : : : , wn]=(w1: : : wn). Since ND2n=G�
is contractible, H�(B P� IQ) D H�(BTN IQ) D Q[w1, : : : , wn]. Using induction on the

dimension of K and an application of the Mayer–Vietoris sequence we get the conclu-

sion of the theorem.

Consider the Serre spectral sequence of the fibration p W B P ! BTN with fiber

X . It has E2-term E
p,q

2 D H p(BTN I H q (X )) D H p(BTN ) 
 H q (X ). Using the for-

mula for Poincaré series of X it can be proved that this spectral sequence degenerates,

E
p,q

2 D E
p,q1 (see Theorem 4.12 of [8]). Let j W X ! B P be inclusion of the fiber.

Then j� W H�(B P) ! H�(X ) is surjective (see Corollary 4.13 of [8]).

We have natural identifications H2(B P) D Qm and H2(BTN ) D Qn . Here Qm is

regarded as the Q vector space with basis corresponding to the set of codimension one

faces of P . p� W H2(B P) ! H2(BTN ) is naturally identified with the characteristic map3 W Qm ! Qn that sends wi , the i-th standard basis vector of Qm , to �i . The map

p� W H 2(BTN ) ! H 2(B P) is then identified with the dual map 3� W (Qn)� ! (Qm)�.

Regarding the map 3 as an n �m matrix �i j , the matrix for 3� is the transpose. Col-

umn vectors of 3� can then be regarded as linear combinations of w1, : : : , wm . Define

�i D �i1w1 C � � � C �imwm .(5.4)
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We have a short exact sequence

0 K H 2(BTN )
p� K H 2(B P)

j� K H 2(X ) K 0

(Qn)� 3� K (Qm)�.

Let J be the homogeneous ideal in Q[w1, : : : , wm] generated by the �i and let NJ
be its image in the face ring S R(P). Since j� W S R(P) ! H�(X ) is onto and NJ is in

its kernel, j� induces a surjection S R(P)= NJ ! H�(X ).

Theorem 5.3. Let X be the quasitoric orbifold associated to the combinatorial

model (P , N , f�i g). Then H�(X IQ) is the quotient of the face ring of P by NJ ; i.e.,

H�(X IQ) D Q[w1, : : : , wm]=(I C J ).

Proof. We know that H�(BTN ) is a polynomial ring on n generators, and H�(B P)

is the face ring. Since the spectral sequence degenerates, H�(B P) ' H�(BTN )
H�(X ).

Furthermore, p� W H�(BTN ) ! H�(B P) is injective and NJ is identified with the image

of p�. Thus H�(X ) D H�(B P)= NJ D Q[w1, : : : , wm]=(I C J ).

6. Stable almost complex structure

Buchstaber and Ray [2] have shown the existence of a stable almost complex struc-

ture on omnioriented quasitoric manifolds. We generalize their result to omnioriented

quasitoric orbifolds (see Section 1 for definition). Let m be the cardinality of I , the set

of facets of the polytope P . We will realize the orbifold X as the quotient of an open

set of Cm . Consider the natural combinatorial model (RmC, L � Zm , fei g) for Cm . Let�s W Cm ! RmC be the projection map corresponding to taking modulus coordinatewise.

Embed the polytope P in RmC by the map dF W P ! Rm where the i-th coordinate of

dF (p) is the Euclidean distance (d(p, Fi )) of p from the hyperplane of the i-th facet

Fi in Rn . Consider the thickening WR(P) � RmC of dF (P), defined by

WR(P) D f f W I ! RC j f �1(0) 2 LF (P)g,(6.1)

where LF (P) denotes the face lattice of P .

Denote the n-dimensional linear subspace of Rm parallel to dF (P) by VP and its

orthogonal complement by V?
P . As a manifold with corners, WR(P) is canonically

diffeomorphic to the cartesian product dF (P) � exp(V?
P ) (see [2], Proposition 3.4).

Define the spaces W (P) and Z(P) as follows.

W (P) WD ��1
s (WR(P)), Z(P) WD ��1

s (dF (P)).(6.2)
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W (P) is an open subset of Cm and there is a canonical diffeomorphism

W (P) � Z(P) � exp(V?
P ).(6.3)

Let 3 W L ! N be the map of Z-modules which maps the standard generator ei

of L to the dicharacteristic vector �i . Let K denote the kernel of this map. Recall the

submodule ON of N generated by the dicharacteristic vectors and the orbifold universal

cover O from Section 3. Since the Z-modules L and ON are free, the sequence

0 ! K ! L
3�! ON ! 0(6.4)

splits and we may write L D K � ON . Hence K R\ L D K and applying the second iso-

morphism theorem for groups we can consider the torus TK WD K R=K to be a subgroup

of TL . In fact we get a split exact sequence

1 ! TK ! TL

3��! T ON ! 1.(6.5)

For any face F of P let L(F) be the sublattice of L generated by the basis vectors

ei such that dF (F) intersects the i-th facet of RmC, that is the coordinate hyperplanefxi D 0g. Note that image of L(F) under 3 is precisely ON (F), so that the preimage3�1( ON (F)) D K � L(F). Consider the exact sequence

0 ! K � L(F)

L(F)
! L

L(F)

3�! ONON (F)
! 0.(6.6)

Since the dicharacteristic vectors corresponding to the facets whose intersection is

F are linearly independent, it follows from the definition of K and 3 that K \ L(F) Df0g. Hence by the second isomorphism theorem we have a canonical isomorphism

K � L(F)

L(F)
� K .(6.7)

So (6.6) yields

0 ! K ! L

L(F)

3�! ONON (F)
! 0.(6.8)

In general ON= ON (F) is not a free Z-module. Let ON 0(F) D ( ON (F)
ZQ)\ ON . Define

30 D 3 Æ �(6.9)

where � is the canonical projection

� W ONON (F)
! ONON 0(F)

.(6.10)



1072 M. PODDAR AND S. SARKAR

Since ON= ON 0(F) is free, the following exact sequence splits

0 ! 3�1( ON 0(F))

L(F)
! L

L(F)

30�! ONON 0(F)
! 0.(6.11)

Denoting the modules in (6.11) by NK , NL and NN respectively we obtain a split exact

sequence of tori

0 ! T NK �1�! T NL 30��! T NN ! 0.(6.12)

Note that K is a submodule of same rank of the free module NK and there is a

natural exact sequence

0 ! ON 0(F)ON (F)
! TK

�2�! T NK ! 0.(6.13)

The composition

�1 Æ �2 W TK ! T NL(6.14)

defines a natural action of TK on T NL with isotropy OGF D ON 0(F)= ON (F) and quotient T NN .

Since T NN is the fiber of O� W O ! P and T NL is the fiber of �s W Z(P) ! P over any

point in the relative interior of the arbitrary face F , it follows O is quotient of Z(P)

by the above action of TK . This action of TK is same as the restriction of its action

on Cm as a subgroup of TL and hence Cm� . By (6.3) it follows that O is the quotient

of the open set W (P) in Cm by the action of the subgroup TK � exp(V?
P ) of Cm� ,

O D W (P)

TK � exp(V?
P )

.(6.15)

The induced action of OH WD TK � exp(V?
P ) on the real tangent bundle T W (P) of

W (P) commutes with the almost complex structure J W T W (P) ! T W (P) obtained by

restriction of the standard almost complex structure on T Cm . Therefore the quotient OW
of T W (P) by OH has the structure of an almost complex orbibundle (or orbifold vector

bundle) over O. Moreover this quotient splits, by an Atiyah sequence, as the direct sum

of a trivial rank 2(n �m) real bundle Oh over O corresponding to the Lie algebra of OH
and the orbifold tangent bundle T O of O. The existence of a stable almost complex

structure on T O is thus established.

T Cm splits naturally into a direct sum of m complex line bundles corresponding to

the complex coordinate directions which of course correspond to the facets of P . We

get a corresponding splitting T W (P) DL CF . The bundles CF are invariant under J

as well OH . Therefore the quotient of CF by OH is a complex orbibundle O�(F) of rank

one on O and OW DL O�(F).
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It is not hard to see that the natural action of T ON on OW commutes with the almost

complex structure on it. The quotient W WD OW=(N= ON ) is an orbibundle on X with an

induced almost complex structure since (N= ON ) is a subgroup of T ON . Furthermore T X

is the quotient of T O by N= ON . Therefore W D T X� h where h is the quotient of Oh
by N= ON . Since the action of T ON and hence N= ON on Oh is trivial, h is a trivial vector

bundle on X . Hence the almost complex structure on W induces a stable almost com-

plex structure on T X. We also have a decomposition W D ��(F) where the orbifold

line bundle �(F) WD O�(F)=(N= ON ).

6.1. Line bundles and cohomology. Recall the manifold Z(P) of dimension

m C n defined in equation (6.2). Let BL P D ETL �TL
Z(P). Since O D Z(P)=TK ,

BL P D ETL�TL
Z(P) D ETL�TK

Z(P)=(TL=TK ) D ETL� (Z(P)=TK )=(T ON ) ' ET ON �T ON
O D ET ON �TN

O=(N= ON ) ' ETN �TN
X D B P .

Let w1, ::: ,wm be the generators of H 2(B P) as in Subsection 5.2 and let Fi denote

the facet of P corresponding to wi . Let �i W TL ! T 1 be the projection onto the i-th

factor and C(�i ) denote the corresponding 1-dimensional representation space of TL .

Define L i D ETL �TL
QLi , where QLi D C(�i )�Z(P) is the trivial equivariant line bundle

over Z(P). Then L i is an orbifold line bundle over B P . Let c1(L i ) be the first Chern

class of L i in H 2(B P IQ). We will show that c1(L i ) D wi .

Since the i-th factor of TL acts freely on Z(P)� ��1
s (Fi ), the restriction of L i to

B P � B Fi is trivial. Consider the following commutative diagram

��(L i ) K
K

L i

K
(B P � B Fi )

� K B P ,

where � is inclusion map. By naturality c1(��(L i )) D ��(c1(L i )). Since the bundle ��(L i )

over B P � B Fi is trivial ��(c1(L i )) D c1(��(L i )) D 0. It is easy to show that B(P �
Fi ) D ETL �TL

(��1
s (P � Fi )) ' B P � B Fi . From the proof of Theorem 5.2 it is

evident that H�(B P � B Fi IQ) � S R(P � Fi ). Hence H 2(B P � B Fi ) DL j¤i Qw j .�� W H 2(B P IQ) ! H 2(B P � B Fi IQ) is a surjective homomorphism with kernel Qwi

implying c1(L i ) 2 Qwi . Naturality axiom ensures, as follows, that c1(L i ) is nonzero,

so that we can identify c1(L i ) with wi .

Let F be an edge in Fi . Then

B F WD ETL �TL
(��1

s (F))

' ETN �TN
(��1(F))

D (ETN �TF
��1(F))=(TN=TF ) D (ETN � (��1(F)=TF ))=(TN=TF )

' E(TN=TF ) �TN =TF
��1(F)

' E S1 �S1 S2,
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where TF is the isotropy subgroup of F in TN and action of S1 on S2 is corresponding

action of TN=TF on ��1(F). Let L i (F) is the pullback of orbibundle L i . Using Thom

isomorphism and cohomology exact sequence obtained from

B F
s�! L i (F) ! (L i (F), L i (F)0),

where s is zero section of L i bundle, we can show c1(L i (F)) is nonzero. Since c1(L i (F))

is pullback of c1(L i ), c1(L i ) is nonzero. Hence c1(L i ) D wi .

Note that if Fi is the facet of P corresponding to L i , L i D ETL �TL
QLi D ET ON �T ON

( QLi=TK ) D ET ON �T ON O�(Fi ) D ET ON �TN
O�(Fi )=(N= ON ) ' ETN �TN

�(Fi ). Let jW �(Fi ) ,! L i

be the inclusion of fiber covering j W X ,! B P . Then j�(L i ) D �(Fi ). Hence c1(�(Fi )) D
j�c1(L i ) D j�wi . Hence by Theorem 5.3 the first Chern classes of the bundles �(Fi )

generate the cohomology ring of X . We also obtain the formula for the total Chern class

of T X with the stable almost complex structure determined by the given dicharacteristic.

c(T ) D mY
iD1

(1 C c1(�(Fi ))).(6.16)

6.2. Chern numbers. Chern numbers of an omnioriented quasitoric orbifold,

with the induced stable almost complex structure, can be computed using standard lo-

calization formulae, given for instance in Chapter 9 of [5]. The fixed points of the TN

action correspond to the vertices of Pn . While computing the numerator contributions

at a vertex, one needs to recall that TN action on the bundle h is trivial. We will give

a formula for the top Chern number below. In the manifold case similar formula was

obtained by Panov in [15]. In principle any Hirzebruch genus associated to a series

may be computed similarly.

Fix an orientation for X by choosing orientations for Pn � Rn and N . We order

the facets or equivalently the dicharacteristic vectors at each vertex in a compatible

manner as follows. Suppose the vertex v of Pn is the intersection of facets Fi1
, : : : , Fin

.

To each of these facets Fik
assign the unique edge Ek of Pn such that Fik

\ Ek Dv. Let ek be a vector along Ek with origin at v. Then e1, : : : , ek is a basis of Rn

which is oriented depending on the ordering of the facets. We will assume the ordering

Fi1
, : : : , Fin

to be such that e1, : : : , ek is positively oriented.

For each vertex v, let 3(v) be the matrix 3(v) D [�i1
� � � �in

] whose columns are

ordered as described above. Let � (v) WD det3(v). Then we obtain the following formula

for the top Chern number,

cn(X) D 6v 1� (v)
.(6.17)

REMARK 6.1. If the stable almost complex structure of an omnioriented quasi-

toric orbifold admits a reduction to an almost complex structure, then � (v) is positive

for each vertex v. This follows from comparing orientations, taking X to be oriented
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according to the almost complex structure. The converse is true in the case of quasi-

toric manifolds, see Subsection 5.4.2 of [4]. The orbifold case remains unsolved at

the moment.

6.3. Chen–Ruan cohomology groups. We refer the reader to [6, 1] for defin-

ition and motivation of the Chen–Ruan cohomology groups of an almost complex orbi-

fold. They may be thought of as a receptacle for a suitable equivariant Chern character

isomorphism from orbifold or equivariant K-theory with complex coefficients, see The-

orem 3.12 of [1]. Briefly, the Chen–Ruan cohomology (with coefficients in Q or C)

is the direct sum of the cohomology of the underlying space and the cohomology of

certain subspaces of it called twisted sectors which are counted with multiplicities and

rational degree shifts depending on the orbifold structure. The multiplicities depend on

the number of conjugacy classes in the local groups and the degree shifts are related

to eigenvalues of the linearlized local actions. The verification of the statements below

is straightforward and left to the interested reader.

For an almost complex quasitoric orbifold X, each twisted sector is a TN -invariant

subspace X (F) as described in Subsection 2.3. The contribution of X (F) is counted

with multiplicity one less than the order of the group G F , corresponding to the non-

trivial elements of G F . However the degree shift of these contributions depend on the

particular element of G F to which the twisted sector corresponds. If g D (aC N (F)) 2
G F where a 2 N�(F), then the degree shift 2�(g) can be calculated as follows. Sup-

pose �1, : : : , �k is the defining basis of N (F). Then a can be uniquely expressed as

a D Pk
iD1 qi�i where each qi is a rational number in the interval [0, 1), and �(g) DPk

iD1 qi . Note that the rational homology and hence rational cohomology of X (F) can

be computed using its combinatorial model given in Subsection 2.3.

Recall from Subsection 6.1 that if N D ON then X is the quotient of the mani-

fold Z(P) by the group TK . In this case the TK -bundles QLi over Z(P) generate the

complex orbifold K -ring of X. The images of their tensor powers under the equi-

variant Chern character map generate the Chen–Ruan cohomology of X. These follow

since the restrictions of the bundles L i to the subspaces X (F) generate the cohomology

ring of X (F).
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