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ON QUESTIONS OF FATOU AND EREMENKO
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This paper is dedicated to the memory of Professor Noel Baker

Abstract. Let f be a transcendental entire function and let I(f) be the set
of points whose iterates under f tend to infinity. We show that I(f) has at
least one unbounded component. In the case that f has a Baker wandering
domain, we show that I(f) is a connected unbounded set.

1. Introduction

Let f be a transcendental entire function and denote by fn, n ∈ N, the nth
iterate of f . The Fatou set, F (f), is defined to be the set of points, z ∈ C, such
that (fn)n∈N forms a normal family in some neighbourhood of z. The complement,
J(f), of F (f) is called the Julia set of f . An introduction to the basic properties
of these sets can be found in, for example, [3].

The first results on the iteration of transcendental entire functions were given
by Fatou in [8]. There are several general questions in [8], most of which have now
been solved. One question that remains open is based on the following observation
of Fatou: for the functions f(z) = z +1+e−z and f(z) = h sin z (where 0 < h < 1),
there are infinitely many unbounded curves γk, k ∈ Z, with the property that, for
z ∈ γk, we have fn(z) → ∞ as n → ∞. Fatou asked whether this property holds
more generally. It is known that this property does hold for certain families of
functions (see [6] and [12]), but it is still not known whether this property holds in
general.

This question of Fatou concerns the so-called ‘escaping set’

I(f) = {z : fn(z) → ∞ as n → ∞},

which was first studied for a general transcendental entire function f by Eremenko
[7]. He proved that

I(f) �= ∅,(1.1)

J(f) = ∂I(f),(1.2)

I(f) ∩ J(f) �= ∅,(1.3)

I(f) has no bounded components.(1.4)
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1120 P. J. RIPPON AND G. M. STALLARD

Eremenko conjectured that it may be possible to replace I(f) with I(f) in (1.4),
a problem that still remains open; see [12] for a proof in the case of exponential
maps.

In this paper we prove results that give partial answers to both Fatou’s and
Eremenko’s questions concerning the set I(f). In order to do this we consider the
following subset of I(f), which was introduced by Bergweiler and Hinkkanen in [5]:

A(f) = {z : there exists L ∈ N such that |fn(z)| > M(R, fn−L), for n > L}.

Here, M(r, f) = max|z|=r |f(z)| and R can be taken to be any value such that
R > minz∈J(f) |z|. Properties (1.1), (1.2) and (1.3) also hold for A(f) (see [5] and
the remarks at the end of this paper), and both A(f) and I(f) are completely
invariant.

Our main result is the following.

Theorem 1. Let f be a transcendental entire function. Then each z0 ∈ A(f) lies in
an unbounded closed connected subset of A(f); in particular, A(f) has no bounded
components.

This goes some way to answering Fatou’s question as it shows that I(f) has at
least one unbounded component. It also goes some way to answering Eremenko’s
question as it shows that I(f) can be replaced with A(f) in (1.4).

When F (f) has a multiply connected component, we can show much more than
this; here, I(f) has exactly one unbounded component and no bounded components,
showing that Eremenko’s conjecture is true in this case.

Theorem 2. Let f be a transcendental entire function and suppose that F (f) has
a multiply connected component. Then

(a) A(f) is connected and unbounded and contains the closure of every multiply
connected component of F (f);

(b) I(f) is connected and unbounded.

Baker [1] showed that it is possible for F (f) to have a multiply connected com-
ponent U . He also showed that U ⊂ I(f) and, for n ≥ n0, the sets fn(U) lie in
bounded multiply connected components Un of F (f) surrounding 0, with Un → ∞;
see [2, Theorem 3.1]. For this reason, in [13], we introduced the name Baker wan-
dering domain for such a component of F (f).

2. Basic properties of A(f)

In this section we prove a number of basic properties of A(f) including, for com-
pleteness, some that were stated but not proved in [5]. Several of these properties
are used in the proofs of Theorems 1 and 2. To do this, it is helpful to introduce
the following alternative definition of A(f):

B(f) = {z : there exists L ∈ N such that fn+L(z) /∈ f̃n(D), for n ∈ N},

where D is any open disc meeting J(f) and Ũ denotes the union of U and its
bounded complementary components. We prove several basic properties of the set
B(f) and then show that B(f) = A(f).
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In what follows we often use the property that if G is a bounded region, then

f(G̃) ⊂ f̃(G),(2.1)

which holds because if γ is any simple closed curve in G, then the image under f

of the inside of γ lies inside f(γ), and hence in f̃(G).

Lemma 2.1. The set B(f) has the following properties:
(a) B(f) is independent of D;
(b) B(f) is completely invariant;
(c) B(fp) = B(f), for p ∈ N;
(d) if g = h−1fh, where h(z) = az + b, a �= 0, then B(f) = h(B(g)).

Proof. Properties (a), (b) and (c) follow easily from the blowing-up property of
J(f). We prove just property (c).

Let D be an open disc meeting J(f). If z ∈ B(f), then there exists L ∈ N such
that

fn+L(z) /∈ f̃n(D), for n ∈ N.

By the blowing-up property, f̃K(D) ⊃ D for all large K. So ˜fn+K(D) ⊃ f̃n(D),
for n ∈ N, by (2.1), and hence

fpn+L+K(z) /∈ ˜fpn(D), for n ∈ N.

Since it is possible to choose K such that p divides L+K, it follows that z ∈ B(fp).
On the other hand, if z ∈ B(fp), then there exists l ∈ N such that

(fp)n+l(z) /∈ ˜(fp)n(D), for n ∈ N.

Thus, by (2.1),

fpn+pl−k(z) /∈ ˜fpn−k(D), for n ∈ N, k = 1, 2, · · · , p − 1,

and so z ∈ B(f).
Property (d) is true because the corresponding orbits, discs, image sets and Julia

sets are congruent to each other under h.

To prove that B(f) = A(f), we use a generalisation of Bohr’s theorem [9, page
170]. We write B(0, R) = {z : |z| < R} and B(0, R) = {z : |z| ≤ R}.

Lemma 2.2. Let f be entire with a 2-cycle z1, z2 (possibly coincident). There is
an absolute constant c, 0 < c < 1, such that if

|z1| < 2R/5 and |z2| < cM(R/2, f),

then
f(B(0, R)) ⊃ {w : |w| = r′}, where r′ ≥ cM(R/2, f).

Proof. Suppose that f omits in B(0, R) two values w1 and w2 such that

|w1| = cM(R/2, f) and |w2| = 2cM(R/2, f),(2.2)

where c has yet to be chosen. Put

φ(z) =
f(µ(z)) − w1

w2 − w1
, where µ(z) =

R2(z + z1)
R2 + z1z

.
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Then µ maps B(0, R) onto itself and

|φ(0)| =
∣∣∣∣ z2 − w1

w2 − w1

∣∣∣∣ ≤ 2cM(R/2, f)
cM(R/2, f)

= 2.

Also, φ omits 0 and 1 in B(0, R), so Schottky’s theorem [9, page 169], applied to
the function φ(Rt), |t| < 1, gives

log |φ(z)| ≤ (log+ |φ(0)| + C)
(

1 + |z|/R

1 − |z|/R

)
, for |z| < R,

where C is an absolute positive constant. Thus, if z ∈ B(0, 3R/4), then we have
|φ(z)| ≤ A = exp(7(log 2 + C)) and so, by (2.2),

|f(µ(z))| ≤ |w1| + |w2 − w1||φ(z)|
≤ c(1 + 3A)M(R/2, f)
< M(R/2, f),

provided that c < (1 + 3A)−1. But this contradicts the definition of M(R/2, f)
because |z1| < 2R/5 implies that µ(B(0, 3R/4)) ⊃ B(0, R/2). Therefore, if c <
(1 + 3A)−1, then f cannot omit two values satisfying (2.2). The lemma follows.

We also use the following variant of Schwarz’s lemma.

Lemma 2.3. Let f be entire with a 2-cycle z1, z2 (possibly coincident), and let C
be an arbitrary constant, 0 < C < 1. If

|z1| < CR/8 and |z2| < CM(R, f)/8,

then
M(CR/8, f) ≤ CM(R, f).

Proof. Let d(z, z′; G) denote the hyperbolic metric in a domain G. In particular,

d(z, 0; B(0, R)) = log
(

1 + |z|/R

1 − |z|/R

)
,

or, equivalently, |z|/R = tanh(1
2d(z, 0; B(0, R))). Then, by the contraction property

of the hyperbolic metric, we have, for z ∈ B(0, CR/8),

d(f(z), z2; B(0, M(R, f))) ≤ d(f(z), z2; f(B(0, R)))
≤ d(z, z1; B(0, R))
≤ d(z, 0; B(0, R)) + d(z1, 0; B(0, R))

≤ 2 log
(

1 + C/8
1 − C/8

)
≤ C.

Hence, for z ∈ B(0, CR/8),

d(f(z), 0; B(0, M(R, f))) ≤ C + d(z2, 0; B(0, M(R, f)))

≤ C + log
(

1 + C/8
1 − C/8

)
≤ 2C,

so
|f(z)| ≤ M(R, f) tanhC ≤ CM(R, f),

as required.
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Lemma 2.4. B(f) = A(f).

Proof. Clearly A(f) ⊂ B(f). To prove the reverse inclusion, we use the fact that f
is known to have a 2-cycle z1, z2 which must also be a 2-cycle (possibly coincident)
of fn, for each n ∈ N. We now choose R > 0 such that

B(0, cR/16) ∩ J(f) �= ∅,(2.3)

|zi| < cR/16, for i = 1, 2,(2.4)

and

|zi| < cM(R/2, fn)/8, for i = 1, 2, n ∈ N,(2.5)

where c is the constant in Lemma 2.2. Note that (2.5) can be satisfied because
M(R/2, fn) → ∞ as n → ∞, by (2.3) and the blowing-up property of J(f).

Now put D = B(0, R). If z ∈ B(f), then it follows from (2.3) that there exists
L ∈ N such that

fn+L(z) /∈ f̃n(D), for n ∈ N.

The hypotheses of Lemma 2.2 are satisfied for the functions fn, n ∈ N, by (2.4)
and (2.5), and so

fn(D) ⊃ {w : |w| = rn}, where rn ≥ cM(R/2, fn), for n ∈ N.

Thus
|fn+L(z)| > cM(R/2, fn), for n ∈ N.

The hypotheses of Lemma 2.3 are satisfied for the functions fn, n ∈ N, with C = c
and R replaced by R/2 (by (2.4) and (2.5)), and so

|fn+L(z)| > cM(R/2, fn) > M(cR/16, fn), for n ∈ N.

Thus z ∈ A(f), by (2.3).

3. Proof of Theorem 1

We first choose R > 0 so that

B(0, R) ∩ J(f) �= ∅.(3.1)

Then put
Dn = fn(B(0, R)), for n = 0, 1, 2, . . . ,

and let En be the complement of D̃n.
Now suppose that z0 satisfies

fn(z0) ∈ En, for n ∈ N.

Let Ln be the component of f−n(En) which contains z0. Then Ln is closed and
also unbounded, since fn is analytic. Moreover,

Ln ⊃ Ln+1, for n ∈ N.(3.2)

Indeed, if Ln+1 \ Ln �= ∅, then (because Ln+1 ∩ Ln �= ∅) we can choose z′ in Ln+1

so that fn(z′) /∈ En. Hence fn+1(z′) /∈ En+1, by (2.1), a contradiction.
Now, for n ∈ N,

Kn = Ln ∪ {∞}
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is a closed connected subset of Ĉ. It follows from (3.2) that Kn ⊃ Kn+1, for n ∈ N,
and so

K =
∞⋂

n=1

Kn

is also a closed connected subset of Ĉ, which contains z0 and ∞. Let Γ be the
component of K \ {∞} which contains z0. Then Γ is closed in C and unbounded;
see [11, page 84].

We claim that Γ ⊂ A(f). For if z ∈ Γ, then fn(z) ∈ En, for n ∈ N, and so

fn(z) /∈ D̃n = ˜fn(D0), for n ∈ N.(3.3)

Thus z ∈ B(f), by (3.1), so z ∈ A(f), by Lemma 2.4.
Now suppose that z′ ∈ A(f) = B(f). Then, by (3.1) and the definition of B(f),

there is a positive integer L = L(z′) such that

fn+L(z′) /∈ D̃n, for n ∈ N.(3.4)

Thus z′′ = fL(z′) satisfies

fn(z′′) /∈ D̃n, for n ∈ N.

By the previous argument, z′′ lies in an unbounded closed connected subset, Γ′′

say, of A(f). Let Γ′ denote the component of f−L(Γ′′) which contains z′. Then Γ′ is
closed and also unbounded, since f is analytic. Since A(f) is completely invariant,
by Lemma 2.1(b) and Lemma 2.4, we deduce that Γ′ ⊂ A(f). Thus the proof of
Theorem 1 is complete. (Note that if Γ′ is constructed in this way, then by (3.3)
each z ∈ Γ′ satisfies (3.4).)

4. Proof of Theorem 2

As in the proof of Theorem 1, we choose R > 0 so that

B(0, R) ∩ J(f) �= ∅(4.1)

and put
Dn = fn(B(0, R)), for n = 0, 1, 2, . . . .

Now let U0 be a Baker wandering domain, that is, a multiply connected component
of F (f). As shown by Baker [2, Theorem 3.1], the sets fn(U0), n = 1, 2, . . . , lie
in bounded multiply connected components Un of F (f) and Un → ∞ as n → ∞
in such a way that, for n ≥ N say, we have Un ⊂ Ũn+1. We can assume that
D0 ⊂ ŨN .

Now fn(ŨN ) ⊂ ŨN+n, by (2.1). Thus

Dn = fn(D0) ⊂ ŨN+n, for n ∈ N.(4.2)

Now suppose that z ∈ UN . Then fn+1(z) ∈ UN+n+1, and so fn+1(z) /∈ ŨN+n,
for n ∈ N. Thus, by (4.1) and (4.2), we deduce that z ∈ B(f) = A(f). Hence
UN ⊂ A(f), and so U0 ⊂ A(f), by the complete invariance of A(f); see Lemma
2.1(b) and Lemma 2.4.

Thus the closure of any Baker wandering domain lies in A(f). Since any un-
bounded connected set must meet Un for large n, we deduce from Theorem 1 that
A(f) is connected. This proves part (a).
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In [5, Lemma 3] it was proved that J(f) ⊂ A(f). Hence

A(f) ∪ (I(f) ∩ J(f)) ⊂ A(f),

and so A(f) ∪ (I(f) ∩ J(f)) is a connected subset of I(f).
If z ∈ I(f) ∩ F (f), then z belongs to a Baker domain or a wandering domain,

by the classification of components of F (f); see, for example, [3]. Baker domains
are unbounded and so cannot exist in this case as they would meet the Baker
wandering domains. Similarly, there can be no unbounded wandering domains and
so it remains to consider any bounded wandering domains in I(f). Let V0 be such
a wandering domain and put Vn = fn(V0). Since V0 ⊂ I(f), it follows that, for
n ≥ N1 say,

Vn ⊂ C \ Ũm(n),

where m(n) → ∞ as n → ∞. Thus

fn(V 0) ⊂ V n ⊂ C \ Ũm(n), for n ≥ N1,

and so ∂V0 ⊂ I(f) ∩ J(f). Hence V0 lies in the same component of I(f) as does
the connected set A(f) ∪ (I(f) ∩ J(f)). Part (b) now follows.

Remarks

1. In [5] the proof was given that, for a transcendental entire function f , we
have J(f) ⊂ A(f). It follows that J(f) ⊂ ∂A(f), and it was stated in [5] that
J(f) = ∂A(f). We outline a proof of the inclusion ∂A(f) ⊂ J(f), based on our
Theorem 2. If this inclusion is not true, then there must be a closed disc ∆0 in
F (f) which meets both A(f), at z say, and the complement of A(f), at z′ say. It
follows from Theorem 2 that ∆0 cannot lie in a multiply connected component of
F (f). If ∆0 lies in a simply connected component of F (f), then it follows from [13,
Theorem 3(b)], for example, that there exists C, 0 < C < 1, such that

|fn(z′)| ≥ C|fn(z)|, for n ∈ N.

Thus, since z ∈ A(f), there exist R > 0 and L ∈ N such that J(f)∩B(0, CR/8) �= ∅
and

|fn+L(z′)| ≥ C|fn+L(z)| ≥ CM(R, fn) ≥ M(CR/8, fn), for n ∈ N,

by Lemma 2.3, together with the justification of (2.5). Hence z′ ∈ A(f), which is a
contradiction.

2. We also observe that property (1.3) holds with I(f) replaced by A(f). It
follows from Theorem 2 that A(f) ∩ J(f) �= ∅ if f has a Baker wandering domain.
It is also true that A(f) ∩ J(f) �= ∅ if f has no Baker wandering domain. Indeed,
Eremenko’s proof of property (1.1) gives a point z0 such that

|fn+1(z0)| ≥
1
2
M(|fn(z0)|, f) as n → ∞,(4.3)

and also, assuming the absence of Baker wandering domains, such that z0 ∈ J(f)
[7, Theorems 1 and 2]. Hence z0 ∈ A(f) ∩ J(f), by [5, Lemma 2]. This result of
Eremenko shows that if f has no Baker wandering domains, then J(f) has a dense
subset of points z0 such that (4.3) holds.

3. We do not know an example of a transcendental entire function which has a
Baker wandering domain and also a (bounded) simply connected wandering domain,
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1126 P. J. RIPPON AND G. M. STALLARD

and it is natural to ask whether this can occur. It is possible for an entire function to
have a bounded, simply connected, wandering domain. For example, the function

f(z) = 2 − log 2 + 2z − ez,

discussed by Bergweiler in [4], has a Fatou component containing the point log 2 +
2πi, which is simply connected and wandering [4, Section 2]. This component can
also be shown to be bounded (by finding a Jordan curve around log 2 + 2πi, which
is mapped outside itself by f ; see [10]).

4. The reasoning in Remark 1 shows that any simply connected component of
F (f) which meets A(f) must lie entirely in A(f). We do not know of a case where
such a simply connected component of F (f) exists.
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