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Abstract

Consider natural numbers {1, · · · , n} colored in three colors. We prove that
if each color appears on at least (n + 4)/6 numbers then there is a three-term
arithmetic progression whose elements are colored in distinct colors. This variation
on the theme of Van der Waerden’s theorem proves the conjecture of Jungić et al.

1 Introduction

In this paper we investigate the colorings of sets of natural numbers. We say that a subset
is monochromatic if all its elements have the same colors and we say that it is rainbow
is all its elements have distinct colors. A famous result of van der Waerden [3] can be
reformulated the following way.

Theorem 1. For each pair of positive integers k and r there exists a positive integer M
such that in any coloring of integers 1, · · · , M into r colors there is a monochromatic
arithmetic progression of length k.

This theorem was generalized by the following very strong statement of Szemerédi [2].
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Theorem 2. For every natural number k and positive real number δ there exists a natural
number N such that every subset of {1, · · · , N} of cardinality at least δN contains an
arithmetic progression of length k.

One can ask a “dual” question. Assume again that {1, · · · , n} is colored into r colors.
Can we find an arithmetic progression of length k so that all its elements are colored in
distinct colors? Next, we call such colored arithmetic progressions rainbow AP (k).

In general, the answer to this question is “No”, for r ≤ blog3n + 1c. The following
coloring c of {1, · · · , n}, given in [1], demonstrates this fact. Let c(i) = max{q : i
is divisible by 3q}. This coloring is easy to show not to have any rainbow arithmetic
progressions of length at least 3.

It turns out that in order to force a rainbow AP(k) we need to ensure that for each
color there are “many” elements having this color. So, while Szemerédi’s theorem requires
only one color class to have large cardinality to ensure the existence of monochromatic
AP(k), we need each color class to have large cardinality to force rainbow AP(k).

This problem was studied by Jungić et. al. [1] in the infinite case. It was shown that
if the natural numbers are colored in three colors and the upper density of each color is
greater than 1/6 then there is a rainbow AP (3). Similar results were obtained for Zn.
When {1, · · · , n} is colored in three colors, Jungić et. al. [1] conjectured that if each color
class has cardinality at least (n + 4)/6 then there is a rainbow AP (3).

In this paper we investigate the conditions on a coloring of {1, · · · , n} forcing rainbow
AP (3) and prove the conjecture of Jungić et. al. Next we denote [n] = {1, · · · , n}.

Let c : [n] → {A, B, C} be a coloring of [n] in three colors. Let M(c) be the cardinality
of the smallest color class in c. We define M(n) to be the largest M(c) over all colorings
c of [n] in three colors with no rainbow AP (3). The following construction, given in [1],
provides a coloring with large M(c) and no rainbow AP (3).

c(i) =




A if i ≡ 1 (mod 6)

C if i ≡ 4 (mod 6)

B otherwise.

(1)

This coloring has M(c) = b(n + 2)/6c. When n = 6k − 4, there exists a slightly better
coloring, with M(c) = k = b(n + 4)/6c:

c(i) =




A for odd i ∈ {1, · · · , 2k − 1}
C for even i ∈ {4k − 2, · · · , 6k − 4}
B otherwise.

(2)

We prove that M(c) can not be made larger without forcing a rainbow AP (3).

Theorem 3. M(n) ≤ (n + 4)/6.
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2 Proof of theorem 3

Consider a coloring c of the interval I = {1, · · · , n} in three colors A, B, C such that there
is no rainbow arithmetic progression of length three. We say that there is a string, or a
word x = (c1, c2, · · · , cm) ∈ {A, B, C}m at a position i (or that x occupies position i) if
c(i) = c1, c(i + 1) = c2, · · · , c(i + m − 1) = cm. We say that there is a word x in the
coloring if there is x at some position i. There is no x in the coloring if there is no x at
any position i. We denote by |A|, |B|, |C| the number of elements colored A, B and C
respectively.

Lemma 1. In any interval colored with {A, B, C} and no rainbow AP (3)’s for any X, Y ∈
{A, B, C}, between any two occurrences of XX and Y Y , X 6= Y , there is an occurrence
of XY or Y X.

Proof. Take two closest occurrences of XX and Y Y and assume without loss of generality
that they occur at positions 1 and m respectively, i.e., c1 = c2 = X, cm = cm+1 = Y . Let
J ⊆ {2, · · · , m} be the set of positions of letters X and Y ; we only need to show that J
contains two adjacent positions.

If m is odd then both (m+1)/2 and (m+3)/2 are in J . So, let m = 2(k−1) be even.
We have k = (2 + m)/2 ∈ J ; without loss of generality let c(k) = Y . If i < k is in J then
ci = X (otherwise both 2i−1 and 2i−2 are in J). Similarly, ci = Y for each i > k, i ∈ J .

Define the function f(i) = b(2k − i + 2)/2c. If i ∈ J ∩ {3, · · · , k} then f(i) ∈
J ∩ {3, · · · , k − 1}: indeed, c(2k − i) = Y because of the progression (i, k, 2k − i); and
then c(f(i)) = X because of the progression (2, f(i), 2k− i) or (1, f(i), 2k− i), depending
on the parity of i.

Iteratively applying f to the initial value k, we obtain a sequence of elements of J .
If the first repetition in this sequence is fa(k) = f b(k) then fa−1(k) 6= f b−1(k), and
f(fa−1(k)) = f(f b−1(k)). This implies that fa−1(k) and f b−1(k), both elements of J ,
differ by 1, and the lemma is proved.

We say that a color Y is a dominating color if whenever c(i) 6= c(i +1), 1 ≤ i ≤ n− 1,
either c(i) = Y or c(i + 1) = Y . Next we treat two cases: when c has a dominating color
and when it does not.

2.1 There is a dominating color A in c.

This means that there are no subwords BC or CB. We treat the following two cases:
Case 1. There is no subword BB and no subword CC.
Subcase 1.0. Every B or C, except possibly the last one, is followed by at least two A’s.
Then |B| + |C| ≤ (n + 2)/3, and therefore either |B| or |C| is at most (n + 2)/6.

Since the words BAC and CAB are forbidden, we can assume without loss of generality
that there is BAB at a position i. Now, all C’s must occupy positions of the opposite
parity. Otherwise, take C at a position j ≡ i (mod 2). Now, (i + j)/2 and (i + 2 + j)/2
can not be colored A, and we have two of B and C next to each other which contradicts
our assumption for this case.
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Subcase 1.1. There is BAB as well as CAC.
Then from the above we have that all B’s occupy positions of the same parity, and all C’s
occupy positions of the opposite parity. Consider the minimum distance d between two
numbers colored with B and C. Note that d is odd. Assume that c(x) = B, c(x+d) = C.
Then, if x + 2d ∈ I we have c(x + 2d) = B (because of the arithmetic progression
(x, x+d, x+2d)), and similarly if x−d ∈ I, c(x−d) = C. Continuing in the same manner
in both directions, we get positions (i0, i0 +d, · · · , i0 +pd) with i0 ≤ d, i0 +pd ≥ n+1−d,
at which the entries are alternatively B and C, and all other entries between i0 and i0 +pd
are A’s. Assume that c(i0) = B and i0 ≤ n − pd − i0 + 1.

We see that the subwords BAB and CAC can occur only in the segments {1, · · · , i0}
and {i0 + pd, · · · , n} respectively. Therefore c(i0 + pd) = C; so p is odd. Moreover, p = 1;
otherwise for i < i0 such that ci = B we would get a rainbow AP (i, i0+d, i0+2d+(i0−i)).
So, we have

|B| + |C| ≤ i0 + 1

2
+

n − i0 − d + 2

2
=

n − d + 3

2
.

Since 3d ≥ i0 + 2d ≥ n + 1,

|B| + |C| ≤ n + 4

3
,

and either |B| or |C| is at most (n + 4)/6.
Subcase 1.2.
There is BAB but no CAC.
All positions of C’s are of the same parity. For each ci = B, take the one-element set
{i} or {i + 1}: whichever of them has this parity. For each ci = C, take the 2-element
set {i, i + 2}. By the hypotheses for this case, all these sets are disjoint. Therefore,
|B|+ 2|C| ≤ (n + 3)/2. It follows that at least one of |B|, |C| must not exceed (n + 3)/6.
Case 2. There is a subword BB but no subword CC.
We know also that the distance between any B and any C is at least 3. The main
observation here is that if we have BB at a position i and C at a position j, and both
2j − i and 2j − i− 1 belong to [n], then there is BB at a position (2j − i− 1). Call it the
reflection of BB in C.

Now, let J1, · · · , Jk be maximal intervals in {1, · · · , n} not containing BB. Clearly,
Jis are disjoint. We assume that Ji starts before Jj for i < j. Our goal is to show that
each such interval does not contain “too many” C’s.

First consider an inner interval J = Jm = [i . . . j], where i 6= 1 and j 6= n. By
construction, we have ci−1 = ci = cj = cj+1 = B, and J has no BB. If there are no C’s in
I, we are done. If ck = C, i < k < j, and k 6= (i + j)/2, then the reflection of the closest
to k BB in ck = C is inside I, which is impossible. So, we can have at most one C, right
in the middle if I. Both j − k and k − i are at least 3 thus |J | ≥ 7.

Second, consider an end-interval J = J1 = c1 . . . cj, with BB at a position j. The
above ”reflection argument” tells us that C’s can appear only in the left half of J , i.e.,
if ck = C then k ≤ (1 + j)/2. And the distance between any two C’s in I is at least
3. Indeed, if ck = ck+2 = C, then one of j, j + 1 is of the same parity as k, say j.
Then (k + j)/2 and (k + 2 + j)/2 are two consecutive numbers colored with B or C, a
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contradiction. Treating the other end-interval Jk in a similar manner, we have the total
number of C’s in [n] being at most l1/7+(l2 +2)/6 where l1 is the total length of inner in-
tervals and l2 is the total length of end-intervals. Thus the number of C’s at most (n+2)/6.

The last possibility, when there are both BB and CC, cannot occur, by Lemma 1.

2.2 There is no dominating color in c.

Let w be the shortest subinterval of I containing all three adjacencies AB, BC, CA. To
simplify the notations, in this subsection we will shift the indexing in such a way that
w = {1, · · · , n′}; and the whole word is indexed from a to b, b− a + 1 = n. We shall refer
to the interval [a, 0] as the left part and the interval [n′ + 1, b] as the right part if such
exist. For {X, Y, Z} = {A, B, C}, we assume that c1 = X and c2 = Y . Consider the first
appearance of X after position 1. If it is preceded by Y in a position j, then the word
w \ {1} is a shorter word containing all adjacencies. Thus X must be preceded by Z at
a position j. Again, if j 6= n′ − 1 then w \ {n′} contains all three adjacences and it is
shorter than w.

Thus w satisfies the following hypothesis:
(∗) w is colored XY · · ·ZX and has no X’s inside.

Now, we assume that the word satisfying (*) is the one with X = A, Y = B and
Z = C. We shall show that the number of A’s is small.

Claim 1. For i ≥ 1, c(1+2i) = B whenever 1+2i < n′. Symmetrically, c(n′−2i) = C
whenever n′ − 2i > 1. It is easy to see by induction, successively considering AP (3)s
(1, 2i + 1, 2i+1 + 1).

Claim 2. Let k be the first occurrence of C in w. Then k is even. Symmetrically,
if l is the last occurrence of B then n′ − l is odd. Otherwise, AP (3)s (1, (1 + k)/2, k),
(l, (n′ + l)/2, n′) are rainbow.

Claim 3. If n′ = 2m then c(m + 1) = B and c(m) = C. Otherwise, AP (3)’s
(2, m + 1, 2m) and (1, m, 2m− 1) are rainbow.

Claim 4. If n′ = 2m then w is the whole word, that is, it cannot be extended to
either side and a = 1, b = n = n′. Indeed, using Claims 2 and 3, the following AP (3)s:
(0, 1, 2), (0, k/2, k), (0, m, 2m) give c(0) 6= C; c(0) 6= A, and c(0) 6= B respectively, which
is impossible. The symmetric argument works for c(2m + 1).

Claim 5. |w| ≥ 8. Indeed, since c3 = B and cn′−2 = C, we have n′ ≥ 6. If n′ = 7 then
positions 3, 5, 7 give a rainbow AP (3). When n′ = 8, we find the unique possibility, the
word ABBCBCCA, which satisifies the conclusion of the theorem: |A| = 2 = (8 + 4)/6.

Now, by Claims 4 and 5, the theorem is proved for even n′. So we can assume that n′

is odd.
Let n′ = p · 2i + 1 for odd p. Consider the sequence w′ = (1, 1 + 2i, · · · , 1 + p · 2i) of

length p + 1.
Claim 6. p 6= 1. Assume that n′ = 2i+1 then c(1+2i−1) = B and c(1+2i−2i−1) = C

using Claim 1 and the fact that i ≥ 2. Since 1 + 2i−1 = 1 + 2i − 2i−1, this is impossible.
Next we assume that p ≥ 3.
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Claim 7. The hypothesis (∗) is satisfied by w′. For p ≥ 3, 1+2i < n′−2i = 1+(p−1)2i.
Thus using Claim 1 we have that w′ begins with AB and ends with CA. Obviously, there
are no A’s inside w′, and it’s rainbow AP (3)-free.

Claim 8. The smallest index of a letter in the original word is at least 2 − 2i;
symmetrically, the largest is at most n′ + 2i − 1. Moreover, Claim 5 implies that p ≥ 7.
Since w′ is of even length, it cannot be extended to either side by Claim 4. This means
that c(1 − 2i) and c(n′ + 2i) cannot be defined.

Claim 9. There is no subword AA. Suppose there is, say, in the left part (for the right
part the argument is symmetric, as everywhere above). By Lemma 1, between this AA
and CC at a position n′−2 there is AC or CA; there are no such inside w, therefore there
is AC or CA in a position preceding w. Consider k as in Claim 2, it is easy to see using
Claim 1 that k < n′/2. Now, the interval [a, k] has all three adjacencies AB, BC, CA and
length at most 2i + n′/2 ≤ n′. Thus [a, k] is shorter than w, a contradiction.

Finally, we see that the number of A’s is at most 2i/2 + 2i/2 = 2i, and the length of
the word is at least 7 · 2i + 1, as required.

3 Concluding remarks

This note settles the case when we study [n] colored in three colors with no rainbow
AP (3). When we use k ≥ 5 colors in [n], the following construction demonstrates that no
matter how large the smallest color class is, there is a coloring with no rainbow AP (k).

Construction Let n = k(2m), k ≥ 5. We subdivide [n] into k consecutive intervals
of length 2m each, say A1, · · · , Ak and let t = bk/2c.

c(i) =




j if i ∈ Aj and j 6= t, j 6= t + 2,

t if i ∈ At ∪ At+2 and i is even,

t + 2 if i ∈ At ∪ At+2 and i is odd.

(3)

It is easy to see that the above coloring does not contain any rainbow AP (k) and the
size of each color class is n/k.

The case when k = 4 is the only unresolved problem here. Next we provide a coloring
c of [n], where n = 10m + 1 with the smallest color class of size n−1

5
and no rainbow

AP (4). Let [n] = A1 ∪ · · · ∪ A5 where Ais are consecutive intervals of lengths 2m, 2m,
2m + 1, 2m, 2m respectively. Then

c(i) =




A if i ∈ A1 ∪ A2 and i is odd,

D if i ∈ A4 ∪ A5 and i is even,

B if i ∈ A1 and i is even,

B if i ∈ A5 and i is odd,

C otherwise.

(4)
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There are colorings of [n] for n ≤ 16 such that each color class has size n/4 and with
no rainbow AP (4) [1]. Nevertheless, we do not know whether any coloring of [n] in four
almost equally sized colors always has a rainbow AP (4).
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