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Let H" be an r-uniform hypergraph. Let g=g(n; H r) be the minimal integer so that any 
r-uniform hypergraph on n vertices and more than g edges contains a subgraph isomorphic to 
H' .  Let e=f(n; H r, en) denote the minimal integer such that every r-uniform hypergraph on n 
vertices with more than e edges and with no independent set of en vertices contains a subgraph 
isomorphic to H r. 

We show that if r > 2  and H" is e.g. a complete graph then 

lim lim f(n; H', en)= lim g(n; H') 

n - -1  while for some H" with lira I" / g(,,, m ) ~ O  
n ~ , r )  

lim lim f n / - l f ( n ;  H',en)= O. Ir) 

This is in strong contrast with the situation in case r=2 .  Some other theorems and many unsolved 
problems are stated. 

Let  Hr(V; E) be an r -un i form hype rg raph  and  f ( n ;  t t  r) be the smal les t  inte- 
ger for which every r -uni form hype rg raph  o f n  vertices and  more  than  f (n ;  H')  edges 
conta ins  a subgraph  i somorph ic  to H ' .  A G',(V; E) is cal led an extremal  g raph  belong-  
ing to H ~, i f  [VJ=n,  e(G~)---f(n; HO and  G~ does  no t  conta in  a subg raph  iso- 
morph ic  to H '  (e ( . . . )  denotes  the  number  o f  hyperedges) .  

The de te rmina t ion  (or  es t imat ion)  o f  f ( n ;  HO is the  fundamenta l  p rob l e m o f  
ex t remal  g raph  theory  which was s ta r ted  by T u r i n  [9]. As  a genera l iza t ion  o f  Tur~n 's  
theorem,  the wel l -known E r d 6 s - - S t o n e  theorem [6] stares the fol lowing.  

For an arbitrary H2: 

(1) f (n ;  t / 2 ) =  ) ~ ( H 2 ) _ l  ÷ o ( 1 )  n ~ if  n ~  

where x(H) is the chromatic number of H. 

AMS subject classification (1980): 05 C 65; 05 C 35, 05 C 55. 
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First of all, we remark that for r > 2  almost nothing is known about f ( n ;  Hr). 
E.g. for the simplest graphs/£43 (the complete 3-uniform hypergraph on 4 vertices) or 
Ha(4; 3) (three triples on four vertices) not even the asymptotic value of  f (n ;  H a) is 
known. Tur~in's classical conjecture is, that 

(2) f ( n ; K ~ ) ~ f f  if n--~o 

and it is very probably that 

l ( n )  if n--oo. (3) f ( n ;  H~(4; 3 ) ) ~ -  3 

As to the general case, it is easy to see that for an arbitrary H '  

exists. It is well-known [4] that c(Hr)= 0 if and only if the vertices of H" can be split 
into r classes so that every edge o f H  ~ meets all r classes. 

We observed [5], [7] that for r = 2, H =  Kk (where Kk is the complete graph on k 
vertices), the extremal graph is stable in the following sense: it contains "very large" 
independent sets and if we put on a condition which decreases the size of the maximal 
independent set in Gn then the number of edges of the corresponding extremal graphs 
gets drastically reduced. More precisely, let f (n ;  H',  l) be the smallest integer for 
which every graph of n vertices and more than f ( n ;  H ~, l) edges either contains a 
subgraph isomorphic to H" or it contains an independent set of size l. 

Due to Ramsey's theorem for fixed H r and l, f (n ;  H r, l ) = 0  if n>R(H ' ,  l). 
Therefore, the problem makes sense only in the case when either ]V(H')]~oo or 
l-*=,. Referring to the case r = 2  and H=Kk,  we proved 

(5) lira lim f (n;  Kk, en) = 
~ 0  tl~eo 

while by Turfin's theorem 

(6) 

k - 3  
if k odd 

( k -  1) 

3 k - l O  
if k even 

(3k-4)  

lira f (n ;  Kk) -- ( k -  1) 

(For k odd see [5], for k = 2  see [1], [8] and for k > 2 ,  even see [2].) 
In this paper, we investigate analogous problems for hypergraphs. The main 

result of this paper is that surprisingly the situation is quite different for hypergraphs. 
E.g. for K~ (and for a more general class of graphs) the condition that the largest 
independent set has size o(n) does not change the situation. We prove 

Theorem 1. Let r=>3, H" be an r-uniform hypergraph, E= {ha . . . . .  hm} be the edge-set 
of  H'. Suppose H r satisfies the condition 

(7) for ever), i, 1 <= i <-- m there exist a j ~ i such that ]hiAhj] >= 2. 
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) Let lira r f (n ;  H')=c(H')  and lira l im[ n -1 f (n; H', en) = c* (H'). Then 
~ 0  n ~  k r 

(8) c* (H')  = c(H') .  

Remark. Condition (7) holds e.g. f o r / ~  and also for H 3 (4.3). 

Proof. Our idea in the proof is that if there are large independent sets in the extremal 
graph, we spoil them by adding not too many new edges and then we have to omit 
some, but not too many, to destroy the possible H ' s  and not to create large indepen- 
dent sets. 

Let ~(G') denote the size of the largest independent set of  G'. We use the fol- 
lowing theorem of  Erd6s--Hajnal  [3] : 

For arbitrary r />0 and m>N(q)  there exists a graph L~ with the following 
properties: 

"e(L~) < m 3/~, 
( . )  c~(L~) <nm,  

if e~,ejEE(L~), i # j, then [eiAej] ~_ 1. 

Let 3 > 0  and ~>0 be arbitrary and (G',) be a graph satisfying 

(9) n '  ¢ G; 

~n >- N(~  2) 

where e=c(H'). Decompose the vertex set V= V(G~) in the form 

k 

V = B U U A ~  
i = i  

where ~(G"(B; E (B) )<  2 and 

s n  
ct(G'(A,; E(A,)) > --2-. 

Obviously, k<=2/e. We place into the set A~ a hypergraph L'(i) with V(L'(i))=Ai 
and which satisfies (*) with q=~2. So we added to our G'~ new edges and the new 
enlarged hypergraph has clearly no independent set of size >sn. But this new graph 
may contain a graph isomorphic to H r. To avoid this, omit all edges eEE(G~) which 

a 
intersect any of  our new edges in at least two vertices. So we omitted at most O(n "-~) 
edges. Observe that this final graph G~, r 

(A) contains no isomorphic copy of  H" due to the condition on H ' .  
(B) ~(G*')<~n since we did not omit any edge contained in any of the As, 

l <=i<=k. 

(c) 

Since 6 > 0  was arbitrary, the proof  of  Theorem 1 is complete. 
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On the other hand we state 

Theorem 2. Let H" be a graph for which there is a partition of  the vertex set 

V(HO = U Ai 
i = 1  

so that 
E(H')  = E~ CJ E2 

and 
(10) lhNA,[ ---- 1 for  i = 1 . . . . .  r i f  hEEl, 
furthermore,for 

E2 = {h~ . . . . .  h,} c= {h: h _c A,} 

(1,) IhkC~ _,Uo_ h,[=.. _~ 1 for k = 2, .. . ,s. 

Then 
c*(H')  = 0. 

Proof. We use the following theorem of Erd6s [4]. There exists a function f ( t )  so 
that if n=>N(t, c) and e(G~,)>cn r then 

Let t =  max IAil. Suppose there exists an infinite sequence of  graphs G~ with 
l~i~_r--1 

e(G'.)>cn', for which 

(12) H '  (I: G~ 
and 
(13) ~(G;) -- o (n). 

Let U be tile set of  vertices of a K" [t, ... , t, f-~-t)] contained by G~,, and U, 

= 1 . . . . .  x,, l =  c U be the vertices in the rth class. By (12), the subgraph of  

G~ spanned by U, cannot contain a subgraph isomorphic to L(A.;  E~). 
Now we prove that by the condition (11) on L(A,;  E2), G',, more exactly U, 

must contain a large independent set. 
Let H ( j )  ( j = l  . . . .  s) denote the subgraph of  H '  formed by the edges 

(hi . . . .  , hi) and G~(U,) denote the subgraph of  G~ spanned by the subset of  vertices 
U,. Suppose H ( k - 1 ) c G ' , ( U , )  but H(k)CU~(U, )  for some l<k<=s. Let H 1 be 
a copy of  H ( k - 1 )  contained in G'~(U,) and VI=V~(H1). By (11) there is a vertex 
xE V1 so that x is independent of  U , -  V~. Note I U , -  V1] > n f f ( t ) - s r .  Now apply the 
same argument to G', (U,-  V1). Thus, we obtain a vertex x~E U , -  V1 which is in- 
dependent of  a set U , -  V1- V2 where IUr-  V1-  V2[>n/ f ( t ) -2rs .  We continue this 
process and obtain and independent set of  size >=n/f(t)rs. Having (13) this contra- 
diction proves the theorem. 

Problem 1. Is condition thi~lhi[_~2 in Theorem 1 necessary for the truth of  (8)? 
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Problem 2. Does there exist a graph H i for which 

0 < c*(H') < c(Hr)? 

Problem 3. Let V1 = {xi}, V2= {xe, xa, x4}, Vz= {xs, x6, x~}, and n 3 be the hyper- 
graph with V(HZ)={xi,  1<-i<=7} and 

e ( n 3 )  : x3, x,}, (xs, x , ,  x,} and (x,, xj V , 

We know that c(H3)>0. IS c*(H~)=c(H ") or O<c*(H3)<c(HO or c*(H3)=0? 

Problem 4. Let V(H 3) = 1/1 U V2 U Va, where V2 and V3 are independent aeta but the 
graph spanned by V~ contains a circuit. What can one aay on c(Ha)? 

Problem 5. I~ condition (11) in Theorem 2 necessary? 

Problem 6. Find a function h 01) so that 

( ~ ) - l f ( n ;  K~, h(n)) = O(n3). 

Our Theorem t gives that there is an c~<l for which f (n ;  K~, nO>Gn a for 
a e~>O. Is inf {c~: l i m n - a f ( n ;  K~, n')>O}>O? 

Graphs of uniform edge density 

Remark. We know that for every e>0  there exists a graph G. so that e(G.)> 
> ( 1 / 8 - e ) n  ~, K4•G. and e(G.)<en. On the other hand, it is easy to see that if 
every subset of V which is "small enough" has a not "too small" edge density then 
our G. must contain a K k. Now we make this vague and heuristic statement more 
precise in two ways. 

Proposition 1. Let G.,; n l<nz< . . ,  be a sequence o f  graphs with the following 
properties: 

2 (14) e(G.,) > cini, 

(15) l f  f is an arbitrary function with l i m f ( x ) = 0  and if  i>io(e) then in G., every 
X ~ O  

set of  >enl vertice~c spans a subgraph of at least f (e)e2n 2 edges. Then for i large enough 
Kk c G.,. 

Proposition 2. Let k be given. For every e > 0 there is an ~1 = q (~, k) > 0 so that i f  G. is 
a graph which satisfies that every ~ubgraph of  more than qn vertices spans a subgraph of  
at least erl2n ~ edges, then Kk c G.. 

The proofs are easy and left to the reader. 
Now we consider the analogous question for hypergraphs. 
Concerning the case r_~3 we have: 
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Proposition 3. For every 17>0 there exists an e > 0  and a graph G] having the following 
property 

Kg¢ Ga. (and even more, H3(4; 3) qz G~) 

and each spanned subgraph of G~ of more than qn vertices contains more than e ( ; n) edges. 

To see this, let n = 3  k, I/(G.3)={1 . . . .  , n}, i=z~'e~3 ~ the trinary expansion 
of  i, and 

E(G~)= i , j , l } : i =  .~e~))3 ~, j =  ~e~(2)3 ~, l =  z_~e~(3)3 ~, 
v ~ O  v ~ O  v ~ O  

e~ a) e~ ( z ) = e ~  3) for v < v  o, ,re(a) e (~) e ( z ) ~ = { O ,  1 ,2} .  = I. VO ~* YO ~ VO $ 

It is easy to see, that this graph has the above property. At the same time to every 
e>O, there is an t/>O so that there is a spanned subgraph of G. 3 of  more than t/n 

vertices and contains less than e l ; h i  edges. This means that the edge-density is 

not uniformly positive. 

Problem 4. Assume now that we have an infinite sequence (G3.) so that for every spanned 

subgraph of m>rln vertices G~ contains more  / /edges. Doesitthenfollow 

that our graph contaim a K~ if  n>no(e, c, r)? We do not know the answer even 
for k = 4 ,  in fact, we do not even know whether our graph contaim a H 3 (4; 3). 

Perhaps it is clearer to state the problem in a sligthly weaker form. 

n 
Problem 5. Assume that G3, has the property that every spanned subgraph of m > log n 

verticescontains at l eas t c {~ )edges .  Does our graph then contain aH3(4;  3) or a 

Kg or K~? 
n The role of  ~ could be replaced by anyf(n)  with f(n)n --0. 

Problem 6. Assume that there is a cl so that for every x, yE V(GS,) 

[{z: y,  > c ,  

Is it then true that H3(4; 3)=a.~? 

Problem 7. We define a sequence of graphs 3 ._ G,, ,0-1,  2 . . . .  ) to be uniformly distributed 
it for every r/>0 there is a c(~) so that for every i>i0(e) every spanned subgraph of 

m>~tn vertices has (c(r/)+O(1)){r~] edges. I s therea  graph H3 ,o tha t there  is an 

extremal graph belonging to H 3 which is uniformly distributed? 

We expect that such a graph does not exist. 
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