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Abstract

A new spectral graph invariant sprR , called Randić spread, is defined and investigated.

This quantity is equal to the maximal difference between two eigenvalues of the Randić

matrix, disregarding the spectral radius. Lower and upper bounds for sprR are deduced,

some of which depending on the Randić index of the underlying graph.

1 Notation and preliminaries

In this paper G stands for an undirected simple graph on n vertices and m edges.

Its vertex set and edge set are V (G) and E(G), respectively. The vertices of G are

assumed to be labeled by 1, 2, . . . , n. If e ∈ E(G) has end vertices i and j, then we

say that i and j are adjacent (i ∼ j) and that e = ij. The set Ni = {j ∈ V (G) : ij ∈
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E(G)} is the set of neighbors of i ∈ V (G) and its cardinality is the degree di of the

vertex i. In this work an isolated vertex of G (i.e., a vertex of degree zero) is called

a singleton.

A p-regular graph G is a graph in which every vertex has degree p , p ≥ 0.

A graph G is bipartite if there exists a nonempty disjoint decomposition V (G) =

X ∪ Y such that each edge ij ∈ E(G) has an end vertex in X and the other one in

Y . The sets X, Y are called a bipartition of G.

The adjacency matrixA = A(G) of the graph G is the 0–1 matrix of order n whose

(i, j)-entry is equal to 1 if ij ∈ E(G), and 0 otherwise. The eigenvalues λ1, λ2, . . . , λn

of A are usually referred to as the eigenvalues of the graph G (see [10]). Moreover, if

G is a connected graph, then the matrix A is nonnegative and irreducible (see [10]).

For a real symmetric matrix M associated to the graph G, we denote by λi(M) its

i-th greatest eigenvalue. The spectrum (the multiset of eigenvalues) of M is denoted

by σ(M) = σ(M(G)). The multiplicity s of an eigenvalue λ in this spectrum will be

denoted by λ(s).

The Laplacian matrix is L(G) = D(G)−A(G), whereD(G) is the diagonal matrix

of the vertex degrees. Its spectrum is called the Laplacian spectrum of G. Recall that

L(G) is a positive semidefinite matrix (see [10]). Moreover, 0 is always a Laplacian

eigenvalue with e, the all-one vector, as a corresponding eigenvector. Its multiplicity

corresponds to the number of connected components of G.

In what follows, Kn and Kn denote the complete graph on n vertices and its

complement, respectively. We denote by In , or simply I the identity matrix of order

n, or of appropriate order, respectively.

2 The Randić matrix

The graph matrix that nowadays is referred to as the Randić matrix has a long history.

First of all, in 1975 Milan Randić [32] invented a molecular structure descriptor

(topological index) that he called “branching index”, and which later became known
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under the name “connectivity index” or “Randić index”. It is defined as1

χ = χ(G) =
∑

ij∈E(G)

1√
di dj

. (1)

The plethora of chemical and pharmacological applications of the Randić index, as

well as its numerous mathematical investigations are well known and much docu-

mented; see [18, 22–24, 26, 33] and the references cited therein. The Randić index

happens to be the first in a long series of vertex–degree based structure descrip-

tors encountered and studied in contemporary mathematical chemistry; for details

see [15, 17, 20].

Bearing in mind Eq. (1), it would be straightforward to conceive a graph matrix

R = R(G) = (rij), where rij = 1/
√

di dj if ij ∈ E(G), and zero otherwise. The

obvious name for R would be Randić matrix.

However, the actual history of the matrix R is almost independent of Randić’s

Eq. (1). This matrix (without any name and without any mention of the Randić

index) is found already in the seminal book by Cvetković, Doob and Sachs [10] (p.

26).

As before, let D = D(G) be the diagonal matrix of the vertex degrees of the graph

G. For graphs without singletons, the diagonal matrix D−1/2 is well defined. Then

L = L(G) = D−1/2 L(G)D−1/2 is the “normalized Laplacian matrix” and an entire

spectral theory based on it has been elaborated (see [9]). It is easy to see that

L(G) = In −R(G)

implying that the eigenvalues of the Randić matrix are closely related with those of the

normalized Laplacian matrix. In particular, λ is a Randić eigenvalue of G if and only

if 1− λ is a normalized Laplacian eigenvalue of G. The normalized Laplacian matrix

is positive semidefinite (see [9]). This implies that λ = 1 is the greatest Randić

eigenvalue of any graph with at least one edge. Moreover, a standard verification

shows that D1/2 e is an eigenvector of the Randić matrix for the eigenvalue λ = 1

and also of the normalized Laplacian matrix for eigenvalue λ = 0. If G is connected,

1In the contemporary mathematical and mathematico–chemical literature, the Randić index is
usually denoted by R (see [15,17,18,20,23,24,26]). Because in our paper this symbol is used for the
Randić matrix, we return here to Randić’s original notation χ [32].
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then R(G) is a nonnegative irreducible matrix and by the Perron–Frobenius theorem

its spectral radius is the unique eigenvalue with an associated positive eigenvector.

From all the above results, for an arbitrary graph G, the multiplicity of 1 ∈ σ(R(G))

corresponds to the number of connected components of G which are not singletons.

In connection with the Randić index, the matrix R seems to be first time used in

2005 by Rodŕıguez, who referred to it as the “weighted adjacency matrix” [34] and

the “degree adjacency matrix” [35]. In 2010, a systematic study of spectral properties

of the Randić matrix started [2–5, 14, 19, 27, 36, 37], mainly motivated by the newly

conceived concept of Randić energy [25], equal to the sum of absolute values of the

eigenvalues of R. Independently, based on the matrix L, the “normalized Laplacian

energy” was put forward [8], which is exactly the same as the Randić energy.

3 The Randić spread

In this section we introduce the concept of Randić spread and deduce upper and lower

bounds for this spectral invariant. Some of these bounds are in terms of the Randić

index of the underlying graph.

Generally, the spread of an n×n complex matrixM with eigenvalues λ1, λ2, . . . , λn

is defined by

s(M) = max
i,j
|λi − λj|

where the maximum is taken over all pairs of eigenvalues ofM. There is a considerable

literature related with this parameter, see for instance [1, 21, 29–31]. The following

lower bound for the spread of a Hermitian matrix M = (mij) was given in [1] and [29]:

s(M) ≥ max
i,j

(
(mjj −mii)

2 + 2
∑
s 
=j

|mjs|2 + 2
∑
s 
=i

|mis|2
)1/2

. (2)

This is one of the best lower bounds for symmetric matrices.

Recently, the spread of a graph (defined as the spread of its adjacency matrix)

has been extensively studied. In [16] lower and upper bounds for this spectral graph

invariant were obtained. In fact, the authors of [16] showed that the path is the

unique graph with minimal spread among all connected graphs of a given order and,

as the maximal spread is still unknown, some conjectures were presented.
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In the case of the Laplacian and normalized Laplacian matrices, the smallest

eigenvalue is always equal to zero. In the case of the Randić matrix, the greatest

eigenvalue is always equal to unity. Because of this, the concept of spread of these

matrices is trivial and uninteresting: s(L) and s(L) are equal to the spectral radii

of the respective matrices;2 s(R) is equal to 1 minus the smallest Randić eigenvalue,

and, in addition, is equal to s(L). Even worse, for all bipartite graphs, s(R) = 2.

In order to overcome these difficulties, the spread concept of L, L, and R has been

somewhat modified.

Taking into account that the smallest eigenvalue of the Laplacian matrix of a

graph G is zero, and that the second smallest eigenvalue is the algebraic connectivity

of G (which is an important algebraic measure of the connectivity of a graph [11,13]),

the “Laplacian spread” was defined as [12]

sprL(G) = max {|λi(L)− λj(L)| : λi(L), λj(L) ∈ σ(L(G)) \ {0}} . (3)

In an analogous manner, the normalized Laplacian spread of G is

sprL(G) = max {|λi(L)− λj(L)| : λi(L), λj(L) ∈ σ(L(G)) \ {0}} . (4)

In parallel with Eqs. (3) and (4), we now define the Randić spread as:

sprR(G) = max {|λi(R)− λj(R)| : λi(R), λj(R) ∈ σ(R(G)) \ {1}} . (5)

¿From (4) and (5) follows that for graphs G having no singletons, sprR(G) coin-

cides with sprL(G). For instance, if G ∼= Kn , then

σ(R(Kn)) =

{
1,

(
− 1

n− 1

)(n−1)
}

and σ(L(Kn)) =

{(
n

n− 1

)(n−1)

, 0

}
.

Therefore, sprR(Kn) = sprL(Kn) = 0.

In the literature concerned with the localization of eigenvalues of nonnegative

square matrices, special attention has been devoted to upper bounds on the second

greatest modulus of an eigenvalue [37, 38]. We shall need the following result.

2Recall that in the literature there are many results on the greatest eigenvalues of L and L, i.e.,
on their spectral radii, especially upper bounds (see for instance [28, 37]).
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Lemma 1. [37] Let G be an undirected simple and connected graph. For i ∈ V (G),

let Ni be the set of first neighbors of the vertex i of G. If λ(R) is an eigenvalue with

greatest modulus among the negative Randić eigenvalues of G, then

|λ(R)| ≤ 1−min
i∼j

{ |Ni ∩Nj|
max {di, dj}

}
where the minimum is taken over all pairs (i, j) , 1 ≤ i < j ≤ n, such that the

vertices i and j are adjacent.

Since 1 ∈ σ(R(G)), by using Lemma 1 we directly arrive at:

Theorem 2. Let G be an undirected simple and connected graph whose Randić matrix

is R(G). Then

sprR(G) = λ2(R(G))− λn(R(G)) ≤ 2−min
i∼j

{ |Ni ∩Nj|
max {di, dj}

}
(6)

where the minimum is taken over all pairs (i, j) , 1 ≤ i < j ≤ n, such that the

vertices i and j are adjacent.

The next theorem is due to Brauer [6] and relates the eigenvalues of an arbitrary

matrix and the matrix resulting from a rank-one additive perturbation.

Theorem 3. [6] Let M be an arbitrary n× n matrix with eigenvalues λ1, λ2, . . . , λn .

Let xk be an eigenvector of M associated with the eigenvalue λk, and let q be any

n-dimensional vector. Then the matrix M+ xk q
t has eigenvalues

λ1, . . . , λk−1 , λk + xt
k q , λk+1, . . . , λn .

Let G be an arbitrary graph of order n with m edges and pq ∈ E(G). Then the

matrix

Rpq =

(
0 (dp dq)

−1/2

(dp dq)
−1/2 0

)
is a principal submatrix of order 2 of PR(G)Pt, where P is an appropriate permu-

tation matrix of order n.

The smallest eigenvalue of Rpq is λpq = −1/
√

dp dq. By the Cauchy interlacing

theorem (see [10]), we have

λn(R(G)) ≤ λpq ≤ λ2(R(G)) . (7)
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On the other hand, the average of these values

1

m

∑
p∼q

λpq =
1

m

∑
p∼q

(
− 1√

dp dq

)
= −χ(G)

m

also has the property (7), namely

λn(R(G)) ≤ −χ(G)

m
≤ λ2(R(G)) . (8)

Now, if

w = D1/2 e =
(√

d1, . . . ,
√
dn

)t
is an eigenvector corresponding to the Randić eigenvalue 1, and if

βpq = −
1

2m

[
1√
dp dq

+ 1

]
(9)

then by Theorem 3, the matrix

Bpq = R(G) + βpq wwt (10)

has spectrum

σ(Bpq) = σ(R(G)) \ {1} ∪
{
1 + βpq w

t w
}

= σ(R(G)) \ {1} ∪
{
1−
(
(dp dq)

−1/2 + 1
)}

= σ(R(G)) \ {1} ∪ {λpq} .

Remark 1. By Theorem 3, for any given value ξ such that λn(R(G)) ≤ ξ ≤
λ2(R(G)), the equality sprR(G) = s(Bξ) holds, where Bξ = R(G) + κwwt with

κ =
1

2m
(ξ − 1) . (11)

Note that κ = κ(ξ) and in this case, βpq in (9) is equal to κ
(
−1/

√
dp dq

)
.

Let κ be as in 11 and let C = R(G) + κwwt. If C = (cij), then

cij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ di if i = j

1√
di dj

+ κ
√

di dj if ij ∈ E(G)

κ
√
di dj if ij /∈ E(G) .

In what follows, using the suggestion in Remark 1, we deduce some lower bounds

for the Randić spread (and for the spread of a rank-one perturbed Randić matrix).

An obvious consequence of the inequality (8) is the following.
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Theorem 4. Let G be an undirected simple graph without singletons whose Randić

matrix is R(G). Then

max

{∣∣∣∣χ(G)

m
+ λn(R(G))

∣∣∣∣ ,
χ(G)

m
+ λ2(R(G))

}
≤ sprR(G) . (12)

It should be noted that if sprR(G) = 0, then

χ(G) = −mλ2(R(G)) = −mλn(R(G)) .

Let

B = R(G) + β wwt (13)

with

β = − 1

2m

( χ
m

+ 1
)
. (14)

By Theorem 3, the spectrum of B satisfies

σ(B) = σ(R(G)) \ {1} ∪
{
1 + β wt w

}
= σ(R(G)) \ {1} ∪

{
1−
( χ
m

+ 1
)}

= σ(R(G)) \ {1} ∪
{
− χ

m

}
.

Then

sprR(G) = s(B) = s(Bpq) (15)

where Bpq and B are the matrices defined by Eqs. (10) and (13), respectively.

Remark 2. Let G be a graph as specified in Theorem 4. Let λmin
pq and λmax

pq be,

respectively, the minimum and the maximum values of λpq for pq ∈ E(G). Then

max
{
λmax
pq − λn(R(G)) , λ2(R(G))− λmin

pq

}
≤ sprR(G) . (16)

Furthermore,

max
{∣∣∣ χ

m
+ λn(R(G))

∣∣∣ , χ
m

+ λ2(R(G))
}
≤ max

{
λmax
pq − λn(R(G)) , λ2(R(G))− λmin

pq

}
.

In fact, when dp dq is constant for all pq ∈ E(G), for example when G is a bipartite

graph, then the lower bounds coincide. If, however, dp dq is not constant, then the

lower bound (16) is better than the lower bound (12).

Lemma 5. Let G be a graph of order n. Then λ2(R(G)) < 0 if and only if G ∼= Kn .
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Proof. ¿From an example given above, we know that λ2(R(Kn)) = −1/(n − 1).

Thus, if G ∼= Kn , then λ2(R(G)) < 0. If G �∼= Kn and λ2(R(G)) < 0, then there

exist vertices v, w ∈ V (G) such that vw /∈ E(G). Then, for a suitable permutation

matrix P, the matrix PR(G)Pt has a zero square submatrix of order 2. Then by

the Cauchy interlacing theorem, 0 ≤ λ2(R(G)), which is a contradiction.

Corollary 6. Let G be a graph with n vertices. Then sprR(G) = 0 if and only if

G ∼= Kn .

Proof. If G ∼= Kn , then, as we have already seen, sprR(G) = 0. If sprR(G) = 0, then

λ2(R(G)) = λn(R(G)) < 0. Then by Lemma 5, we have G ∼= Kn .

The following result was proven by Merikoski and Kumar.

Lemma 7. [29] Let M = (mij) be a normal matrix of order n. Then

s(M) ≥ 1

n− 1

∣∣∣∣∣∑
j

∑
k 
=j

mjk

∣∣∣∣∣ .
Corollary 8. Let G be a regular graph of order n and degree p. If sprR(G) is defined

as in (5), then

sprR(G) ≥ 1

p
− 1

n− 1
. (17)

Equality holds if G ∼= Kn .

Proof. Replace the matrix M in Lemma 7 by the matrix B, defined via (13).

Corollary 9. Let G be a graph of order n such that G �∼= Kn . If sprR(G) is defined

as in (5), then

sprR(G) ≥ 2χ

n− 1
− 1 + λ2(R(G)) . (18)

Proof. Considering M = R(G) in Lemma 7, we have

1− λn(R(G)) ≥ 2χ

n− 1
. (19)

The inequality (18) is obtained by adding λ2(R(G)) − 1 at both sides of (19), and

using the result in Lemma 5.
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The following result provides a connection between the Randić and Laplacian

spreads of regular graphs.

Theorem 10. Let G be a regular graph of order n and degree p. Let sprL(G) and

sprR(G) be defined as in (3) and (5). Then sprL(G) = p · sprR(G).

Proof. We know that for graphs G without singletons sprR(G) and sprL(G) coincide.

Since L(G) = D−1/2L(G)D−1/2 and G is a regular graph of degree p, L(G) = pL(G).

Then if ξ is a normalized Laplacian eigenvalue of G, p ξ is a Laplacian eigenvalue of

G. Therefore, p · sprR(G) = p · sprL(G) = sprL(G).

Corollary 11. Let G be a regular graph of order n and degree p. Then

sprL(G) ≥ 1− p

n− 1
.

Equality holds if G ∼= Kn .

In order to use inequality (2) for obtaining another lower bound for the Randić

spread, define

Γ(j) =
∑
s∼j

1

ds

for 1 ≤ j ≤ n. Note that if G is a regular graph, then Γ(j) = 1 for all 1 ≤ j ≤ n.

Taking into account (2), we arrive at:

Theorem 12. Let G be an arbitrary graph with n vertices and m edges. Then

sprR(G)2 ≥ max
i<j

{
4κ (dj + di)(1 + κm)− κ2 (dj + di)

2 +
2

dj
Γ(j) +

2

di
Γ(i)

}
(20)

where κ is equal to the right–hand side of either Eq. (9) or Eq. (14) or also satisfying

the requisite of Remark 1.

Proof. For simplicity we set C = R(G) + κwwt. Because of equalities (15), it is

sufficient to show that s(C) satisfies the inequality (20). By (2), we get

s(C)2 ≥ κ2 (dj − di)
2 + 2

∑
s∼j

(1 + κ ds dj)
2

ds dj

+ 2κ2 dj
∑
s�j

ds + 2
∑
s∼i

(1 + κ ds di)
2

ds di
+ 2κ2 di

∑
s�i

ds
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= κ2 (dj − di)
2 + 2κ2 dj

∑
s∼j

ds +
2

dj

∑
s∼j

1

ds
+ 4dj κ+ 2κ2 dj

∑
s�j

ds

+ 2κ2 di
∑
s∼i

ds +
2

di

∑
s∼i

1

ds
+ 4di κ+ 2κ2 di

∑
s�i

ds

= κ2 (dj − di)
2 + 2κ2 dj (2m− dj) + 2κ2 di (2m− di)

+ 4κ (dj + di) +
2

dj
Γ(j) +

2

di
Γ(i)

= 4κ (dj + di)(1 + κm)− κ2 (dj + di)
2 +

2

dj
Γ(j) +

2

di
Γ(i) .

Due to the symmetry of the latter formula, we can impose i < j.

Remark 3. If G is a regular graph of order n and degree p, then the lower bound

(20) becomes

sprR(G) ≥ 2

np

√
(n− 1− p)(pn+ p+ 1) .

Thus

sprL(G) ≥ 2

n

√
(n− 1− p)(pn+ p+ 1) .

Note that for G ∼= Kn the equality holds for both expressions.

Remark 4. Let G be an arbitrary graph with n vertices and m edges. For κ < 0

define the auxiliary function

f(κ) = 4κ (dj + di)(1 + κm)− κ2 (dj + di)
2 +

2

dj
Γ(j) +

2

di
Γ(i)

=
di + dj

4m− (di + dj)
[(4m− (di + dj))κ+ 2]2

+
2

dj
Γ(j) +

2

di
Γ(i)− 4

4m− (di + dj)
.

Its global minimum is at

κmin = − 2

4m− (di + dj)
.

Note that if G ∼= Kn , then κmin = βpq = β where βpq and β are defined by Eqs. (9)

and (14), respectively. Thus, a simple method to improve an obtained lower bound is

to use either the smallest κ or the greatest known κ.
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Remark 5. If λn(R(G)) ≤ ξ ≤ λ2(R(G)), then by replacing κ in (20) by the expres-

sion (11), we get

sprR(G)2 ≥ max
i<j

{
ξ2 − 1

m
(dj + di)−

1

4m2
(ξ − 1)2 (di + dj)

2 +
2

dj
Γ(j) +

2

di
Γ(i)

}
.

For G �∼= Kn and ξ = 0, this lower bound becomes

sprR(G)2 ≥ max
i<j

{
2

dj
Γ(j) +

2

di
Γ(i)− dj + di

m

(
1 +

1

4m
(di + dj)

)}
. (21)

Example 1. Let Kr,s , r, s ≥ 1, denote the complete bipartite graph with bipartition

X (of cardinality r) and Y (of cardinality s). Then

σ(R(Kr,s)) =
{
1 , 0(r+s−2) , −1

}
.

By Remark 1, we may take either the least or the second greatest eigenvalue. In

this way κ is defined as

κ(−1) = 1

2rs
(−1− 1) = − 1

rs
.

Then

Γ(j) =

{
s/r if j ∈ X

r/s if j ∈ Y

for all 1 ≤ j ≤ n. Suppose that i ∈ X and j ∈ Y . By evaluating the lower bound in

Theorem 12 we get

sprR(Kr,s) ≥
√

2(r + s)

r2 s2

(
2rs− r + s

2

)
− 4(r + s)

rs
+

2

r
· r
s
+

2

s
· s
r

=

√
−
(
r + s

rs

)2

+
2

s
+

2

r
=

√(
1

s
+

1

r

)(
2− 1

s
− 1

r

)
.

By setting r = s,

sprR (Kr,r) ≥ 2

√
1

r
− 1

r2
. (22)

By setting r = 1 and s = n− 1, we arrive at the expression for the Randić spread of

the n-vertex star:

sprR (K1,n−1) ≥
√

1− 1

(n− 1)2
.
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If we use

κ(0) =
1

2rs
(−1) = − 1

2rs

then by (21) we obtain

sprR(Kr,s) ≥
√(

1

s
+

1

r

)(
1− 1

4

(
1

s
+

1

r

))
and

sprR(Kr,r) ≥
√

2

r

(
1− 1

2r

)
=

√
2

r
− 1

r2

which, for r ≥ 2, is a weaker lower bound than (22).

4 Comparing the bounds for Randić spread

In this section, we compare the estimates obtained by Theorem 2 (upper bound (6)),

Theorem 4 (lower bound (12)), Theorem 12 (lower bound (15)), and Corollary 8

(lower bound (17)), with the actual Randić spread. Our values pertain to complete

bipartite graphs, Kr,s . In the following table, ee is the relative error, defined as usual:

ee =
|sprR(G)− bound|

sprR(G)

G sprR(G) (6) ee (12) ee (15) ee (17) ee
K1,4 1 2 1 0.5 0.500 0.8268 0.173 −− 0.688
K1,5 1 2 1 0.5528 0.447 0.8283 0.172 −− 0.668
K1,7 1 2 1 0.6220 0.378 0.8283 0.172 −− 0.644
K7,8 1 2 1 0.8664 0.134 0.5144 0.486 −− 0.937
K11,13 1 2 1 0.9164 0.084 0.4164 0.584 −− 0.958
K3,4 1 2 1 0.7113 0.289 0.7333 0.267 −− 0.874

K100,200 1 2 1 0.9929 0.007 0.1411 0.859 −− 0.968
K6,6 1 2 1 0.8333 0.167 0.5521 0.448 0.0758 0.924
K15,15 1 2 1 0.9333 0.067 0.3590 0.641 0.0322 0.968
K31,31 1 2 1 0.9677 0.032 0.2519 0.748 0.0159 0.984

Analyzing the above examples, we observe the following:

• In the class of stars (i.e., r = 1, s = n − 1), the lower bound (15), given by

Theorem 12, is the best.

• In the class of the regular graphs (i.e., r = s), the best results are obtained by

formula (12) of Theorem 4.
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• In any case, the approximation given by the best lower bound is better, when

r + s = n is greater.

5 Randić matrix and spread of join of two graphs

Let G1 and G2 be two graphs with disjoint vertex sets. Their join, denoted by G1∨G2 ,

is the graph obtained from the union of G1 and G2, by joining all vertices of G1 with

all vertices of G2.

Example 2. For i = 1, 2, let Gi be a pi-regular graph on ni vertices with pi ≥ 0,

ni ≥ 1. Then

R(G1 ∨G2) =

⎛⎜⎝ 1
p1+n2

A(G1)
en1 etn2√

(p1+n2)(p2+n1)

en2 etn1√
(p1+n2)(p2+n1)

1
p2+n1

A(G2)

⎞⎟⎠ .

It is easy to obtain

χ (G1 ∨G2) =
1

2

(
n1 p1

p1 + n2

+
n2 p2

p2 + n1

+
2n1 n2√

(p1 + n2)(p2 + n1)

)
.

Because G1 ∨G2 is connected, the Randić spectral radius 1 is a simple eigenvalue

whose corresponding eigenvector is

w =
(√

p1 + n2 e
t
n1

√
p2 + n1 e

t
n2

)t
.

A short calculation shows that

wwt =

⎛⎝ (p1 + n2) en1 e
t
n1

√
(n2 + p1)(n1 + p2) en1 e

t
n2√

(n2 + p1)(n1 + p2) en2 e
t
n1

(p2 + n1) en2 e
t
n2

⎞⎠ .

Let

S =

⎛⎜⎝
p1

p1+n2

√
n1n2√

(p1+n2)(p2+n1)
√
n1 n2√

(p1+n2)(p2+n1)

p2
p2+n1

⎞⎟⎠ .

Then

σ(S) = {1, detS} .

By applying a lemma of Fiedler (see [7]), the spectrum of R(G1 ∨G2) becomes

σ

(
1

p1 + n2

A(G1)

)
∪ σ

(
1

p2 + n1

A(G2)

)
∪ σ(S) \

{
p1

p1 + n2

,
p2

p2 + n1

}
. (23)
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Lemma 13. Let G1 and G2 be graphs of order n1 and n2 , respectively. Then

λ2(R(G1 ∨G2)) = max

{
λ2

(
1

p1 + n2

A(G1)

)
, λ2

(
1

p2 + n1

A(G2)

)}
. (24)

Proof. If G1 �∼= Kn1 or if G2 �∼= Kn2 , then by Lemma 5, λ2(R(G1 ∨G2)) ≥ 0. Since

detS =
p1 p2 − n1 n2

(p1 + n2)(p2 + n1)
.

is negative, by using (23) the result follows. On the other hand if G1
∼= Kn1 and

G2
∼= Kn2 then G1 ∨G2

∼= Kn1+n2 and

λ2(R(G1 ∨G2)) = λ2

(
1

p1 + n2

A(G1)

)
= λ2

(
1

p2 + n1

A(G2)

)
= − 1

n1 + n2 − 1
.

Theorem 14. For i = 1, 2, let Gi be a pi-regular graph on ni vertices with pi ≥ 0,

ni ≥ 1. If

δ̃1 =

∣∣∣∣λ2

(
1

p1 + n2

A(G1)

)
− p1 p2 − n1 n2

(p1 + n2) (p2 + n1)

∣∣∣∣
δ̃2 =

∣∣∣∣λ2

(
1

p2 + n1

A(G2)

)
− p1 p2 − n1 n2

(p1 + n2) (p2 + n1)

∣∣∣∣
then

sprR (G1 ∨G2) ≥ max
{
δ̃1, δ̃2

}
.

Proof. The result follows from (24) by noting that by (23), detS = p1 p2−n1 n2

(p1+n2)(p2+n1)
is a

Randić eigenvalue of G1 ∨G2 .

Remark 6. If G ∼= Kr,s , then G ∼= Kr ∨Ks . In this case, δ̃1 = δ̃2 = 1 = sprR(Kr,s).

Concluding this paper, we offer a few examples, aimed at comparing the bounds

in Lemma 7 and Theorem 14, calculated for G1 ∨ G2 . Our results are presented by

the 4-tuple g = (g1, g2, g3, g4), where g1 is the Randić spread of G1 ∨ G2, g2 is the

lower bound of Theorem 12 by taken κ as a function of the least Randić eigenvalue of

G1 ∨G2, g3 is the lower bound of Theorem 12 by taken κ as a function of the Randić

index χ, and g4 is the lower bound obtained in Theorem 14.
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A(G1) A(G2) g

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.7024 , 0.4853 , 0.4440 , 0.7024)

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.6111 , 0.4179 , 0.3532 , 0.5000)

⎛
⎜⎜⎜⎝

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0.5415 , 0.3961 , 0.3756 , 0.5415)

⎛
⎝

0 1 1
1 0 1
1 1 0

⎞
⎠

⎛
⎜⎜⎝
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠ (0.4000 , 0.3770 , 0.3383 , 0.2667)

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

⎞
⎟⎟⎟⎠ (0.5000 , 0.3354 , 0.3166 , 0.5000)
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