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Abstract

 Purpose—In diffusion-weighted MRI studies of neural tissue, the classical model assumes the 

statistical mechanics of Brownian motion and predicts a monoexponential signal decay. However, 

there have been numerous reports of signal decays that are not monoexponential, particularly in 

the white matter.

 Theory—We modeled diffusion in neural tissue from the perspective of the continuous time 

random walk. The characteristic diffusion decay is represented by the Mittag-Leffler function, 

which relaxes a priori assumptions about the governing statistics. We then used entropy as a 

measure of the anomalous features for the characteristic function.

 Methods—Diffusion-weighted MRI experiments were performed on a fixed rat brain using an 

imaging spectrometer at 17.6 T with b-values arrayed up to 25,000 s/mm2. Additionally, we 

examined the impact of varying either the gradient strength, q, or mixing time, Δ, on the observed 

diffusion dynamics.

 Results—In white and gray matter regions, the Mittag-Leffler and entropy parameters 

demonstrated new information regarding subdiffusion and produced different image contrast from 

that of the classical diffusion coefficient. The choice of weighting on q and Δ produced different 

image contrast within the regions of interest.

 Conclusion—We propose these parameters have the potential as biomarkers for morphology 

in neural tissue.
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 INTRODUCTION

The central feature of Brownian motion is that the mean squared displacement (MSD) grows 

linearly with time, 〈x2(t)〉 ~ t. However, three conditions must be satisfied: (1) the 

increments are normally distributed with zero mean, (2) the increments are independent (i.e., 

no memory), and (3) the process is continuous with an initial starting value set to zero (1). 

When any of these conditions are not met, the diffusion process is called anomalous and the 

MSD grows as a power law, 〈x2(t)〉 ~ tγ (2). When γ > 1, the diffusion process is 

“superdiffusive” and when 0 < γ < 1, the diffusion process is “subdiffusive”. For Brownian 

motion, the characteristic function is represented by a monoexponential decay process with 

respect to time. In diffusion MRI studies, this is modeled as exp[−(bD)], where D is the 

diffusion coefficient (mm2/s) and b is a pulse sequence controlled parameter (3). However, 

numerous research groups have reported diffusion decay processes that deviate from the 

monoexponential model (4–11).

The random walk (RW) model is a practical approach to derive the features of Brownian 

motion. In the RW model, the random walker’s motion is governed by two stochastic 

processes: jump length distance, Δx, and waiting time (between jump lengths), Δt. When 

these incremental processes are governed by a finite characteristic waiting time and jump 

length variance, in the continuum limit as Δx → 0 and Δt → 0, the diffusion equation 

naturally arises (i.e., Fick’s second law) (12). A generalization to the RW model is the 

continuous time RW (CTRW) model in which the incremental processes are no longer 

constrained by a Gaussian or Poissonian probability distribution function (pdf). Rather, the 

jump lengths and waiting times are governed by arbitrary and independent pdfs (12,13). In 

the most general case, the random walker’s motion is represented with fractional powers α 

and β on the waiting time and jump length intervals, respectively, such that the MSD can be 

represented as a power law,

[1]

where 0 < α ≤ 1 and 0 < β ≤ 2. When 2α/β = 1, the process is normal diffusion. When 2α/β > 
1, the process is “superdiffusion”. When 0 < 2α/β < 1, the process is “subdiffusion”. Solving 

the CTRW in the continuum limit yields a characteristic decay process that is represented by 

the Mittag-Leffler function (MLF) (14). The MLF model is attractive in that it relaxes a 

priori assumptions about the governing statistics of the diffusion process.

In this report, we describe diffusion using the MLF (via α and β) and quantify the 

uncertainty of the CTRW using entropy for a diffusion-weighted MRI study on a healthy, 

fixed rat brain. Furthermore, we investigate the effects of weighting either q (i.e., gradient 

strength spatial resolution) and Δ (i.e., mixing time) on the data collected in diffusion MRI 

experiments. Finally, we measure the amount of “information” gained about biological 

tissue features, when the diffusion decay process is modeled with a decay function that is not 

monoexponential.
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 THEORY

 From RWs to CTRWs

In the context of RW theory in which the jump length variances and characteristic waiting 

times are finite, the one-dimensional Brownian motion of a diffusing particle, P(x, t), in 

homogeneous and isotropic geometries can be described according to the second-order 

partial differential equation,

[2]

where D is the diffusion coefficient. The solution to Eq. [2] follows as the familiar Gaussian 

form,

[3]

However, in the context of CTRW theory in which the jump length variances and 

characteristic waiting times follow asymptotic power law distributions, the one-dimensional 

anomalous motion of a diffusing particle, P(x, t), in heterogeneous biological tissues 

characterized by tortuous and porous geometries, can be described with a fractional partial 

differential equation of the form,

[4]

where  is the αth (0 < α ≤ 1) fractional order time derivative in the Caputo form, ∂β/∂|x|β 

is the βth (0 < β ≤ 2) fractional order space derivative in the Reisz form, and Dα,β is the 

effective diffusion coefficient (e.g., mmβ/sα). The closed form solution of Eq. [4] can be 

given in the Fox’s H function,

[5]

When α = 1 and β = 2, Eq. [5] collapses to the Gaussian form in Eq. [3] (for proof see Ref. 

15). However, the solution to Eq. [4] can be more succinctly written by performing a Fourier 

transform in space (P(x, t) → p(k, t)) to obtain the characteristic function,

[6]
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where Eα is the single-parameter MLF. The MLF is a well-behaved function defined as a 

power series expansion,

[7]

where the Γ function is the generalized form of the factorial function, defined for real 

numbers (16). When α = 1 and β = 2, Eq. [6] collapses to an exponential function in the 

Gaussian form with respect to k,

[8]

When α = 1 and 0 < β < 2, Eq. [6] returns a stretched exponential function with respect to k,

[9]

When 0 < α < 1 and β = 2, Eq. [6] returns a stretched MLF with respect to t,

[10]

In the most general case of the solution to the diffusion equation shown in Eq. [6], the 

effective diffusion coefficient, Dα,β, has units of spaceβ/timeα. To formulate Eq. [6] such that 

the diffusion coefficient can be written as D1,2 with units of space2/time, we insert 

parameters μ (space) and τ (time) to give,

[11]

such that,

[12]

As α → 1 and β → 2, the term (τ1−α/μ2−β) → 1, and, that is to show Eq. [11] returns the 

Gaussian form in Eq. [8]. The parameters, μ and τ, are needed as an empirical solution to 

preserve the units for the diffusion coefficient, however, others have derived analogs to these 

parameters (i.e., Δx, Δt) in conservation of mass problems and heavy tailed limit 

convergence of fractal and fractional dynamics (14,17–19).
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A phase diagram of α and β can be constructed to visualize the regions of subdiffusion, 

superdiffusion, and normal diffusion processes as shown in Figure 1. Moving leftward from 

the point of Gaussian diffusion (α = 1, and β = 2) by fixing α = 1 and decreasing β, the 

characteristic form of superdiffusion is given by Eq. [9] as a stretched exponential function. 

Moving downward from the point of Gaussian diffusion (α = 1, and β = 2) by fixing β = 2 

and decreasing α the characteristic form of subdiffusion is given by Eq. [10] as a stretched 

MLF. For all other points inside the area bounded by the α = 1 horizontal and β = 2 vertical 

lines, the characteristic form of anomalous diffusion is given by Eq. [11]. The 2α/β = 1 

diagonal represents effective normal diffusion in which the 〈x2(t)〉 ~ t, however, α and β are 

fractional and the non-Gaussian waiting time and jump length pdfs vie for competition of 

the mean-squared trajectory (20).

 From CTRW to Diffusion-Weighted MRI

In spin-echo diffusion MRI experiments, the signal decay, S, is modeled with a 

monoexponential as,

[13]

where b is the product of the q-space and diffusion time terms, b = q2(Δ − δ/3) (3). For 

brevity, we will define . As such, a diffusion-weighted experiment can be 

constructed with a set of b-values, with arbitrary weighting on the q and  components, so 

that a choice can be made to fix  and vary q in an array, or to fix q and vary  in an array.

In Ref. 21, a stretched exponential was fit to data obtained in fixed Δ, varying q experiments 

with a μ exponent and in fixed q, varying Δ experiments with an α exponent as an approach 

to independently interrogate fractional space and fractional time diffusion features described 

in Ref. 12, respectively. Additionally, in Ref. 11 temporal scaling effects were investigated in 

variable q and Δ experiments of a rat hippocampus by utilizing higher moment analysis of 

the propagator to find parameters, dw and ds, as fractal dimensions of the diffusion process 

and spectra, respectively. We expand on this previous work using the generalized solution to 

the diffusion equation from CTRW theory in Eqs. [6] and [11] to model anomalous diffusion 

in MRI as,

[14]

where β absorbs the square of the q term to operate as 0 < β ≤ 2. With the perspective of the 

diffusion-weighted decay as the characteristic decay function, we also consider an entropy 

measure as a method to compare and contrast diffusion processes.

 From Diffusion-Weighted MRI to Entropy in b-Space

In information theory, the amount of uncertainty in a discrete pdf, P(x) can be measured 

with,
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[15]

where Hx is the Shannon information entropy (22). With the consideration of information 

formulated in the context of statistical uncertainty, we have a tool to compare systems 

governed by differing stochastic processes. For example, when comparing two α-stable 

distributions, the Gaussian and the Cauchy, normalized with the same full-width half 

maximum values, the Cauchy distribution can be shown to have greater information entropy. 

Non-Gaussian, or anomalous, diffusion phenomena have been correlated to regions of 

increased tissue complexity, like the white matter in the brain, which is relatively more 

anisotropic, heterogeneous, and tortuous compared with gray matter regions. From the 

information theory perspective, the white matter regions can be considered to have greater 

entropy than the gray matter regions, as they are governed by more uncertain diffusion pdfs.

Another approach to measure the uncertainty in a system is to analyze the characteristic 

function in terms of the Fourier transform in space (P(x) → p(k)) with spectral entropy,

[16]

where  reflects the individual wavenumber’s contribution to a normalized 

power spectrum of the Fourier transform, p(k), and the term, ln(N) (i.e., discrete uniform 

distribution of N samples), is a normalization factor applied, so that the spectral entropy, Hk, 

is between 0 and 1 (23,24).

Furthermore, as Eq. [16] is generally defined to measure the uncertainty of a characteristic 

function, we can adapt this formalism for b-value diffusion decay signals as a function of q 
and ,

[17]

By inserting the characteristic function in Eq. [14] (or, any definition of the characteristic 

function) into Eq. [17], the entropy in the diffusion process can be measured. For further 

analysis of entropy in anomalous diffusion processes, see Ref. 25.

 METHODS

To evaluate the MLF parameters in Eq. [14] and the entropy, H(q, ), defined in Eq. [17] as 

potential biomarkers for biological tissue features, we performed diffusion-weighted MRI 

measurements to investigate the effects of arraying q vs. arraying Δ on one healthy fixed rat 

brain. The outcomes of this pilot study will inform the experimental setup of an intersubject 
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study on samples of healthy and neurodegenerative fixed rat brains. As the scope of this 

study is to investigate the effects of experimental setup on observed diffusion processes 

within the same biological tissue, one diffusion-weighted gradient direction was used. The 

y-axis diffusion weighting direction was chosen to evaluate the possibility of anomalous 

diffusion dynamics along the principal fiber direction of the corpus callosum, whereas other 

studies have reported anomalous diffusion in directions orthogonal to the principal fiber 

tracts (7,9). The effects of the diffusion weighting direction on the parameter values will be 

investigated in future studies to evaluate correlations to tensor metrics (e.g., first eigenvalue 

and fractional anisotropy).

The animal was prepared according to University of Florida’s Institutional Animal Care and 

Use Committee (UF IACUC protocol D710) (26). Overnight, prior to imaging experiments, 

the rat brain was soaked in phosphate-buffered saline. For the imaging experiment, the rat 

brain was placed in a 20-mm imaging tube, and the tube was filled with Fluorinert and 

secured with a magnetic susceptibility-matched plug to minimize vibrational movement due 

to the pulsed gradients. The rat brain was oriented in the spectrometer such that the anterior–

posterior oriented along the main B0 field (z-axis), the superior–inferior with x-axis, and the 

lateral with the y-axis. At the Advanced Magnetic Resonance Imaging and Spectroscopy 

(AMRIS) Facility (Gainesville, FL), pulsed gradient stimulated echo diffusion-weighted 

experiments were performed on a Bruker spectrometer at 750 MHz (17.6 T, 89-mm bore) 

with the following parameters: pulse repetition time = 2 s, echo time = 28 ms, b-values up to 

25,000 s/mm2, δ = 3.5 ms, NA = 2, y-axis diffusion weighting, 1 central slice in the y–z 
plane, slice thickness = 1 mm, field of view = 27 × 18 mm2, matrix size of 142 × 94 pixels, 

in-plane resolution of 190 μm. It should be highlighted that in all experiments, δ ≪ Δ to 

ensure the short-pulse approximation remained valid. Variable TR data (echo time = 12.5 

ms, pulse repatition time = 300–3600 ms, increments of 300 ms) were collected to correct 

the pulse gradient stimulated echo data for T1 relaxation effects. Additionally, the pulse 

gradient stimulated echo data were Rician noise corrected. See Appendix for data processing 

details.

Two constant Δ, variable q experiments were performed with Δ fixed at 17.5 and 50 ms. Two 

constant q, variable Δ experiments were performed with gradient strengths (gy) at 350 and 

525 mT/m to achieve q-values of 52 and 78 mm−1, respectively. For the constant Δ = 17.5 

ms experiment, q was arrayed at 0, 39.7, 55.5, 67.7, 95.4, 116.7, 134.7, 150.5, 164.9, 178.1, 

and 190.3 mm−1. For the constant Δ = 50 ms experiment, q was arrayed at 0, 24.9, 33.8, 

40.9, 57.0, 69.4, 79.9, 89.2, 97.7, 105.4, and 112.4 mm−1. For the constant q = 78 mm−1 

experiment, Δ was arrayed at 17.5, 31.5, 45.5, 59.5, 73.5, 87.5, 101.5, 108.5, and 115 ms. 

For the constant q = 52 mm−1 experiment, Δ was arrayed at 17.5, 51.5, 85.5, 119.5, 153.5, 

187.5, 221.5, 238.5, and 250 ms.

Because the generalized diffusion model in Eq. [14] specifies D1,2, μ, and τ as a ratio, any 

number of parameter value combinations can satisfy successful fitting results. To constrain 

these parameters, D1,2, μ, and τ were first estimated using intermediate fits. To estimate the 

diffusion coefficient, a monoexponential function was fit to the first three low b-value 

samples, referred to as, Dm. After Dm estimation, two analogous stretched exponential fitting 

procedures were used to fit the constant  and constant q experimental data to find estimates 
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of μ and τ, denoted as  and . The form of these stretched exponential functions utilize the 

diffusion experiment pulse sequence parameters to independently constrain the magnitudes 

of  and . The stretching parameters in these intermediate fits,  and , were each placed 

over the entire b-value (Eqs. [A3], [A6], [A9], and [A12]), which differs from the stretching 

form of  and qβ in Eq. [14]. See Appendix for fitting details.

Following the intermediate parameter estimations, Dm, , , α = 1, and β = 2 were used as 

starting values in the nonlinear least squared fit of the MLF (www.mathworks.com/

matlabcentral/fileexchange/8738) to converge on D1,2, μ, τ, α, and β values. D1,2, μ, and τ 

were allowed to float ±50% from their initial estimates. The value for α was bounded 

between 0 and 1.1 and β between 0 and 2.2. All fits were performed with a nonlinear least 

squares fitting algorithm in Matlab (Nantick, MA) in which the convergence criteria for the 

estimated coefficients was 10−6.

To challenge the robustness of the fitting routine to identify the diffusion regimes delineated 

on the phase diagram in Figure 1 via the MLF parameters, simulations were performed for 

known permutations of α and β in the presence of random noise added to decay signals. 

Signals were created for: space- and time-fractional Brownian motion (α = 0.5, and β = 1) of 

the form in Eq. [6], Brownian motion (α = 1, and β = 2) of the form in Eq. [8], space-

fractional superdiffusion (α = 1, and β = 1) of the form in Eq. [9], and time-fractional 

subdiffusion (α = 0.5, and β = 2) of the form in Eq. [10]. The simulated random noise was 

modeled using the Rician noise profile measured from the diffusion experiments and 

gradually increased until either α or β diverged more than ±0.1 from their given values. For 

all simulated permutations of α and β, the estimated values were stable within ±0.1 from 

their given values (P < 0.05) when random noise was added up to three standard deviations 

larger than the experimental noise profile.

After the MLF parameters were determined, the characteristic decay curve for p(q, ) was 

constructed using N = 1500 increments arrayed over variable q or variable  for b-values 

between 0 and 25,000 s/mm2. Then, the entropy (defined in Eq. [17]) in the diffusion 

process, as modeled by the MLF, was computed as H(q, )MLF. For comparison, using the 

monoexponential model (Dm) in Eq. [13], a characteristic decay curve of N = 1500 

increments arrayed over b-values between 0 and 25,000 s/mm2 was constructed. The entropy 

in the diffusion process, as modeled by the monoexponential function, was computed as 

H(q, )mono.

 RESULTS

Figure 2 shows a T2-weighted image of an axial slice through a whole, healthy fixed rat 

brain with seven regions of interest (ROIs) in the cerebral cortex, striatum, and corpus 

callosum. These ROIs were selected to analyze tissue compositions ranging from gray 

matter (cerebral cortex), to a mixture of gray and white matter (striatum), and to white 

matter (corpus callosum). Furthermore, the y-axis diffusion weighting direction was selected 

to coincide with the principal fiber orientation of the central corpus callosum (ROI 4).
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Figures 3–6 show the parameter maps for the MLF in Eq. [14] and the entropy in [17] in the 

four constant Δ1 = 17.5 ms, Δ2 = 50 ms, q1 = 78 mm−1, and q2 = 52 mm−1 experiments. For 

the seven ROIs, all numerical=values for the MLF parameters in the four experiments are 

available in the Supporting Information. The results for the MLF parameter maps are 

reported as the mean and standard deviation values for each ROI. In all experiments, α 

separated the cerebral cortex (ROIs 1 and 2), the central corpus callosum (ROI 4), and the 

striatum (ROIs 6 and 7). In the q1 (Fig. 5) and q2 (Fig. 6) experiments, α distinguished the 

central corpus callosum (ROI 4) from the lateral corpus callosum (ROIs 3 and 5). In all the 

experiments, β showed less contrast than α and for the regions containing gray matter, β → 

2, indicating Gaussian statistics on the jump length distributions. However, in the Δ1 (Fig. 3) 

and Δ2 (Fig. 4) experiments, β separated the central corpus callosum from the regions 

containing gray matter (ROIs 1, 2, 6, and 7). In the Δ1 and Δ2 experiments, the diffusion 

coefficient, D1,2, separated the central corpus callosum from the striatum (ROIs 6 and 7). In 

the q1 experiment, μ separated the central corpus callosum from the regions containing gray 

matter (ROIs 1, 2, 6, and 7). In the Δ1, Δ2, and q1 experiments, τ separated the central corpus 

callosum from the regions containing gray matter (ROIs 1, 2, 6, and 7). It should also be 

noted the mean values across the ROIs for μ and τ are different when fixing Δ and fixing q to 

the different values in the experiments. From the Δ1 to the Δ2 experiment, the mean μ scaled 

from ~2.3 to ~3.6 μm and the mean τ scaled from ~19.2 to ~57.1 ms. From the q1 to the q2 

experiment, the mean μ scaled from ~2.1 to ~3.3 μm, and the mean τ scaled from ~24.1 to 

~36.8 ms.

Table 1-a reports the entropy of the characteristic function as represented by the MLF. In the 

Δ1, Δ2, and q1 experiments, H(q, )MLF distinguished the central corpus callosum (ROI 4) 

from the lateral white matter (ROIs 3 and 5). In the Δ1, Δ2, and q1 experiments, H(q, )MLF 

separated the cerebral cortex (ROIs 1 and 2), the central corpus callosum (ROI 4), and the 

striatum (ROIs 6 and 7).

Table 2 shows the ratio, 2α/β as the composite exponent in the context of the trajectory of 

the MSD as defined in Eq. [1]. In the Δ1 experiment, all ROIs reported subdiffusion (2α/β < 

1), with the lateral corpus callosum regions growing slowest with respect to time. In the Δ2 

experiment, the corpus callosum ROIs are most subdiffusive, whereas the cortex and 

striatum show slight subdiffusion and effective normal diffusion (2α/β → 1). In the q1 

experiment, the central corpus callosum ROI is most subdiffusive, whereas the cortex and 

striatum show slight subdiffusion and effective normal diffusion. In the q2 experiment, the 

ROIs report a diminished range of slight subdiffusion and effective normal diffusion.

 DISCUSSION

In the classical monoexponential model when α is fixed at 1 and β at 2 in Eq. [8], the 

characteristic function is concisely written as Eq. [13], (i.e., exp(−bD)). Using entropy, it is 

possible to measure the amount of information contained in an ROI as the characteristic 

function deviates from a monoexponential decay. Table 1-b reports the entropy of the 

characteristic function as represented by the monoexponential. Across all of the 

experiments, H(q, )mono is unable to distinguish between the ROIs. However, a comparison 

can be made to Table 1-a in which the MLF model is used to model the diffusion process. In 
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the Δ1 experiment, for example, the most information was learned about the diffusion 

process in the corpus callosum ROIs, followed by striatum, and cortex ROIs, respectively. It 

is interesting to note that the amount of information learned diminishes as the fixed diffusion 

time increases (i.e., from Δ1 to Δ2 experiment) and, inversely, as the fixed diffusion gradient 

strength decreases (i.e., from q1 to q2 experiment). Figure 7 shows the entropy maps for the 

MLF and monoexponential models with each experiment demonstrating the improved image 

contrast in H(q, )MLF compared to H(q, )mono. It should also be noted that Dm and D1,2 

were statistically indistinguishable (comparison table available in the Supporting 

Information), which indicates the diffusion coefficient units were preserved in the MLF 

fitting routine. Another way to visualize information contained in the characteristic function 

is simply to look at the diffusion decay signals in log-linear plots, for example, as shown in 

Figure 8. On this scale, a monoexponential decay would appear as a straight line, however, 

the cortex, striatum, and corpus callosum all deviate as the b-values increase. As the corpus 

callosum data are more anomalous than the striatum, and the striatum more anomalous than 

the cortex, corresponding information is added at high b-values to distinguish the ROIs. 

Figure 8 also shows the MLF curves to demonstrate the small mean squared error of the fits, 

which is representative for all data analyzed in this study.

In the context of CTRW theory, it is interesting to break down the composite exponent on 

the MSD trajectory, 2α/β, in the context of waiting time, jump length distributions, and 

entropy. In the continuum limit, the waiting time (Δt → 0) and jump length (Δx → 0) 

increments can be represented, in the most general case, as fractional time and space 

derivatives of arbitrary orders, α and β, respectively. As the order of the fractional derivatives 

move away from the special case of Brownian motion (α = 1, and β = 2), the waiting times 

and jump lengths are governed by heavy tailed distributions in which the diffusing particle 

has a greater probability of waiting longer and jumping further. So, the composite exponent 

on the MSD trajectory can take on a particular value to indicate subdiffusive growth, but can 

be comprised of different combinations of fractional values for α and β. For example, in the 

Δ1 experiment, the composite exponents are similar for the right cerebral cortex (~0.76) and 

the central corpus callosum (~0.74), indicating subdiffusive growth. However, the individual 

values of α and β are clearly different for the right cerebral cortex (α ~ 0.74, and β ~ 1.95) 

and the central corpus callosum (α ~ 0.42, and β ~ 1.15). Therefore, the characteristic 

function representation for the waiting time and jump length distributions is more uncertain 

(anomalous) in the central corpus callosum compared to the right cerebral cortex. And, this 

difference is clearly encoded in the entropy with the corpus callosum (H(q, ) ~ 0.93) and 

the cerebral cortex (H(q, ) ~ 0.83). Increasing the diffusion time from the Δ1 to the Δ2 

experiment, the composite exponent increased for all ROIs, except the central corpus 

callosum where 2α/β decreased from ~0.74 to ~0.54. Between these two experiments, there 

was no significant change in α, however β increased from ~1.15 to ~1.42 reflecting the 

smaller range of q-values sampled in the Δ2 experiment to resolve the spatial component of 

the anomalous diffusion in this heterogenous and tortuous ROI.

The probabilistic framework of the CTRW theory models diffusion in any environment that 

has heterogeneous, tortuous, and multiscale properties (12,13,27–30). In this study, we have 

applied this abstract approach to the realm of biological tissues and MRI physics. However, 
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work remains to correlate these new parameters to anatomical features as has been done to 

validate diffusion tensor imaging parameters with histology (31–33). It is encouraging to 

consider the results of this study in the context of high-resolution electron micrograph 

images of fixed mouse neural tissue reported in Ref. 34. These images show that although 

there is a principal fiber direction in the corpus callosum, within the resolution of one 

imaging voxel (~200 μm), there are also clearly visible populations of heterogeneous, 

tortuous, and crossing fibers, particularly in the central region. So, it is a reasonable 

hypothesis to propose the tissue microstructure is reflected in α as the likelihood for water to 

be “trapped” within a hindrance and β as the likelihood for water to “jump” along a less-

hindered environment.

As the images in Figures 3–7 show, there is new contrast that is different from the diffusion 

coefficient map. Even where contrast is not as apparent (i.e., β, μ, and τ), there is 

information about the ROI and the experiment. When β → 2, the spatial component (i.e., 

jump length) of the diffusion dynamics approaches the form of a normal distribution. When 

raising the arguments, q and  to fractional powers, μ and τ are required to preserve the 

units of the diffusion coefficient, and the scales of their values are initially dependent on the 

diffusion experiment’s fixed component (q or Δ) in the b-value array, as described in the 

Appendix. As the fits for the signal decay data converge to fractional values for α and β, 

mathematically, the values for μ and τ are affected, and this was observed in the central 

corpus callosum for the Δ1, Δ2, and q1 experiments, mentioned earlier. By dissecting and 

weighting a b-value with its controllable pulse sequence variables, μ and τ are reflective of 

both the experimental setup and the decay curve. The values for μ are scaled on the order of 

microns and, perhaps, are indicative of the subvoxel resolution in the diffusion experiment. 

Whereas the values for τ are scaled on the order of milliseconds and, perhaps, are indicative 

of the non-Markovity (i.e., memory) of the diffusion process as the longest times were 

observed in the central corpus callosum, along the principal fiber orientation.

It is difficult to compare the outcomes of this study with respect to other reports of 

anomalous diffusion modeled with a stretched exponential function. In Refs. 7–9, the 

stretching exponent is raised over the entire b-value (i.e., ). In Refs. 5 and 6, the q2 

term is raised by a β parameter; however, there is no stretching term on  (i.e., α = 1), as the 

Bloch-Torrey equation was generalized solely with a fractional space derivative to arrive at 

the stretched exponential form. However, it is encouraging to note that the values (i.e., 

microns) estimated for μ in our study are similar to those reported in Refs. 5,6. In Ref. 21, 

stretching exponents were placed each on q2 and , but were done so with individual fits in 

which one of the exponents was fixed at a time, whereas our approach ultimately produces a 

simultaneous estimation of the stretching exponents on q2 and . In Ref. 11, numerous 

diffusion experiments were performed by manipulating the weightings of q and  to 

investigate temporal scaling of fractal measures by applying a q-space analysis in a rat 

hippocampus where subdiffusive power-law growth of the propagator is also reported.

Finally, it is apparent that how the experiment’s parameters are selected, by either arraying 

the gradient strength or the mixing time, and the weightings therein, affect the diffusion 

dynamics observed within an ROI. In the context of entropy (Table 1 and Fig. 7) as a 

measure of “uncertainty” in the diffusion decay signal, our study suggests that fixing Δ at the 
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shortest time and arraying across a large range of q values produced the most “information” 

about the probed neural tissue in comparison to the three other experiments. That is to say, 

the experiment should minimize the diffusion time such that the water still has enough time 

to explore the environment, while the gradient strength is maximized to resolve the tissue 

microstructure within the imaging voxel. From this perspective, it is important that the 

diffusion experiment is tuned to match the neural tissue under study to observe dynamics, 

which may not be as clearly resolved if the mixing time or the diffusion gradient strength is 

not optimal.

 CONCLUSIONS

In this study, we approached the diffusion decay signal in the probabilistic regime as a 

representation of the characteristic function—the Fourier transform of the pdf. In the context 

of CTRW theory, we examined the diffusion dynamics in terms of the waiting time and jump 

length distributions. For ROIs that are heterogenous and tortuous, like the corpus callosum, 

the representative parameters, α and β, showed deviations away from the Gaussian case of 

Brownian motion (α = 1, and β = 2) To quantify these deviations, we applied entropy as an 

overall measure of the anomalous nature of the diffusion process. At high b-values, new 

“information” was learned using a model (MLF) that is able to capture heavy-tailed 

diffusion signal decays that are not monoexponential. As such, the MLF and entropy 

parameters are potential biomarkers for degeneration, plasticity, therapeutic response in 

neural tissue. It is important to emphasize that the choice of q and Δ impacts the observed 

outcomes as demonstrated in each of the constant q and constant Δ experiments. Future 

studies will focus on control vs. disease models and histological correlation to these 

parameters. Additionally, the methods presented in this report will be adapted for human 

clinical systems, which have a smaller range of diffusion gradient strengths and mixing 

times. More advanced fitting algorithms will be investigated (e.g., simulated annealing, two-

dimensional nonlinear regression) for use in conjunction with the MLF when assessing inter-

subject variability. Finally, investigations are in progress to quantify the directional 

dependence of the CTRW parameters, and of the entropy, which can in principle—just as the 

diffusion coefficient—be described with tensor constructs.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 APPENDIX: DATA PROCESSING

 Raw Signal Corrections

For each voxel, the raw signal Sraw was Rician noise corrected with,

[A1]

where Src is the Rician corrected signal and  is the variance in the background noise floor.

To account for T1 recovery effects at long diffusion times, Src was corrected with,

[A2]

where T1 was computed using the variable pulse repetition time data.

 Constant ∆ Experiment µ and τ Estimations

For the constant Δ, variable q experiments, first an estimate of μ was made followed by an 

estimate of τ. To estimate μ as , the signal decay was fit to,

[A3]

where  is the apparent diffusion coefficient of an exponential function stretched in . 

Thus, it follows that a diffusion coefficient equivalency can be formulated as,

[A4]

to solve for ,

[A5]

where the value for  is known from the constant Δ experiment. Then, to estimate τ as , 

the signal decay was fit to,

[A6]
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where  is the apparent diffusion coefficient of an exponential function stretched in . 

Thus, it follows that a diffusion coefficient equivalency can be formulated as,

[A7]

to solve for ,

[A8]

again, where the value for  is known from the constant Δ experiment.

 Constant q Experiment µ and τ Estimations

For the constant q, variable Δ experiments, first an estimate of τ was made followed by an 

estimate of μ. To estimate τ as , the signal decay was fit to,

[A9]

where  is the apparent diffusion coefficient of an exponential function stretched in . 

Thus, it follows that a diffusion coefficient equivalency can be formulated as,

[A10]

to solve for ,

[A11]

where the value for q is known from the constant q experiment. Then, to estimate μ as , the 

signal decay was fit to,

[A12]

where  is the apparent diffusion coefficient of an exponential function stretched in . 

Thus, it follows that a diffusion coefficient equivalency can be formulated as,
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[A13]

to solve for ,

[A14]

again, where the value for q is known from the constant q experiment.
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FIG. 1. 

Anomalous diffusion phase diagram with respect to the order of the fractional derivative in 

space, β, and the order of the fractional derivative in time, α. (Adapted from Refs. 12 and 20)
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FIG. 2. 

T2-weighted image of an axial slice in a fixed rat brain with ROIs: left (1) and right (2) 

cerebral cortex; left (3), central (4), and right (5) corpus callosum; left (6) and right (7) 

striatum.
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FIG. 3. 

MLF and entropy parameter maps for constant Δ1 = 17.5 ms experiment (y-axis diffusion 

weighting). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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FIG. 4. 

MLF and entropy parameter maps for constant Δ2 = 50 ms experiment (y-axis diffusion 

weighting). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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FIG. 5. 

MLF and entropy parameter maps for constant q1 = 78 mm−1 experiment (y-axis diffusion 

weighting). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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FIG. 6. 

MLF and entropy parameter maps for constant q2 = 52 mm−1 experiment (y-axis diffusion 

weighting). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]

Ingo et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2016 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wileyonlinelibrary.com


FIG. 7. 

Entropy parameter maps for the MLF (left) and monoexponential (right) fits of the 

characteristic function in the Δ1 = 17.5 ms (row 1), Δ2 = 50 ms (row 2), q1 = 78 mm−1 (row 

3), and q2 = 52 mm−1 (row 4) experiments (y-axis diffusion weighting).
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FIG. 8. 

Signal decay plots and MLF fits for the cerebral cortex (ROI 1, circles), striatum (ROI 6, 

squares), and corpus callosum (ROI 4, triangles) in the Δ = 17.5 ms experiment (y-axis 

diffusion weighting).
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Table 2

2α/β Composite Exponent for the ROIs in the Constant Δ1 = 17.5 ms, Δ2 = 50 ms, q1 = 78 mm−1, and q2 = 52 

mm−1 Experiments

ROI ∆1 ∆2 q1 q2

(1) Cortex, l 0.76 ± 0.08 0.98 ± 0.09 0.98 ± 0.02 1.00 ± 0.03

(2) Cortex, r 0.76 ± 0.08 0.92 ± 0.02 0.98 ± 0.03 0.99 ± 0.02

(3) Corpus callosum, l 0.45 ± 0.12 0.57 ± 0.30 0.86 ± 0.04 0.91 ± 0.03

(4) Corpus callosum, c 0.74 ± 0.12 0.54 ± 0.05 0.75 ± 0.05 0.84 ± 0.03

(5) Corpus callosum, r 0.37 ± 0.16 0.56 ± 0.17 0.87 ± 0.05 0.87 ± 0.04

(6) Striatum, l 0.62 ± 0.08 0.90 ± 0.13 0.90 ± 0.01 0.95 ± 0.03

(7) Striatum, r 0.58 ± 0.06 0.83 ± 0.03 0.91 ± 0.02 0.94 ± 0.03
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