
MATHEMATICS OF COMPUTATION
Volume 70, Number 234, Pages 809–825
S 0025-5718(00)01213-8
Article electronically published on February 18, 2000

ON RANDOM WALKS FOR POLLARD’S RHO METHOD

EDLYN TESKE

Abstract. We consider Pollard’s rho method for discrete logarithm compu-
tation. Usually, in the analysis of its running time the assumption is made
that a random walk in the underlying group is simulated. We show that this
assumption does not hold for the walk originally suggested by Pollard: its per-
formance is worse than in the random case. We study alternative walks that
can be efficiently applied to compute discrete logarithms. We introduce a class
of walks that lead to the same performance as expected in the random case.
We show that this holds for arbitrarily large prime group orders, thus making
Pollard’s rho method for prime group orders about 20% faster than before.

1. Introduction

Let G be a finite cyclic group, written multiplicatively, and generated by the
group element g. We define the discrete logarithm problem (DLP) as follows: given
a group element h, find the least non-negative integer x such that h = gx. We
write x = logg h and call it the discrete logarithm of h to the base g. Besides the
integer factorization problem, the DLP is the currently most popular computa-
tional problem to serve as a base for secure and efficient public-key cryptosystems.
Such cryptosystems are, for example, the Diffie-Hellman key exchange protocol, the
ElGamal encryption and signature schemes, and the Digital Signature Algorithm
(DSA) (cf. [MvOV96]). Originally, they worked with multiplicative groups of fi-
nite prime fields. Once elliptic curve cryptosystems were proposed by Koblitz and
Miller, analogous practical systems based on the DLP in groups of points of elliptic
curves over finite fields were designed (cf. [MvOV96]). While for solving the DLP
in (Z/pZ)∗ there exists the index calculus method, which is a subexponential-time
algorithm, for the elliptic curve DLP the best algorithms currently known have ex-
ponential run time. Among these algorithms we find algorithms based on Pollard’s
rho method [Pol78]. They take expected time O(

√
n) group operations to compute

logg h, where n denotes the order of g. Their space requirements are negligible, and
van Oorschot and Wiener [vOW99] showed that they can be efficiently parallelized,
which makes the rho method the most powerful method to attack the elliptic curve
DLP known to date.

In the rho method, an iterating function F : G→ G is used to define a sequence
(yi) by yi+1 = F (yi) for i = 0, 1, 2, . . . , with some starting value y0. The sequence
y0, y1, y2, . . . represents a walk in the group G. The basic assumption for the
analysis of the expected run time of the rho method is that the walk (yi) behaves

Received by the editor February 23, 1999 and, in revised form, May 24, 1999.
2000 Mathematics Subject Classification. Primary 11Y16; Secondary 65C05, 94A60.
Key words and phrases. Pollard’s rho method, discrete logarithm, random walks in groups.

c©2000 American Mathematical Society

809

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

810 EDLYN TESKE

as a random random walk . By this we mean that the initial value y0 is a randomly
chosen group element according to the uniform probability distribution, which we
denote by y0 ∈R G, and that the iterating function f is a random mapping in the
sense that it is equally probable among all functions F : G→ G.

The problem of efficient simulation of a random random walk in Pollard’s rho
method is the central topic of this paper. Here, “efficient” means that to evaluate
the corresponding iterating function should require essentially no more than one
group operation and use only constant or polynomial storage. About the finite
abelian group G we only want to assume that its elements are uniquely represented,
and that we have an algorithm to perform the group operation.

In Section 2, we give the basic facts and definitions needed throughout the paper,
and we describe the set-up for our experiments. Then, in Section 3, we study the
function originally suggested by Pollard [Pol78] for discrete logarithm computation
in (Z/pZ)∗ (p prime), where we observe that its average performance is worse
than expected for a random mapping. We also study the obvious generalization of
Pollard’s function for arbitrary groups (of prime order), for which we get that its
average performance is even worse than in the case of (Z/pZ)∗. In Section 4, we
define new iterating functions. These functions extend Pollard’s functions in the
sense that they perform essentially the same group operations (i.e., multiplication
with a fixed element, or squaring), but they have more iterating function rules:
up to r = 100 rules instead of r = 3 as in Pollard’s case. We show that for an
appropriate choice of the parameters (for example r ≥ 16, but fixed) they yield
an average performance that is hardly distinguishable from the performance of
a random mapping. In the case of prime group orders, this can be proved by
probability theoretic results on random walks in the additive group Z/pZ. This
also answers Teske’s open question [Tes98b], and is the content of Section 5.

Remark 1.1. We would like to mention a related approach by Horwitz and Venkate-
san [HV], who considered rapidly-mixing random walks in Cayley graphs over
abelian groups. They developed an algorithm, which, if the Cayley graph is gener-
ated by r = O(log |G|) generators, finds a discrete logarithm in (provably) expected
running time O(log |G|

√
|G|).

Acknowledgment

The author wishes to thank John M. Pollard for a very interesting correspondence
on the contents of Sections 3 and 4.

2. Preliminaries

Given a group element g, we write 〈g〉 to denote the cyclic group generated by
g. We write ord g to denote the order of g, which is the least positive number x
such that gx = 1. The order of the finite abelian group G, which is the number of
elements of G, is denoted by |G|. If W is a set and w is a randomly chosen element
of W (according to the uniform distribution), we write w ∈R W . When we work
with a finite abelian group G, we assume that the following hold:

1. Given any two group elements g and h, we can compute the product g ∗ h.
2. Each group element can be represented as a unique binary string.

Note that the second property implies that we can perform fast equality checks.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 811

2.1. Pollard’s rho method. If W is any finite set and F : W →W is a mapping
and the sequence (wk)k∈N0 in W is formed by the rule

w0 ∈ W , wk+1 = F (wk) k ∈ N0 ,(2.1)

this sequence is ultimately periodic. Hence, there exist integers λ ≥ 1 and µ ≥ 0
such that w0, . . . , wµ+λ−1 are pairwise distinct and wk = wk+λ, k ≥ µ. We call λ
the period and µ the preperiod of the sequence (wk). Under the assumption that
w0 ∈R W and F is a random mapping, the expected values for µ and λ are close
to
√
π|W |/8 = 0.626...

√
|W | ([Har60]). A pair (wi, wj) of two terms of the se-

quence is called a match if wi = wj and i < j. Because of the picture one obtains
when drawing the terms of (wk), starting at the bottom and ending in a cycle,
the method of solving computational problems by using sequences as in (2.1) is
called the rho method . Pollard [Pol75] first applied this result to obtain an efficient
and simple algorithm for factoring. Then in [Pol78] he found an algorithm that
uses the rho method to compute discrete logarithms in the multiplicative group
(Z/pZ)∗ (p prime) in the expected run time of O(

√
p) group operations. This al-

gorithm can easily be generalized to compute discrete logarithms in arbitrary finite
abelian groups. More recently, a rho-method based algorithm for group structure
computation has been found (see [Tes98b]).

Now we explain how the rho method for computing discrete logarithms works.
Let g, h ∈ G and 〈g〉 = G. Compute the walk (yk) according to the rule y0 =
gα0 ∗ hβ0 (α0, β0 ∈R {0, 1, . . . , |G| − 1}) and yk+1 = F (yk) (k ∈ N0). Here, the
iterating function F must be chosen such that the following holds:

If we know α and β such that y = gα ∗ hβ , we can

efficiently compute α′ and β′ such that F (y) = gα
′ ∗ hβ′ .

This implies that while computing (yk), we easily can keep track of the corre-
sponding sequences of exponents , (αk) and (βk), such that yk = gαk ∗hβk (k ∈ N0).
Hence, as soon as we have a match (yi, yj), we have an equation of the form

gαi ∗ hβi = gαj ∗ hβj .
Since h = gx, this gives

αi + βix ≡ αj + βjx mod |G| .
Now, if gcd(βi − βj , |G|) = 1, we get that x = (αj − αi)(βi − βj)−1 mod |G|. Due
to the method of Pohlig and Hellman [PH78], in applications the group order |G|
is prime, so that it is very unlikely that gcd(βi − βj , |G|) > 1 if |G| is large.

2.2. Finding a match. While computing the terms (yi, αi, βi), we try to find a
match (yj , yi) for some j < i. For this, we use the same method as in [Tes98b].
With µ denoting the preperiod and λ denoting the period of the sequence (yi),
this method finds a match (yj , yj+λ) with j ≤ 1.25 · max(λ/2, µ). However, this
bound is not sharp. Therefore, we define the expected delay factor δ as the ratio
E(l(λ, µ))/(λ + µ)), where l(λ, µ) denotes the number of steps until a match is
found. For our match-finding algorithm, we found experimentally that δ ≈ 1.13
(cf. [Tes98c]). This implies that if the iterating function behaves like a random
mapping, we expect to find a match after approximately

1.13 ·
√
π|G|/2 = 1.416 . . .

√
|G|(2.2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

812 EDLYN TESKE

steps. Let L0 = 1.416. Later, we compare this number with the experimentally
determined average values for

L :=
number of iterations performed until a match is found√

|G|
.(2.3)

Remark 2.1. The method we use to find a match generalizes a method used by
Schnorr and Lenstra [SL84] such that optimal average case performance (experi-
mentally) is achieved. A family of match-finding algorithms with optimal worst
case performance is discussed in [SSY82]. If storing a large number of terms is
not a problem, distinguished point methods as described in [vOW99] can be more
efficient to find matches.

2.3. Partitioning the group. Let T1, . . . , Tr be a partition of G, such that the Ts
are pairwise disjoint and of roughly equal size. The iterating functions considered
in the following are always given in terms of r different rules, one for each part
of the partition. It turns out that for our application it is sufficient to consider
the case 3 ≤ r ≤ 100. Such a partition can be produced by a hash function
v : G→ {1, . . . , r}, if we define Ts = {a ∈ G : v(a) = s}.

In our experiments we work with a multiplicative hash function defined as follows:
Let A be a rational approximation of the golden mean (

√
5− 1)/2. Let

v∗ : G→ [0, 1) , v∗(g) = (A · b(g)) mod 1 ,

where b : G → R (ideally injective), and c mod 1 denotes the (non-negative) frac-
tional part of c, namely c−bcc. The mapping b can be based on the unique encoding
of each group element as a binary string. Then let

v : G→ {1, . . . , r} , v(g) = bv∗(g) · rc+ 1 .(2.4)

From the theory of multiplicative hash functions we know [Knu73] that among all
numbers between 0 and 1, choosingA as a rational approximation of (

√
5−1)/2 with

a sufficiently large denominator (that is, in comparison with the input size) leads
to the most uniformly distributed hash values, even for non-random inputs. This
ensures that our results are not distorted by the properties of the hash functions.
In practical applications, simpler hash functions that can be evaluated faster are
certainly preferable.

2.4. Reliability considerations. Our aim is to check the performance of various
iterating functions compared to the random mapping case in terms of the average
number of steps needed to find a match, which is about 1.13 times the average value
of λ + µ. A problem in this context is the spread of λ + µ about E(λ + µ). Let
x = (λ + µ)/

√
|G|. In the case of a random random walk, the probability density

function of x is given by f(x) = xe−x
2/2 ([Har60]). This function belongs to a

certain Weibull distribution; such distributions are extensively studied in reliability
engineering (see, for example, [Kec93]). If we work with a good simulation of a
random random walk, it is reasonable to assume that the spread of (λ + µ)/

√
|G|

is similar to the spread of the corresponding Weibull distribution; this agrees with
the experimental evidence that when an iterating function yields a mean value of
(λ + µ)/

√
|G| close to the random case, then the variance is close to the variance

of the random case, which is 2 − π/2 (see [Tes98a]). Hence, we have to choose
the size of the sample space very carefully. We can derive from [Kec93] that, for
example, if we work with a sample space of size N = 30 and we get an average

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 813

value of (λ+ µ)/
√
|G| = 1.26, we can only have a 20% confidence that the correct

mean value lies between 1.21 and 1.28. If we want to have higher confidence, say
90%, then we only can state that the correct mean value lies between 1.06 and 1.50,
which is an interval far too large for our purpose. Experiments show that if we work
with N = 1000, the average values computed from two such series of computations
may differ up to 5%, while choosing N = 10000 produces fairly constant average
values for (λ+ µ)/

√
|G|.

2.5. Set-up for our experiments. For our experiments, we use the computer
algebra system LiDIA [LiD97]. We work with the multiplicative groups of finite
prime fields, with prime-order subgroups of (Z/pZ)∗, and with prime-order sub-
groups of groups of points on elliptic curves over finite prime fields. For each type
of group, we work with (sub)group orders between 10n−1 and 10n, for 3 ≤ n ≤ 13.
We do not work with larger groups for practicality reasons, since then the running
time becomes too long to work with any meaningful sample space. For fixed n, we
repeatedly do the following: First, we find a (sub)group with order between 10n−1

and 10n. Then we find a group element g that generates the (sub)group and and
randomly choose another (sub)group element h. This constitutes one instance of
DLP. We apply the rho method with various iterating functions, where we always
determine the ratio L as defined in (2.3).

3. Findings about Pollard’s walk

3.1. Pollard’s original application: (Z/pZ)∗. Let p be a prime, let h be any
integer (modp), and let g be a primitive root modulo p. To compute logg h (mod
p), Pollard [Pol78] used the iterating function F : (Z/pZ)∗ → (Z/pZ)∗ given by

F (y) =


gy if 0 < y ≤ p/3 ,
y2 if p/3 < y ≤ 2p/3 ,
hy if 2p/3 < y < p .

(3.1)

and defined a sequence (yk) according to the rule y0 = 1, yk+1 ≡ F (yk)(modp).
There are sequences (αk) and (βk) such that yk = gαk ∗ hβk (k ∈ N0), and these
sequences follow the rules

α0 = 0 , αk+1 ≡ αk + 1 , 2αk , or αk mod (p− 1) , k ∈ N0 ,

β0 = 0 , βk+1 ≡ βk , 2βk , or βk + 1 mod (p− 1) , k ∈ N0 ,

according to the three cases above.
The experimental results for this walk are given in Table 1. Here, the third col-

umn shows the number of examples computed; the first factor indicates how many
different instances of the DLP have been used, while the second factor indicates
how many times every instance has been solved, each time with a new initial term
y0 ∈R (Z/pZ)∗. In the second column, L is as defined in (2.3); the averages are
taken over all examples computed for the respective n. The last row shows the
average value for L taken over all 55980 ratios (2.3). We see that the walk (3.1)
behaves not exactly like a random random walk but a bit worse.

3.2. Pollard’s original application, generalized. Given an arbitrary finite
abelian group G = 〈g〉 and a group element h for which we want to compute logg h,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

814 EDLYN TESKE

Table 1. DL-computation in (Z/pZ)∗ using (3.1)

#digits average number of
of group examples

order
L

computed
3 1.570 100 · 100
4 1.591 100 · 100
5 1.553 100 · 100
6 1.477 100 · 100
7 1.539 100 · 100
8 1.605 80 · 40
9 1.511 40 · 30
10 1.493 30 · 30
11 1.690 25 · 20
12 1.713 30 · 5
13 1.667 30 · 1

average 1.553 55980

we can generalize Pollard’s rho method as follows: Let T1, T2, T3 be a partition of
G, let Y0 = 1, and compute Yk+1 = F (Yk) using the iterating function

F (Y) =


Y ∗ g if Y ∈ T1 ,
Y 2 if Y ∈ T2 ,
Y ∗ h if Y ∈ T3 .

(3.2)

In typical applications, the group order |G| is known and one applies the Pohlig-
Hellman method [PH78], which reduces the DLP in G to the DLP in groups of prime
group order p, with p dividing |G|. Then the expected run time of Pollard’s rho
method is O(max{√p : p | |G|}) instead of O(

√
|G|), under the assumption that a

random random walk in the corresponding subgroups of prime order is simulated.
Experimental results for prime-order subgroups of (Z/pZ)∗ are given in Table

2a). The sample space sizes are the same as in Table 1. Again, the data suggest
that the average performance is independent of the size of the group order. But the
average values for L are larger than in Table 1. This is somehow surprising since
the iterating functions (3.1) and (3.2) look so similar. We discuss this phenomenon
below.

When conducting the analogous experiment in elliptic curve subgroups of prime
order, with the same sample space sizes as before, we get very similar results. They
are shown in Table 2b). We conclude that the canonical generalization of Pollard’s
rho method for groups of prime order does not produce random random walks: the
average performance is by a factor of about 1.25 worse than expected in the random
case.

3.3. Comparison of the walks obtained from (3.1) and (3.2). To understand
the difference between applying (3.1) for the DLP in (Z/pZ)∗ and applying (3.2) for
the DLP in a prime-order subgroup of some (Z/qZ)∗, we look at an example. Let
G = (Z/11Z)∗, g = 2, and h = 5. Figure 1 shows the actions of the three mappings
F1, F2, F3 (according to the three cases in (3.1)). Now let G be the subgroup of
order 11 of (Z/23Z)∗ generated by g = 2, and let h = 8. The actions of the three

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 815

Table 2. DL-computation in a) subgroups of (Z/pZ)∗ of prime
order, and b) elliptic curve subgroups of prime order, with iterating
function (3.2)

a) #digits average b) #digits average
of subgroup of subgroup

order p
L

order p
L

3 1.786 3 1.891
4 1.743 4 1.776
5 1.809 5 1.773
6 1.767 6 1.800
7 1.720 7 1.825
8 1.758 8 1.703
9 1.731 9 1.773
10 1.943 10 1.804
11 1.834 11 1.948
12 1.772 12 1.856
13 1.858 13 1.924

average 1.759 average 1.807

mappings F1, F2, F3 (according to the three cases in (3.2)) are shown in Figure 2.
The remarkable difference between both applications is that the second mapping
is a bijection in the latter case, but non-bijective in the first case. That this does
have an effect on the performance of the algorithm can be seen if we look at which
parts of the graphs above actually take part in the computation. This is indicated
by the thick arrows in Figure 3. Hence, when applying (3.1) to (Z/pZ)∗, there
are dp/6e pairs of numbers Y and −Y (modp) which are not distinguished by the
algorithm. In other words, the algorithm “sees” only about 5/6 ·p pairwise distinct
group elements, which reduces the expected run time by a factor of approximately√

5/6 = 0.91. Indeed, if we compare the average ratios given in Tables 1 and 2, we
find that 1.553/1.759 = 0.88.

Remark 3.1. A slightly different idea is used to speed up the rho method in the
case of binary anomalous elliptic curves. There (see [GLV], [WZ98]), an equivalence
relation on the group of points is established such that the iterating function “lives”
on the equivalence classes rather than on the individual elements.

Remark 3.2. To explain the difference between the performance of (3.1) and (3.2),
Pollard [Pol] suggests considering the variance, say V , of the in-degree in the graph
corresponding to the iterating function. This method was successfully applied by
Brent and Pollard [BP81] for the rho-method for factoring, and works with the
conjecture that the expected number of iterations is given as const/

√
V . (For the

case that the set of possible values for the in-degree includes zero and at least one
integer greater than one, this conjecture was proved by Arney and Bender [AB82].)
Here, we have V = 1 in the case of (3.1), and V = 2/3 in the case of (3.2), so
that the in-degree method predicts that (3.1) requires

√
2/3 = 0.82 times as many

iterations as (3.2).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

816 EDLYN TESKE

1

10

5

3

4

9

8

6

27

26

3

7

9
10

8

4

1

5
7 8

2 6

10

1

9 4

3

5

F (Y) = Y g F (Y) = Y F (Y) = Y h
 2 31 *

2
*

Figure 1. Actions of the functions in (3.1) for G = (Z/11Z)∗,
g = 2, h = 5.

3

1
8 18

6

2

16

1312
4

 9

1

13

8

18

6

2

12

4

9

16

3

12
1 2

4

8

16

6

18 9
13

3

F (Y) = Y g F (Y) = Y F (Y) = Y h* 2 31
2

*

Figure 2. Actions of the functions in (3.2) for G = 〈2〉 ⊂
(Z/23Z)∗, g = 2, h = 8.

26

3

7

9
10

8

4

1

5

1

10

5

3

4

9

8

6

27
7 8

2 6

10

1

9 4

3

5

 F (Y) = Y g F (Y) = Y F (Y) = Y h *
2

*1 2 3

Figure 3. Function (3.1) for G = (Z/11Z)∗, g = 2, h = 5.

4. New walks

In this section we consider alternative walks that, like the walk generated by
(3.2), can be used to solve the DLP in any finite abelian group. The aim is to
find a walk whose performance comes closer to the random case performance than
Pollard’s walks. We define and study r-adding walks and r + q-mixed walks . Both
walks have the property that evaluating the corresponding iterating function re-
quires only one group multiplication and an evaluation of a fixed hash function
v : G→ {1, . . . , r} or v : G→ {1, . . . , r + q}, respectively.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 817

4.1. Adding walks.

Definition 4.1. Let r ∈ N and M1, . . . ,Mr be randomly chosen elements of G.
Let v : G→ {1, . . . , r} be a hash function. A walk (Yk) in the finite abelian group
G such that Yk+1 = F (Yk) for some iterating function F : G→ G is called r-adding
if F is of the form

F (Y) = Y ∗Mv(Y) .(4.1)

The naming becomes clear when we look at the corresponding sequences of expo-
nents. Assume that given g, h ∈ G, we want to compute logg h by using an r-adding
walk. We compute Y0 by choosing α0 ∈R {1, . . . , |G|} and putting Y0 = gα0 . We
compute M1, . . . ,Mr according to the rule

Ms = gms ∗ hns , s = 1, . . . , r ,(4.2)

where

ms, ns ∈R {1, . . . , |G|} .(4.3)

Then each term Yk can be represented in the form

Yk = gαk ∗ hβk ,(4.4)

where β0 = 0 and

αk+1 = αk +mv(Yk) and βk+1 = βk + nv(Yk) .(4.5)

Note that these addings are computed modulo |G|. However, since the increase of
the terms in (4.5) is only linear in the number of iterations, it is not even necessary
to perform the reduction modulo |G| while computing the terms of the sequences
(αk) and (βk). This implies that r-adding walks can also be used if the group
order is not known. Note that there is a canonical generalization of these walks for
the purposes of element order computation and group structure computation (see
[Tes98b]). Schnorr and Lenstra [SL84] used r-adding walks to compute the element
order in class groups.

Now, the question is whether r-adding walks achieve the same performance as a
random random walk would do, and, if this is the case, how should the parameter
r be chosen. Experiments with elliptic curve subgroups of prime group orders up
to 13 digits show that r = 20 is a good choice: In [Tes98c] we observed that the
average values for L were convincingly stable for different sizes of group orders,
and very close to the random case value L0 = 1.41. We will see in Section 5 that
20-adding walks are suitable for simulating random random walks for any size of
group orders.

We next report on further experiments to study the performance of r-adding
walks. Again, we work with elliptic curve groups of prime group orders. For
practicality reasons, we use only group orders up to 10 digits. For each range
[10n−1, 10n], we have conducted between 3000 (for the smallest group orders) and
200 (for the largest group orders) DL computations, with a total sum of 11000
computations. For r ≥ 4 the average value for L (taken over the ratios for a certain
range [10n−1, 10n]) appeared to be independent of the size of the group order. The
results for r ≥ 4, in terms of the average values for L taken over all 11000 ratios,
are shown in Table 3 and Figure 4. There, we see that the average ratio L as a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

818 EDLYN TESKE

Table 3. DL-computation in elliptic curve subgroups of prime
order, r-adding walk

average average
r

L
r

L
4 1.842 17 1.420
5 1.660 18 1.420
6 1.568 19 1.417
7 1.524 20 1.419
8 1.508 30 1.413
9 1.488 40 1.388
10 1.475 50 1.408
11 1.456 60 1.383
12 1.455 70 1.387
13 1.451 80 1.380
14 1.454 90 1.369
15 1.447 100 1.384
16 1.430

x

x

x

x
x

x
x

x
x x

xx x x x
x x x

4 5 10 15 20 30

 1.3

1.4

1.5

1.6

1.7

1.8

1.9

L

r

Figure 4. DL-computation in elliptic curve subgroups of prime
order, r-adding walk

function of r decreases fast until a close-to-random performance is achieved, and
then remains rather constant. 1

On the other hand, for r = 3 we do not even obtain a constant average value
for L for different ranges of group orders: As the results in Table 4 show, we have

1Blackburn and Murphy [BM] suggest under certain heuristic assumptions that the relationship

between L and r follows the rule L = c·
√

r
r−1

. Their reasoning matches Brent and Pollard [BP81],

who conjectured that what matters most for the performance of random walks is the variance of
the in-degree in the graph corresponding to the iterating function.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 819

Table 4. DL-computation in elliptic curve subgroups of prime
order, 3-adding walk

average#digits of p
L

3 2.156
4 2.365
5 2.651
6 2.780
7 3.007
8 3.079
9 3.166
10 3.327
11 3.484

that L steadily increases when the group order gets larger. This behaviour of 3-
adding walks is fundamentally different from the behaviour of the generalization
of Pollard’s original walk (Table 2). This is somewhat surprising since both walks
work with a partition of G into 3 parts, and for both walks the mappings F1, F2

and F3 that reflect the three different actions are bijective mappings. Obviously,
the different performance for both kinds of walks is due to the squaring step in
(3.2), which improves the performance.

4.2. Mixed walks. In view of the previous results it is now a natural question
to ask: what kind of performance is achieved when we introduce squaring steps to
r-adding walks (r ≥ 4)?

x

x
x x

x
x x

x x
x

x x
x

x x x
xx x

x x

1/8 1/4 1/2 1 3/2

doublings
addings

1.2

1.4
1.5
1.6
1.7
1.8
1.9
2.0

3.0

L

3 cases

 17 cases

5 cases

9 cases

Figure 5. Mixed walks for elliptic curve subgroups of prime group order

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

820 EDLYN TESKE

Table 5. Mixed walks for elliptic curve subgroups of prime group order

r q average
(#addings) (#doublings) L

3 0 3.122
2 1 1.776
2 2 1.770
2 3 1.769
5 0 1.644
4 1 1.589
4 2 1.569
4 4 1.627
4 6 1.618
9 0 1.513
8 1 1.473
8 2 1.496
8 4 1.487
8 8 1.576
8 12 1.623
17 0 1.451
16 1 1.453
16 2 1.427
16 4 1.435
16 8 1.455
16 16 1.502
16 24 1.546

Definition 4.2. Let r, q ∈ N and M1, . . . ,Mr ∈ G. Let v : G→ {1, . . . , r + q} be
a hash function. A walk (Yk) in the finite abelian group G such that Yk+1 = F (Yk)
for some iterating function F : G→ G is called r + q-mixed if F is of the form

F (Y) =
{
Y ∗Mv(Y) if v(Y) ∈ {1, . . . , r} ,
Y 2 if v(Y) ∈ {r + 1, . . . , r + q} .(4.6)

For example, the walk generated by the function (3.2) is a 2+1-mixed walk. Note
that the squaring step means a doubling step for the corresponding sequences of
exponents. Therefore, we also address the parameter q as the number of doublings
in a certain walk.

To judge the performance of r+ q-mixed walks, we have conducted experiments
with elliptic curve subgroups of prime group orders in the range [107, 108]. Here, we
worked with 200 different instances of the DLP and performed 10 DL computations
for each instance. We did this for several combinations of r and q, as shown in
Table 5. A graphic interpretation of these results is given in Figure 5. Here, the
x-axis bears the ratios q/r; assuming that the sets Ti = {a ∈ G : v(a) = i}
(i = 1, . . . , r+ q) are of roughly equal size, q/r is roughly the ratio of |T1∪ · · · ∪Tr|
and |Tr+1 ∪ · · · ∪ Tr+q|. The number of cases in Figure 5 refers to the number
of different actions taken by the iterating function (4.6); that is, we consider the
doubling-squaring action as a single action regardless of the number q of parts
causing this action.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 821

Our experimental results suggest that for a fixed number of cases, the best
performance is obtained if the ratio of doublings and addings is between 1/4 and
1/2, while the performance gets worse if this ratio gets much larger than 1.2 On
comparing the data with the corresponding results for r-adding walks, we see that
apart from the case r = 3, the introduction of a doubling step does not lead to a
significantly better performance.

5. Provably good random walks

The aim of this section is to show that the similarity between the performance
of an r-adding walk (r ≥ 16) and the random-case performance that we observed in
our experiments has not just been a lucky coincidence. In fact, if we assume that
the hash function v is independent, we can prove that this behaviour is typical of
such walks.

5.1. Reduction of the walk (Yk) to walks on the integers mod n. We con-
sider an r-adding walk in the cyclic group G = 〈g〉 of group order n. Let x be the
smallest integer such that h = gx, and for s = 1, . . . , r let

ts = ms + xns mod n ,

where ms and ns are as in (4.2) and (4.3). Then an r-adding walk (Yk) in G is
given by the recurrence

Yk+1 = Yk ∗ gtv(Yk) , k ∈ N0 .

Further, define the sequence (ϑk) by putting

ϑk = αk + xβk , k ∈ N0 ,

where αk and βk are as in (4.4) and (4.5). Then each term Yk can be represented
in the form Yk = gϑk , and we have

ϑk+1 = ϑk + tsk , k ∈ N0 ,(5.1)

where sk = v(Yk). The bijection

Z/nZ 3 z 7→ gz ∈ G ,

establishes a one-to-one correspondence between the r-adding walks (Yk) in G and
the walks (ϑk) on the integers mod n. Therefore, instead of studying r-adding
walks, we may restrict ourselves to walks of the form (5.1). If each v(Yk) in (5.1) is
randomly chosen from the set {1, . . . , r}, the corresponding walk is a random walk
on the integers mod n. For such walks we find an elaborate theory in the literature.

5.2. Random walks on the integers modn.

Definition 5.1. Let n ∈ N, and let P be a probability distribution on Z/nZ. By
a random walk on the integers modn determined by P we mean a sequence (Xk)
given by

X0 = 0 , Xk+1 = Xk + ξk , k = 0, 1, 2, . . . ,

where each ξk is randomly chosen from Z/nZ, according to the probability distri-
bution P .

2It is easy to see that when number of addings is zero, the number of steps until the first match
occurs is given by the order of 2 in the group (Z/qZ)∗, where q denotes the order of the actual
(sub)group under consideration.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

822 EDLYN TESKE

For probability distributions Q and P on Z/nZ, the convolution product P ∗Q is
defined by

P ∗Q(a) =
∑

b∈Z/nZ
P (a− b)Q(b) , a ∈ Z/nZ .

If (Xk) is a random walk on Z/nZ determined by P and m ∈ N, then P ∗m is the
distribution of the walk after m steps, that is, P ∗m is the distribution of Xm:

P ∗m(a) = P (Xm = a) , a ∈ Z/nZ .

The distance we use between probability distributions on G is the variation
distance.

Definition 5.2. Let P and Q be probability distributions on a finite group G. The
variation distance between P and Q is

‖P −Q‖ :=
1
2

∑
a∈G
|P (a)−Q(a)| = max

A⊆G
|P (A)−Q(A)| .

It can be verified immediately that the variation distance defines a metric on the
set of probability distributions on G.

Now let r ∈ N and p1, . . . , pr, be such that

pj > 0 , j = 1, . . . , r,

and
r∑
j=1

pj = 1 .

For n ∈ N and any set of integers {a1, . . . , ar} ⊆ Z/nZ let

ã = (a1, . . . , ar) .

For any such ã we define the probability distribution Pã on the integers modn by

Pã : Z/nZ→ [0, 1] , Pã(a) =
{
pj if a = aj for some j ,
0 otherwise .

If (Xk) is a random walk on the integers modn determined by Pã, we say that
(Xk) is supported by r points. The walks (ϑk) in (5.1) would fit perfectly into this
definition if only the sk were randomly chosen from the set {1, . . . , r} according to
some probability distribution Pã rather than determined by the hash function v. In
this case, for anym ∈ N, the distribution of ϑm would be given by the corresponding
P ∗mã . In the special case when ã = (1, 2, . . . , n) and all these coefficients are equally
probable, the probability distribution Pã is the uniform distribution, denoted by U .
The corresponding random walk (Xk) equals the walk that is obtained by X0 = 0
and the iteration Xk+1 = F (Xk), k = 0, 1, 2, . . . , with a random function F :
Z/nZ→ Z/nZ. In other words, the walk corresponding to the uniform distribution
is a random random walk.

For the case that n is a prime, Hildebrand [Hil94] has shown that random walks
on Z/nZ supported by r points get close to uniformly distributed after a constant
multiple of n2/(r−1) steps:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 823

Theorem 5.1. Let p1, . . . , pr, ã and Pã be as above. Given ε > 0, then for suf-
ficiently large primes n there exists some constant γ > 0, which may depend on r
and on the values for pj but not on n, such that for m = bγn2/(r−1)c we have

E(‖P (m)
ã − U‖) < ε ,

where the expectation is taken over a uniform choice of all possible ã such that
a1, . . . , ar are randomly chosen numbers in Z/nZ.

If n is composite and the r values satisfy certain divisibility restrictions, it will
take only slightly more than n2/(r−1) steps for the position of the random walk to be
close to uniformly distributed. To state this result explicitly, we define an aperiodic
set {a1, . . . , ar} of Z/nZ to be a set such that {aj − ai : i, j = 1, . . . , r} generates
Z/nZ. It is easy to see that this is the case if and only if gcd(n, a2−a1, . . . , ar−a1) =
1.

Theorem 5.2 ([DH97]). Let r ≥ 2. Let M := {a1, . . . , ar} be uniformly chosen
from all aperiodic subsets of Z/nZ with r pairwise distinct elements. Let ã =
(a1, . . . , ar), and let p1, . . . , pr and Pã as before. Then

E(‖P (m)
ã − U‖) −→ 0 as n→∞ ,

where

m := m(n) ≥ σ(n)n2/(r−1)

and σ(n) is any function with σ(n) → ∞ as n → ∞. The expected value is over
the choice of the set M .

Remark 5.1. Assume that d |n. Then gcd(n, a2 − a1, . . . , ar − a1) = d if and only
if a1, . . . , ar are in the same arithmetic progression modulo d. Hence,

P (gcd(n, a2 − a1, . . . , ar − a1) = d) =
(

1
d

)r−1

.

With r = 20 and d ≥ 2 this means that {a1, . . . , ar} is not aperiodic with proba-
bility smaller than 2 · 10−6.

5.3. Application to r-adding walks. The basic difference between the model
on which the preceding theorems are based and our situation is that we have
sk = v(Yk−1), instead of sk randomly chosen from {1, . . . , r} according to some
probabilities p1, . . . , pr. This difference can be removed if we assume that an inde-
pendent hash function v : G→ {1, . . . , r} is used in (4.1).

We now compare the number m = bγn2/(r−1)c of steps after which the r-adding
walk is expected to be close to uniformly distributed with the expected number
E(λ + µ) = O(

√
n) of steps until the first match occurs in the rho method. We

see that limn→∞m/E(λ + µ) = 0 for r ≥ 6. This means that with increasing
group order, the part of the walk that does not behave like a random random walk
becomes negligible in comparison with the expected length of the walk until a match
is found. Hence, we get the following theorem.

Theorem 5.3. Let G be a finite abelian group of prime group order. Assume we
use the rho method to compute discrete logarithms in G. Let r ≥ 6 and let L be as
defined in (2.3). If we work with an r-adding walk in G together with an independent
hash function, the average value for L does not get larger with increasing group
order.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

824 EDLYN TESKE

In particular, we have

Corollary 5.1. Assume the hash function (2.4) behaves as an independent hash
function. Then for any r ≥ 16, the average value for L (as in (2.3)) obtained with
an r-adding walk in a group of prime order satisfies

Laver. ≤ 1.45 ,

regardless of the size of the group order.

6. Conclusion

Pollard’s rho method yields a space efficient algorithm to compute discrete log-
arithms. Its running time analysis has hitherto relied on the assumption that a
random random walk in the corresponding cyclic group can be simulated. We have
shown that the walk originally used by Pollard for (Z/pZ)∗ does not behave like
a random random walk, and the less does its canonical generalization to arbitrary
finite abelian groups. On the other hand, we have shown experimentally that there
are efficient walks that come very close to the performance of random random
walks; examples for such walks are r-adding walks, with r ≥ 16. We proved this
under the assumption that an independent hash function v : G → {1, . . . , r} is
used. In particular, 16-adding walks yield a speed-up by a factor of at least 1.25 if
used instead of Pollard’s walks. Experimental results suggest that also r+ q-mixed
walks with r ≥ 16 and q/r ≈ 1/4 yield a performance that is similar to a random
random walk performance.

References

[AB82] J. Arney and E. A. Bender, Random mappings with constraints on coalescence
and number of origins, Pacific Journal of Mathematics 103 (1982), 269–294.
MR 84h:05110

[BM] S.R. Blackburn and S. Murphy, The number of partitions in Pollard rho, Private
communication, May 1998.

[BP81] R.P. Brent and J.M. Pollard, Factorization of the eighth Fermat number, Mathematics
of Computation 36 (1981), 627–630. MR 83h:10014

[DH97] J. J. Dai and M. V. Hildebrand, Random random walks on the integers mod n,
Statistics and Probability Letters 35 (1997), 371–379. MR 99f:60128

[GLV] R. Gallant, R. Lambert, and S. Vanstone, Improving the parallelized Pollard lambda
search on binary anomalous curves, to appear in Mathematics of Computation.

[Har60] B. Harris, Probability distributions related to random mappings, Annals of Math. Sta-
tistics 31 (1960), 1045–1062. MR 22:9993

[Hil94] M. V. Hildebrand, Random walks supported on the random points of Z/nZ, Probability
Theory and Related Fields 100 (1994), 191–203. MR 95j:60015

[HV] J. Horwitz and R. Venkatesan, Random Cayley graphs and the discrete log, Preprint,
1998.

[Kec93] D. B. Kececioglu, Reliability and life testing handbook, vol. 1, Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

[Knu73] D. E. Knuth, The art of computer programming. volume 3: Sorting and searching,
Addison-Wesley, Reading, Massachusetts, 1973. MR 56:4281

[LiD97] LiDIA Group, Technische Universität Darmstadt, LiDIA - a library for computa-
tional number theory, version 1.3, 1997, Available from http://www.informatik.tu-
darmstadt.de/TI/LiDIA.

[MvOV96] A. Menezes, P. van Oorschot, and S. A. Vanstone, Handbook of applied cryptography,

CRC Press, 1996. MR 99g:94015
[PH78] S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over

GF (p) and its cryptographic significance, IEEE-Transactions on Information Theory
24 (1978), 106–110. MR 58:4617

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=84h:05110
http://www.ams.org/mathscinet-getitem?mr=83h:10014
http://www.ams.org/mathscinet-getitem?mr=99f:60128
http://www.ams.org/mathscinet-getitem?mr=22:9993
http://www.ams.org/mathscinet-getitem?mr=95j:60015
http://www.ams.org/mathscinet-getitem?mr=56:4281
http://www.ams.org/mathscinet-getitem?mr=99g:94015
http://www.ams.org/mathscinet-getitem?mr=58:4617

ON RANDOM WALKS FOR POLLARD’S RHO METHOD 825

[Pol] J. M. Pollard, Private communications, March 1998, March 1999.
[Pol75] J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), no. 3, 331–335.

MR 52:13611
[Pol78] J. M. Pollard, Monte Carlo methods for index computation (mod p), Mathematics of

Computation 32 (1978), no. 143, 918–924. MR 58:10684
[SL84] C. P. Schnorr and H. W. Lenstra, Jr., A Monte Carlo factoring algorithm with linear

storage, Mathematics of Computation 43 (1984), no. 167, 289–311. MR 85d:11106
[SSY82] R. Sedgewick, T. G. Szymanski, and A. C. Yao, The complexity of finding cycles in

periodic functions, SIAM J. Computing 11 (1982), no. 2, 376–390. MR 83f:68045
[Tes98a] E. Teske, New algorithms for finite abelian groups, Ph.D. thesis, Technische Universität

Darmstadt, Germany, 1998, Shaker Verlag, Aachen.
[Tes98b] E. Teske, A space efficient algorithm for group structure computation, Mathematics

of Computation 67 (1998), 1637–1663. MR 99a:11146
[Tes98c] E. Teske, Speeding up Pollard’s rho method for computing discrete logarithms, Algo-

rithmic Number Theory Seminar ANTS-III, Lecture Notes in Computer Science, vol.
1423, Springer-Verlag, 1998, pp. 541–554.

[vOW99] P. C. van Oorschot and M. J. Wiener, Parallel collision search with cryptanalytic
applications, Journal of Cryptology 12 (1999), 1–28. MR 99i:49054

[WZ98] M. Wiener and R. Zuccerato, Faster attacks on elliptic curve cryptosystems, Proceed-
ings of SAC, Workshop on Selected Areas in Cryptography, Lecture Notes in Computer
Science, 1998.

University of Waterloo, Department of Combinatorics and Optimization, Waterloo,

Ontario, Canada N2L 3G1

E-mail address: eteske@cacr.math.uwaterloo.ca

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=52:13611
http://www.ams.org/mathscinet-getitem?mr=58:10684
http://www.ams.org/mathscinet-getitem?mr=85d:11106
http://www.ams.org/mathscinet-getitem?mr=83f:68045
http://www.ams.org/mathscinet-getitem?mr=99a:11146
http://www.ams.org/mathscinet-getitem?mr=99i:49054

	1. Introduction
	Acknowledgment
	2. Preliminaries
	2.1. Pollard's rho method
	2.2. Finding a match
	2.3. Partitioning the group
	2.4. Reliability considerations
	2.5. Set-up for our experiments

	3. Findings about Pollard's walk
	3.1. Pollard's original application: (Z/pZ)
	3.2. Pollard's original application, generalized
	3.3. Comparison of the walks obtained from (??) and (??)

	4. New walks
	4.1. Adding walks
	4.2. Mixed walks

	5. Provably good random walks
	5.1. Reduction of the walk (Yk) to walks on the integers -5mumod5mu- n
	5.2. Random walks on the integers @tempe *pdf@llx pdf@lly pdf@urx pdf@urymod n
	5.3. Application to r-adding walks

	6. Conclusion
	References

