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Abstract

We consider a randomized network coding approach for multicasting from sev-
eral sources over a network, in which nodes independently and randomly select
linear mappings from inputs onto output links over some field. This approach was
first described in [3], which gave, for acyclic delay-free networks, a bound on error
probability, in terms of the number of receivers and random coding output links,
that decreases exponentially with code length. The proof was based on a result
in [2] relating algebraic network coding to network flows. In this paper, we gener-
alize these results to networks with cycles and delay. We also show, for any given
acyclic network, a tighter bound in terms of the probability of connection feasibility
in a related network problem with unreliable links. From this we obtain a success
probability bound for randomized network coding in link-redundant networks with
unreliable links, in terms of link failure probability and amount of redundancy.

1 Introduction

We consider a randomized network coding approach for distributed transmission and
compression of information in multi-input multicast networks. This family of problems
includes traditional single-source multicast for content delivery, and the reachback prob-
lem for sensor networks, in which several, possibly correlated, sources transmit to a single
receiver.

In this approach, first described in [3], each link carries a linear combination of signals
from incident incoming links. The linear coefficients for each link are independently and
randomly chosen from some finite field. The receivers need only know the overall linear
combination of source processes in each of their incoming signals. This information can
be sent through the network as a vector, for each signal, of coefficients corresponding to
each of the source processes, updated at each coding node by applying the same linear
mappings to the coefficient vectors as to the information signals.

Reference [3] considered independent or linearly correlated sources on acyclic delay-
free networks, and showed an upper bound on error probability that decreases exponen-
tially with the length of the codes. The proof was based on results in [2] linking multicast
network coding to network flows/bipartite matching. It was noted that this approach
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achieves robust routing and compression in combination within the network, differing
from traditional approaches which first do source/diversity coding followed by routing of
coded information. Any available network capacity can be fully exploited for robustness
to link failures and coding error, while not hampering accommodation of new multicast
sources.

In this paper, we generalize these results to networks with cycles and delay. We
also show, for acyclic networks, a relation between the probability of randomized coding
success and the probability of connection feasibility in a related network problem with
unreliable links. This result is useful for obtaining tighter bounds on randomized coding
success probability that are based on more specific network characteristics. From it
we obtain a tighter bound for link-redundant networks with unreliable links, in terms
of link failure probability and amount of redundancy, showing how these factors affect
randomized coding success probability.

Going from the acyclic delay-free case to the case with cycles and delay, the scalar
coefficients of the linear combinations become polynomials in a delay variable. The
number of terms of these polynomials that must be sent, and the memory required at
the receivers, depend on the number of links involved in cycles (memory registers) in
the network. For less frequently changing networks, instead of sending coefficient vectors
through the network, there can be a phase in which the sources take turns to each send
a unit impulse through the network.

1.1 Overview

A brief overview of related work is given in Section 1.2. In Section 2, we provide the
algebraic model we consider for our networks. Our main results are given in 3, and our
proofs and ancillary results in Section 4. We present our conclusions and some directions
for further work in Section 5.

1.2 Related Work

Ahlswede et al. [1] showed that with network coding, as symbol size approaches infinity, a
source can multicast information at a rate approaching the smallest minimum cut between
the source and any receiver. Li et al. [6] showed that linear coding with finite symbol
size is sufficient for multicast. Koetter and Médard [5] presented an algebraic framework
for network coding that recaptured previous results and gave an algebraic condition for
checking the validity of a given linear multicast code. Sanders et al. [7] and Jaggi et al. [4]
proposed centralized algorithms for single source multicast using a subgraph consisting
of flow solutions to individual receivers, and showed that randomization with centralized
testing could yield computational advantage.

2 Model

We adopt the model of [5], which represents a network as a directed graph G. Discrete
independent random processes X1, . . . , Xr are observable at one or more source nodes,
and there are d ≥ 1 receiver nodes. The output processes at a receiver node β are denoted
Z(β, i). The multicast connection problem is to transmit all the source processes to each
of the receiver nodes.



There are ν links in the network. Link l is an incident outgoing link of node v if
v = tail(l), and an incident incoming link of v if v = head(l). We call an incident
outgoing link of a source node a source link and an incident incoming link of a receiver
node a terminal link. Edge l carries the random process Y (l).

The time unit is chosen such that the capacity of each link is one bit per unit time,
and the random processes Xi have a constant entropy rate of one bit per unit time. Edges
with larger capacities are modelled as parallel edges, and sources of larger entropy rate
are modelled as multiple sources at the same node.

The processes Xi, Y (l), Z(β, i) generate binary sequences. We assume that informa-
tion is transmitted as vectors of bits which are of equal length u, represented as elements
in the finite field F2u . The length of the vectors is equal in all transmissions and all
links are assumed to be synchronized with respect to the symbol timing. In this paper
we consider linear coding1. For a linear code, the signal Y (j) on a link j is a linear
combination of processes Xi generated at node v = tail(j) and signals Y (l) on incident
incoming links l. For the delay-free case, this is represented by the equation

Y (j) =
∑

{i : Xi generated at v}
ai,jXi +

∑

{l : head(l) = v}

fl,jY (l)

and an output process Z(β, i) at receiver node β is a linear combination of signals on its
terminal links, represented as

Z(β, i) =
∑

{l : head(l)=β}
bβi,lY (l)

For multicast on a network with link delays, memory is needed at the receiver nodes,
but memoryless operation suffices at all other nodes [5]. We consider unit delay links,
modeling links with longer delay as links in series. The corresponding linear coding
equations are

Yt+1(j) =
∑

{i : Xi generated at v}
ai,jXit +

∑

{l : head(l) = v}

fl,jYt(l) (1)

Zt+1(β, i) =
∑

{l : head(l)=β}

t∑
u=t−µ

bβi,lt−u
Yu(l) (2)

where µ represents the memory required.
The coefficients {ai,j, fl,j, bβi,l ∈ F2u} can be collected into r × ν matrices A = (ai,j)

and Bβ = (bβi,j), and the ν × ν matrix F = (fl,j), whose structure is constrained by the
network. For acyclic graphs, we number the links ancestrally, i.e. lower-numbered links
upstream of higher-numbered links, so matrix F is upper triangular with zeros on the
diagonal. A triple (A,F, B), where

B =




B1

:
Bd




specifies the behavior of the network, and represents a linear network code. We use the
following notation:

1which is sufficient for multicast [6]
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Figure 1: Illustration of linear coding at a node.

• G =

{
(I − F )−1 in the acyclic delay-free case2

(I −DF )−1 in the case with delay3

• GH is the submatrix consisting of columns of G corresponding to links in set H
• aj, cj and bj denote column j of A, AG and B respectively

Matrix AG gives the transfer matrix from input processes to signals on each link; the
connection problem is feasible if and only if AGBT

β has full rank for each receiver β [5].

3 Main Results

We generalize results presented in [2, 3] to arbitrary graphs which may have cycles and
delay.

Theorem 1 For a feasible multicast connection problem on a (possibly cyclic) network
with unit delay links, independent or linearly correlated sources, and a network code
in which some or all code coefficients are chosen independently and uniformly over all
elements of a finite field Fq (some coefficients can take fixed values as long as these values
preserve feasibility4), the probability that all the receivers can decode the source processes
is at least (1 − d/q)η for q > d, where d is the number of receivers and η is the number
of links carrying random combinations of source processes and/or incoming signals.

The proof of the above theorem relies on the following result, which allows us to
easily characterize the dependence of the transfer matrix determinant on the random
coefficients.

Theorem 2 For an arbitrary (possibly cyclic) network with unit delay links, the transfer
matrix A(I −DF )−1BT

β for receiver β in a network code (A,F, B) is nonsingular if and

only if the corresponding Edmonds matrix

[
A 0

I −DF BT
β

]
is nonsingular.

The bound in Theorem 1 is a very general one, applying across all networks with
the same number of receivers and the same number of links with independently chosen
random linear mappings. Our next goal is to find tighter bounds by taking into account
more specific network characteristics. To this end, we establish a connection between
randomized coding success probability and network connection feasibility when links are

2The inverse exists since F is nilpotent.
3The inverse exists since the determinant is a nonzero polynomial in D.
4i.e. the result holds for networks where not all nodes perform random coding, or where signals add

by superposition on some channels



unreliable, for acyclic networks with or without link delays. This is useful for cases where
analysis of connection feasibility is easier than direct analysis of randomized coding, for
example in the case of networks with unreliable links and excess capacity.

Theorem 3 For a d-receiver multicast problem on an acyclic network, the success prob-
ability of a random network code in the field of size q is greater than or equal to the
probability that the network connections remain feasible after deleting each link of the
original graph with probability d/q.

Theorem 4 For a connection problem with r sources and links with failure probability
p, let y be the minimum redundancy, i.e. deletion of any y links in the network preserves
feasibility. A lower bound on the probability that a particular receiver receives all processes
is

r+y∑
x=r

(
r + y

x

) (
1− p− 1− p

q

)Lx
(

1−
(

1− p− 1− p

q

)L
)r+y−x

where L is the longest source-receiver path in the network.

4 Proofs and Ancillary Results

4.1 Randomized Network Coding on Arbitrary Graphs with
Delay

Proof of Theorem 2: Note that

[
I −A(I −DF )−1

0 I

] [
A 0

I −DF BT
β

]
=

[
0 −A(I −DF )−1BT

β

I −DF BT
β

]

The first matrix,

[
I −A(I −DF )−1

0 I

]
, has determinant 1. So det

([
A 0

I −DF BT
β

])

equals det

([
0 −A(I −DF )−1BT

β

I −DF BT
β

])
, which can be expanded as follows:

det

([
0 −A(I −DF )−1BT

β

I −DF BT
β

])

= (−1)rνdet

([ −A(I −DF )−1BT
β 0

Bβ I −DF

])

= (−1)rνdet(−A(I −DF )−1BT
β )det(I −DF )

= (−1)r(ν+1)det(A(I −DF )−1BT
β )det(I −DF )

Since det(I −DF ) is nonzero, the result follows.

Lemma 1 The determinant polynomial of the Edmonds matrix

[
A 0

I −DF BT
β

]
asso-

ciated with a network code (A,F, B) in a network with delay is a polynomial in delay
variable D, whose coefficients have maximum degree ν in variables {ax,j, fi,j}, and are
linear in each variable {ax,j, fi,j}.



Proof: Each variable {ax,j, fi,j, bx,j} appears in only one entry of the Edmonds ma-
trix. The determinant can be written as the sum of products of r + ν entries, one from
each row and column. Each such product is linear in each variable {ax,j, fi,j, bx,j}, has
degree at most r + ν in variables {ax,j, fi,j, bx,j}, and has degree r in variables {bx,j}.

Lemma 2 Let P be a polynomial in F[ξ1, ξ2, . . .] of degree less than or equal to dη, in
which the largest exponent of any variable ξi is at most d. Values for ξ1, ξ2, . . . are chosen
independently and uniformly at random from Fq ⊆ F. The probability that P equals zero
is at most 1− (1− d/q)η for d < q.

Proof: For any variable ξ1 in P , let d1 be the largest exponent of ξ1 in P . Express
P in the form P = ξd1

1 P1 + R1, where P1 is a polynomial of degree at most dη − d1 that
does not contain variable ξ1, and R1 is a polynomial in which the largest exponent of
ξ1 is less than d1. By the Principle of Deferred Decisions, the probability Pr[P = 0] is
unaffected if we set the value of ξ1 last after all the other coefficients have been set. If,
for some choice of the other coefficients, P1 6= 0, then P becomes a polynomial in F[ξ1] of
degree d1. By the Schwartz-Zippel Theorem, this probability Pr[P = 0|P1 6= 0] is upper
bounded by d1/q. So

Pr[P = 0] ≤ Pr[P1 6= 0]
d1

q
+ Pr[P1 = 0]

= Pr[P1 = 0]

(
1− d1

q

)
+

d1

q
(3)

Next we consider Pr[P1 = 0], choosing any variable ξ2 in P1 and letting d2 be the
largest exponent of ξ2 in P1. We express P1 in the form P1 = ξd2

2 P2 + R2, where P2 is a
polynomial of degree at most dη−d1−d2 that does not contain variables ξ1 or ξ2, and R2

is a polynomial in which the largest exponent of ξ2 is less than d2. Proceeding similarly,
we assign variables ξi and define di and Pi for i = 3, 4, . . . until we reach i = k where Pk

is a constant and Pr[Pk = 0] = 0. Note that 1 ≤ di ≤ d < q ∀ i and
∑k

i=1 di ≤ dη, so
k ≤ dη. Applying Schwartz-Zippel as before, we have for k′ = 1, 2, . . . , k

Pr[Pk′ = 0] ≤ Pr[Pk′+1 = 0]

(
1− dk′+1

q

)
+

dk′+1

q
(4)

Combining all the inequalities recursively, we can show by induction that

Pr[P = 0] ≤
∑k

i=1 di

q
−

∑
i6=j didj

q2
+ . . . + (−1)k−1

∏k
i=1 di

qk

where 0 ≤ dη −∑k
i=1 di.

Now consider the integer optimization problem

Maximize f =

∑dη
i=1 di

q
−

∑
i6=j didj

q2
+ . . . + (−1)dη−1

∏dη
i=1 di

qdη

subject to 0 ≤ di ≤ d < q ∀ i ∈ [1, dη],
dη∑
i=1

di ≤ dη, and di integer (5)



whose maximum is an upper bound on Pr[P = 0].
We first consider the non-integer relaxation of the problem. Let d∗ = {d∗1, . . . , d∗dη}

be an optimal solution.

For any set Sh of h distinct integers from [1, dη], let fSh
= 1−

∑
i∈Sh

di

q
+

∑
i,j∈Sh,i6=j didj

q2 −
. . . + (−1)h

∏
i∈Sh

di

qh . We can show by induction on h that 0 < fSh
< 1 for any set Sh of h

distinct integers in [1, dη].
If

∑dη
i=1 d∗i < dη, then there is some d∗i < d, and there exists a feasible solution d such

that di = d∗i + ε, ε > 0, and dh = d∗h for h 6= i, which satisfies

f(d)− f(d∗) =
ε

q

(
1−

∑
h6=i d

∗
h

q
+ . . . + (−1)dη−1

∏
h6=i d

∗
h

qdη−1

)

This is positive, contradicting the optimality of d∗.
Next suppose 0 < d∗i < d for some d∗i . Then there exists some d∗j such that 0 < d∗j < d,

since if d∗j = 0 or d for all other j, then
∑dη

i=1 d∗i 6= dη. Assume without loss of generality
that 0 < d∗i ≤ d∗j < d. Then there exists a feasible vector d such that di = d∗i − ε,
dj = d∗j + ε, ε > 0, and dh = d∗h ∀ h 6= i, j, which satisfies

f(d)− f(d∗) = −
(

(d∗i − d∗j)ε− ε2

q2

) (
1−

∑
h6=i,j d∗h

q
− . . . + (−1)dη−2

∏
h6=i,j d∗h
qdη−2

)

This is again positive, contradicting the optimality of d∗.
Thus,

∑dη
i=1 d∗i = dη, and d∗i = 0 or d. So exactly η of the variables d∗i are equal to d.

Since the optimal solution is an integer solution, it is also optimal for the integer program

(5). The corresponding optimal f = η d
q
− (

η
2

)
d2

q2 + . . . + (−1)η−1 dη

qη = 1−
(
1− d

q

)η

.

Proof of Theorem 1: To check if a network code (A,F,B) transmits all source
processes to receiver β, it suffices to check that the determinant of the corresponding
Edmonds matrix is nonzero (Theorem 2). This determinant, which we denote by Pβ, is
a polynomial in delay variable D, whose coefficients are linear in each variable {ax,j, fi,j}
and have degree at most ν in these variables (Lemma 1). Each column corresponds
to a link in the network; the number of columns containing variable terms equals η,
the number of links carrying random combinations of source processes and/or incoming
signals. The product

∏
β Pβ for d receivers is, accordingly, a polynomial in delay variable

D, whose coefficients are polynomials in {ax,j, fi,j} of degree at most dη, and in which
the largest exponent of each of these variables is at most d. These properties still hold if
some variables are set to deterministic values which do not make the product identically
zero.

Linearly correlated sources can be viewed as pre-specified linear combinations of un-
derlying independent processes. Unlike the independent sources case where each nonzero
entry of the A matrix can be set independently, in this case there are linear dependencies
among the entries. The columns aj of the A matrix are linear functions aj =

∑
k αk

j v
k
j

of column vectors vk
j that represent the composition of the source processes at tail(j)

in terms of the underlying independent processes. Variables αk
j in column aj can be set

independently of variables αk
j′ in other columns aj′ . It can be seen from Lemma 1 that

for any particular j, each product term in the polynomial Pβ for any receiver β contains
at most one variable ai,j =

∑
k αk

j v
k
i,j. Pβ is thus linear in the variables αk

j , and also
in variables fi,j, which are unaffected by the source correlations. So any variable in the
product of d such polynomials has maximum exponent d.



Applying Lemma 2 gives us the required bound.
For the single-receiver case, the bound is attained for a network consisting only of

links forming a single set of r disjoint source-receiver paths.

4.2 Connections with Link Reliability

Proof of Theorem 3: Consider any link j, and a set S of d′ arbitrary (r × r − 1)
rank-(r− 1) matrices in (Fq(D))r×r−1, such that, for each matrix in S, link j has among
its inputs a signal whose associated vector is not in the column space of the matrix. Let
vi ∈ (Fq(D))r be the vector associated with the ith input to link j. Let Y (j) =

∑
i Dfivi

be the vector associated with link j.
Each entry of Y (j) is a polynomial in Fq(D, f1, f2, . . .) that is linear in coefficients fi.

The determinant of an r × r matrix which has Y (j) as one of its columns, and whose
r − 1 other columns are independent of coefficients fi, is thus linear in coefficients fi.
The product of d′ such determinants has maximum degree d′ in coefficients fi.

If coefficients fi are chosen uniformly and independently from Fq, by the Schwartz-
Zippel Theorem, this product is nonzero with probability at least 1− d′/q. Denoting by
ES,j the event that adding Y (j) as an additional column to each of the matrices in S
gives a full rank matrix, we have Pr(ES,j) ≥ 1− d′/q.

Next consider a number of sets S1,S2, . . . ,Sn each consisting of d′ arbitrary (r×r−1)
rank-(r − 1) matrices, such that for each matrix in Sk, 1 ≥ k ≥ n, link j has among its
inputs a signal whose associated vector is not in the column space of the matrix. Then
Pr(

⋃n
k=1 ESk,j) ≥ 1− d′/q.

Each receiver receives all processes successfully if the submatrix of AG corresponding
to r of its incident incoming links, or terminal links, has full rank. The connection
problem is feasible if and only if each receiver has a set of r link-disjoint paths, one from
each source.

Let j be the highest-indexed link in an ancestral ordering, where lower-indexed links
feed into higher-indexed links. Consider any given signals on all other links. There are
three cases:

Case 1: Regardless of the code coefficients for j, there cannot exist full rank sets of r
terminal links for each receiver.

Case 2: Regardless of the code coefficients for j, each receiver has a full rank set of r
terminal links.

Case 3: For some choice of code coefficients for link j, each receiver has a full rank set
of r terminal links, i.e. link j has among its inputs signals whose associated vectors are
not in the column space of the submatrices of AG corresponding to the terminal links
of one or more other receivers. By our earlier arguments, such a choice is made with
probability at least 1− d′/q, where d′ is the number of receivers downstream of link j.

In all three cases, the probability that each receiver has a set of r terminal links with
a full rank set of inputs when code coefficients for link j are chosen randomly is greater
than or equal to that in the case where link j is deleted with probability d/q ≥ d′/q.

We next consider the problem where link j is deleted with probability d/q, and random
code coefficients are chosen for all other links. From our earlier arguments, the probability
that any set of r undeleted paths to each receiver has a full rank set of inputs is less than
or equal to the probability of success in the original network coding problem.

We continue in this fashion, at each stage considering a new problem in which we
delete with probability d/q the next highest-indexed link as well as each previously con-



sidered link. Random code coefficients are chosen for all other links. At each stage,
for any choice of surviving links among the set of randomly deleted links, the problem
is either infeasible, or there exist one or more sets of random coding links incident to
undeleted paths to each receiver which, if full rank, preserve feasibility of the problem.
The probability that any set of r undeleted paths to each receiver has a full rank set of
inputs is less than or equal to the probability of success in the original network coding
problem.

Proof of Theorem 4: For a given network of non-failed links, we can find a lower
bound by considering the more general case where a source process can be available at
one or more source node locations, and by analyzing the probability that the connections
remain feasible when links fail with probability 1/q, which by Theorem 3 gives us a lower
bound on network coding success probability. The success probability for a network
whose links fail with probability p is thus lower bounded by the probability that the
connections remain feasible when links fail with probability 1− (1− p)(1− 1/q).

We show by induction on y that a network consisting of r + y disjoint source-receiver
paths, any r of which can transmit all processes, has a success probability that is less
than or equal to that for any y-redundant network.

Consider a network G1 consisting of r+y disjoint source-receiver paths any r of which
can transmit all processes. Let G2 be any other y-redundant network.

For i = 1, 2, we consider a set Pi of links forming r disjoint paths from each source
to the receiver on graph Gi. We distinguish two cases:

Case 1: None of the links in Pi fail. In this case the connections are feasible.
Case 2: There exists some link ji ∈ Pi that fails.
The probability of either case occurring is the same for i = 1, 2. Since

Pr(success) = Pr(case 1) + Pr(case 2) Pr(success|case 2)

Pr(success|i = 1) ≤ Pr(success|i = 2) iff Pr(success|case 2, i = 1) ≤ Pr(success|case 2, i =
2).

For y = 0,the hypothesis is true since Pr(success|case 2) = 0 for i = 1, 2. For y > 0,
in case 2 we can remove link ji leaving a (y − 1)-redundant graph G ′i. By the induction
hypothesis, the probability of success for G ′1 is less than or equal to that for G ′2.

Thus, G1 gives a lower bound on success probability, which is the probability that all
links on at least r of r + y length-L paths do not fail. The result follows from observing

that each path does not fail with probability
(
(1− p)(1− 1

q
)
)L

.

5 Conclusion

We have presented bounds for the success probability of distributed randomized network
coding for multi-source multicast in networks. The first is a very general bound for
arbitrary networks, which may have cycles or delay, in terms of the number of receivers
and the number of links with independently chosen linear mappings. We have also shown
an approach for obtaining tighter results for more specific networks. For any given
acyclic network, we can bound randomized coding success probability by the probability
of connection feasibility in a related network problem with unreliable links. From this
we obtain a success probability bound for randomized network coding in networks with
unreliable links and excess capacity, in terms of link failure probability and amount of
redundancy.



Further work includes extensions to different applications, such as non-multicast.
It would also be of interest to consider various protocols for different communication
scenarios and evaluate the associated overhead, comparing this with traditional routing
based approaches.
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