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Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer), 

and let F be a collection of subsets of ~d, each of which is defined by a constant 

number of bounded degree polynomial inequalities. We consider the following 

F-range searching problem: Given P, build a data structure for efficient answering 

of queries of the form, "Given a 7 ~ F, count (or report) the points of P lying in 7." 

Generalizing the simplex range searching techniques, we give a solution with 

nearly linear space and preprocessing time and with O(n 1- x/b+~) query time, where 

d < b < 2d - 3 and ~ > 0 is an arbitrarily small constant. The acutal value of b is 

related to the problem of partitioning arrangements of algebraic surfaces into cells 

with a constant description complexity. We present some of the applications of 

F-range searching problem, including improved ray shooting among triangles in ~ 3  

1. Introduction 

Let F be a family of subsets of the d-dimensional space ~d (d is a small constant) 

such that each y e F can be described by some fixed number of real parameters 

(for example, F can be the set of balls, or the set of all intersections of two ellipsoids, 
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etc.; see below for a more formal definition). We consider the following algorithmic 

problem: 

Given a set P of n points in ~d, build a data structure, which answers 

the queries of the following form efficiently: Given a query object ~ e F, 

count (or report) all points of P lying in ),. 

Actually, we consider a more general setting, where a weight function on points 

in P is assumed and the cumulative weight of points in P c~ ? is required. The 

weights are assumed to belong to a semigroup, i.e., subtractions are not allowed. 

We assume that the semigroup operations can be executed in constant time. As 

is typical in computational geometry, we use the real R A M  model of computation, 

where the input data contains arbitrary real numbers and each arithmetic 

operation with real numbers is charged unit cost. We also assume that the roots 

of a fixed-degree polynomial can be computed in constant time. 

A special case of the F-range searching problem that has been intensively 

studied is the simplex range searching, where F is the set of all d-dimensional 

simplices. This simplex range searching is by now reasonably well understood: 

lower bounds were given by Chazelle [10], and nearly matching upper bounds 

were given by Chazelle et al. [16] and further improved by Matou~ek in [17] and 

[29] (some of the several previous significant works on this problem include [17], 

[22], [341 and [35]). Ignoring various subpolynomial factors, these results 

essentially say that the simplex range searching problem can be solved either with 

linear storage and preprocessing and O(n 1-1/d) query time, or with a poly- 

logarithmic query time and O(n d) storage. These two solutions can be combined 

to construct a data structure of size m, n < m < n d, so that a query can be answered 

in time O(n/ml/d). 

There is an important range searching problem, which can be viewed as a 

special case of the simplex range searching problem, but which admits a more 

efficient solution--the half-space emptiness problem. Here F is the set of all 

half-spaces, and we are only interested in determining whether a query half-space 

contains any point of P. By the results of [19] and [28], this problem can be 

solved (again ignoring subpolynomial factors) with O(n/m 1/Ld/2J) query time using 

space m, n < m < n Ld/2j. An extension to reporting points in the query half-space 

is also possible, with the number of reported points added to the query time, but 

no such result is known, e.g., for counting the points in a query half-space. 

Only few results were published for the nonlinear case, when the objects of F 

are bounded by surfaces other than hyperplanes. One well-studied case is reporting 

(or counting) points in query disks in the plane [6], [17], or in query balls in 

higher dimensions, since it is closely related to the nearest neighbor problem, 

k-nearest neighbors problem, etc. ChazeUe and Welzl [17] give linear-space solu- 

tions to the circular range searching problem in the plane with O(x/~ log 2 n) 

query time. All k points lying in a query disk can be reported in time O(log n + k) 

using a data structure of size O(n log n) [6], [28]. 

The paper by Chazelle and Welzl [17] provides an elegant general result, which 

bounds a certain measure of complexity of the F-range searching problem on a 



On Range Searching with Semialgebraic Sets 395 

set P in terms of the so-called Vapnik-Chervonenkis dimension of the set system 

(P, {P n 7IY ~ F}) (this notion is explained in Section 2). Unfortunately, this result 

only estimates the number of semigroup operations needed to answer the query, 

but does not account for other operations needed in the algorithm. Hence, their 

result does not immediately give an algorithm. However, in some special cases, 

e.g., in the case of the disk range searching, their approach can be made algorithmic 

by using some additional data structures (see the original paper for details). 

The techniques developed for the simplex range searching seem to be quite 

powerful and general, and many researchers felt that they should be applicable to 

the general F-range searching problem, where ranges are defined by constant 

number of bounded-degree polynomial inequalities. A basic example arises as 

follows: Let p be a constant and let f ( x  1 . . . . .  xa, a~ . . . . .  ap) be a fixed (d + p)- 

variate polynomial of degree bounded by some constant) Let us consider a 

collection F :  of subsets of •a defined by 

where 

F :  = {Ty(a)la e N'}, (1.1) 

7:(a) = {x e ~"l fCx,  a) >_ O} 

for some a ~ R v. 

In this paper we show that, indeed, the known techniques can be extended to 

handle the F-range searching problem, where F = F: .  The extension of simplex 

range searching to this setting is relatively straightforward, but one technical 

difficulty has to be overcome, namely, the construction of the so-called "guarding 

set" (or "test set"), where the most direct translation of the method used in the 

simplex case does not work. 

Our algorithms easily extend to ranges defined by conjunctions and disjunctions 

of a bounded number of polynomial inequalities. Disjunctions correspond 

to unions of ranges, and by rewriting the defining formula suitably, we can 

assume that these are disjoint unions (e.g., a formula A v B can be rewritten to 

A v (B&NOT A)), and disjoint unions are straightforward to deal with in range 

searching. A conjunction of polynomial inequalities defined by the same poly- 

nomial f (i.e., y = 7~ c~ 72 such that Ya, Y2 ~ F:) can be handled without any 

additional effort; see Section 6 for details. On the other hand, a conjunction of 

inequalities defined by different polynomials is handled using multilevel data 

structures. Roughly speaking, having a suitable F : r a n g e  searching data struc- 

ture and a F~-range searching data structure, the technique of multilevel 

data structures enables us to build a F-range searching data structure, where 

F = {el n yzlyt ~FI ,  y2 e F2}. 
A multilevel data structure can be viewed as a "composition" of the range 

searching data structures. Perhaps surprisingly (at the first sight), the efficiency of 

1 Throughout this paper, a~, x~ are used to denote the coordinates of points a and x, respectively, 
and a i, x ~ are used to denote sequences of points. 
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the resulting data structure is roughly the same as the efficiency of the worst one 

of the data structures we started with. A simple instance of multilevel data 

structures is the range tree (see [31]). An example more closely related to our 

application was given by Dobkin and Edelsbrunner 1-20]. Chazelle et al. [16] show 

how a multilevel data structure can be used to extend a half-space range searching 

data structure to answer simplex range queries. Other applications of multilevel 

structures can be found in [27] and [5]. An abstract framework for multilevel 

data structures has been introduced in [29]. 

We can also handle strict inequalities in the same manner as nonstrict ones 

(choosing nonstrict inequalities for the presentation is just an arbitrary conven- 

tion). Therefore, we can build range searching data structures for arbitrary 

semialgebraic sets of a constant description complexity. A semialgebraic set in R a 

is a set obtainable from a finite number of sets of the form {x~ ~alf(x)>_ 0} or 

{Xeff~dlf(x) > 0} ( f  is a d-variate polynomial with rational coefficients) by 

Boolean operations (disjunction, conjunction, complementation). A semialgebraic 

set has a constant description complexity if it is defined by a constant number of 

polynomial inequalities (the constant may depend on the dimension), each of 

constant maximum degree; such semialgebraic sets are sometimes called Tarski 

cells. 
The efficiency of our F:-range searching algorithms is determined by the ability 

to partition the cells in arrangements of certain algebraic surfaces into small 

numbers of some "elementary" subcells with a constant size description. We 

consider a F:-range searching structure with linear space. In our method we first 

obtain a certain "closure" (d + p)-variate polynomial f (x,  ~), h = (~  . . . . .  ~:), from 

the polynomial f.  In general p >_ p. The construction of this new polynomial is 

not canonical (that is, there may be different choices for f) .  If we can partition the 

arrangement of any collection of m surfaces of the form 

{{x e R~lf(x, a') = o} l a '  . . . . .  a "  e R.} 

into O(m b) elementary cells, then we can construct a linear-size data structure for 

a F:-range searching with query time O(n 1-1/b+6).2 The preprocessing time of our 

algorithm is O(n log n). The most natural preprocessing algorithm is randomized, 

but it can also be turned into a deterministic one without affecting the asymptotic 

running time. Our data structures achieve only a relatively small saving in the 

query time (a factor of n lib at best) compared with the (trivial) O(n) bound. 

It is also possible to get a (poly)logarithmic query time, provided that we can 

afford a relatively large space, and we can get a tradeoff between space and query 

time as well. We briefly outline these possibilities here, without giving any details. 

In order to get a F:-range searching data structure with O(log n) query time, we 

may generalize the method developed by Chazelle et al. [16] for half-spaces in a 

straightforward way. Essentially, it requires preprocessing the arrangement of 

certain algebraic surfaces for answering point-location queries. Here, again, the 

2 We use 6 to denote an arbitrarily small positive constant. The multiplicative constants in the 
asymptotic bounds may depend on 6. 
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efficiency of the data structure (the space requirement) depends on the size of 

certain decompositions of arrangements of algebraic surfaces. This time the 

decomposition takes place in the parameter space: the relevant surfaces in ~P are 

{a ~ RPlf(x i, a) = 0} for some x ~ . . . . .  xmE R d. Assuming that the arrangement of 

any m such surfaces can be decomposed into O(m ~) elementary cells, the F f r a n g e  

searching problem can be solved with O(n ~ + 6) space and preprocessing time, and 

with O(log n) query time. The point-location problem in an arrangement of 

algebraic surfaces is discussed in [12]. The data structures with logarithmic query 

time can be combined with the linear-space ones to obtain a space/query-time 

tradeoff; see, e.g., [16]. 

The paper is organized as follows. In Section 2 we give basic definitions and 

we discuss the so-called linearization of range spaces. In Section 3 we extend the 

notion of cuttings to an abstract framework. Section 4 discusses various methods 

for decomposing an arrangement of algebraic surfaces into constant size cells. 

Section 5 derives the main results of the paper, and Section 6 describes the range 

searching algorithms based on the results derived in the previous section. We 

present some applications of F-range searching, and finally conclude in Section 8 

by mentioning some open problems. 

2. Range Spaces and Linearization 

We recall some terminology and results concerning range spaces, since they offer 

a convenient abstract framework for our considerations; see [22], [24], and [7] 

for more material. 

Range Spaces. A range space is a pair (X, F), where X is some (possibly infinite) 

set and F is a set of subsets of X. The elements of X are usually called the points 

and the elements of F the ranges of (X, F). For Y ~ X, the subspace of (X, F) 

induced by Y is defined as the range space (Y, {7 c7 YIT~F}) (the ranges are 

considered as sets). The Vapnik-Chervonenkis dimension or VC-dimension of a 

range space (X, F) is d if there is no subset A _c X of size d + 1 such that the 

subspace induced by A has all possible subsets of A as ranges. 

Typical examples of range spaces in computational geometry are of the form 

(//~d, F), where F is a set of geometric figures, such as the set of all half-spaces, all 

simplices, all balls, or it has the form F I for some polynomial f (see above), etc. 

In computational applications, one usually encounters subspaces of these range 

spaces induced by finite subsets of R d. Let Off a denote the range space 

( Ra, {~'17 a half-space in Ra}). 

All these examples (and various others) share an important property that they 

have finite VC-dimension. 

(1/r)-Nets. Let (X, F) be a range space with X finite. A subset S ~_ X is called 

a (1/r)-net for (X, F), provided that S r~ y ~ 0 ,  for every 7e  F with 171/Igl > i/r. 
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Haussler  and Welzl [22] proved that, given a range space of VC-dimension at 

most  d and a paramete r  r > 0, a (1/r)-net of size at most  Car log r, where Ca is a 

constant  depending only on d, exists. Recently, Koml6s  et al. [24] showed that 

Ca = d + o(d) and that, in the worst  case, this bound is tight up to an additive 

factor. 

Embeddings and Linearizations. If  f :  X --* Y is a mapp ing  from a set X to a set 

Y and A ~ X ,  we let f ( A ) = { f ( x ) l x e X } ~ Y .  For  a set B~_ Y, we define 

f - I ( B )  = {x ~ X I f ( x )e  B} (note that  we do not assume B ~_ f(X)) .  

Let (X, F) and (Y, E) be range spaces, and let ~0: X --. Y be an injective function. 

Then q~ is called an embeddino of range spaces if, for each 7 ~ F, there is a t r  e Y~ 

such that  7 = q~-1(a) �9 In other  words, for every 7 e F ,  a a eY. exists whose 

intersection with q~(X), the image of X in Y, is precisely tp(y). We let ~0"(7 ) denote 

some a with this proper ty  (in general, more  than one sach a may  exist; it will be 

irrelevant which one is chosen for ~0"(7) in our  considerations). We call the 

embedding  q~ faithful if ~0- l(a) e F for every a e E. Given an embedding q~, we can 

always add more  subsets to F so that  q~ becomes faithful. 

A basic nontrivial  example  of  embedding of range spaces in computa t ional  

geometry  arises f rom the well-known "lifting to the parabolo id" ,  see, e.g., [21]. 

Here  X = ~2 (the plane), F is the set of all (closed) disks, (Y, E) is the space ~ 3 ,  

and the mapp ing  q~: R 2 --* R 3 is given by q~((x 1, x2) ) = (xl, x2, x 2 + x2). The set 

f ( X )  is the unit paraboloid.  For  a set B _ ~3, its inverse image ~0- I(B) is obtained 

by first intersecting B with the unit  parabolid,  and then vertically projecting the 

intersection onto  the xy-plane. We claim that  ~0 is an embedding  of range spaces. 

Obvious ly  it is injective, and  it is well known that  the image of any disk D in the 

plane can be obta ined as the intersection of the unit parabolo id  with a closed 

half-space h in ~a; q~*(D)= h. In this part icular  case r is unique. The 

embedding is not  a faithful one, but  if we also add the complements  of all open 

disks and the empty  set to F, q~ becomes faithful. A generalization of this example 

is discussed below. 

We need embeddings  to the range spaces ~k ;  we call such an embedding 

~o: X ~ R k of a range space (X, F) into the range space ~ k  a linearization of (X, F); 

k is called the dimension of this linearization. 

As far as we could find out, very little is known about  l inearizations of  range 

spaces. Alon et al. [7] introduce the not ion of embedding and give some negative 

examples.  Yao and Yao [35] made  an observat ion which, t ranslated into our 

terminology,  says that  each range space of the form (R a, FI), f a bounded  degree 

(d + p)-variate polynomial ,  is linearizable: Indeed, to get a l inearization in this 

case, it suffices to express the mul t ivar ia te  polynomial  f ( x ,  a) in the form 

f ( x ,  a) = ~go(a) + Ol(a)cpl(x) + " "  + t#k(a)q~k(x) (2.1) 

for some real functions q~a . . . . .  ~0 k, I~0 . . . . .  I~k. Then a point  x e X is m a p p e d  to the 

point  

q~(x) = (~ol(x), ~o2(x2) . . . . .  ~Ok(Xk) ) ~ R k. (2.2) 
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Then for a range 7:(a) = {x ~ Ralf(x,  a) > 0}, the corresponding range q~*(a) is the 

half-space 

{Y~ Rkl~o(a) + ~kl(a)Yl + ' " +  ~kk(a)Yk > 0}. (2.3) 

Algorithm for  Linearizin9 Polynomials. A simplest way to express the polynomial  

f ( x ,  a) in the form (2.1) is to write f as a sum of monomials  in the x~ variables 

with its coefficients being polynomials in the ajs. Then each monomial  in the x : s  

will play the role of one function q~, and its coefficient will be the corresponding 

function ~,~ (qJo is formed by the terms containing no x{s). 

It is often important  to minimize the dimension of a linearization. The method 

just described does not necessarily give the best result. Let us return to the example 

with disks in the plane considered above. A circle with center (aa, a2) and radius 

a 3 in the plane can be regarded as a set of the form 7:(a), where a = (a~, a2, a3) 

and f is the 5-variate polynomial  

f ( x , ,  x 2, a I, a 2, %) = a] - (x, - a,) 2 - (x 2 - a2) 2. 

A straightforward application of the above method yields a linearization of 

dimension 4. However,  f can be written in the form 

f ( x , ,  x2, a,, a 2, a3) = [a3 z - aa z - az 2] + [2a ,x , ]  + [2azx23 - [x~ + x~], (2.4) 

thus, setting 

~ o ( a )  = a g  - a~  - a ~ ,  I//t(a) = 2 a l ,  ~k2(a) = 2a2 ,  ~t3(a ) = --1,  

~01(X) = Xl,  ~O2(X) = X2, 'P3(X) = X~ + X~, 

we get a linearization of dimension 3. It corresponds to the above discussed 

"lifting" to the unit paraboloid. 

We describe an efficient algorithm for transforming a given polynomial  f ( x ,  a) 

into the form (2.1) with k as small as possible. We restrict ourselves to the case 

when each ~b i and each q~ is a polynomial. Let us write f ( x ,  a) in the form 

~ M  v 

Here M is the set of  all distinct nonzero d-component  vectors appearing as 

exponents of the x:variables,  N u is the set of  exponent vectors for monomials  in 

the a :var iab les  appearing in the coefficient at x u, and c~.v are real coefficients. For  

a vector # = (#,, #2 . . . . .  #d), put X u = ~I~#I'~'I'~2'''X~ a ' ~ 2  Let N = U u ~ u N u ,  and let C 

be the matrix 

C = (Cu.v)~,~M.~N. 
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Theorem 2.1. The minimum value of  k needed to write a polynomial f (x, a) in the 

form (2.1) with ~ki, tpl polynomials is equal to the rank of the matrix C. 

Proof. First we observe that we can assume each ~pl to be a linear combinat ion 

of monomials  x ~, for # E M, 

~i ~ E Ui,# x#~ 
#~M 

where u~.u is a real coefficient. Similarly each ~k~ is a linear combinat ion of 

monomials  a v, for v �9 N, 

I~i = E Vi, v av, 
yen 

where v~,~ is a real coefficient. This follows from the linear independence of  the 

monomials  x u over R[a]  for distinct #, and the linear independence of  the 

monomials  a ~ over ~ [ x ]  for distinct v. In fact, in this way it can be shown that 

it does not  help to use various other "reasonable"  functions (such as sin, exp, In) 

in the formulas for tp~, ~bi, but  it is not  obvious that some very "wild" functions 

could not  be used. That  is why we explicitly restrict ourselves to linearizations 

given by polynomials.  

Further,  we can assume that  none of the polynomials  tp~ has a nonzero absolute 

term (since such a term can be transferred to ~'o), so we assume that M does not 

contain the zero vector. 

With the above notation,  if the equality (2.1) should hold, we get the system 

of equations 

k 

cu.~ = ~. ui, uvi,~, la e M,  v �9 N. (2.5) 
i=1 

We want to determine the vectors ui = (u~.~),~u and v i = (vi.~)wN. The minimum 

value of  k needed to satisfy (2.5) is equal to the rank of the matrix C (we are 

indebted to Johanes Bltimer for this observation). Indeed, every column of the 

matrix C is a linear combinat ion of  the vectors u 1 . . . . .  Uk, SO k > rank C. On  the 

other  hand, any basis of the vector space generated by the columns of  C can be 

chosen as u 1 . . . . .  u k, because if we express every column of C as a linear 

combinat ion of the u/s, then v~. v can be set to the coefficient at ui for the column 

with index v. [ ]  

The above theorem implies that a linearization of the smallest possible dimen- 

sion can be obtained efficiently by first comput ing  the rank of  the matrix C, say 

using the Gaussian elimination, and then expressing its columns in some base of 

the column space. 
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3. Range Spaces with Elementary Cells 

In this section we begin discussing various methods recently developed for range 

searching and other problems, translating them into an abstract framework. See 

[14], [17], [-19], [22], and [27] for some of the recent results on range searching. 

Elementary Cells, Decompositions, Cuttings. Let (X, F) be a range space, and let 

8 be a set of subsets of X, which are called the elementary cells. The triple 

S = (X, F, g) is called a range space with elementary cells, or shortly a space. 
We say that an elementary cell e e 8 crosses a range 7 e F if 7 c~ e r ~ but 

e g ~. For Q ~ F and e e ~, we let Qe denote the set of ranges of Q crossing e. 

For a space S = (X, F, 8), we define the derived range space as 

(F, {F~le e ~}). (3.1) 

In our subsequent constructions we usually assume that the VC-dimension of the 

derived range space is bounded by a constant. In fact, this might be a good abstract 

definition capturing the essential properties expected from "constant complexity" 

cells. The assumption is satisfied in many natural cases, in particular, if both the 

ranges and the elementary cells are Tarski cells 1-33]. 

A cuttin# is any collection E ~_ ~ of disjoint elementary cells whose union is 

X. Let Q be a finite subset of F. A cutting E is called a (1/r)-cutting for Q if 

I Qe I <- I Ql/r for every e e E. If Qe = ~ for every e e E, then E is called an elementary 
cell decomposition for Q (with respect to S). We say that a range space with 

elementary cells (X, F, o ~) has elementary cell decompositions of size r (4 is a 

nondecreasing real function on natural numbers) if, for every Q ___ N with I QI < m, 

an elementary cell decomposition of Q consisting of at most ~(m) elementary cells 

exists. 

These definitions generalize the corresponding notions for the range space 

defined by half-spaces, o~d. Here X = •d, F is the set of all half-spaces in ~a, and 

g is the set of all relatively open simplices of all dimensions 3 k, 0 < k < d. With 

some abuse of notation, we use ~d to denote this space as well. A simplex e e 8 

crosses a half-space y if it has points both inside y and outside ~. For  a collection 

Q of half-spaces, any triangulation of the arrangement of the bounding hyperplanes 

is an elementary cell decomposition for Q. Thus, by well-known results on 

hyperplane arrangement triangulation, for any m-element Q, an elementary cell 

decomposition consisting of O(m a) cells exists [14]. 

For our range searching algorithm, we need (1/r)-cuttins with a small number 

of elementary cells. The construction of (1/r)-cuttings is well studied for the spaces 

~a,  where the main result is as follows: For any finite set of half-spaces and any 

choice of the parameter r, a (1/r)-cutting of size O(r d) exists, which is asymptotically 

optimal. This result was first proved by Chazelle and Fridman [14]. An efficient 

construction of (1/r)-cuttings in this case has been studied (among others) in [11], 

[25], and [26]. 

3 We also admit "unbounded simplices" defined as intersections of at most d + 1 half-spaces. 



402 P.K. Agarwal and J. Matougek 

Although computing an asymptotically optimal (1/r)-cutting for the spaces Jfd 

is somewhat complicated [14], the existence of (1/r)-cuttings can be established 

with only a slightly worse-size bound using a straightforward (l/r)-nets argument 

(which probably was discovered independently by several authors, see [19] and 

[23]). Let Jog' denote the derived range space for gd.  It is easy to check that it has a 

bounded VC-dimension. Considering a finite set Q of half-spaces, clearly the 

subspace induced by Q in ~ff' also has a bounded VC-dimension, and thus by the 

above-quoted result on (1/r)-nets it follows that we can choose a (1/r)-net N _ Q 

for this range space, of size O(r log r). Let -~ be any elementary cell decomposition 

for N with respect to Jfa (a triangulation in this particular case). The definition 

of (i/r)-net and of the derived range space ~ '  imply that, for any simplex e not 

crossing any hyperplane of N, [ Qe[ < I Q I/r, and therefore each simplex of E crosses 

at most n/r hyperplanes of Q. Since E covers •a, it is a (1/r)-cutting for Q. We can 

choose E of size O(1N[ a) = O((r log r)~). 

This argument is valid for any space (X, F, 8), as long as the derived range 

space (3.1) has VC-dimension bounded by some constant D. Hence, we obtain 

Lemma 3.1. Let S = (X, F, g) be a space such that the VC-dimension of the derived 

range space is bounded by some constant D. I f  S has elementary cell decompositions 

of size ((m), then, for any r and Q, it admits (1/r)-cuttings of size ~(Cor log r), where 

C O is a constant. 

As mentioned above, the size of (1/r)-cuttings for the spaces ~ can be improved 

by more sophisticated methods (those of [11] or [14]). These methods can also 

be applied to some of the spaces that we use here. However, the savings by these 

methods is relatively small, so we do not consider such improvements in this paper. 

Computational Assumptions. In what follows we assume that the space we work 

with admits a (1/r)-cutting of at most ~(r) elementary cells for every finite Q _~ F, 

where ~(r) is a nondecreasing real function. In order to use this in algorithms we 

also have to make some computational assumptions. Namely, we assume that 

given r and (a suitable representations of) Q, a (1/r)-cutting of size at most ~(r) for 

Q can be computed in time O(n. F(r)), where n = I Q[ and F(r) is some function of 

r, thus, in particular, the cutting can be computed in linear time for r = O(1). 

This assumption is based on the above (1/r)-net argument and a result of [25]. 

This results says that for suitably represented range spaces of n points, which 

bounded VC-dimension, a (1/r)-net of size O(r log r) can be computed in O(Fl(r)n) 

time. In our case we apply it to the derived range space (3.1) and compute the 

(1/r)-net N as in the above argument. Having such an N, we have to compute an 

elementary cell decomposition for N with respect to the underlying range space. 

It seems reasonable to assume that this can be done in time depending on r only. 

It remains to say what is meant by "suitably represented" range space, but here 

we refer to [25] for a precise formulation of the assumption. We only note that 

if the range space in question admits a linearization of a bounded dimension (which 

is the case if both the ranges of Q and the elementary cells of 8 are Tarski cells), 
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then the assumption is satisfied and so (1/r)-cuttings for such spaces can be 

computed, provided that we can compute elementary cell decompositions. 

Weighted Cuttings. We also need a "weighted" notion of cuttings. If Q is a set 

of ranges and w: Q ~ ~+ is a nonnegative real function on Q, we call the pair 

(Q, w) a weighted collection of ranges. If A ~ Q, we write just w(A) for ~ a  w(7). 

A cutting E is a weighted (1/r)-cuttin9 for (Q, w) if w(Qe)< w(Q)/r for every 

elementary cell e ~ E. A similar straightforward generalization is possible for the 

notion of a (1/0-net. Both the above argument for deducing the existence of small 

(1/0-cuttings using (1/0-nets and the algorithm for (1/r)-net computation in [25] 

generalize to the weighted case. Hence, we may assume that (1/r)-cuttings of size 

at most ~(r) can be computed in O(F(r)n) time even in the weighted sense. 

4. Decomposing Arrangements of Algebraic Varieties 

The efficiency of a range searching algorithm described below depends crucially 

on the size of the elementary cell decompositions of the underlying space. We are 

free to choose any suitable kind of elementary cells which help us to achieve this 

goal, provided that the derived range space defined in (3.1) has a bounded 

VC-dimension. 

For ranges defined by polynomials of bounded degree, an elementary cell 

decomposition can be computed directly using the known results on decomposing 

arrangements of algebraic surfaces into Tarski cells. For d = 2, the arrangement 

of algebraic curves of bounded degree can be easily decomposed into Tarski cells 

by drawing a vertical line in both directions from each intersection point and the 

point of vertical tangency until it intersects another edge of the arrangement. See 

Fig. 1. For d > 3, the cylindrical algebraic decomposition scheme due to Collins 

can be used, but it produces too many cells. Recently, Chazelle et al. [12] proved 

that, given d-variate polynomials f l  . . . . .  fn of bounded degree, ~a can be parti- 

tioned into O(n 2~- 3fl(n)) Tarski cells (where fl(n) is a function growing extremely 

slowly, more slowly than the inverse of any primitively recursive function), such 

Fig. 1. 

Q 
Decomposing an arrangement of algebraic curves in the plane into Tarski cells. 
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that the sign of each f~ remains constant within each cell. For d = 3, this bound 

is almost optimal. For d > 3, this upper bound is significantly worse than the 

trivial (but best-known) lower bound of f~(na). 

Sometimes (for simple polynomials) better bounds are obtained using another 

method, which we outline next. In general, suppose we have some embedding ~0 

of the considered range space (X, F) into a range space (Y, E) that has a natural 

elementary cell structure ~- and a well-behaved elementary cell decomposition. 

We can define an elementary cell structure on (X, F), in which the elementary cells 

are the preimages of the cells in ~,, that is, r = {cp - l ( f ) l f e~ -} .  An obvious 

candidate for the "target" space (Y, E, ~-) is the space oW k with a possibly small 

k. So, if tp is a linearization (X, F) of dimension k, the elementary cells of r will 

be the preimages of at most k-dimensional simplices. We then get the existence of 

elementary cell decompositions of size O(n k) for (X, F, ~). 

Typically tp(X) will be a d-dimensional (real) algebraic variety defined by 

bounded-degree polynomials, so the preimage of "most of" the simplices will 

be empty. We should therefore expect a better bound on the size of the 

elementary decomposition of (X, F, d~). Namely, we can apply a recent result of 

Aronov et al. [8-1, claiming that a d-dimensional algebraic variety intersects at 

m o s t  O(m L(d+k)/2j log m) simplices in the canonical triangulation of an arrange- 

ment of m hyperplanes in ~k. This means that when q~(X) is a d-dimensional variety 

in R k, then the space S = (X, F, ~) has elementary cell decompositions of size 

r = O(m Lw+k)/2j log m), which by Lemma 3.1 implies, that S admits (1/r)-cuttings 

of size at most ((r) = O((r log r) L(d+k)/2j log r)). 

For example, the range space defined by balls on ~a has a linearization of 

dimension d + 1, whose image is the unit paraboloid (see Section 2 for discussion 

of the case d = 2). By the above method elementary cell decompositions (or a 

decomposition of an arrangement of m spheres, in a more usual language) of size 

O(m a log m) are obtained, which for d > 4 is the best-known result. Note that the 

resulting elementary cells in the original space are projections of intersections of 

simplices with the paraboloid, thus perhaps they are not the most natural cells to 

be considered for decomposing an arrangement of spheres. 

5. Partition Theorem in an Abstract Setting 

Throughout this section we let (X, F, d ~) be a range space with elementary cells. 

For  technical simplication we assume X, ~ e 8. We begin by generalizing the 

notion of simplicial partition from [27]. 

Let P _~ X be a set of n points. An elementary cell partition or shortly partition 

for P is a collection 

II = {(P1, ex) . . . . .  (Pro, era)}, 

where the Pi's are disjoint subsets (called the classes of H) forming a partition of 

P, and each el ~ g (called an elementary cell of H) contains Pi. The number m is 

the size of the partition. 
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For  a range 7 �9 F, we define the crossing number of 

number  of elementary cells among  el . . . . .  e,, crossed by 

of 1-I is defined to be the maximum of crossing numbers 

7 (relative to H) as the 

~,. The crossing number  

over all 7 �9 F. 

Theorem 5.1 (Partition Theorem). Let S = (X, F, 5 a) be a space admitting (1/t)- 

cuttings o f  size at most ((t). Suppose that (X, F) has a faithful linearization of  

dimension bounded by a constant. Let P ~_ X be a set o f  n points, and let r be a 

parameter, 1 < r < n. Then an elementary cell partition I1 = {(P1, el) . . . . .  (P,,, e,,)} 

for P exists, such that: 

(i) [_n/r_J < [P/[ < 2l_n/rJ for  every i. 

(ii) The crossing number of  FI is 

O log r + 
i = 1  

l f  r is bounded by a constant, and a (l/O-cutting of  size at most ((t) can be computed 

in linear time for  t = 0(1), then l-I can be computed in O(n) time. 

Let us emphasize that in this theorem we assume a faithful linearization, that  

is, the preimage of any half-space is a range in F. We do not know whether this 

assumption is necessary, but  it is required for the current proof. In general, a 

linearization of a range space is not faithful, so, in order to apply the theorem, 

we first have to add some "artificial" ranges to the range space (the preimages of 

half-spaces). Note  that this "closure" is not a canonical one, since it depends on 

the chosen linearization. The elementary cell decomposit ions are needed for these 

artificial ranges as well. 

A first ingredient of  the proof  is the following lemma: 

Lemma 5.2. Let S = (X, F, d ~) be a space admitting (l/t)-cuttings o f  size at most 

~(t). Let  P c X be a set o f  n points, let r be a parameter, 1 < r < n, and let Q be a 

finite set o f  ranges o f F .  Then a partition for P, H = {(P1, el) . . . . .  (Pro, era)}, exists 

such that: 

(i) Ln/r] < [P/I < 2Ln/rJ for  every i. 

(ii) The crossing number o f  every range of  Q relative to I7 is 

( O loglQI + 
i = 1  

Proof  The proof  follows the one in [27]. Let s = Ln/rJ. We inductively construct  

the disjoint sets Px, P2 . . . .  _ P, and elementary cells e a, e 2 . . . .  ; Pi ~- ei. Suppose 

that Px . . . . .  P~ have already been constructed, and suppose we want to compute  

P~+I. Set P'i = P\(Px w . "  u Pi), nl = IP'/I. 
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If ni <-2s, we set Pi+ 1 = P'i, el+ 1 = X, m = i + 1, and H = {(P1,  e 0  . . . . .  (P,,, e,,)}, 

which completes  the construction.  If  n i > 2s, we proceed as follows. For  a range 

y ~ Q, let xi(y) denote  the number  of e lementary  cells of {el . . . . .  el} crossed by y. 

We define a weighted collection (Q, wi) by setting w~(y) = 2 ~'t~) for every y ~ Q. 

Let us choose a pa ramete r  tl = (-  1(hi~S). Then a (1/ti)-cutting E i for (Q, wl) of 

size at mos t  nts exists. By the pigeonhole principle, some of the elementary cells 

of  the cut t ing Ei contain at least s points of  P~. Let el+ 1 be some such elementary 

cell. Pi+ ~ is an arbi t rary  subset of s points of P'i contained in e~+ r This completes 

the description of the construction. 

P roper ty  (i) of  1-I is obvious  f rom the construction. In order  to bound the 

crossing numbers  of the ranges of Q relative to the part i t ion YI, we estimate the 

total  weight of the ranges of Q after m steps, denoted w,,(Q), in two different ways. 

By construction,  

rli = rl - -  i .  s 

and 

t , =  ( - 1 ( ~ ) =  ( - x (  n _  i ) > ( - X ( r _ i ) .  

The  weight W m ( ~ )  of a range y ~ Q that  crosses x e lementary cells of FI is 2 K. 

Therefore,  

< log2 win(Q). (5.1) 

Let us consider how wi+l(Q) increases compared  with wAQ). The weight of 

ranges in Qe,+, increases by a facor of  two, and the weight of o ther  ranges remains 

unchanged.  Therefore, 

wi(Q . . . .  )~  
Wi+ I(Q) <-- wi(Q) 1 + ~i(Q) f 

Since El is a (1/q)-cutting, we have 

wi(Q) w,(Q) 
w,(Q,,+) _< < 

t i - ~ - l ( r - i ) "  

However ,  wo(Q) = I QI and m < LrJ, so we obtain  

1) 
win(Q) <~ IQI 1 4- < IQI 1 + . 

i : o  ( - ~ ( r -  i - i=1 
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Now (5.1), along with the inequality ln(1 + x) < x, yields 

tr < log 2 win(Q) = O loglQI + 
i = 1  

as required. [] 

The second ingredient of the proof is the following lemma; it is the place where 

we need the linearization assumption. 

Lemma 5.3 (Test Set Lemma). Let (X, F, ~) be a space with a faithful linearization 

~p of dimension d bounded by a constant. Let P ~_ X be a set of n points, and let r 

(1 < r < n) be a parameter. Then a set Q c_ F of size O(r a) exists such that, for any 

partition rI = {(PI, el) . . . . .  (Pro, era)} satisfying IP~I > n/r (1 < i < m), the following 

holds: I f  Xo is the maximum crossing numbers of ranges Q relative to rI, then the 

crossing number of H is at most (d + 1)Xo. 

Proof Let (o: X --* R d be the faithful linearization of (X, F), set P* = tp(P). Let h 

be a hyperplane in ~d, and let G be a finite set of hyperplanes in R a. We say that 

a point p e P* lies in the zone of h (with respect to G) if p can be connected to a 

point of h by a segment that does not intersect any hyperplane of G. We call G 

an s-guarding set for h (relative to P*) if there are less than s points of P* in the 

zone of h. It  is shown in [27] that, for any r and P*, a set Q* of O(r d) hyperplanes 

in R a exists such that there is an (n/r)-guarding set G ~ Q* of size d + 1 for every 

hyperplane h in Rd. 

Let us fix such a Q* and, for every h e Q*, let h denote one of the half-spaces 

bounded by h (arbitrarily chosen). We set Q = {~o-1(/~)1 h e Q*}, we claim that Q 

is the desired set of ranges. 

Suppose that every range of Q has crossing number at most x o with respect to 

a partition FI as in the lemma, and let ? ~ F be a range. Let h be the hyperplane 

bounding the half-space tp*(~,), and let G = {gl . . . . .  ga+ 1} be the (n/r)-guarding set 

for h. Consider an elementary cell e i of the partition rI that crosses the range 7. 

Let Pi be the class corresponding to el. It is enough to show that ~p(ei) crosses 

some half-space ~ for a g e G, because then eg crosses the preimage tp- l(~) e Q, and 

the preimages of the at most d + 1 half-spaces of G are crossed by at most (d + 1)Xo 

elementary cells in total. 

Suppose the contrary; then q~(el) is contained in a single cell of the arrangement 

of G. Since (o(ei) contains at least n/r points of P* (the images of the points of P~), 

this cell cannot be incident to h, otherwise there would be n/r points of P* in the 

zone of h, contradicting the definition of the (n/r)-guarding set. This means that 

the whole (o(e~) lies in one of the half-spaces defined by h, but this contradicts the 

fact that e~ crosses tp-l(/~). [] 

Proof of  Theorem 5.1. Combining Lemma 5.3 with Lemma 5.2, we obtain the 

existence result in the Partition Theorem, Theorem 5.1. As for the algorithmic 
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statement, we note that if r is bounded by a constant, the number of steps in the 

construction in Lemma 5.2 is bounded by a constant, and each of the steps can 

be executed in at most O(n) time. The set Q* in the proof of the Test Set Lemma 

(Lemma 5.3) can also be obtained in O(n) time. This finishes the proof of 

Theorem 5.1. [] 

6. Range Searching and Related Results 

F-Range Searching Problem. We now construct data structures for the F-range 

searching problem based on Theorem 5.1. 

Theorem 6.1. Let f ( x l  . . . . .  xa, al . . . . .  ap) be a (d + p)-variate polynomial. Assume 

that p, d, q, deg(f) are bounded by a constant. Let 

F = {{xeff~alf(x,  a 1) > O, . . . , f ( x ,  a ~) > 0}l al . . . . .  aqe~v} .  

Then the F-range searching problem with semigroup weights can be solved with 

O(n) space, O(n log n) preprocessing time, and O(n 1-1/b+~) query time, where the 

parameter b can be bounded as follows: 

(i) b = d for d <_ 3, b < 2d - 3 for d > 3. 

(ii) l f  f can be written in the form 

f ( x ,  a) = tPo(a ) + @l(a)tpl(x ) + . . .  + tpk(a)qgk(X), (6.1) 

where ~o . . . . .  ~bk, (Pl . . . .  , (~k are bounded-degree polynomials, then 

In particular, for d = 2, 3, we get O(n 1/2+'~) (resp. 0(n2/3+'~)) query time, which is 

close to optimal. 

Proof. Here we only prove part  (i). Part  (ii) is contained in Theorem 6.3 below, 

as F-range searching, in this case, is equivalent to range searching with intersec- 

tions of q half-spaces on the set q~(P). 

We first verify the applicability of Theorem 5.1 in the described situation. Then 

we build the data structure by a standard partition tree construction. 

Let tp be a linearization of a bounded dimension k of the range space (R a, F f) 

(the ranges in F z are defined by a single polynomial inequality, see (1.1)). We use 

the methods outlined in Section 2 to obtain such a linearization. In order to apply 

the Partition Theorem (Theorem 5.1), we need to make ~0 faithful. We let F be the 

set of all q~-preimages of half-spaces in Rk. Then tp is a faithful linearization of the 

range space (R a, F). 

The next step is to define elementary cells for (R d, r).  Observe that the ranges 
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of F, albeit more general than the ones of F I ,  are still defined by a single 

polynomial  inequality of bounded degree. Hence we can invoke the result of [121 

that is, an arrangement of n algebraic surfaces in Ed, each of  a constant maximum 

degree, can be decomposed into O(nbfl(n)) Tarski cells, with b = 2d - 3 (for d > 3). 

Let r be the set of  all the cells that can arise in such decomposit ions for 

arrangements of surfaces bounding the ranges of F. Then the space (~d, r ,  r  has 

elementary cell decomposit ions of size ~(m) = O(mbfl(m)), and thus (1/r)-cuttings of 

size ((r) = O(r b log b rfl(r)) = O(r b log b+ 1 r). 

In view of the above discussion, we can apply the Parti t ion Theorem (Theorem 

5.1). Thus, for a given set P o fn  points in ~d and a parameter  r < n, an elementary 

cell partition H exists with class size between [ n / r j  and 2[_n/r_], and with crossing 

number  

O log r + -- O(r I - 1/b(1og r) 1 + i/b). 
i= 1 il/b/log 1 § lib i 

If r = O(1), FI can be computed  in O(n) time. 

These partitions are guaranteed to have small crossing numbers with respect 

to ranges of  F I (actually for ranges of F, but these only play an auxiliary role in 

the construction and will not  be significant anymore). We observe that this also 

gives small crossing numbers  for ranges of F:  Let 7 = 71 n ... ~ 7s e F, 7j e F I  and 

s = O(I), then it is easily seen that an elementary cell e crossing 7 must cross at 

least one 7j, and hence the crossing number  of 7 is at most  s times the maximum 

crossing number  of the ranges of F I.  

We are now ready to construct the data s t ructure--par t i t ion t ree-- for  F-range 

searching on P. Each node v of the tree will correspond to some subset Pv c_ p ,  

the root  will correspond to the whole P. Let n~ = IPvl. The sets associated with 

the children of a node v will form a partition of P~. For  each leaf v, n~ is bounded 

by some suitable constant. 

We construct the partition tree in a t op -down  fashion starting from the 

. root. We let r be a sufficiently large constant, which remains fixed throughout  

the construction. We compute  an elementary cell partition Hv for P~ with class 

sizes between I_nJrJ and [2n J r  J, such that any range of F crosses at most  x = 

Cr ~- t/b log~ + lib r elementary cells of H~, C is a constant  independent of  r. The 

classes in l-I v correspond to the (at most  r) children of v. With each node, we store 

the description of the elementary cells of H~ and the total weight of  the points in 

each class of FI r (but not  the list of  points of P,;  the points will only be stored in 

the leaves). This partit ion tree occupies linear space and can be constructed in 

O(n log n) time. 

When processing a query with a range y e F, we start at the root. At each node 

v visited, we take the elementary cells of  the YIv one by one. The cells contained 

in 7 or disjoint from 7 are handled directly, and we recursively search at the children 

of v corresponding to elementary cells that cross ),. We get the following recurrence 

for the query time T(n): 
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with initial condition T(n) = O(1) for n smaller than some constant. The solution 

is T(n) = O(n 1 - 1/b+~), with 6 ~ 0 as r --* oo. [] 

Remark 6.2. The above theorem is formulated for ranges defined as the conjunc- 

tion of a constant number of d-variate polynomial inequalities. Each polynomial 

is a restriction of the same (d + p)-variate polynomial f ( x  1 . . . . .  xa, ax . . . . .  %) 

(evaluated at a~ . . . . .  av); it might asked what happens if ranges are defined by 

several different polynomials. That is, F is of the form 

V = {{x ~ RaiL(x ,  a 1) > 0 . . . . .  L(x ,  a q) > 0} [a'  . . . . .  a q ~ RP}, 

where each f/(x, a) is a (d + p)-variate polynomial. One (rather artificial) possible 

approach is to convert this case to the previous one by defining a polynomial # 

(with possibly more parameters) which is an extension of f l  . . . . .  fq. For example, 

if f l (x ,  a), f2(x, a) are two (d + p)-variate polynomials, we can write f l (x ,  a )=  

9(x, a, 0), f2(x, a) = 9(x, a, 1) for 9(x, a, z) = (1 -- z)fl(x,  a) + z f 2 ( x  , a), where z is a 

new parameter. If we use case (i) of the theorem, this extension does not even affect 

the asymptotic efficiency of the algorithm. Another solution, which is sometimes 

more suitable in case (ii), is to construct a multilevel data structure as mentioned 

in the introduction. 

Simplex Searching for  Points on an Algebraic Variety. Another instance of range 

searching amenable to our methods is the simplex range searching for point sets 

P lying on an algebraic variety Vof bounded degree in R k. Here the general simplex 

range searching result can be improved. We have 

Theorem 6.3. Let P be a set of  n points in ~k lying on a d-dimensional algebraic 

variety defined by bounded-degree polynomials. Then the simplex range searching 

problem for P can be solved with linear space, O(n log n) preprocessin# time, and 

O(n 1-1/b+~) query time, where b = L(d + k)/2]. 

This result includes Theorem 6.1(ii): the set V = ~o(R d) in this case is a 

d-dimensional algebraic variety, and, since every range of F can be expressed as 

a preimage of an intersection of q half-spaces in R k (which, in turn, is a disjoint 

union of 0(1) simplices), simplex range searching on the set q~(P) c V may be 

applied. 

Proof  We define a space with elementary cells (V, F, g) by letting F be the set 

of intersections of V with all half-spaces and let ~ be the set of all intersections 

of V with simplices in •k. By the zone theorem of Aronov et al. [8], this space 

admits elementary cell decompositions of size O(m b log m), and hence (1/r)-cuttings 

of size O(r~(log r) ~+ 1) (both the ranges and elementary cells are Tarski cells in Rk). 

The inclusion map V-~ R k is, by definition, a faithful linearization. Hence we can 

apply Theorem 5.1, and we can build a partition tree for a given set P c V as in 

the previous theorem. [] 
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7. Other Applications 

In the last section we constructed an efficient data structure for F-range searching 

using Theorem 5.1. It has been shown in [1], [5], [9], and in other papers that the 

simplex range searching data structures are quite general, and can be applied to 

various other problems involving a collection of linear objects. Similarly, the 

partition tree developed in the previous section can yield fast data structures for 

a number of problems involving semialgebraic sets. It is beyond the scope of this 

paper to discuss all the applications, so we have chosen two sample applications. 

7.1. Ray Shooting Among Triangles in Three Dimensions 

The first application that we consider is the three-dimensional ray-shooting 
problem, which is defined as follows: Preprocess a set A of n triangles in •3 into 

a data structure, so that the first triangle of A hit by a query ray can be reported 

quickly. In the last few years ray shooting has received considerable attention due 

to its applications in computer graphics and other geometric problems, e.g., see 

[1], [4], [5], [9], [15], [23], and [30]. The best-known algorithm for ray shooting 

in three dimensions is due to Agarwal and Sharir [5] that can answer a query in 

O(n 4/5) time using O(n l§ space and preprocessing. If O(n 4+~) space and pre- 

processing are allowed, a query can be answered in O(log n) time [5], [9], [30]. 

In this subsection we show that the query time can be improved to close to O(n 3/4) 
using linear space and O(n log n) time preprocessing. 

A result by Agarwal and Matou~ek [4] shows that it suffices to construct a 

data structure for detecting an intersection between A and a query segment. (Their 

result requires that the segment intersection detection algorithm satisfies some 

mild assumptions. These assumptions are satisfied in our case; see [4] for details.) 

Observe that a segment 7 intersects a triangle A if and only if the following two 

conditions are satisfied: 

(i) The line containing 7 intersects A. 

(ii) V intersects the plane containing A. 

We construct a data structure on A that detects the above two conditions for a 

query line. The overall approach is similar to that of Agarwal and Sharir, so we 

only describe the main idea. 

Let A e A be a triangle with edges el, e2, e3. Let 11, 12, and 13 be the lines 

containing these edges. We orient the lines so that A lies to the right of each of 

them. A line 2 intersects A if and only if it has the same relative orientation with 

respect to l~, 12, and 13. The relative orientation of two oriented lines l, 2 in ~3 is 

defined to be the orientation of any simplex abcd, where a, b ~ l, c, d ~ )~, so that 

l is oriented from a to b and 2 is oriented from c to d. Equivalently, it is also the 

sign of the inner product between the two vectors in projective R 5 representing 

the Plficker coordinates of the two lines. (For the sake of convenience, we do not 

distinguish between the projective 5-space and the affine 5-space ~5.) To be more 



412 P.K. Agarwal and J. Matou~ek 

precise, l can be mapped to a point ~(/), called a Plficker point, and 2 can be 

mapped to a hyperplane to(2), called a Plficker hyperplane in R 5, so that l has 

positive orientation with respect to 2 if and only if 7t(/) lies in the positive half-space 

bounded by the hyperplane to(J.). The Pliicker points of all lines in ~3 lie on a 

quadric surface, known as the Plficker surface, in R 5. See [13] and [32] for more 

details on Pliicker's coordinates. 

Based on the above approach we preprocess A as follows. We take an edge 

from each triangle of A and form the collection of lines containing these edges. 

The lines are oriented as described above, and are mapped to a collection P of 

points in R 5 using Pliicker coordinates. Let r be some sufficiently large constant. 

We construct a partition H --- {(Px, el), (P2, e2) . . . . .  (P,,, era)} for P of size O(r) using 

Theorem 5.1. Since P lies on a four-dimensional quadratic surface, the crossing 

number of H is K = O(r 3/4 log 5/4 r). We recursively construct a partition for each 

canonical subset Pi of P. The recursion stops when the number of points fall below 

some prespecified constant. The resulting data structure is a tree of depth O(log n), 

each of whose node has degree at most r. Every node v of the tree is associated 

with a simplex e v and a subset Pv --- P. We take the second edge of the triangles 

corresponding to points in Pv, extend them to oriented lines, map the lines to 

their Plficker points in 5-space, and construct a partition tree on the resulting 

points as above. We attach this partition tree to v as its secondary structure. Next, 

for each canonical subset of the secondary tree, we take the third edge of the 

corresponding triangles and again repeat the same step. This gives a three-level 

structure, which is used to extract the triangles that intersect the line containing 

a query segment. 

Let T be the set of triangles corresponding to a canonical subset of the 

third-level tree. We extend the triangles of T to full planes and dualize them to 

points. Let A be the set of resulting points. We preprocess A, in time O(IAllog]AI), 
into a linear-size data structure for answering simplex range queries [27]. This 

completes the description of the data structure. Let Si(m) denote the maximum 

space required by the ith level (i < 4) data structure constructed on m points. Then 

we get the following recurrence: 

f O(1) if m < c, 

Si(m)<~O(rn) if m > c ,  i = 4 ,  

~ S i ( m j ) + S  '+l(m) if m > c ,  i < 4 ,  

where ~j m i = m, mj < 2m/r, and c is some appropriate constant. The solution of 

the above recurrence is O(m log 4- i m). The total space required by the above data 

structure is thus O(n log 3 n). Similarly, the total preprocessing time can be shown 

to be O(n log 4 n). 

Let y be a query segment. We detect an intersection between ? and A as follows. 

We first determine the triangles that intersect the line l containing y and then 

check whether ~, intersects any of the planes containing these triangles. Let h be 

the Pliicker hyperplane of l (l is oriented arbitrarily). We search the first-level 
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structure with h and at each node v we do the following. If v is leaf, then we 

explicitly check (in constant time) whether 7 intersects any of the triangles 

corresponding to the points associated with v. If v is not a leaf and the simplex 

e v intersects h, we recursively search the subtree rooted at v. If h lies above (resp. 

below) ev, we query the secondary structure of v with the half-plane lying below 

(resp. above) h. 

Suppose ev lies in the half-space h +. Let w be a node in the secondary structure. 

If w is a leaf, then we check whether 7 intersects any of the triangles corresponding 

to the points associated with w. If h § does not intersect ew, we discard w and do 

not search the subtree rooted at w. If h intersects w, we recursively search the 

subtree rooted at w. Otherwise, ew --q h +, and we search the third-level tree stored 

at w in the same way as the second-level structure. Suppose z is a node of the 

third-level tree for which e~ ~_ h § so that we query the fourth-level structure. Let 

T be the set of triangles corresponding to the points associated with z. By the 

above discussion, I intersects all triangles in T, so it suffices to determine whether 

y intersects any of the planes containing the triangles of T. To this end, we query 

the fourth-level structure stored at z with the double wedge 7", dual to the segment 

y, and determine whether any point (dual to planes containing the triangles of T) 

in the fourth-level structure lies in y*. If the answer is "yes," then we can conclude 

that y intersects a triangle of T, and stop right away. Otherwise, we continue. If 

the answer is "no"  at all third-level nodes visited by the procedure, then ), does 

not intersect any triangle of A. This completes the description of the query- 

answering procedure. 

The time spent at a fourth-level structure constructed on T is 0([ Tl2/a+a). Let 

Q~(m) denote the maximum query time for an ith level structure constructed on m 

points. Then 

i 
O(1) if m < c, 

O(m 2/3+'~) if m > c, i = 4, 
Qi(m) _< 

]xQ' ( zrn~  + Q'+l(m) + O(1) if m >  c, i < 4 ,  
k \ r ]  

where c, c' are some constants. The solution of the above recurrence is O(m 3/4+~') 
for another but arbitrarily small 6' > 0. Hence, the overall query time is O(n 3/4 +6,). 

The size of the data structure can be improved to O(n) without affecting the 

asymptotic query time by using the techniques described in Agarwal et al. [3]. 

Furthermore, using the standard space/query-time tradeoff techniques, the query 

time can be improved by allowing more space. In particular, combining our result 

with the result of Agarwal and Sharir [5], a segment intersection detection query 

can be answered in O(n/s 1/4) time using O(s ~+~) space and preprocessing for 

n < s < n 4. Putting everything together, we can conclude 

Theorem 7.1. Given a set A of  triangles in R a and a parameter s, n <_ s <_ n 4, A 

can be preprocessed into a data structure of  size O(s I +~), so that a ray-shooting 

query can be answered in time O(n/sl/4). 
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Remark  7.2. Pellegrini [-30] has considered several other problems involving lines 

in three dimensions. Using the same approach  as above, data  structures for these 

problems can be obtained with the same performance as in Theorem 7.1. 

7.2. Intersection Detect ion Be tween  Lines  and Spheres 

Another  application that we describe is: Preprocess a set 6P of  spheres in •3, so 

that it can be quickly determined whether a query line intersects any of the spheres 

in 5 a. 

Without  loss of generality we can assume that the query line is not  horizontal, 

because a similar (actually somewhat  simpler) data structure can be constructed 

to handle horizontal  lines. A nonhor izonta l  line a can be parametrized by a 4-tuple 

(at, a2, a3, a4) of real numbers:  

a =  {p + tq; t ~ } ,  

where p = (al, a2 ,0  ) is the intersection point  of  a with the xy-plane and 

q = (a 3, a 4, 1) is the direction vector of  a. The distance of the line a from a point 

x = (xl, x2, xa) e R 3 is the same as the distance of  the line a' = {(p - x) + tq; t ~ ~}  

from the origin. The point  y on a' closest to the origin satisfies y = (p - x) + tq 

for some t, and at the same time y .  q = 0. F r o m  this we get 

y = (p -- x) + 
[,(p -- x ) ' q ] q  

Ilqtl 2 

and the desired distance of  x from a will be the length of  this vector y. After some 

calculation we obtain that  the line a intersects a sphere with center (xt, x2, x3) 

and radius r if and only if f ( x  t, x 2, x3,  r, at ,  a2, a3, a4) < O, where 

f ( x t ,  x2,  x3,  xa,  at, a2, a3, a4) 

= [-(a 2 + 1)a 2 + (a ] + 1)a 2 -- 2ata2a3a4]  

+ 2[,a2aaa4 -- at(a 2 + 1)]Xl + 2[,ataaa4 -- a2(a 2 + 1)Ix2 

+ 2[,alaa + a2a4]x3 -- 2[ ,aaa4]xlx  2 -- 2[ ,a3]xlx  3 -- 2[,a4]x2x 3 

+ [,l](x 2 + x 2 _ x 2) + [,a2](x 2 + x 2 _ x 2) + [a2](x 2 + x 2 _ x2). (7.1) 

A sphere S t o w  with parameters (x t, x 2, x3, X4) can be mapped  to a point 

S* = (x 1 , x 2 , x a , x ~ ) e ~ 4 ,  and a nonhor izonta l  line a with parameters 

(aa, a2, a3, a4) can be mapped  to a point  a* = (al, a2, aa, a4) ~ R 4. Then a intersects 

S if and only if S* e~i(a*), thus intersection detection reduces to F f r a n g e  

searching (emptiness queries, in fact). Since d = 4, by Theorem 6.1, the latter query 

can be answered in time O(n 4/5 +~). 
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However, here is a better way to proceed: We choose a linearization q9 of the 

range space Fy. The polynomial in (7.1) is written in the form (2.1), which gives 

a linearization of dimension 9. A line a intersects a sphere S if and only if q~(S*) 

lies in the half-space ~o*(a*). Hence, the problem can be viewed as the half-space 

emptiness problem in dimension 9 (see Section 1). The latter can be solved with 

O(n log n) preprocessing, O(n) space, and O(n 3/4 log ~ n) query time, by [-28]. We 

thus get: 

Theorem 7.3. We can preprocess a set 5 p o f  n spheres in ~3, in time O(n log n), 

into a data structure o f  linear size, so that it can be determined in time 0(ll 3/4 log ~ n) 

whether a query line intersects any sphere o f  6~. 

Remark 7.4. (i) Using multilevel data structures and the technique of [4], the 

above algorithm can be extended to ray shooting among spheres with similar 

performance bounds; we omit the details. 

(ii) Using the data structure described in [18], instead of the one described in 

[28], for answering half-space emptiness queries, a set of spheres in ~3 can be 

preprocessed into a data structure of size O(n4+~), so that a ray-shooting query 

can be answered in time O(log 2 n). Following a different approach, Agarwal et al. 

[2] have also obtained similar bounds. However, their approach does not yield a 

linear-size data structure with O(n 3/4 log ~ n) query time. Combining Theorem 

7.3 with these data structures, a ray shooting query can be answered in time 

O(n/s 1/4 log 2 n) using O(s 1 +~) space and preprocessing, for any n < s < n 4. 

(iii) Consider an analogous problem in the plane--preprocess a set of circles 

into a data structure so that an intersection between a query line and circles can 

be detected. Here we get O(n 2/3 +~) query time by a direct application of Theorem 

6.1 (first we map circles to points in ~3 using (2.4), then the problem becomes 

range searching with ranges defined by a single polynomial). Notice that a line 

y = a~x + a2 intersects a circle with center(x~, x2) and radius r if the polynomial 

f ( x l ,  x2, r, al, a2) > O, where 

f ( x l ,  x2, x3, al, az) = [a22] + 2[ala2]xl  - 2[az]x2 + [a2](x 2 - x32) 

- 2 [ a l ] x l x z  + (x 2 - xZ). (7.2) 

This polynomial has a linearization of dimension 5, as shown above, so by a 

five-dimensional half-space range searching structure [28], a line-circle intersec- 

tion detection query can be answered in time O(v/n log ~176 n). A similar bound 

was attained in [3] using an entirely different approach. 

(iv) A more interesting case is where the roles of lines and circles are reversed: 

A set of lines in the plane is to be preprocessed, so that it can be quickly detected 

whether a query circle intersects any of the given lines. Here the two approaches 

- -F-range searching in the plane and half-space range searching in higher 

dimensions--yield similar results. Since a line is represented by two parameters, 

the first approach (see Theorem 6.1) can answer a query in time O(n 1/2 +~). On the 

other hand, the polynomial of (7.2) has a linearization of dimension 5 in this 
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case as well, so a five-dimensional half-space range searching structure yields 

roughly the same query time. However, the first solution has certain advantages: 

It can be extended to counting the number of lines intersected by a query circle 

(while half-space range searching only works for emptiness queries or reporting), 

and it is possible to use the first structure as the top level of a multilevel data 

structure, which does not seem possible with the half-space range searching data 

structure. Moreover, the asymptotic efficiency of the first structure does not change 

even if we allow more complex query objects, e.g., ellipse, parabola, or a lune 

(intersection of two disks), because its efficiency depends only on the number of 

parameters required to represent a line. 

8. Open Problems 

One of major problems in computational geometry is the decomposition of an 

arrangement of algebraic varieties into Tarski cells. The known results for this 

problem, discussed in Section 4, appear to be far from being optimal. Our paper 

adds one more motivation (efficient range searching) to this problem, but various 

other applications are also known (e.g., point location; see [12]). 

Concerning our results on range searching with linear space, if the query time 

should be significantly smaller than for the trivial solution (testing every point of 

P for membership in the query range) for some reasonable values of n, the constant 

b has to be quite small (certainly smaller than 10). Therefore it makes sense to 

investigate specific small dimensions and improve the decompositions of arrange- 

ments of algebraic surfaces at least in various special cases. 

For many interesting range searching problems, our technique requires adding 

some new ranges (the preimages of half-spaces in the chosen linearization) before 

decomposition takes place, which makes the decomposition problem potentially 

more demanding. Is there a way to avoid these "artificial" ranges? 

An interesting question is whether the half-space range searching algorithm of 

1-28] can be generalized to nonlinear ranges in a similar way, as we did with the 

simplex range searching in this paper. In this case the underlying decomposition 

problem requires decomposing a single cell in an arrangement of algebraic 

varieties. We are not aware of any general results in higher dimensions in this 

direction, where the complexity of the single-cell decomposition is better than the 

complexity of the decomposition of the whole arrangement. 

Another, slightly less-related problem is to prove (or disprove?) the obvious- 

looking statement that the range space defined (say) by triangles in the plane 

has no linearization. In general, perhaps more should be learnt about the 

embeddability of geometrically defined range spaces. 
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