
Discrete Comput Geom 11:393~,18 (1994)
Discrete & Computational

Geometry
1994 Springer-Verlag New York Inc.

O n R a n g e S e a r c h i n g with S e m i a l g e b r a i c Sets*

P. K. A g a r w a l 1 and J. M a t o u ~ e k 2

1 Computer Science Department, Duke University,

Durham, NC 27706, USA

2 Katedra Aplikovan6 Matamatiky, Universita Karlova,

118 00 Praka 1, Czech Republic

and

Institut fiir Informatik, Freie Universit~it Berlin,

Arnirnallee 2-6, D-14195 Berlin, Germany

matou~ek@cspguk 11.bitnet

Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer),

and let F be a collection of subsets of ~d, each of which is defined by a constant

number of bounded degree polynomial inequalities. We consider the following

F-range searching problem: Given P, build a data structure for efficient answering

of queries of the form, "Given a 7 ~ F, count (or report) the points of P lying in 7."

Generalizing the simplex range searching techniques, we give a solution with

nearly linear space and preprocessing time and with O(n 1- x/b+~) query time, where

d < b < 2d - 3 and ~ > 0 is an arbitrarily small constant. The acutal value of b is

related to the problem of partitioning arrangements of algebraic surfaces into cells

with a constant description complexity. We present some of the applications of

F-range searching problem, including improved ray shooting among triangles in ~ 3

1. Introduction

Let F be a family of subsets of the d-dimensional space ~d (d is a small constant)

such that each y e F can be described by some fixed number of real parameters

(for example, F can be the set of balls, or the set of all intersections of two ellipsoids,

* Part of the work by P. Agarwal was supported by National Science Foundation Grant CCR-91-

06514. Part of the work by J. Matougek was supported by a Humboldt Research Fellowship.

A preliminary version of this paper appeared in Proc. 17th Syrup. on Mathematical Foundations

of Computer Science, Lecture Notes in Computer Science, Vol. 629, Springer-Verlag, Berlin, 1992,

pp. 1-13.

394 P.K. Agarwal and J. Matougek

etc.; see below for a more formal definition). We consider the following algorithmic

problem:

Given a set P of n points in ~d, build a data structure, which answers

the queries of the following form efficiently: Given a query object ~ e F,

count (or report) all points of P lying in),.

Actually, we consider a more general setting, where a weight function on points

in P is assumed and the cumulative weight of points in P c~ ? is required. The

weights are assumed to belong to a semigroup, i.e., subtractions are not allowed.

We assume that the semigroup operations can be executed in constant time. As

is typical in computational geometry, we use the real R A M model of computation,

where the input data contains arbitrary real numbers and each arithmetic

operation with real numbers is charged unit cost. We also assume that the roots

of a fixed-degree polynomial can be computed in constant time.

A special case of the F-range searching problem that has been intensively

studied is the simplex range searching, where F is the set of all d-dimensional

simplices. This simplex range searching is by now reasonably well understood:

lower bounds were given by Chazelle [10], and nearly matching upper bounds

were given by Chazelle et al. [16] and further improved by Matou~ek in [17] and

[29] (some of the several previous significant works on this problem include [17],

[22], [341 and [35]). Ignoring various subpolynomial factors, these results

essentially say that the simplex range searching problem can be solved either with

linear storage and preprocessing and O(n 1-1/d) query time, or with a poly-

logarithmic query time and O(n d) storage. These two solutions can be combined

to construct a data structure of size m, n < m < n d, so that a query can be answered

in time O(n/ml/d).

There is an important range searching problem, which can be viewed as a

special case of the simplex range searching problem, but which admits a more

efficient solution--the half-space emptiness problem. Here F is the set of all

half-spaces, and we are only interested in determining whether a query half-space

contains any point of P. By the results of [19] and [28], this problem can be

solved (again ignoring subpolynomial factors) with O(n/m 1/Ld/2J) query time using

space m, n < m < n Ld/2j. An extension to reporting points in the query half-space

is also possible, with the number of reported points added to the query time, but

no such result is known, e.g., for counting the points in a query half-space.

Only few results were published for the nonlinear case, when the objects of F

are bounded by surfaces other than hyperplanes. One well-studied case is reporting

(or counting) points in query disks in the plane [6], [17], or in query balls in

higher dimensions, since it is closely related to the nearest neighbor problem,

k-nearest neighbors problem, etc. ChazeUe and Welzl [17] give linear-space solu-

tions to the circular range searching problem in the plane with O(x/~ log 2 n)

query time. All k points lying in a query disk can be reported in time O(log n + k)

using a data structure of size O(n log n) [6], [28].

The paper by Chazelle and Welzl [17] provides an elegant general result, which

bounds a certain measure of complexity of the F-range searching problem on a

On Range Searching with Semialgebraic Sets 395

set P in terms of the so-called Vapnik-Chervonenkis dimension of the set system

(P, {P n 7IY ~ F}) (this notion is explained in Section 2). Unfortunately, this result

only estimates the number of semigroup operations needed to answer the query,

but does not account for other operations needed in the algorithm. Hence, their

result does not immediately give an algorithm. However, in some special cases,

e.g., in the case of the disk range searching, their approach can be made algorithmic

by using some additional data structures (see the original paper for details).

The techniques developed for the simplex range searching seem to be quite

powerful and general, and many researchers felt that they should be applicable to

the general F-range searching problem, where ranges are defined by constant

number of bounded-degree polynomial inequalities. A basic example arises as

follows: Let p be a constant and let f (x 1 xa, a~ ap) be a fixed (d + p)-

variate polynomial of degree bounded by some constant) Let us consider a

collection F : of subsets of •a defined by

where

F : = {Ty(a)la e N'}, (1.1)

7:(a) = {x e ~"l fCx, a) >_ O}

for some a ~ R v.

In this paper we show that, indeed, the known techniques can be extended to

handle the F-range searching problem, where F = F: . The extension of simplex

range searching to this setting is relatively straightforward, but one technical

difficulty has to be overcome, namely, the construction of the so-called "guarding

set" (or "test set"), where the most direct translation of the method used in the

simplex case does not work.

Our algorithms easily extend to ranges defined by conjunctions and disjunctions

of a bounded number of polynomial inequalities. Disjunctions correspond

to unions of ranges, and by rewriting the defining formula suitably, we can

assume that these are disjoint unions (e.g., a formula A v B can be rewritten to

A v (B&NOT A)), and disjoint unions are straightforward to deal with in range

searching. A conjunction of polynomial inequalities defined by the same poly-

nomial f (i.e., y = 7~ c~ 72 such that Ya, Y2 ~ F:) can be handled without any

additional effort; see Section 6 for details. On the other hand, a conjunction of

inequalities defined by different polynomials is handled using multilevel data

structures. Roughly speaking, having a suitable F : r a n g e searching data struc-

ture and a F~-range searching data structure, the technique of multilevel

data structures enables us to build a F-range searching data structure, where

F = {el n yzlyt ~FI , y2 e F2}.
A multilevel data structure can be viewed as a "composition" of the range

searching data structures. Perhaps surprisingly (at the first sight), the efficiency of

1 Throughout this paper, a~, x~ are used to denote the coordinates of points a and x, respectively,
and a i, x ~ are used to denote sequences of points.

396 P.K. Agarwal and J. Matougek

the resulting data structure is roughly the same as the efficiency of the worst one

of the data structures we started with. A simple instance of multilevel data

structures is the range tree (see [31]). An example more closely related to our

application was given by Dobkin and Edelsbrunner 1-20]. Chazelle et al. [16] show

how a multilevel data structure can be used to extend a half-space range searching

data structure to answer simplex range queries. Other applications of multilevel

structures can be found in [27] and [5]. An abstract framework for multilevel

data structures has been introduced in [29].

We can also handle strict inequalities in the same manner as nonstrict ones

(choosing nonstrict inequalities for the presentation is just an arbitrary conven-

tion). Therefore, we can build range searching data structures for arbitrary

semialgebraic sets of a constant description complexity. A semialgebraic set in R a

is a set obtainable from a finite number of sets of the form {x~ ~alf(x)>_ 0} or

{Xeff~dlf(x) > 0} (f is a d-variate polynomial with rational coefficients) by

Boolean operations (disjunction, conjunction, complementation). A semialgebraic

set has a constant description complexity if it is defined by a constant number of

polynomial inequalities (the constant may depend on the dimension), each of

constant maximum degree; such semialgebraic sets are sometimes called Tarski

cells.
The efficiency of our F:-range searching algorithms is determined by the ability

to partition the cells in arrangements of certain algebraic surfaces into small

numbers of some "elementary" subcells with a constant size description. We

consider a F:-range searching structure with linear space. In our method we first

obtain a certain "closure" (d + p)-variate polynomial f (x, ~), h = (~ ~:), from

the polynomial f. In general p >_ p. The construction of this new polynomial is

not canonical (that is, there may be different choices for f) . If we can partition the

arrangement of any collection of m surfaces of the form

{{x e R~lf(x, a') = o} l a ' a " e R.}

into O(m b) elementary cells, then we can construct a linear-size data structure for

a F:-range searching with query time O(n 1-1/b+6).2 The preprocessing time of our

algorithm is O(n log n). The most natural preprocessing algorithm is randomized,

but it can also be turned into a deterministic one without affecting the asymptotic

running time. Our data structures achieve only a relatively small saving in the

query time (a factor of n lib at best) compared with the (trivial) O(n) bound.

It is also possible to get a (poly)logarithmic query time, provided that we can

afford a relatively large space, and we can get a tradeoff between space and query

time as well. We briefly outline these possibilities here, without giving any details.

In order to get a F:-range searching data structure with O(log n) query time, we

may generalize the method developed by Chazelle et al. [16] for half-spaces in a

straightforward way. Essentially, it requires preprocessing the arrangement of

certain algebraic surfaces for answering point-location queries. Here, again, the

2 We use 6 to denote an arbitrarily small positive constant. The multiplicative constants in the
asymptotic bounds may depend on 6.

On Range Searching with Semialgebraic Sets 397

efficiency of the data structure (the space requirement) depends on the size of

certain decompositions of arrangements of algebraic surfaces. This time the

decomposition takes place in the parameter space: the relevant surfaces in ~P are

{a ~ RPlf(x i, a) = 0} for some x ~ xmE R d. Assuming that the arrangement of

any m such surfaces can be decomposed into O(m ~) elementary cells, the F f r a n g e

searching problem can be solved with O(n ~ + 6) space and preprocessing time, and

with O(log n) query time. The point-location problem in an arrangement of

algebraic surfaces is discussed in [12]. The data structures with logarithmic query

time can be combined with the linear-space ones to obtain a space/query-time

tradeoff; see, e.g., [16].

The paper is organized as follows. In Section 2 we give basic definitions and

we discuss the so-called linearization of range spaces. In Section 3 we extend the

notion of cuttings to an abstract framework. Section 4 discusses various methods

for decomposing an arrangement of algebraic surfaces into constant size cells.

Section 5 derives the main results of the paper, and Section 6 describes the range

searching algorithms based on the results derived in the previous section. We

present some applications of F-range searching, and finally conclude in Section 8

by mentioning some open problems.

2. Range Spaces and Linearization

We recall some terminology and results concerning range spaces, since they offer

a convenient abstract framework for our considerations; see [22], [24], and [7]

for more material.

Range Spaces. A range space is a pair (X, F), where X is some (possibly infinite)

set and F is a set of subsets of X. The elements of X are usually called the points

and the elements of F the ranges of (X, F). For Y ~ X, the subspace of (X, F)

induced by Y is defined as the range space (Y, {7 c7 YIT~F}) (the ranges are

considered as sets). The Vapnik-Chervonenkis dimension or VC-dimension of a

range space (X, F) is d if there is no subset A _c X of size d + 1 such that the

subspace induced by A has all possible subsets of A as ranges.

Typical examples of range spaces in computational geometry are of the form

(//~d, F), where F is a set of geometric figures, such as the set of all half-spaces, all

simplices, all balls, or it has the form F I for some polynomial f (see above), etc.

In computational applications, one usually encounters subspaces of these range

spaces induced by finite subsets of R d. Let Off a denote the range space

(Ra, {~'17 a half-space in Ra}).

All these examples (and various others) share an important property that they

have finite VC-dimension.

(1/r)-Nets. Let (X, F) be a range space with X finite. A subset S ~_ X is called

a (1/r)-net for (X, F), provided that S r~ y ~ 0 , for every 7e F with 171/Igl > i/r.

398 P.K. Agarwal and J. Matou~ek

Haussler and Welzl [22] proved that, given a range space of VC-dimension at

most d and a paramete r r > 0, a (1/r)-net of size at most Car log r, where Ca is a

constant depending only on d, exists. Recently, Koml6s et al. [24] showed that

Ca = d + o(d) and that, in the worst case, this bound is tight up to an additive

factor.

Embeddings and Linearizations. If f : X --* Y is a mapp ing from a set X to a set

Y and A ~ X , we let f (A) = { f (x) l x e X } ~ Y . For a set B~_ Y, we define

f - I (B) = {x ~ X I f (x)e B} (note that we do not assume B ~_ f(X)) .

Let (X, F) and (Y, E) be range spaces, and let ~0: X --. Y be an injective function.

Then q~ is called an embeddino of range spaces if, for each 7 ~ F, there is a t r e Y~

such that 7 = q~-1(a) �9 In other words, for every 7 e F , a a eY. exists whose

intersection with q~(X), the image of X in Y, is precisely tp(y). We let ~0"(7) denote

some a with this proper ty (in general, more than one sach a may exist; it will be

irrelevant which one is chosen for ~0"(7) in our considerations). We call the

embedding q~ faithful if ~0- l(a) e F for every a e E. Given an embedding q~, we can

always add more subsets to F so that q~ becomes faithful.

A basic nontrivial example of embedding of range spaces in computa t ional

geometry arises f rom the well-known "lifting to the parabolo id" , see, e.g., [21].

Here X = ~2 (the plane), F is the set of all (closed) disks, (Y, E) is the space ~ 3 ,

and the mapp ing q~: R 2 --* R 3 is given by q~((x 1, x2)) = (xl, x2, x 2 + x2). The set

f (X) is the unit paraboloid. For a set B _ ~3, its inverse image ~0- I(B) is obtained

by first intersecting B with the unit parabolid, and then vertically projecting the

intersection onto the xy-plane. We claim that ~0 is an embedding of range spaces.

Obvious ly it is injective, and it is well known that the image of any disk D in the

plane can be obta ined as the intersection of the unit parabolo id with a closed

half-space h in ~a; q~*(D)= h. In this part icular case r is unique. The

embedding is not a faithful one, but if we also add the complements of all open

disks and the empty set to F, q~ becomes faithful. A generalization of this example

is discussed below.

We need embeddings to the range spaces ~k ; we call such an embedding

~o: X ~ R k of a range space (X, F) into the range space ~ k a linearization of (X, F);

k is called the dimension of this linearization.

As far as we could find out, very little is known about l inearizations of range

spaces. Alon et al. [7] introduce the not ion of embedding and give some negative

examples. Yao and Yao [35] made an observat ion which, t ranslated into our

terminology, says that each range space of the form (R a, FI), f a bounded degree

(d + p)-variate polynomial , is linearizable: Indeed, to get a l inearization in this

case, it suffices to express the mul t ivar ia te polynomial f (x , a) in the form

f (x , a) = ~go(a) + Ol(a)cpl(x) + " " + t#k(a)q~k(x) (2.1)

for some real functions q~a ~0 k, I~0 I~k. Then a point x e X is m a p p e d to the

point

q~(x) = (~ol(x), ~o2(x2) ~Ok(Xk)) ~ R k. (2.2)

On Range Searching with Semialgebraic Sets 399

Then for a range 7:(a) = {x ~ Ralf(x, a) > 0}, the corresponding range q~*(a) is the

half-space

{Y~ Rkl~o(a) + ~kl(a)Yl + ' " + ~kk(a)Yk > 0}. (2.3)

Algorithm for Linearizin9 Polynomials. A simplest way to express the polynomial

f (x , a) in the form (2.1) is to write f as a sum of monomials in the x~ variables

with its coefficients being polynomials in the ajs. Then each monomial in the x : s

will play the role of one function q~, and its coefficient will be the corresponding

function ~,~ (qJo is formed by the terms containing no x{s).

It is often important to minimize the dimension of a linearization. The method

just described does not necessarily give the best result. Let us return to the example

with disks in the plane considered above. A circle with center (aa, a2) and radius

a 3 in the plane can be regarded as a set of the form 7:(a), where a = (a~, a2, a3)

and f is the 5-variate polynomial

f (x , , x 2, a I, a 2, %) = a] - (x, - a,) 2 - (x 2 - a2) 2.

A straightforward application of the above method yields a linearization of

dimension 4. However, f can be written in the form

f (x , , x2, a,, a 2, a3) = [a3 z - aa z - az 2] + [2a ,x ,] + [2azx23 - [x~ + x~], (2.4)

thus, setting

~ o (a) = a g - a~ - a ~ , I//t(a) = 2 a l , ~k2(a) = 2a2 , ~t3(a) = --1,

~01(X) = Xl, ~O2(X) = X2, 'P3(X) = X~ + X~,

we get a linearization of dimension 3. It corresponds to the above discussed

"lifting" to the unit paraboloid.

We describe an efficient algorithm for transforming a given polynomial f (x , a)

into the form (2.1) with k as small as possible. We restrict ourselves to the case

when each ~b i and each q~ is a polynomial. Let us write f (x , a) in the form

~ M v

Here M is the set of all distinct nonzero d-component vectors appearing as

exponents of the x:variables, N u is the set of exponent vectors for monomials in

the a :var iab les appearing in the coefficient at x u, and c~.v are real coefficients. For

a vector # = (#,, #2 #d), put X u = ~I~#I'~'I'~2'''X~ a ' ~ 2 Let N = U u ~ u N u , and let C

be the matrix

C = (Cu.v)~,~M.~N.

400 P .K. Agarwal and J. Matougek

Theorem 2.1. The minimum value of k needed to write a polynomial f (x, a) in the

form (2.1) with ~ki, tpl polynomials is equal to the rank of the matrix C.

Proof. First we observe that we can assume each ~pl to be a linear combinat ion

of monomials x ~, for # E M,

~i ~ E Ui,# x#~
#~M

where u~.u is a real coefficient. Similarly each ~k~ is a linear combinat ion of

monomials a v, for v �9 N,

I~i = E Vi, v av,
yen

where v~,~ is a real coefficient. This follows from the linear independence of the

monomials x u over R[a] for distinct #, and the linear independence of the

monomials a ~ over ~ [x] for distinct v. In fact, in this way it can be shown that

it does not help to use various other "reasonable" functions (such as sin, exp, In)

in the formulas for tp~, ~bi, but it is not obvious that some very "wild" functions

could not be used. That is why we explicitly restrict ourselves to linearizations

given by polynomials.

Further, we can assume that none of the polynomials tp~ has a nonzero absolute

term (since such a term can be transferred to ~'o), so we assume that M does not

contain the zero vector.

With the above notation, if the equality (2.1) should hold, we get the system

of equations

k

cu.~ = ~. ui, uvi,~, la e M, v �9 N. (2.5)
i=1

We want to determine the vectors ui = (u~.~),~u and v i = (vi.~)wN. The minimum

value of k needed to satisfy (2.5) is equal to the rank of the matrix C (we are

indebted to Johanes Bltimer for this observation). Indeed, every column of the

matrix C is a linear combinat ion of the vectors u 1 Uk, SO k > rank C. On the

other hand, any basis of the vector space generated by the columns of C can be

chosen as u 1 u k, because if we express every column of C as a linear

combinat ion of the u/s, then v~. v can be set to the coefficient at ui for the column

with index v. []

The above theorem implies that a linearization of the smallest possible dimen-

sion can be obtained efficiently by first comput ing the rank of the matrix C, say

using the Gaussian elimination, and then expressing its columns in some base of

the column space.

On Range Searching with Semialgebraic Sets 401

3. Range Spaces with Elementary Cells

In this section we begin discussing various methods recently developed for range

searching and other problems, translating them into an abstract framework. See

[14], [17], [-19], [22], and [27] for some of the recent results on range searching.

Elementary Cells, Decompositions, Cuttings. Let (X, F) be a range space, and let

8 be a set of subsets of X, which are called the elementary cells. The triple

S = (X, F, g) is called a range space with elementary cells, or shortly a space.
We say that an elementary cell e e 8 crosses a range 7 e F if 7 c~ e r ~ but

e g ~. For Q ~ F and e e ~, we let Qe denote the set of ranges of Q crossing e.

For a space S = (X, F, 8), we define the derived range space as

(F, {F~le e ~}). (3.1)

In our subsequent constructions we usually assume that the VC-dimension of the

derived range space is bounded by a constant. In fact, this might be a good abstract

definition capturing the essential properties expected from "constant complexity"

cells. The assumption is satisfied in many natural cases, in particular, if both the

ranges and the elementary cells are Tarski cells 1-33].

A cuttin# is any collection E ~_ ~ of disjoint elementary cells whose union is

X. Let Q be a finite subset of F. A cutting E is called a (1/r)-cutting for Q if

I Qe I <- I Ql/r for every e e E. If Qe = ~ for every e e E, then E is called an elementary
cell decomposition for Q (with respect to S). We say that a range space with

elementary cells (X, F, o ~) has elementary cell decompositions of size r (4 is a

nondecreasing real function on natural numbers) if, for every Q ___ N with I QI < m,

an elementary cell decomposition of Q consisting of at most ~(m) elementary cells

exists.

These definitions generalize the corresponding notions for the range space

defined by half-spaces, o~d. Here X = •d, F is the set of all half-spaces in ~a, and

g is the set of all relatively open simplices of all dimensions 3 k, 0 < k < d. With

some abuse of notation, we use ~d to denote this space as well. A simplex e e 8

crosses a half-space y if it has points both inside y and outside ~. For a collection

Q of half-spaces, any triangulation of the arrangement of the bounding hyperplanes

is an elementary cell decomposition for Q. Thus, by well-known results on

hyperplane arrangement triangulation, for any m-element Q, an elementary cell

decomposition consisting of O(m a) cells exists [14].

For our range searching algorithm, we need (1/r)-cuttins with a small number

of elementary cells. The construction of (1/r)-cuttings is well studied for the spaces

~a, where the main result is as follows: For any finite set of half-spaces and any

choice of the parameter r, a (1/r)-cutting of size O(r d) exists, which is asymptotically

optimal. This result was first proved by Chazelle and Fridman [14]. An efficient

construction of (1/r)-cuttings in this case has been studied (among others) in [11],

[25], and [26].

3 We also admit "unbounded simplices" defined as intersections of at most d + 1 half-spaces.

402 P.K. Agarwal and J. Matougek

Although computing an asymptotically optimal (1/r)-cutting for the spaces Jfd

is somewhat complicated [14], the existence of (1/r)-cuttings can be established

with only a slightly worse-size bound using a straightforward (l/r)-nets argument

(which probably was discovered independently by several authors, see [19] and

[23]). Let Jog' denote the derived range space for gd. It is easy to check that it has a

bounded VC-dimension. Considering a finite set Q of half-spaces, clearly the

subspace induced by Q in ~ff' also has a bounded VC-dimension, and thus by the

above-quoted result on (1/r)-nets it follows that we can choose a (1/r)-net N _ Q

for this range space, of size O(r log r). Let -~ be any elementary cell decomposition

for N with respect to Jfa (a triangulation in this particular case). The definition

of (i/r)-net and of the derived range space ~ ' imply that, for any simplex e not

crossing any hyperplane of N, [Qe[< I Q I/r, and therefore each simplex of E crosses

at most n/r hyperplanes of Q. Since E covers •a, it is a (1/r)-cutting for Q. We can

choose E of size O(1N[a) = O((r log r)~).

This argument is valid for any space (X, F, 8), as long as the derived range

space (3.1) has VC-dimension bounded by some constant D. Hence, we obtain

Lemma 3.1. Let S = (X, F, g) be a space such that the VC-dimension of the derived

range space is bounded by some constant D. I f S has elementary cell decompositions

of size ((m), then, for any r and Q, it admits (1/r)-cuttings of size ~(Cor log r), where

C O is a constant.

As mentioned above, the size of (1/r)-cuttings for the spaces ~ can be improved

by more sophisticated methods (those of [11] or [14]). These methods can also

be applied to some of the spaces that we use here. However, the savings by these

methods is relatively small, so we do not consider such improvements in this paper.

Computational Assumptions. In what follows we assume that the space we work

with admits a (1/r)-cutting of at most ~(r) elementary cells for every finite Q _~ F,

where ~(r) is a nondecreasing real function. In order to use this in algorithms we

also have to make some computational assumptions. Namely, we assume that

given r and (a suitable representations of) Q, a (1/r)-cutting of size at most ~(r) for

Q can be computed in time O(n. F(r)), where n = I Q[and F(r) is some function of

r, thus, in particular, the cutting can be computed in linear time for r = O(1).

This assumption is based on the above (1/r)-net argument and a result of [25].

This results says that for suitably represented range spaces of n points, which

bounded VC-dimension, a (1/r)-net of size O(r log r) can be computed in O(Fl(r)n)

time. In our case we apply it to the derived range space (3.1) and compute the

(1/r)-net N as in the above argument. Having such an N, we have to compute an

elementary cell decomposition for N with respect to the underlying range space.

It seems reasonable to assume that this can be done in time depending on r only.

It remains to say what is meant by "suitably represented" range space, but here

we refer to [25] for a precise formulation of the assumption. We only note that

if the range space in question admits a linearization of a bounded dimension (which

is the case if both the ranges of Q and the elementary cells of 8 are Tarski cells),

On Range Searching with Semialgebraic Sets 403

then the assumption is satisfied and so (1/r)-cuttings for such spaces can be

computed, provided that we can compute elementary cell decompositions.

Weighted Cuttings. We also need a "weighted" notion of cuttings. If Q is a set

of ranges and w: Q ~ ~+ is a nonnegative real function on Q, we call the pair

(Q, w) a weighted collection of ranges. If A ~ Q, we write just w(A) for ~ a w(7).

A cutting E is a weighted (1/r)-cuttin9 for (Q, w) if w(Qe)< w(Q)/r for every

elementary cell e ~ E. A similar straightforward generalization is possible for the

notion of a (1/0-net. Both the above argument for deducing the existence of small

(1/0-cuttings using (1/0-nets and the algorithm for (1/r)-net computation in [25]

generalize to the weighted case. Hence, we may assume that (1/r)-cuttings of size

at most ~(r) can be computed in O(F(r)n) time even in the weighted sense.

4. Decomposing Arrangements of Algebraic Varieties

The efficiency of a range searching algorithm described below depends crucially

on the size of the elementary cell decompositions of the underlying space. We are

free to choose any suitable kind of elementary cells which help us to achieve this

goal, provided that the derived range space defined in (3.1) has a bounded

VC-dimension.

For ranges defined by polynomials of bounded degree, an elementary cell

decomposition can be computed directly using the known results on decomposing

arrangements of algebraic surfaces into Tarski cells. For d = 2, the arrangement

of algebraic curves of bounded degree can be easily decomposed into Tarski cells

by drawing a vertical line in both directions from each intersection point and the

point of vertical tangency until it intersects another edge of the arrangement. See

Fig. 1. For d > 3, the cylindrical algebraic decomposition scheme due to Collins

can be used, but it produces too many cells. Recently, Chazelle et al. [12] proved

that, given d-variate polynomials f l fn of bounded degree, ~a can be parti-

tioned into O(n 2~- 3fl(n)) Tarski cells (where fl(n) is a function growing extremely

slowly, more slowly than the inverse of any primitively recursive function), such

Fig. 1.

Q
Decomposing an arrangement of algebraic curves in the plane into Tarski cells.

404 P.K. Agarwal and J. Matougek

that the sign of each f~ remains constant within each cell. For d = 3, this bound

is almost optimal. For d > 3, this upper bound is significantly worse than the

trivial (but best-known) lower bound of f~(na).

Sometimes (for simple polynomials) better bounds are obtained using another

method, which we outline next. In general, suppose we have some embedding ~0

of the considered range space (X, F) into a range space (Y, E) that has a natural

elementary cell structure ~- and a well-behaved elementary cell decomposition.

We can define an elementary cell structure on (X, F), in which the elementary cells

are the preimages of the cells in ~,, that is, r = {cp - l (f) l f e~ -} . An obvious

candidate for the "target" space (Y, E, ~-) is the space oW k with a possibly small

k. So, if tp is a linearization (X, F) of dimension k, the elementary cells of r will

be the preimages of at most k-dimensional simplices. We then get the existence of

elementary cell decompositions of size O(n k) for (X, F, ~).

Typically tp(X) will be a d-dimensional (real) algebraic variety defined by

bounded-degree polynomials, so the preimage of "most of" the simplices will

be empty. We should therefore expect a better bound on the size of the

elementary decomposition of (X, F, d~). Namely, we can apply a recent result of

Aronov et al. [8-1, claiming that a d-dimensional algebraic variety intersects at

m o s t O(m L(d+k)/2j log m) simplices in the canonical triangulation of an arrange-

ment of m hyperplanes in ~k. This means that when q~(X) is a d-dimensional variety

in R k, then the space S = (X, F, ~) has elementary cell decompositions of size

r = O(m Lw+k)/2j log m), which by Lemma 3.1 implies, that S admits (1/r)-cuttings

of size at most ((r) = O((r log r) L(d+k)/2j log r)).

For example, the range space defined by balls on ~a has a linearization of

dimension d + 1, whose image is the unit paraboloid (see Section 2 for discussion

of the case d = 2). By the above method elementary cell decompositions (or a

decomposition of an arrangement of m spheres, in a more usual language) of size

O(m a log m) are obtained, which for d > 4 is the best-known result. Note that the

resulting elementary cells in the original space are projections of intersections of

simplices with the paraboloid, thus perhaps they are not the most natural cells to

be considered for decomposing an arrangement of spheres.

5. Partition Theorem in an Abstract Setting

Throughout this section we let (X, F, d ~) be a range space with elementary cells.

For technical simplication we assume X, ~ e 8. We begin by generalizing the

notion of simplicial partition from [27].

Let P _~ X be a set of n points. An elementary cell partition or shortly partition

for P is a collection

II = {(P1, ex) (Pro, era)},

where the Pi's are disjoint subsets (called the classes of H) forming a partition of

P, and each el ~ g (called an elementary cell of H) contains Pi. The number m is

the size of the partition.

On Range Searching with Semialgebraic Sets 405

For a range 7 �9 F, we define the crossing number of

number of elementary cells among el e,, crossed by

of 1-I is defined to be the maximum of crossing numbers

7 (relative to H) as the

~,. The crossing number

over all 7 �9 F.

Theorem 5.1 (Partition Theorem). Let S = (X, F, 5 a) be a space admitting (1/t)-

cuttings o f size at most ((t). Suppose that (X, F) has a faithful linearization of

dimension bounded by a constant. Let P ~_ X be a set o f n points, and let r be a

parameter, 1 < r < n. Then an elementary cell partition I1 = {(P1, el) (P,,, e,,)}

for P exists, such that:

(i) [_n/r_J < [P/[< 2l_n/rJ for every i.

(ii) The crossing number of FI is

O log r +
i = 1

l f r is bounded by a constant, and a (l/O-cutting of size at most ((t) can be computed

in linear time for t = 0(1), then l-I can be computed in O(n) time.

Let us emphasize that in this theorem we assume a faithful linearization, that

is, the preimage of any half-space is a range in F. We do not know whether this

assumption is necessary, but it is required for the current proof. In general, a

linearization of a range space is not faithful, so, in order to apply the theorem,

we first have to add some "artificial" ranges to the range space (the preimages of

half-spaces). Note that this "closure" is not a canonical one, since it depends on

the chosen linearization. The elementary cell decomposit ions are needed for these

artificial ranges as well.

A first ingredient of the proof is the following lemma:

Lemma 5.2. Let S = (X, F, d ~) be a space admitting (l/t)-cuttings o f size at most

~(t). Let P c X be a set o f n points, let r be a parameter, 1 < r < n, and let Q be a

finite set o f ranges o f F . Then a partition for P, H = {(P1, el) (Pro, era)}, exists

such that:

(i) Ln/r] < [P/I < 2Ln/rJ for every i.

(ii) The crossing number o f every range of Q relative to I7 is

(O loglQI +
i = 1

Proof The proof follows the one in [27]. Let s = Ln/rJ. We inductively construct

the disjoint sets Px, P2 _ P, and elementary cells e a, e 2 ; Pi ~- ei. Suppose

that Px P~ have already been constructed, and suppose we want to compute

P~+I. Set P'i = P\(Px w . " u Pi), nl = IP'/I.

406 P.K. Agarwal and J. Matou~ek

If ni <-2s, we set Pi+ 1 = P'i, el+ 1 = X, m = i + 1, and H = {(P1, e 0 (P,,, e,,)},

which completes the construction. If n i > 2s, we proceed as follows. For a range

y ~ Q, let xi(y) denote the number of e lementary cells of {el el} crossed by y.

We define a weighted collection (Q, wi) by setting w~(y) = 2 ~'t~) for every y ~ Q.

Let us choose a pa ramete r tl = (- 1(hi~S). Then a (1/ti)-cutting E i for (Q, wl) of

size at mos t nts exists. By the pigeonhole principle, some of the elementary cells

of the cut t ing Ei contain at least s points of P~. Let el+ 1 be some such elementary

cell. Pi+ ~ is an arbi t rary subset of s points of P'i contained in e~+ r This completes

the description of the construction.

P roper ty (i) of 1-I is obvious f rom the construction. In order to bound the

crossing numbers of the ranges of Q relative to the part i t ion YI, we estimate the

total weight of the ranges of Q after m steps, denoted w,,(Q), in two different ways.

By construction,

rli = rl - - i . s

and

t , = (- 1 (~) = (- x (n _ i) > (- X (r _ i) .

The weight W m (~) of a range y ~ Q that crosses x e lementary cells of FI is 2 K.

Therefore,

< log2 win(Q). (5.1)

Let us consider how wi+l(Q) increases compared with wAQ). The weight of

ranges in Qe,+, increases by a facor of two, and the weight of o ther ranges remains

unchanged. Therefore,

wi(Q)~
Wi+ I(Q) <-- wi(Q) 1 + ~i(Q) f

Since El is a (1/q)-cutting, we have

wi(Q) w,(Q)
w,(Q,,+) _< <

t i - ~ - l (r - i) "

However , wo(Q) = I QI and m < LrJ, so we obtain

1)
win(Q) <~ IQI 1 4- < IQI 1 + .

i : o (- ~ (r - i - i=1

On Range Searching with Semialgebraic Sets 407

Now (5.1), along with the inequality ln(1 + x) < x, yields

tr < log 2 win(Q) = O loglQI +
i = 1

as required. []

The second ingredient of the proof is the following lemma; it is the place where

we need the linearization assumption.

Lemma 5.3 (Test Set Lemma). Let (X, F, ~) be a space with a faithful linearization

~p of dimension d bounded by a constant. Let P ~_ X be a set of n points, and let r

(1 < r < n) be a parameter. Then a set Q c_ F of size O(r a) exists such that, for any

partition rI = {(PI, el) (Pro, era)} satisfying IP~I > n/r (1 < i < m), the following

holds: I f Xo is the maximum crossing numbers of ranges Q relative to rI, then the

crossing number of H is at most (d + 1)Xo.

Proof Let (o: X --* R d be the faithful linearization of (X, F), set P* = tp(P). Let h

be a hyperplane in ~d, and let G be a finite set of hyperplanes in R a. We say that

a point p e P* lies in the zone of h (with respect to G) if p can be connected to a

point of h by a segment that does not intersect any hyperplane of G. We call G

an s-guarding set for h (relative to P*) if there are less than s points of P* in the

zone of h. It is shown in [27] that, for any r and P*, a set Q* of O(r d) hyperplanes

in R a exists such that there is an (n/r)-guarding set G ~ Q* of size d + 1 for every

hyperplane h in Rd.

Let us fix such a Q* and, for every h e Q*, let h denote one of the half-spaces

bounded by h (arbitrarily chosen). We set Q = {~o-1(/~)1 h e Q*}, we claim that Q

is the desired set of ranges.

Suppose that every range of Q has crossing number at most x o with respect to

a partition FI as in the lemma, and let ? ~ F be a range. Let h be the hyperplane

bounding the half-space tp*(~,), and let G = {gl ga+ 1} be the (n/r)-guarding set

for h. Consider an elementary cell e i of the partition rI that crosses the range 7.

Let Pi be the class corresponding to el. It is enough to show that ~p(ei) crosses

some half-space ~ for a g e G, because then eg crosses the preimage tp- l(~) e Q, and

the preimages of the at most d + 1 half-spaces of G are crossed by at most (d + 1)Xo

elementary cells in total.

Suppose the contrary; then q~(el) is contained in a single cell of the arrangement

of G. Since (o(ei) contains at least n/r points of P* (the images of the points of P~),

this cell cannot be incident to h, otherwise there would be n/r points of P* in the

zone of h, contradicting the definition of the (n/r)-guarding set. This means that

the whole (o(e~) lies in one of the half-spaces defined by h, but this contradicts the

fact that e~ crosses tp-l(/~). []

Proof of Theorem 5.1. Combining Lemma 5.3 with Lemma 5.2, we obtain the

existence result in the Partition Theorem, Theorem 5.1. As for the algorithmic

408 P.K. Agarwal and J. Matougek

statement, we note that if r is bounded by a constant, the number of steps in the

construction in Lemma 5.2 is bounded by a constant, and each of the steps can

be executed in at most O(n) time. The set Q* in the proof of the Test Set Lemma

(Lemma 5.3) can also be obtained in O(n) time. This finishes the proof of

Theorem 5.1. []

6. Range Searching and Related Results

F-Range Searching Problem. We now construct data structures for the F-range

searching problem based on Theorem 5.1.

Theorem 6.1. Let f (x l xa, al ap) be a (d + p)-variate polynomial. Assume

that p, d, q, deg(f) are bounded by a constant. Let

F = {{xeff~alf(x, a 1) > O, . . . , f (x , a ~) > 0}l al aqe~v} .

Then the F-range searching problem with semigroup weights can be solved with

O(n) space, O(n log n) preprocessing time, and O(n 1-1/b+~) query time, where the

parameter b can be bounded as follows:

(i) b = d for d <_ 3, b < 2d - 3 for d > 3.

(ii) l f f can be written in the form

f (x , a) = tPo(a) + @l(a)tpl(x) + . . . + tpk(a)qgk(X), (6.1)

where ~o ~bk, (Pl , (~k are bounded-degree polynomials, then

In particular, for d = 2, 3, we get O(n 1/2+'~) (resp. 0(n2/3+'~)) query time, which is

close to optimal.

Proof. Here we only prove part (i). Part (ii) is contained in Theorem 6.3 below,

as F-range searching, in this case, is equivalent to range searching with intersec-

tions of q half-spaces on the set q~(P).

We first verify the applicability of Theorem 5.1 in the described situation. Then

we build the data structure by a standard partition tree construction.

Let tp be a linearization of a bounded dimension k of the range space (R a, F f)

(the ranges in F z are defined by a single polynomial inequality, see (1.1)). We use

the methods outlined in Section 2 to obtain such a linearization. In order to apply

the Partition Theorem (Theorem 5.1), we need to make ~0 faithful. We let F be the

set of all q~-preimages of half-spaces in Rk. Then tp is a faithful linearization of the

range space (R a, F).

The next step is to define elementary cells for (R d, r). Observe that the ranges

On Range Searching with Semialgebraic Sets 409

of F, albeit more general than the ones of F I , are still defined by a single

polynomial inequality of bounded degree. Hence we can invoke the result of [121

that is, an arrangement of n algebraic surfaces in Ed, each of a constant maximum

degree, can be decomposed into O(nbfl(n)) Tarski cells, with b = 2d - 3 (for d > 3).

Let r be the set of all the cells that can arise in such decomposit ions for

arrangements of surfaces bounding the ranges of F. Then the space (~d, r , r has

elementary cell decomposit ions of size ~(m) = O(mbfl(m)), and thus (1/r)-cuttings of

size ((r) = O(r b log b rfl(r)) = O(r b log b+ 1 r).

In view of the above discussion, we can apply the Parti t ion Theorem (Theorem

5.1). Thus, for a given set P o fn points in ~d and a parameter r < n, an elementary

cell partition H exists with class size between [n / r j and 2[_n/r_], and with crossing

number

O log r + -- O(r I - 1/b(1og r) 1 + i/b).
i= 1 il/b/log 1 § lib i

If r = O(1), FI can be computed in O(n) time.

These partitions are guaranteed to have small crossing numbers with respect

to ranges of F I (actually for ranges of F, but these only play an auxiliary role in

the construction and will not be significant anymore). We observe that this also

gives small crossing numbers for ranges of F: Let 7 = 71 n ... ~ 7s e F, 7j e F I and

s = O(I), then it is easily seen that an elementary cell e crossing 7 must cross at

least one 7j, and hence the crossing number of 7 is at most s times the maximum

crossing number of the ranges of F I.

We are now ready to construct the data s t ructure--par t i t ion t ree-- for F-range

searching on P. Each node v of the tree will correspond to some subset Pv c_ p ,

the root will correspond to the whole P. Let n~ = IPvl. The sets associated with

the children of a node v will form a partition of P~. For each leaf v, n~ is bounded

by some suitable constant.

We construct the partition tree in a t op -down fashion starting from the

. root. We let r be a sufficiently large constant, which remains fixed throughout

the construction. We compute an elementary cell partition Hv for P~ with class

sizes between I_nJrJ and [2n J r J, such that any range of F crosses at most x =

Cr ~- t/b log~ + lib r elementary cells of H~, C is a constant independent of r. The

classes in l-I v correspond to the (at most r) children of v. With each node, we store

the description of the elementary cells of H~ and the total weight of the points in

each class of FI r (but not the list of points of P,; the points will only be stored in

the leaves). This partit ion tree occupies linear space and can be constructed in

O(n log n) time.

When processing a query with a range y e F, we start at the root. At each node

v visited, we take the elementary cells of the YIv one by one. The cells contained

in 7 or disjoint from 7 are handled directly, and we recursively search at the children

of v corresponding to elementary cells that cross),. We get the following recurrence

for the query time T(n):

410 P.K. Agarwal and J. Matougek

with initial condition T(n) = O(1) for n smaller than some constant. The solution

is T(n) = O(n 1 - 1/b+~), with 6 ~ 0 as r --* oo. []

Remark 6.2. The above theorem is formulated for ranges defined as the conjunc-

tion of a constant number of d-variate polynomial inequalities. Each polynomial

is a restriction of the same (d + p)-variate polynomial f (x 1 xa, ax %)

(evaluated at a~ av); it might asked what happens if ranges are defined by

several different polynomials. That is, F is of the form

V = {{x ~ RaiL(x , a 1) > 0 L(x , a q) > 0} [a' a q ~ RP},

where each f/(x, a) is a (d + p)-variate polynomial. One (rather artificial) possible

approach is to convert this case to the previous one by defining a polynomial #

(with possibly more parameters) which is an extension of f l fq. For example,

if f l (x , a), f2(x, a) are two (d + p)-variate polynomials, we can write f l (x , a)=

9(x, a, 0), f2(x, a) = 9(x, a, 1) for 9(x, a, z) = (1 -- z)fl(x, a) + z f 2 (x , a), where z is a

new parameter. If we use case (i) of the theorem, this extension does not even affect

the asymptotic efficiency of the algorithm. Another solution, which is sometimes

more suitable in case (ii), is to construct a multilevel data structure as mentioned

in the introduction.

Simplex Searching for Points on an Algebraic Variety. Another instance of range

searching amenable to our methods is the simplex range searching for point sets

P lying on an algebraic variety Vof bounded degree in R k. Here the general simplex

range searching result can be improved. We have

Theorem 6.3. Let P be a set of n points in ~k lying on a d-dimensional algebraic

variety defined by bounded-degree polynomials. Then the simplex range searching

problem for P can be solved with linear space, O(n log n) preprocessin# time, and

O(n 1-1/b+~) query time, where b = L(d + k)/2].

This result includes Theorem 6.1(ii): the set V = ~o(R d) in this case is a

d-dimensional algebraic variety, and, since every range of F can be expressed as

a preimage of an intersection of q half-spaces in R k (which, in turn, is a disjoint

union of 0(1) simplices), simplex range searching on the set q~(P) c V may be

applied.

Proof We define a space with elementary cells (V, F, g) by letting F be the set

of intersections of V with all half-spaces and let ~ be the set of all intersections

of V with simplices in •k. By the zone theorem of Aronov et al. [8], this space

admits elementary cell decompositions of size O(m b log m), and hence (1/r)-cuttings

of size O(r~(log r) ~+ 1) (both the ranges and elementary cells are Tarski cells in Rk).

The inclusion map V-~ R k is, by definition, a faithful linearization. Hence we can

apply Theorem 5.1, and we can build a partition tree for a given set P c V as in

the previous theorem. []

On Range Searching with Semialgebraic Sets 411

7. Other Applications

In the last section we constructed an efficient data structure for F-range searching

using Theorem 5.1. It has been shown in [1], [5], [9], and in other papers that the

simplex range searching data structures are quite general, and can be applied to

various other problems involving a collection of linear objects. Similarly, the

partition tree developed in the previous section can yield fast data structures for

a number of problems involving semialgebraic sets. It is beyond the scope of this

paper to discuss all the applications, so we have chosen two sample applications.

7.1. Ray Shooting Among Triangles in Three Dimensions

The first application that we consider is the three-dimensional ray-shooting
problem, which is defined as follows: Preprocess a set A of n triangles in •3 into

a data structure, so that the first triangle of A hit by a query ray can be reported

quickly. In the last few years ray shooting has received considerable attention due

to its applications in computer graphics and other geometric problems, e.g., see

[1], [4], [5], [9], [15], [23], and [30]. The best-known algorithm for ray shooting

in three dimensions is due to Agarwal and Sharir [5] that can answer a query in

O(n 4/5) time using O(n l§ space and preprocessing. If O(n 4+~) space and pre-

processing are allowed, a query can be answered in O(log n) time [5], [9], [30].

In this subsection we show that the query time can be improved to close to O(n 3/4)
using linear space and O(n log n) time preprocessing.

A result by Agarwal and Matou~ek [4] shows that it suffices to construct a

data structure for detecting an intersection between A and a query segment. (Their

result requires that the segment intersection detection algorithm satisfies some

mild assumptions. These assumptions are satisfied in our case; see [4] for details.)

Observe that a segment 7 intersects a triangle A if and only if the following two

conditions are satisfied:

(i) The line containing 7 intersects A.

(ii) V intersects the plane containing A.

We construct a data structure on A that detects the above two conditions for a

query line. The overall approach is similar to that of Agarwal and Sharir, so we

only describe the main idea.

Let A e A be a triangle with edges el, e2, e3. Let 11, 12, and 13 be the lines

containing these edges. We orient the lines so that A lies to the right of each of

them. A line 2 intersects A if and only if it has the same relative orientation with

respect to l~, 12, and 13. The relative orientation of two oriented lines l, 2 in ~3 is

defined to be the orientation of any simplex abcd, where a, b ~ l, c, d ~)~, so that

l is oriented from a to b and 2 is oriented from c to d. Equivalently, it is also the

sign of the inner product between the two vectors in projective R 5 representing

the Plficker coordinates of the two lines. (For the sake of convenience, we do not

distinguish between the projective 5-space and the affine 5-space ~5.) To be more

412 P.K. Agarwal and J. Matou~ek

precise, l can be mapped to a point ~(/), called a Plficker point, and 2 can be

mapped to a hyperplane to(2), called a Plficker hyperplane in R 5, so that l has

positive orientation with respect to 2 if and only if 7t(/) lies in the positive half-space

bounded by the hyperplane to(J.). The Pliicker points of all lines in ~3 lie on a

quadric surface, known as the Plficker surface, in R 5. See [13] and [32] for more

details on Pliicker's coordinates.

Based on the above approach we preprocess A as follows. We take an edge

from each triangle of A and form the collection of lines containing these edges.

The lines are oriented as described above, and are mapped to a collection P of

points in R 5 using Pliicker coordinates. Let r be some sufficiently large constant.

We construct a partition H --- {(Px, el), (P2, e2) (P,,, era)} for P of size O(r) using

Theorem 5.1. Since P lies on a four-dimensional quadratic surface, the crossing

number of H is K = O(r 3/4 log 5/4 r). We recursively construct a partition for each

canonical subset Pi of P. The recursion stops when the number of points fall below

some prespecified constant. The resulting data structure is a tree of depth O(log n),

each of whose node has degree at most r. Every node v of the tree is associated

with a simplex e v and a subset Pv --- P. We take the second edge of the triangles

corresponding to points in Pv, extend them to oriented lines, map the lines to

their Plficker points in 5-space, and construct a partition tree on the resulting

points as above. We attach this partition tree to v as its secondary structure. Next,

for each canonical subset of the secondary tree, we take the third edge of the

corresponding triangles and again repeat the same step. This gives a three-level

structure, which is used to extract the triangles that intersect the line containing

a query segment.

Let T be the set of triangles corresponding to a canonical subset of the

third-level tree. We extend the triangles of T to full planes and dualize them to

points. Let A be the set of resulting points. We preprocess A, in time O(IAllog]AI),
into a linear-size data structure for answering simplex range queries [27]. This

completes the description of the data structure. Let Si(m) denote the maximum

space required by the ith level (i < 4) data structure constructed on m points. Then

we get the following recurrence:

f O(1) if m < c,

Si(m)<~O(rn) if m > c , i = 4 ,

~ S i (m j) + S '+l(m) if m > c , i < 4 ,

where ~j m i = m, mj < 2m/r, and c is some appropriate constant. The solution of

the above recurrence is O(m log 4- i m). The total space required by the above data

structure is thus O(n log 3 n). Similarly, the total preprocessing time can be shown

to be O(n log 4 n).

Let y be a query segment. We detect an intersection between ? and A as follows.

We first determine the triangles that intersect the line l containing y and then

check whether ~, intersects any of the planes containing these triangles. Let h be

the Pliicker hyperplane of l (l is oriented arbitrarily). We search the first-level

On Range Searching with Semialgebraic Sets 413

structure with h and at each node v we do the following. If v is leaf, then we

explicitly check (in constant time) whether 7 intersects any of the triangles

corresponding to the points associated with v. If v is not a leaf and the simplex

e v intersects h, we recursively search the subtree rooted at v. If h lies above (resp.

below) ev, we query the secondary structure of v with the half-plane lying below

(resp. above) h.

Suppose ev lies in the half-space h +. Let w be a node in the secondary structure.

If w is a leaf, then we check whether 7 intersects any of the triangles corresponding

to the points associated with w. If h § does not intersect ew, we discard w and do

not search the subtree rooted at w. If h intersects w, we recursively search the

subtree rooted at w. Otherwise, ew --q h +, and we search the third-level tree stored

at w in the same way as the second-level structure. Suppose z is a node of the

third-level tree for which e~ ~_ h § so that we query the fourth-level structure. Let

T be the set of triangles corresponding to the points associated with z. By the

above discussion, I intersects all triangles in T, so it suffices to determine whether

y intersects any of the planes containing the triangles of T. To this end, we query

the fourth-level structure stored at z with the double wedge 7", dual to the segment

y, and determine whether any point (dual to planes containing the triangles of T)

in the fourth-level structure lies in y*. If the answer is "yes," then we can conclude

that y intersects a triangle of T, and stop right away. Otherwise, we continue. If

the answer is "no" at all third-level nodes visited by the procedure, then), does

not intersect any triangle of A. This completes the description of the query-

answering procedure.

The time spent at a fourth-level structure constructed on T is 0([Tl2/a+a). Let

Q~(m) denote the maximum query time for an ith level structure constructed on m

points. Then

i
O(1) if m < c,

O(m 2/3+'~) if m > c, i = 4,
Qi(m) _<

]xQ' (zrn~ + Q'+l(m) + O(1) if m > c, i < 4 ,
k \ r]

where c, c' are some constants. The solution of the above recurrence is O(m 3/4+~')
for another but arbitrarily small 6' > 0. Hence, the overall query time is O(n 3/4 +6,).

The size of the data structure can be improved to O(n) without affecting the

asymptotic query time by using the techniques described in Agarwal et al. [3].

Furthermore, using the standard space/query-time tradeoff techniques, the query

time can be improved by allowing more space. In particular, combining our result

with the result of Agarwal and Sharir [5], a segment intersection detection query

can be answered in O(n/s 1/4) time using O(s ~+~) space and preprocessing for

n < s < n 4. Putting everything together, we can conclude

Theorem 7.1. Given a set A of triangles in R a and a parameter s, n <_ s <_ n 4, A

can be preprocessed into a data structure of size O(s I +~), so that a ray-shooting

query can be answered in time O(n/sl/4).

414 P.K. Agarwal and J. Matou~ek

Remark 7.2. Pellegrini [-30] has considered several other problems involving lines

in three dimensions. Using the same approach as above, data structures for these

problems can be obtained with the same performance as in Theorem 7.1.

7.2. Intersection Detect ion Be tween Lines and Spheres

Another application that we describe is: Preprocess a set 6P of spheres in •3, so

that it can be quickly determined whether a query line intersects any of the spheres

in 5 a.

Without loss of generality we can assume that the query line is not horizontal,

because a similar (actually somewhat simpler) data structure can be constructed

to handle horizontal lines. A nonhor izonta l line a can be parametrized by a 4-tuple

(at, a2, a3, a4) of real numbers:

a = {p + tq; t ~ } ,

where p = (al, a2 ,0) is the intersection point of a with the xy-plane and

q = (a 3, a 4, 1) is the direction vector of a. The distance of the line a from a point

x = (xl, x2, xa) e R 3 is the same as the distance of the line a' = {(p - x) + tq; t ~ ~}

from the origin. The point y on a' closest to the origin satisfies y = (p - x) + tq

for some t, and at the same time y . q = 0. F r o m this we get

y = (p -- x) +
[,(p -- x) ' q] q

Ilqtl 2

and the desired distance of x from a will be the length of this vector y. After some

calculation we obtain that the line a intersects a sphere with center (xt, x2, x3)

and radius r if and only if f (x t, x 2, x3, r, at , a2, a3, a4) < O, where

f (x t , x2, x3, xa, at, a2, a3, a4)

= [-(a 2 + 1)a 2 + (a] + 1)a 2 -- 2ata2a3a4]

+ 2[,a2aaa4 -- at(a 2 + 1)]Xl + 2[,ataaa4 -- a2(a 2 + 1)Ix2

+ 2[,alaa + a2a4]x3 -- 2[,aaa4]xlx 2 -- 2[,a3]xlx 3 -- 2[,a4]x2x 3

+ [,l](x 2 + x 2 _ x 2) + [,a2](x 2 + x 2 _ x 2) + [a2](x 2 + x 2 _ x2). (7.1)

A sphere S t o w with parameters (x t, x 2, x3, X4) can be mapped to a point

S* = (x 1 , x 2 , x a , x ~) e ~ 4 , and a nonhor izonta l line a with parameters

(aa, a2, a3, a4) can be mapped to a point a* = (al, a2, aa, a4) ~ R 4. Then a intersects

S if and only if S* e~i(a*), thus intersection detection reduces to F f r a n g e

searching (emptiness queries, in fact). Since d = 4, by Theorem 6.1, the latter query

can be answered in time O(n 4/5 +~).

On Range Searching with Semialgebraic Sets 415

However, here is a better way to proceed: We choose a linearization q9 of the

range space Fy. The polynomial in (7.1) is written in the form (2.1), which gives

a linearization of dimension 9. A line a intersects a sphere S if and only if q~(S*)

lies in the half-space ~o*(a*). Hence, the problem can be viewed as the half-space

emptiness problem in dimension 9 (see Section 1). The latter can be solved with

O(n log n) preprocessing, O(n) space, and O(n 3/4 log ~ n) query time, by [-28]. We

thus get:

Theorem 7.3. We can preprocess a set 5 p o f n spheres in ~3, in time O(n log n),

into a data structure o f linear size, so that it can be determined in time 0(ll 3/4 log ~ n)

whether a query line intersects any sphere o f 6~.

Remark 7.4. (i) Using multilevel data structures and the technique of [4], the

above algorithm can be extended to ray shooting among spheres with similar

performance bounds; we omit the details.

(ii) Using the data structure described in [18], instead of the one described in

[28], for answering half-space emptiness queries, a set of spheres in ~3 can be

preprocessed into a data structure of size O(n4+~), so that a ray-shooting query

can be answered in time O(log 2 n). Following a different approach, Agarwal et al.

[2] have also obtained similar bounds. However, their approach does not yield a

linear-size data structure with O(n 3/4 log ~ n) query time. Combining Theorem

7.3 with these data structures, a ray shooting query can be answered in time

O(n/s 1/4 log 2 n) using O(s 1 +~) space and preprocessing, for any n < s < n 4.

(iii) Consider an analogous problem in the plane--preprocess a set of circles

into a data structure so that an intersection between a query line and circles can

be detected. Here we get O(n 2/3 +~) query time by a direct application of Theorem

6.1 (first we map circles to points in ~3 using (2.4), then the problem becomes

range searching with ranges defined by a single polynomial). Notice that a line

y = a~x + a2 intersects a circle with center(x~, x2) and radius r if the polynomial

f (x l , x2, r, al, a2) > O, where

f (x l , x2, x3, al, az) = [a22] + 2[ala2]xl - 2[az]x2 + [a2](x 2 - x32)

- 2 [a l] x l x z + (x 2 - xZ). (7.2)

This polynomial has a linearization of dimension 5, as shown above, so by a

five-dimensional half-space range searching structure [28], a line-circle intersec-

tion detection query can be answered in time O(v/n log ~176 n). A similar bound

was attained in [3] using an entirely different approach.

(iv) A more interesting case is where the roles of lines and circles are reversed:

A set of lines in the plane is to be preprocessed, so that it can be quickly detected

whether a query circle intersects any of the given lines. Here the two approaches

- -F-range searching in the plane and half-space range searching in higher

dimensions--yield similar results. Since a line is represented by two parameters,

the first approach (see Theorem 6.1) can answer a query in time O(n 1/2 +~). On the

other hand, the polynomial of (7.2) has a linearization of dimension 5 in this

416 P . K . Agarwal and J. Matou~ek

case as well, so a five-dimensional half-space range searching structure yields

roughly the same query time. However, the first solution has certain advantages:

It can be extended to counting the number of lines intersected by a query circle

(while half-space range searching only works for emptiness queries or reporting),

and it is possible to use the first structure as the top level of a multilevel data

structure, which does not seem possible with the half-space range searching data

structure. Moreover, the asymptotic efficiency of the first structure does not change

even if we allow more complex query objects, e.g., ellipse, parabola, or a lune

(intersection of two disks), because its efficiency depends only on the number of

parameters required to represent a line.

8. Open Problems

One of major problems in computational geometry is the decomposition of an

arrangement of algebraic varieties into Tarski cells. The known results for this

problem, discussed in Section 4, appear to be far from being optimal. Our paper

adds one more motivation (efficient range searching) to this problem, but various

other applications are also known (e.g., point location; see [12]).

Concerning our results on range searching with linear space, if the query time

should be significantly smaller than for the trivial solution (testing every point of

P for membership in the query range) for some reasonable values of n, the constant

b has to be quite small (certainly smaller than 10). Therefore it makes sense to

investigate specific small dimensions and improve the decompositions of arrange-

ments of algebraic surfaces at least in various special cases.

For many interesting range searching problems, our technique requires adding

some new ranges (the preimages of half-spaces in the chosen linearization) before

decomposition takes place, which makes the decomposition problem potentially

more demanding. Is there a way to avoid these "artificial" ranges?

An interesting question is whether the half-space range searching algorithm of

1-28] can be generalized to nonlinear ranges in a similar way, as we did with the

simplex range searching in this paper. In this case the underlying decomposition

problem requires decomposing a single cell in an arrangement of algebraic

varieties. We are not aware of any general results in higher dimensions in this

direction, where the complexity of the single-cell decomposition is better than the

complexity of the decomposition of the whole arrangement.

Another, slightly less-related problem is to prove (or disprove?) the obvious-

looking statement that the range space defined (say) by triangles in the plane

has no linearization. In general, perhaps more should be learnt about the

embeddability of geometrically defined range spaces.

Acknowledgments

The authors are grateful to Johannes Blrmer for the observation in the proof of

Theorem 2.1, and to Micha Sharir for several useful comments.

On Range Searching with Semialgebraic Sets 417

References

1. P. K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing number.

S lAM J. Comput. 21 (1992), 540-570.

2. P. K. Agarwal, L. Guibas, M. Pellegrini, and M. Sharir. Ray shooting among spheres. Manuscript,

1993.

3. P. K. Agarwal, M. van Kreveld, and M. Overmars. Intersection queries for curved objects.

J. Algorithms 15 (1993), 229-266.

4. P. K. Agarwal and J. Matou~ek. Ray shooting and parametric search. S lAM J. Comput. 22 (1993),

794-806.

5. P. K. Agarwal and M. Sharir. Applications of a new space partitioning scheme. Discrete Comput.

Geom. 9 (1993), 11-38.

6. A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems by compacting

Voronoi diagrams. Proc. 21st ACM Symposium on Theory of Computing, 1990, pp. 331-340. Also

to appear in ,L Assoc. Comput. Mach.

7. N. Alon, D. Haussler, E. Welzl, and G. W6ginger. Partitioning and geometric embedding of range

spaces of finite Vapnik-Chervonenkis dimension. Proc. 3rd A CM Symposium on Computational

Geometry, 1987, pp. 331-340.

8. B. Aronov, M. Pellegrini, and M. Sharir. On the zone of a surface in a hyperplane arrangement.

Discrete Comput. Geom. 9 (1993), 177-186.

9. M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray shooting

and hidden surface removal. Proc. 7th Symposium on Computational Geometry, 1991, pp. 51-60.

10. B. Chazelle. Lower bounds on the complexity of polytope range searching. J. Amer. Math. Soc.

2 (1989), 637-666.

11. B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9 (1993),

145-158.

12. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. A singly-exponential stratification scheme

for real semi-algebraic varieties and its applications. Theoret. Comput. Sci. 84 (1991), 77-105.

(Also in Proc. 16th International Colloquium on Automata, Languages, and Programming, 1989,

pp. 179-192.)

13. B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Stolfi. Lines in space: combinatorics

and algorithms. Proc. 21st ACM Symposium on Theory of Computing, 1989, pp. 382-393. Also to

appear in Algorithmica.

14. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry.

Combinatorica 10 (1990), 229-249.

15. B. Chazelle and L. Guibas. Visibility and intersection problems in plane geometry. Discrete Comput.

Geom. 4 (1989), 551-589.

16. B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range searching

and new zone theorems. Algorithmica 8 (1992), 407-430.

17. B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete

Comput. Geom. 4 (1989), 4672,90.

18. K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput. 17 (1988),

830-847.

19. K. L. Clarkson and P. Shor. New applications of random sampling in computational geometry,

II. Discrete Comput. Geom. 4 (1989), 3872,21.

20. D. Dobkin and H. Edelsbrunner. Space searching for intersecting objects. J. Algorithms 8 (1987),

348-361.

21. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.

22. D. Haussler and E. Welzl. e-nets and simplex range queries. Discrete Comput. Geom. 2 (1987),

127-151.

23. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk. Proc.

4th A C M - S I A M Symposium on Discrete Algorithms, 1993, pp. 54-63.

24. J. Koml6s, J. Pach, and G. W6ginger. Almost tight bounds for epsilon-nets. Discrete Comput.

Geom. 7 (1992), 163-173.

418 P.K. Agarwal and J. Matougek

25. J. Matou~k. Approximations and optimal geometric divide-and-conquer. Proc. 23rd ACM

Symposium on Theory of Computing, 1991, pp. 506-511.

26. J. Matou~ek. Cutting hyperplane arrangements. Discrete Comput. Geom. 6 (1991), 385-406.

27. J. Matou~ek. Efficient partition trees. Discrete Comput. Geom. 8 (1992), 315-334.

28. J. Matou,~ek. Reporting points in half-spaces. Comput. Geom. Theory AppL 2 (1992), 169-186.

29. J. Matou~ek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10 (1993),

183-196.

30. M. Pellegrini. Ray shooting in 3-dimensional spaces. A19orithmica 9 (1993), 471-494.

31. F. Preparata and M. I. Shamos. Computational Geometry--An Introduction. Springer-Verlag, New

York, 1985.

32. D. Sommerville. Analytical Geometry in Three Dimensions. Cambridge University Press, Cam-

bridge, 1951.

33. R. Wenocur and R. Dudley. Some Vapnik-Chervonenkis classes. Discrete Math. 33 (1981), 313-318.

34. D. E. Willard. Polygon retrieval. SIAM J. Comput. 11 (1982), 149-165.

35. F. F. Yao and A. C. Yao. A general approach to geometric queries. Proc. 17th ACM Symposium

on Theory o f Computing, 1985, pp. 163-168.

Received October 13, 1992, and in revised form June 11, 1993.

