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Abstract

This paper concerns the open problem of Lovász and Saks re-
garding the relationship between the communication complexity of
a boolean function and the rank of the associated matrix. We first
give an example exhibiting the largest gap known. We then prove two
related theorems.

1 Introduction

In Yao’s two-party communication complexity model [Y79], two parties, Alice
and Bob, evaluate a boolean function f : X × Y → {0, 1} on inputs x, y.
Alice only knows x and Bob only knows y and thus in order to evaluate
f they will need to communicate with each other according to some fixed
protocol. The (deterministic) communication complexity of f is defined as
the number of bits that need to be exchanged, on the worst case input, by
the best protocol for f .

It is convinient to associate with each such function f a matrix M which
has a row for each x ∈ X and a column for each y ∈ Y where the (x, y)’th
entry of M holds the value f(x, y). Similarly, a matrix M with 0− 1 entries
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is associated with a boolean function. For a matrix with 0−1 entries M , de-
note by c(M) the deterministic communication complexity of the associated
function, and by rk(M) its rank over the reals.

It is well known [MS82] that log rk(M) ≤ c(M) ≤ rk(M). It is a fun-
damental question of communication complexity to narrow this exponential
gap. As rank arguments are the main source of deterministic communication
complexity lower bounds, and the rank function has many useful properties,
it would make life nicer if the lower bound was rather tight. A tempting
conjecture, phrased as a question by Lovász and Saks [LS88], is:

Conjecture 1 For every 0− 1 matrix M , c(M) = (log rk(M))O(1).

Lovász and Saks [LS89] also show that this conjecture is equivalent to the
following conjecture suggested (with somewhat different parameters) by van
Nuffelen [Nu76] and Fajtlowicz [Fa87]:

Conjecture 2 For every graph G, logχ(G) ≤ (log rk(G))O(1), where χ(G)
is the chromatic number of the complement of G and rk(G) is the rank, over
the reals, of its adjacency matrix .

Several authors have obtained separation results between c(M) and log rk(M)
[AS89, Raz92]. The best separation known so far gives an infinite family of
matrices for which c(M) ≥ log rk(M) log log log rk(M) [RS93]. Our first
result is an example with a much larger gap.

Theorem 1 There exist (explicitly given) 0-1 matrices M of size 2n × 2n

such that c(M) = Ω(n), and log rk(M) = O(nα), where α = log3 2 = 0.63...

The same Ω(n) lower bound applies also to the randomized and to the
nondeterministic communication complexities. The construction is based on
boolean functions with high “sensitivity” and low degree. Such a function was
constructed in [NS92]. The lower bound for the communication complexity
relies on the known lower bounds for randomized communication complexity
of “disjointness” [KS87, Raz90]. Recently Kushilevitz [Ku94] has somewhat
improved the construction of [NS92] and has thus reduced the value of α to
log6 3 = 0.61.... The main lemma of [NS92] shows however that this technique
cannot reduce the value of α to below 1/2.
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We then return our attention to conjecture 1, and consider weaker related
conjectures. To explain them, we need some notation. If S is a subset of the
entries of M , let S0 and S1 denote respectively the subsets of S whose value
is 0 and 1 respectively. Call S monochromatic if either S = S0 or S = S1.
Let mono(M) denote the maximum fraction |A|/|M | over all monochromatic
submatrices A of M . When S is not monochromatic, we will be interested
in the advantage one color has over the other. The (absolute) discrepancy of
S is δ(S) = |(|S0| − |S1|)/|M ||. Define disc(M) to be the maximum of δ(A)
over all submatrices A of M .

Since an optimal protocol forM partitions it into at most 2c(M) monochro-
matic rectangles, we have the basic relation:

disc(M) ≥ mono(M) ≥ 2−c(M)

or, equivalently,

− log disc(M) ≤ − logmono(M) ≤ c(M).

Thus two conjectures weaker than Conjecture 1 suggest themselves. They
respectively assert that low rank matrices have large monochromatic rectan-
gles, or weaker still, large discrepancy.

Conjecture 3 For every M , − logmono(M) = (log rk(M))O(1)

Conjecture 4 For every M , − log disc(M) = (log rk(M))O(1)

As mentioned, Conjecture 1 → Conjecture 2 → Conjecture 3. We first
prove, in theorem 2, that conjectures 1 and 2 are equivalent. We then prove,
in theorem 3, (a strong form of) conjecture 3.

Theorem 2 Conjecture 1 iff Conjecture 2.

Thus in order to prove conjecture 1 it suffices to show that every low
rank boolean matrix M has a “large” monochromatic submatrix (i.e. of area
which is 1/exp(logO(1) rk(M)) fraction of the area of M). In fact, the proof
of the theorem implies that it suffices to show that every rank r boolean
matrix has a “large” submatrix of rank at most, say, 0.99r.

Theorem 3 For every M , 1/disc(M) = O(rk(M)3/2).
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Note that Theorem 3 implies Conjecture 3. The bound in this theorem is
nearly tight: for every r there are infinitely many matrices M of rank r and
1/disc(M) ≥ r. This can be easily seen by taking any square array of r × r
Hadamard matrices.

This theorem supplies the first clue that low rank has something to do
with low communication complexity, though in a very weak sense. The com-
munication model we have in mind is distributional communication complex-
ity, where the inputs are chosen at random [Y83]. For this model, low rank
guarantees a cheap protocol with a nontrivial advantage over guessing the
function value. In the protocol each player sends one bit specifying whether
or not his input is in the biased rectangle. Precisely:

Corollary 1 If rk(M) = r, then there is a 2 bit protocol P , which satisfies
Pr[P (x, y) = M(x, y)] ≥ 1/2 + Ω(1/r3/2), where the input (x, y) is chosen
uniformly at random.

2 Proof of Theorem 1

We will require the following definition.

Defininition: Let f : {0, 1}n → {0, 1} be a boolean function. We say that f
is fully sensitive at ~0 if f(~0) = 0 and yet for any vector x of hamming weight
1 (i.e. for any unit vector), f(x) = 1.

The degree of f , deg(f) is defined to be the degree of the unique multi-
variate multi-linear polynomial over the reals which agrees with f on {0, 1}n.

In [NS92] it is shown that any boolean function which is fully sensitive
at ~0 must have degree at least

√
n/2. They also give an example of a fully

sensitive function with degree significantly less than n.

Lemma 1 [NS92] There exists an (explicitly given) boolean function f :
{0, 1}n → {0, 1} which is fully sensitive at ~0 and deg(f) = nα, for α =
log3 2 = 0.63.... Furthermore, f has at most 2O(nα) monomials.

For completeness we repeat the construction of [NS92].
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Proof: Let E(z1, z2, z3) be the symmetric boolean function giving 1 iff ex-
actly 1 or 2 of its inputs are 1. It is easy to check that E is fully sensi-
tive at ~0. One may also readily verify that deg(E) = 2 as E(z1, z2, z3) =
z1 + z2 + z3 − z1z2 − z1z3 − z2z3. We now recursively define a function Ek
on 3k input bits by: E0(z) = z, and Ek(·) = E(Ek−1(·), Ek−1(·), Ek−1(·)),
where each instance of Ek−1 is on a different set of 3k−1 input bits. It is easy
to prove by induction that (1) Ek is fully sensitive at ~0, (2) deg(Ek) = 2k,
and (3) Ek has at most 62k−1 monomials. Our desired f is the function Ek

on n = 3k variables1 2

We now transform f into a matrix as follows.

Definition: With every boolean function f : {0, 1}n → {0, 1} we associate
a 2n × 2n matrix Mf as follows:

Mf (x1 . . . xn; y1 . . . yn) = f(x1 · y1, x2 · y2 . . . xn · yn)

The properties of Mf are ensured by the following lemmas.

Lemma 2 If f is fully sensitive at ~0 then c(Mf ) = Ω(n). The same lower
bound holds for the randomized and for the nondeterministic complexity of
Mf .

Lemma 3 Let f be a polynomial with m monomials, then rk(Mf) ≤ m. In

particular, if d = deg(f) then rk(Mf) ≤
∑d
i=0

(
n
i

)
= 2O(d log n).

Proof (of lemma 2): This proof is a direct reduction from the known lower
bounds for the randomized communication complexity of disjointness. These
bounds actually show that it is even hard to distinguish between the case
where the sets are disjoint and the case where the intersection size is 1.

Let the UDISJ problem be the following: the two players are each given
a subset of {1 . . . n}. If the sets are disjoint they must accept. If the sets in-
tersect at exactly 1 point then they must reject. If the size of the intersection
is greater than 1 then the players are allowed to either accept or reject.

1Recently, [Ku94] has improved upon this construction by exhibiting a function E ′ on
6 variables which is fully sensitive at ~0 and with degree only 3. Using the same recursion,
this reduces α to log6 3 = 0.61.... The function E ′ is defined as follows: E′(z1...z6) =∑

i zi−
∑

ij zizj + z1z3z4 + z1z2z5 + z1z4z5 + z2z3z4 + z2z3z5 + z1z2z6 + z1z3z6 + z2z4z6 +

z3z5z6 + z4z5z6.

5



Theorem ([KS87], see also [Raz90]): Any communication complexity pro-
tocol for UDISJ requires Ω(n) bits of communication. The same is true for
non-deterministic and for randomized protocols.

Now notice that if f is fully sensitive at ~0 then any protocol forMf directly
solves UDISJ . This is done by transforming each set to its characteristic
vector. If the sets are disjoint then for each i, xiyi = 0, and thus Mf (~x, ~y) =
f(~0) = 0. If the intersection size is exactly 1 then in exactly 1 position
xiyi = 1, and thus Mf (~x, ~y) = 1. 2

Proof (of lemma 3): Let f(z1 . . . zn) =
∑
S αS

∏
i∈S zi be the representation

of f as a real polynomial. By the definition of Mf it follows that Mf =∑
S αSMS, where the matrix MS is defined by MS(~x, ~y) =

∏
i∈S xi · yi. But

clearly for each S, rk(MS) = 1. It follows that the rank of Mf is bounded
from above by the number of non-zero monomials of f . The bound in terms
of the degree follows directly. 2

The combination of lemmas 2 and 3 with the function Ek constructed in
lemma 1 gives the statement of the theorem. 2

3 Proof of Theorem 2

Assume conjecture 2, i.e. assume that every 0, 1 matrix M has a monochro-
matic submatrix of size |M |/exp(logk rk(M)). Given a 0, 1 matrix M we will
design a communication protocol for M .

Let A be the largest monochromatic submatrix of M . Then A induces in
a natural way a partition of M into 4 submatrices A,B,C,D, with B sharing
the rows of A and C sharing the columns of A. Clearly rk(B) + rk(C) ≤
rk(M) + 1. Assume w.l.o.g. that rk(B) ≤ rk(C), then the submatrix (A|B)
has rank at most 2 + rk(M)/2.

In our protocol the row player sends a bit saying if his input belongs to
the rows of A or not. The players then continue recursively with a protocol
for the submatrix (A|B), or for the submatrix (C|D), according to the bit
communicated.

Denote by L(m, r) the number of leaves of this protocol, starting with a
matrix of area at most m and rank at most r. By the protocol presented we
get a recurrence L(m, r) ≤ L(m, 2 + r/2) + L(m(1 − δ), r), where δ is the
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fraction of rows in A. By the assumption, δ ≥ (exp(logk r))−1. Note that
(assuming the players ignore identical rows and columns) that m ≤ 2r, and
that L(m, 1) = 1. It is standard to see that the solution to the recurrence
satisfies L(m, r) ≤ exp(logk+1 r).

We have so far obtained a protocol for M with exp(logk+1 rk(M)) leaves;
it is well known that this implies also c(M) ≤ O(logk+1 rk(M)). 2

Remark: Note that the same proof, yielding essentially the same bound,
would go through even if instead of a large monochromatic (rank 1) submatrix
we were promised a large submatrix of rank r/4, say. The idea is that for the
decomposition A,B,C,D in the proof we have in general rk(B) + rk(C) ≤
rk(M) + rk(A). We used it above for a monochromatic A, so rk(A) ≤ 1.
Now we have rk(A) ≤ r/4, and using rk(B) ≤ rk(C) we get rk(B) ≤
(rk(M) + rk(A))/2 ≤ 5r/8. Thus rk(A|B) ≤ rk(A) + rk(B) ≤ 7r/8. The
recurrence relation changes to L(m, r) ≤ L(m, 7r/8) +L(m(1− δ), r), which
has the same asymptotic behavior.

The expression r/4 may be raplaced by αr for any α < 1 by repeatedly
taking a large submatrix of low rank of the current submatrix. After constant
number of times the rank is reduced to r/4. Again, this does not change the
asymptotics of the recurrence.

4 Proof of Theorem 3

Let us consider −1,+1 matrices rather than 0, 1 matrices; this obviously
changes the rank by at most 1, and does not change the discrepancy. The
advantage is that the discrepancy of a submatrix N of M has a simple form:
δ(N) is the sum of entries of N , divided by the area of M .

We will use the following notation. Let x = (xi) ∈ Rn and A = (aij) be
an n× n real matrix. Then:

• ||x|| = (
∑n
i=1 x

2
i )

1/2, the L2 norm of x.

• ||x||∞ = maxni=1|xi|, the L∞ norm of x.

• ‖A‖ = max||x||=1||Ax||, the spectral norm of A. It is well known that

also ‖A‖ = max||x||=1,||y||=1|xTAy|; and ‖A‖ = max{
√
λ : λ is an eigenvalue of ATA}.

• W (A) = (
∑n
i,j=1 a

2
ij)

1/2, the Euclidean norm of A.
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• tr(A) =
∑n
i=1 aii, the trace of A.

Overview of Proof: It is best to summerize the proof backwards. We are
given a ±1 matrix A of low rank and wish to find in it a submatrix of high
discrepancy. This is done in lemma 6 and is clearly equivalent to finding 0, 1
vectors x and y such that xTAy is large. As an intermediate step we shall, in
lemma 5, find real vectors u and v, having low L∞-norm, with uTAv large.
Towards this we shall need real vectors w and z having low L2-norm, with
wTAz large. This is equivalent to proving lower bounds on ‖A‖, which we
do in lemma 4.

Lemma 4 For every real matrix A,

W (A)√
rk(A)

≤ ‖A‖ ≤ W (A)

Proof: Let r = rk(A). Let us compute the trace of ATA. On one hand,
direct calculation by definition shows that tr(ATA) = W (A)2. On the other
hand tr(ATA) =

∑
i λi, where the sum is over all eigenvalues λi of ATA.

Since ATA has only r non-zero eigenvalues, and since all eigenvalues of ATA

are positive, the largest eigenvalue, λ1, is bounded by W (A)2

r
≤ λ1 ≤ W (A)2.

The lemma follows since ‖A‖ =
√
λ1. 2

Lemma 5 Let A be an n× n ±1 matrix of rank r. Then there exist vectors
u, v, ||u||∞ ≤ 1, ||v||∞ ≤ 1, such that uTAv ≥ n2

16r3/2 .

Proof: Denote r = rk(A). Let x and y be vectors such that ||x|| = 1, ||y|| =
1, and xTAy = ‖A‖. Let I = {i : |xi| >

√
8r/n} and J = {j : |yj| >

√
8r/n}.

Notice that |I| ≤ n/(8r), and |J | ≤ n/(8r).
Let û be the vector that agrees with x outside of I and is 0 for indices in

I, and let v̂ be the vector that agrees with y outside of J and is 0 for indices
in J .

We shall compute a lower bound on ûTAv̂. Consider the matrix B defined
to agree with A on all entries i, j such that i ∈ I or j ∈ J , and to be 0
elsewhere. Using this notation it is clear that

ûTAv̂ = xTAy − xTBy.
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A lower bound for xTAy = ‖A‖ is obtained using the lower bound in lemma
4, and as W (A) = n, xTAy ≥ n/

√
r. An upper bound for xTBy is given by

the upper bound in the last lemma xTBy ≤ ‖B‖ ≤ W (B). Since B has at
most n/(8r) non-zero rows and n/(8r) non-zero columns, W (B) ≤ n/(2

√
r).

It follows that ûTAv̂ ≥ n/(2
√
r).

Now define u =
√
n/(8r)û and v =

√
n/(8r)v̂. By definition ||v||∞ ≤ 1

and ||u||∞ ≤ 1. The lemma follows since uTAv = n/(8r)ûTAv̂. 2

Lemma 6 Let A be an n× n matrix, and u, v vectors such that ||u||∞ ≤ 1,
||v||∞ ≤ 1. Then there exists a submatrix B of A with δ(B) ≥ uTAv/(4n2).

Proof: Let z = Av. Clearly,
∑
i∈K uizi ≥ uTAv/2, where K is either the

coordinates where both ui and zi are positive or the coordinates in which both
are negative. Assume the first case (otherwise replace below v ← −v). Then
setting x = χK (the characteristic vector of K), we have (using ||u||∞ ≤ 1),
xTAv ≥ uTAv/2. Repeating this argument with z = xTA, we can replace
v with a 0, 1 vector y obtaining xTAy ≥ uTAv/4. Now take B to be the
submatrix defined by the 1’s in x and y. Since B is a ±1 matrix, the bilinear
form divided by n2 gives its discrepancy. 2

Combining lemmas 5 and 6, every ±1 matrix A of rank r, contains a
submatrix B with δ(B) ≥ 1

64r3/2 . Thus disc(M) ≥ 1
64r3/2 , and theorem 3

follows. 2
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