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1 Introduction

This paper deals with a general approach to the modeling of rate-independent
processes which may display hysteretic behavior. Such processes play an impor-
tant role in many applications like plasticity and phase transformations in elastic
solids, electromagnetism, dry friction on surfaces, or in pinning problems in super-
conductivity, cf. [Vis94, BrS96].

The evolution equations which govern those processes constitute the limit
problems if the influence of inertia and relaxation times vanishes, i.e. the system
rests unless the external loading is varied. Only the stick-slip dynamics is present
in the Cauchy problem, this means that the evolution equations are necessarily
non-autonomous. Although the solutions often exhibit quite singular behavior,
the reduced framework offers great advantages.

Firstly the amount of modelling can be reduced to its absolute minimum.
More importantly, our approach is only based on energy principles. This allows
us to treat the Cauchy problem by mainly using variational techniques. This
robustness is necessary in order to study problems which come from continuum
mechanics, like plasticity, cf. [Mie02, CHM02, Mie03]. There the potential energy
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is invariant under the group of rigid body rotations SO(d) where d ∈ {1, 2, 3}
is the dimension. This invariance implies that convexity can almost never be
expected and more advanced lower semicontinuity results (like polyconvexity) are
required to assure the existence of solutions for a time discretized version of the
problem.

An example which illustrates this remark is a problem from phase
transformations in solids, see [MTL02]. Although none of the classical methods
from Section 7 can be applied, we are able to prove the existence of solutions by
establishing weak lower semicontinuity of certain critical quantities.

Here we present an abstract framework which is based on two energy func-
tionals, namely the potential energy I(t, z) and the dissipation ∆(ż). Here z ∈ X,
X a separable reflexive Banach space with dual X∗, is the variable describing the
process, and ż is the time derivative. The central feature of rate-independence
means that a solution z : [0, T ] → X remains a solution if the time is rescaled.
This leads to a dissipation functional ∆ : X → [0,∞) which is homogeneous of
degree 1, i.e., ∆(αv) = α∆(v) for α ≥ 0 and v ∈ X.

Special cases of this situation are well studied in the theory of variational
inequalities or as sweeping processes. There we have the potential energy

I(t, z) =
1
2
〈Az, z〉 − 〈g∗(t), z〉 (1.1)

with A ∈ Lin(X, X∗) symmetric and positive definite and the dissipation has the
form

∆(v) = max{〈w∗, v〉 : w∗ ∈ F ∗} (1.2)

where F ∗ ⊂ X∗ is a bounded, closed, convex set containing 0 in its interior. The
variational inequality problem then is to find z ∈ W 1,1([0, T ], X) such that for
a.a. t ∈ [0, T ]

〈Az − g, v − ż〉 + ∆(v) − ∆(ż) ≥ 0 for all v ∈ X. (1.3)

The equivalent sweeping process formulation is

ż ∈ ∂χF ∗(g − Az) (or − ż ∈ ∂χg∗− F ∗(Az)). (1.4)

Here χF ∗ is the (convex) characteristic function of F ∗ taking the value 0 on F ∗ and
∞ else, and ∂ denotes the subdifferential. We refer to [Mor77, Mon93, KuM97,
KuM98] for more details on this matter.

We treat these problems in Section 7 under the assumption, that I satisfies
certain smoothness assumptions. The purpose of this work is to broaden the
model class significantly. On the one hand we want to be able to deal with
nonconvex or not strictly convex potentials. This leads to the possibility that the
solutions are discontinuous, i.e. jumps can occur. Such singularities indicate that
our purely energetic formulation is too simplistic to describe physical phenomena
since the dynamics is not slow anymore. As it stands, our formulation favours
discontinuities, i.e. the state will jump as soon as possible, independently of the
shape of the energy landscape between the left hand and the right hand limit.
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We have to pay this price to obtain energy conservation independently from the
regularity of the solutions.

On the other hand we want to allow for restrictions of the state space as
well, i.e. we want to be able to restrict z(t) to a closed convex set E ⊂ X. A large
part of this work is new even in the case of finite dimensional spaces X.

Our point of departure is the following energy formulation of the problem:
Find z : [0, T ] → E with

(S) For a.a. t ∈ [0, T ] we have

I(t, z(t)) ≤ I(t, y) + ∆(y − z(t)) for all y ∈ E, (1.5)

(E) I(t, z(t)) +
∫ t

s
∆(dz) ≤ I(s, z(s)) +

∫ t

s
∂tI(τ, z(τ))dτ for all 0 ≤ s ≤ t ≤ T .

The first condition (S) can be interpreted as global stability of the state z(t)
at time t: by changing z(t) ∈ E into y ∈ E the release of potential energy
I(t, z(t))−I(t, y) is never larger than the associated dissipated energy. The second
condition (E) is the integrated energy balance between final, dissipated, initial
energy and the “work done by external forces” in every time interval [s, t] ⊂ [0, T ]
(often ∂tI(t, z) = −〈ġ∗(t), z(t)〉).

In Section 3 we show that formulation (1.5) is more general than the local
formulation (1.3) but both formulations are equivalent if I(t, ·) : X → R is
convex and satisfies further technical conditions. Moreover, for convex problems we
establish equivalence to the subdifferential formulation

0 ∈ ∂∆(ż) + ∂I(t, z), (1.6)

which was introduced in [CoV90] and called “doubly nonlinear problem”.
However, these formulations have to be treated with care since in the

nonconvex or not strictly convex case we have to allow for jumps of z. Hence,
the right solution space is BV−([0, T ], X), the space of left-continuous functions
having finite total variation. For an exact formulation of (1.6) we need to replace
the derivative ż by a reduced derivative rd(z) : [0, T ] → {v ∈ X : ‖v‖ ≤ 1} and
an associated Radon measure µz ∈ M([0, T ]) such that

z(t2) − z(t1) =
∫

[t1,t2)
rd(z)(r)µz(dr). (1.7)

holds which means that rd(z)(t)µz(dt) plays the role of the time-derivative which
is a vector-valued measure. The correct replacement of (1.6) is then

0 ∈ ∂∆(rd(z)(t)) + ∂I(t, z(t)) for µz-a.a. t ∈ [0, T ]. (1.8)

In Section 4 we analyse a general method for obtaining piecewise constant in
time approximations which works for nonconvex problems as well. It is based on
the incremental problem for the partition 0 = t0 < t1 < t2 < · · · < tN−1 < tN = T{

Let z0 = z(0). For k = 1, . . . N find zk ∈ E with
I(tk, zk) ≤ inf{I(tk, y) + ∆(y − zk−1) : y ∈ E}.

(1.9)
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This approach leads in a natural way to discretized versions of energy formulation
(1.5) (see Theorem 4.1) and, in the convex case, of the variational inequality (1.3)
(see (4.3)).

A central object in this study are the sets S(t) of stable states at time t,
namely

S(t) = {z ∈ E : I(t, z) ≤ I(t, y) + ∆(y−z) for all y ∈ E}.

The major problem arises from S(t) not being weakly closed since even for convex
I(t, ·) the set S(t) may not be convex.

Assuming weak closedness of the set of stable states S plus some regularity
conditions on I we give an existence proof in Theorem 6.3. This proof relies on
the incremental problem and on an abstract version of Helly’s selection principle
(cf. [BaP86]). Here we do not require that I(t, ·) is smooth, especially the assump-
tion E = X which is central for Theorem 7.1 is not necessary.

In Section 7 for E = X and I(t, ·) uniformly convex we prove existence,
uniqueness (Theorem 7.1) and discuss the question of temporal smoothness of
solutions. To this end we show (Theorem 7.3) that the solutions of the incremental
problem converge strongly, by generalizing ideas in [HaR95]. As far as the authors
know there is no uniqueness result even for nontrivial E ⊂ X with X = R2. We
propose a new “structure condition” which implies uniqueness, cf. Section 7.2 and
Appendix C.

We note that in [HaR95] a convergence result of the incremental problem
(for the case (1.1) only) is given only under the assumption z ∈ W 2,1((0, T ), X),
i.e. z̈ ∈ L1((0, T ), X). Our above-mentioned convergence result Theorem 7.3 is
independent of this assumption. From very simple examples we see that, even for
the case E = X, we can only expect ż ∈ BV((0, T ), X). Our Theorem 7.8 proves
this under the additional assumption that the boundary of F ∗ is C2.

For many applications (see e.g. [KuM00, MTL02, GMH03]) the assumption
of reflexitivity of X is too restrictive. We note that the formulation (1.5) via
energy functionals provides us with the advantage that the time derivative ż is
not required. Moreover, the existence theorem 6.3 uses only the assumption of
weak sequential compactness which is considerably weaker, see Remark 6.4.

Throughout this work we have assumed that the underlying geometry is the
linear space X, in particular the dissipation functional ∆ does not depend on the
position z ∈ E ⊂ X. A more general treatment should involve Banach manifolds
and the dissipation is then a Finsler metric. For applications in this context see
[Mie02, Mie03, MaMo3].

2 Notations and setup of the problem

Let X be a separable, reflexive Banach space and E a closed convex subset. For
each z ∈ E the (inward) tangential cone TzE is defined via

TzE = {w ∈ X : ∃r > 0 : z + rw ∈ E}, (2.1)
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where Ā is the closure of A in the strong topology. Later on we will also use the
(outward) normal cone N∗

zE ⊂ X∗ defined via

N∗
zE = {y∗ ∈ X∗ : 〈y∗, w〉 ≤ 0 ∀w ∈ TzE}.

The dissipation is implemented by a function ∆ : X → [0,∞) which is
convex, homogeneous of degree 1 (i.e. ∆(αz) = α∆(z) for α ≥ 0 and z ∈ X) and
satisfies, for some C

(2)
∆ ≥ C

(1)
∆ ≥ 1,

C
(1)
∆ ‖z‖ ≤ ∆(z) ≤ C

(2)
∆ ‖z‖ for all z ∈ X. (2.2)

Convexity and homogeneity of degree 1 imply the triangle inequality

∆(z + z̃) ≤ ∆(z) + ∆(z̃) for all z, z̃ ∈ X (2.3)

which will be used often subsequently.
These assumptions are equivalent to the existence of a convex closed set F ∗

in X∗ with {z∗ ∈ X∗ : ‖z∗‖ ≤ C
(1)
∆ } ⊂ F ∗ ⊂ {z∗ ∈ X∗ : ‖z∗‖ ≤ C

(2)
∆ } such that

∆(z) = max{〈z∗, z〉 : z∗ ∈ F ∗}. (2.4)

We continue to use 〈·, ·〉 for the duality pairing on X∗ × X.

The space of functions of bounded variations is defined here to be

BV([0, T ], X) = {z : [0, T ] → X : Var(z, [0, T ]) < ∞}

where Var(z, [0, T ]) = sup{
∑N

k=1 ‖z(tk) − z(tk−1)‖ : 0 ≤ t0 < t1 < . . . < tN ≤
T}. Functions in BV([0, T ], X) are continuous except for an at most countable
number of jump points at which the right and left limits z+(t) = lims↘t z(s) and
z−(t) = lims↗t z(s) exist. We define the closed subspaces

BV±([0, T ], X) = {z ∈ BV([0, T ], X) : z = z±},

which will be used subsequently. For functions z = z+ we attach artificially a
limit from the left which we denote by z(0−). This will allow us to impose an
initial condition z+(0−) = z0 at time t = 0 even when z+(0) �= z0. For z = z−
a corresponding construction is not necessary as z0 = z(0) = z(0−) �= z+(0) is
allowed, which also corresponds to a jump at time 0.

As explained in detail in Appendix A, to each z ∈ BV±([0, T ], E) we can
associate a derivative which is the product rd(z)µz of the reduced derivative rd(z) :
[0, T ] → { v ∈ X : ‖v‖ ≤ 1 } and the differential measure µz ∈ M([0, T ]) (the set
of Radon measures in [0, T ]). The two components are defined via

µz([s, t)) = t − s +
∫

[s,t)
‖dz‖ and z(t) − z(s) =

∫
[s,t)

rd(z)(r)µz(dr).
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Here rd(z) : [0, T ] → X is defined only µz-almost everywhere (a.e.). Note that
our definition of the differential measure differs from that in [Mon93, Sect.0.1]
where νz([s, t)) =

∫
[s,t) ‖dz‖ and ‖nd(z)(t)‖ = 1 νz-a.e. in [0, T ] such that dz =

nd(z)νz = rd(z)µz. The derivative doesn’t distinguish between right and left
continuous versions, i.e., rd(z+) = rd(z−) and µz− = µz+ . For z = z+ with
initial datum z(0−) = z0 �= z(0) we have µz({0}) = ‖z(0) − z0‖ =: r > 0 and
rd(z)(0) = 1

r [z(0) − z0].
For z ∈ BV−([0, T ], X) the ∆-variation on the interval J ⊂ [0, T ] is defined

by

Var∆(z, J) =
∫

J

∆(dz) def=
∫

J

∆(rd(z)(t))µz(dt).

This is the same as the supremum over all sums of the form
∑N

k=1 ∆(z(tk) −
z(tk−1)) where N ∈ N, t0, tN ∈ J and t0 < t1 < · · · < tN . Note that we have to be
careful about jumps at the boundary of J if J contains the corresponding boundary
point. In particular, for z = z+ special care has to be taken for the left limit z(0−),
since our definition implies Var∆(z, [0, t]) = ∆(z(0) − z(0−)) + Var∆(z, (0, T ]).

On E the time-dependent energy functional I(t, z) is defined such that

I ∈ C1([0, T ] × E, [0,∞)),

where implicitly we have assumed that I is bounded from below by some constant,
which was set to 0 without loss of generality. The main assumption on I(t, ·) is
weak lower semi-continuity:

zn ⇀ z implies I(t, z) ≤ lim inf
n→∞ I(t, zn). (2.5)

With respect to the time dependence we assume that there exist constants C1,
C2 > 0 such that

(a) |I(t, z) − I(t̂, z)| ≤ C1|t−t̂|,
(b) |∂tI(t, z) − ∂tI(t, ẑ)| ≤ C2‖z − ẑ‖,

(c) zn ⇀ z implies ∂tI(t, zn) → ∂tI(t, z), (2.6)

for all t, t̂ ∈ [0, T ] and z, ẑ ∈ E.
Further structural assumptions on I are convexity assumptions on I(t, ·).

We say that I is convex, strictly convex or α-uniformly convex if for all t ∈ [0, T ]
and all z0, z1 the following conditions hold:

convex: I(t, zθ) ≤ (1−θ)I(t, z0) + θI(t, z1) for all θ ∈ [0, 1];
strictly convex: I(t, zθ) < (1−θ)I(t, z0) + θI(t, z1) for all θ ∈ (0, 1);
α-unif. convex: I(t, zθ) ≤ (1−θ)I(t, z0) + θI(t, z1) − α

2 (θ − θ2)‖z0−z1‖2

for all θ ∈ [0, 1];

where zθ = (1−θ)z0 + θz1. These convexity conditions are never assumed without
stating explicitly.
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The most general formulation for our rate-independent processes is global
in time. We have a set of stable states which depends on time, in addition a
solution satisfies the energy inequality. This formulation does not rely on convexity
assumptions for I and is particularly useful for problems where only generalized
convexity notions like quasiconvexity hold, since weak lower semi-continuity is still
valid. Moreover it does not involve derivatives of I with respect to z.

(GF) [Global Formulation] Find z ∈ BV±([0, T ], X) with z(0−) = z0 and
z(t) ∈ E such that conditions (S) and (E) hold:

(S) for λ–a.a. t ∈ [0, T ] and for all y ∈ E
I(t, z(t)) ≤ I(t, y) + ∆(y−z(t))

(E) for all 0 ≤ t1 ≤ t2 ≤ T

I(t2, z(t2)) +
∫ t2

t1
∆(dz) ≤ I(t1, z(t1)) +

∫ t2
t1

∂tI(s, z(s))ds,

where
∫ t2

t1
∆(dz) =

∫
[t1,t2)

∆(dz) in the case z ∈ BV−([0, T ], X) and accord-
ingly if z ∈ BV+([0, T ], X)

Here (S) is the condition of global stability in the whole state space E, and
λ denotes the one-dimensional Lebesgue measure.

The definition of the energy inequality (E) is such that it implies the two
natural requirements for evolutionary problems, namely restrictions and concate-
nations of solutions remain solutions. To be more precise consider a solution
z : [0, T ] → E and any subinterval [s, t] ⊂ [0, T ], then the restriction z|[s,t] solves
(GF) with initial datum z(s−). Moreover, if z1 : [0, t] → E and z2 : [t, T ] → E
solve (GF) on the respective intervals and if z1(t−) = z2(t−) then the concatena-
tion z : [0, T ] → E solves (GF) as well.

In particular, (S) and (E) imply that if z jumps at time t from z− to z+ then

I(t, z+) + ∆(z+ − z−) = I(t, z−). (2.7)

3 Three alternative formulations of the problem

There exist three different formulations which are equivalent to (GF) if the poten-
tial energy I is convex. In the nonconvex case only certain implications are correct.
The global formulation has the big advantage that it doesn’t need the differen-
tiability of the potential energy I(t, ·). The other three formulations involve the
derivative DI(t, z(t)).

The first formulation (LF) localizes both, the definition of stable sets and
the energy inequality. It is somehow impractical since the structure of a con-
strained evolution is still present; in particular, the tangent spaces Tz(t)E depend
discontinuously on z(t).

The second formulation (VI) is a variational inequality which is a standard
rewriting of the local formulation (LF). Hence, it is always equivalent to (LF).
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The third formulation (SF) is independent from these ideas. It is a single
evolution equation without constraints which has the difficulty that the time
derivative appears inside of a strong nonlinearity.

The following formulations will make essential use of knowledge on the reduce
derivative which is contained in the following lemma. This result explains why
certain of our formulations are more natural for z = z− while others are more
natural for z = z+. We will always indicate this by adding a subscript − or + to
the formulation. However, for the global formulation (GF) this is not necessary,
as it is easily seen that z = z− solves (GF)− if and only if w = z+ solves (GF)+.

Lemma 3.1 For z ∈ BV±([0, T ], X) with z : [0, T ] → E there exists a set
T ⊂ [0, T ] of full µz-measure such that for all t ∈ T we have

rd(z)(t) ∈ Tz−(t)E and −rd(z)(t) ∈ Tz+(t)E.

Proof. We use the stretched function ẑ ∈ CLip([0, T̂ ], X) associated to z which is
defined in (A.1). Define the set T̃ ⊂ [0, T̂ ] to be the set of points τ where we have

ẑ′(τ) =
d
dτ

ẑ(τ) = lim
ρ↘0

1
ρ
[ẑ(τ + ρ) − ẑ(τ)] = lim

ρ↘0

1
ρ
[ẑ(τ) − ẑ(τ − ρ)].

By Lebesgue’s lemma T̂ has full Lebesgue measure, i.e., λ(T̂ ) = λ([0, T̂ ]) = T̂ ,
cf. [Mon93]. Moreover, ẑ(τ) ± ρẑ′(τ) + o(ρ) = ẑ(τ ± ρ) ∈ E implies ±ẑ′(τ) ∈
T

ẑ(τ)E for all τ ∈ T̂ .
The desired result is now obtained by undoing the stretching using the map-

ping t̂ : τ → t and the set T = t̂(T̂ ) ⊂ [0, T ]. We find µz(T ) = λ(T̂ ) = T̂ =
µz([0, T ]). For continuity points of z we have rd(z)(t) = ẑ′(τ̂(t)), see (A.2). At
jump points the desired result is obvious as rd(z) points in the jump direction
from z(t) = z−(t) to z+(t). �

The local formulation needs the assumption that I is a C1 function. The
measure µz also appears and thus jump points can be treated suitably. Recall
that the set of jump points has Lebesgue measure 0, but each jump point has a
positive µz-measure.

(LF)± [Local Formulation] Find z ∈ BV±([0, T ], X) with z(0) = z0 and
z(t) ∈ E such that conditions (Sloc) and (Eloc) hold µz-a.e. in [0, T ]:

(Sloc) 〈DI(t, z(t)), v〉 + ∆(v) ≥ 0 for all v ∈ Tz(t)E,
(Eloc) 〈DI(t, z(t)), rd(z)(t)〉 + ∆(rd(z)(t)) ≤ 0.

Now restrict to the case z = z−. Using rd(z)(t) ∈ Tz(t)E (from Lemma 3.1)
and subtracting the two conditions we are lead to the single variational inequality

〈DI(t, z(t)), v − rd(z)(t)〉 + ∆(v) − ∆(rd(z)(t)) ≥ 0 for all v ∈ Tz(t)E
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which is equivalent to (Sloc) &(Eloc). Introducing the characteristic function
χTz(t)E we can incorporate the side condition into the variational inequality and
obtain the third formulation.

(VI)− [Variational Inequality] Find z ∈ BV−([0, T ], X) with z(0) = z0
and z(t) ∈ E such that

〈DI(t, z(t)), w−rd(z)(t)〉 + ∆(w) − ∆(rd(z)(t))
+χTz(t)E(w) − χTz(t)E(rd(z)(t)) ≥ 0 for all w ∈ X

holds µz-a.e. in [0, T ].

The fourth formulation uses subdifferentials denoted by ∂. For a charac-
teristic function χE : X → [0,∞] we find the normal cone mapping, i.e., ∂χE(z) =
N∗

zE for z ∈ X. The subdifferential of the dissipation functional ∆ is given via

∂∆(v) = argmax
z∗∈F ∗

〈z∗, v〉 =
{

F ∗ for v = 0,
{ δ∗ ∈ F ∗ : ∆(v) = 〈δ∗, v〉 } for v �= 0.

(3.1)

(SF)± [Subdifferential Formulation] Find z ∈ BV+([0, T ], X) with
z(0−) = z0 and z(t) ∈ E such that

0 ∈ ∂∆(rd(z)(t)) + DI(t, z(t)) + ∂χE(z(t)) for µz-a.a. t ∈ [0, T ].

This formulation is especially useful for general, convex I(t, ·) (not necessar-
ily differentiable, but lower semicontinuous). In writing ĨE(t, z) = I(t, z) + χE(z)
we obtain the short form

0 ∈ ∂∆(rd(z)(t)) + ∂ĨE(z(t)) for µz–a.a. t ∈ [0, T ]. (3.2)

Assuming ĨE(t, z) = J(z) − 〈g∗(t), z〉 this is exactly the doubly nonlinear formu-
lation of Colli & Visintin [CoV90], namely g∗(t) ∈ ∂∆(rd(z)(t)) + ∂J(z(t)).

The first aim of this section is to show that the global formulation (GF)
always implies the local formulations (LF)− and (LF)+ but not vice versa. For the
case that I(t, ·) is convex and satisfies the above technical assumption we show that
all three formulations are equivalent. Second we compare the formulations (SF)±
and (LF)± and at the end of the section we present the associated formulation as
a sweeping process.

Example 3.2 The formulation (SF)− is not very useful, as is seen by this
simple example. Take E = [0, l] ⊂ R and I(t, z) = αz2/2 − tz with α > 0.
Choosing z0 = 0 the unique solution of (GF), (LF)−, (VI)− and (SF)+ is given
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by zsln(t) = max{0, min{l, (t−1)/α}} for t ≥ 0. This function is also a solution
of (SF)−, however, there are many more solutions: Choose τ ∈ (0, 1] and Z ∈
(0, max{l, (t + 1)/α}). Then, the function z− with z−(t) = 0 for t ≤ τ and
z−(t) = max{Z, zsln(t)} for t > τ solves (SF)− as well.

Example 3.3 We consider E = X = R, ∆(v) = |v| and a general nonconvex,
differentiable potential I : [0, T ] × R → [0,∞). We discuss what conditions are
imposed on possible jumps from z0 to z1 by the different formulations (GF), (LF)−
and (LF)+, respectively. In all cases stability leads to the necessary condition
|DI(t, zj)| ≤ 1. For (GF) we find DI(t, z0) = DI(t, z1) = −sign(z1 − z0) together
with the global condition I(t, z0) = I(t, z1) + |z1−z0| ≤ I(t, y) + |y − z0| for
all y ∈ R. For (LF)− we find DI(t, z0) = −sign(z1 − z0) and |DI(t, z1)| ≤ 1
whereas (LF)+ gives |DI(t, z0)| ≤ 1 and DI(t, z1) = −sign(z1−z0). The two local
formulations (LF)± make no statement on the jump of I, so generally (E) cannot
be recovered.

Theorem 3.4 (Relation between (GF) and (LF))

(a) For general I we have (GF) ⇒ (LF aver)±, where (Eloc) is replaced by

(Eaver
loc ) 〈B∗(t), rd(z)(t)〉 + ∆(rd(z)(t)) ≤ 0 µz-a.e. on [0, T ], (3.3)

with B∗(t) =
∫ 1
0 DI(t, (1 − θ)z(t) + θz+(t))dθ.

(b) for general I we have (LF)− ⇔ (VI)−;

(c) for convex I we have (GF) ⇔ (LF)− ⇔ (LF)+.

Theorem 3.5 (Relation between (LF) and (SF))

(a) For general I we have (SF)+ ⇔ (LF)+;

(b) for general I we have (LF)− ⇒ (SF)−;

(c) for convex I we have (GF) ⇔ (LF)± ⇔ (SF)+.

The proofs of both theorems use several intermediate results which are developed
now.

Lemma 3.6 (S) implies (Sloc).

Proof. For any v ∈ Tz(t)E \ {0} we find a sequence of wk ∈ X and a sequence
rk > 0 such that ‖wk‖ = ‖v‖, wk → v, rk → 0 and zk = z(t) + rkwk ∈ E. From
stability (S) and differentiability we conclude

0 ≤ 1
rk

[I(t, z(t) + rkwk) + ∆(rkwk) − I(t, z(t))]

= 〈DI(t, z(t)), wk〉 + ∆(wk) + o(rk)k→∞.

With k → ∞ we obtain (Sloc). �
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The next lemma shows that the energy inequality (E) can be replaced by
an energy identity under natural circumstances. In fact, considering the energy
I(t, z(t))+

∫
[0,t) ∆(dz)−

∫
[0,t) ∂tI(τ, z(τ))dτ we see that (S) implies that this energy

cannot decrease. The same conclusion follows from (Sloc) at continuity points of z.

Lemma 3.7 (Energy conservation) A process z ∈ BV−([0, T ], E) satisfies for
all 0 ≤ s < t ≤ T the energy identity

I(t, z(t)) +
∫

[s,t)
∆(dz) = I(s, z(s)) +

∫
[s,t)

∂tI(τ, z(τ)) dτ. (3.4)

if one of the following two conditions is satisfied:

(1) z satisfies (Sloc) and (Eloc) and z ∈ C([0, T ], E);

(2) z satisfies (S) on all of [0, T ] and (E) holds for t1 = 0 and t2 = T only.

Proof. We define the quantity

e(s, t) = I(t, z(t)) +
∫

[s,t)
∆(dz) − I(s, z(s)) −

∫
[s,t)

∂tI(τ, z(τ)) dτ.

By definition we have e(r, t) = e(r, s) + e(s, t) for any r < s < t. We use part (c)
of Theorem A.1:

I(t, z(t)) − I(s, z(s)) =
∫ t

s

∂tI(r, z(r)) dr +
∫

[s,t)
〈B∗(t), rd(z)(r)〉µz(dr) (3.5)

with B∗(t) =
∫ 1
0 DI(t, (1 − θ)z(t) + θz+(t))dθ. This yields

e(s, t) =
∫

[s,t)
[〈B∗(t), rd(z)(t)〉 + ∆(rd(z)(t))]µz(dt). (3.6)

If z is continuous we have B∗(t) = DI(t, z(t)), and (Sloc) & (Eloc) together with
Lemma 3.1 give the first claim.

For the second claim we have that e(0, T ) ≤ 0. We use (Sloc) to show
e(s, t) ≥ 0 for all s < t which gives the desired result e(s, t) = 0. Observe that the
integrand in (3.6) is nonnegative µz-a.e. in [0, T ] by (S). Indeed, if z is continuous
at t then this follows from (Sloc), and if z has a jump from z− to z+ at time t,
then ∫

{t}
[〈B∗(t), rd(z)(t)〉 + ∆(rd(z)(t))]µz(dt)

= 〈B∗(t), z+ − z−〉 + ∆(z+ − z−) = I(t, z+) − I(t, z−) + ∆(z+ − z−)

which is 0 by the global stability of z− at time t, see (2.7). �
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In the proof of Lemma 3.7 we saw that it might be more natural to replace in
(LF) the local energy condition (Eloc) by an averaged version (3.3). This unsym-
metry disappears in the case of convex I(t, ·), as the following result implies
B∗(t) = DI(t, z(t)) µz-a.e. in [0, T ].

Lemma 3.8 Assume z ∈ BV−([0, T ], E) solves (GF) and that I is convex. Then,
the map ([0, T ] → X∗; t → DI(t, z(t))) is continuous. Moreover, if z jumps at
time t from z− to z+, then DI(t, ·) is constant along the straight jump line.

Proof. The result is trivial at points where z is continuous. Hence, we consider
the case of a jump. Let zθ = (1 − θ)z− + θz+ and B∗

− = DI(t, z−). On the one
hand convexity implies I(t, zθ) ≥ I(t, z−) + θ〈B∗

−, z+ − z−〉. On the other hand
global stability gives I(t, z−) ≤ I(t, zθ) + θ∆(z+ − z−). Together with (2.7) we
find that the function I(t, ·) is affine on the straight line connecting z− and z+.
Since I(t, ·) is convex and differentiable, at all points of the jump line the tangent
planes are the same. This proves the result. �

We now relate the subdifferential formulations (SF)± to the local formula-
tions (LF)±. The basic result is obtained from the following lemma which uses
simple arguments from convex analysis.

Lemma 3.9 Let C ⊂ X be a closed convex cone and C∗ ⊂ X∗ the dual cone,
see Appendix B. Moreover, assume that ∆ : X → [0,∞) is as above. Then, the
following three conditions on w ∈ X and β∗ ∈ X∗ satisfy the implications (i) ⇒
(ii) ⇒ (iii).

(i) −w ∈ C and 0 ∈ ∂∆(w) + β∗ + C∗;

(ii) 〈β∗, v〉 + ∆(v) ≥ 0 for all v ∈ C and 〈β∗, w〉 + ∆(w) ≤ 0;

(iii) 0 ∈ ∂∆(w) + β∗ + C∗.

This result has a strange unsymmetry which cannot be avoided. Already the
simplest case X = R, C = [0,∞) and ∆(v) = |v| shows this. The values β∗ = 1
and w = 1 satisfy the condition (iii) but not (ii). Moreover, β∗ = −1 and w = 1
satisfies (ii) but not (i). Assuming w ∈ C in addition to (iii) doesn’t help to
imply (ii).

Proof. Condition (iii) is equivalent to −β∗ ∈ ∂∆(w) + C∗. From the form of the
subdifferential ∂∆ in (3.1) we find the equivalent formulation

(iii)’ [∀v ∈ C : 〈β∗, v〉+∆(v) ≥ 0] and [∃ν∗ ∈ C∗ : 〈β∗, w〉+∆(w)+ 〈ν∗, w〉 = 0].

Adding the condition −w ∈ C we obtain (i), and the implication (i) → (ii) follows
directly from 〈ν∗,−w〉 ≤ 0.

To prove that (ii) implies (iii) we consider two cases. If 〈β∗, w〉 + ∆(w) = 0,
then we choose ν∗ = 0 and (iii)’ holds. If 〈β∗, w〉 + ∆(w) < 0 then the first
condition in (ii) tells us that w �∈ C. Thus there exists a γ∗ ∈ C∗ with 〈γ∗, w〉 > 0.
Choosing r > 0 suitably the vector ν∗ = rγ∗ satisfies the second condition in (iii)’.

�
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After the preparatory work, it is easy to prove the Theorems 3.4 & 3.5.

Proof of Theorem 3.4. It is essential that for any solution z of the four formulations
we can apply Lemma 3.1 which guarantees ± rd(z)(t) ∈ Tz∓(t)E µz-a.e..

Part (a) and the direction “⇒” in parts (b) and (c) are proved above.
ad (b) “⇐”: Inserting w = 0 as a test state in (VI) we obtain (Eloc). Next

insert w = λv + rd(z)(t), divide by λ and take the limit λ → ∞. By the lower
semicontinuity of ∆(·) and χTz(t)(·) we arrive at (Sloc).

ad (c) “⇐”: In the case of convexity the global stability (S) immediately
follows from the local one (Sloc). Integrating (Eloc) and using (3.5) together with
Lemma 3.8 gives the global energy condition (E). �

Proof of Theorem 3.5. We observe the correspondence between (SF)+, (LF)± and
(SF)− and the conditions (i), (ii) and (iii) in Lemma 3.9, respectively, where −
rd(z)(t) ∈ Tz+(t)E is used for (i) but rd(z)(t) ∈ Tz−(t)E is of no help in (iii).

This proves (a) and (b), where the equivalence in (a) follows as −rd(z)(t)
∈ Tz+(t)E is known also in (LF)+. Part (c) is a consequence of (a) and
Theorem 3.4(c). �

Finally we connect our formulation to the so-called sweeping processes as
discussed in [KuM97, KuM98, Mon93]. Again we assume convexity of I. Our sub-
differential formulation (SF) is posed in the dual space X∗ and we need to employ
duality arguments (see Appendix B) involving the Legendre-Fenchel transform
L to return to an equation in the space X. In the case E = X, our equation
reads −DI(t, z(t)) ∈ ∂∆(rd(z)(t)), and by Theorem B.1 this is equivalent to

rd(z)(t) ∈ ∂χF ∗ (−DI(t, z(t))) for µz-a.a. t ∈ [0, T ], (3.7)

since χF ∗ is the Legendre transform L∆ of ∆.
In the case of E � X the situation is a little more involved as we cannot

insert a set-valued function into a subdifferential. We rewrite (VI)− in the form
mt(w) ≥ mt(rd(z)(t)) = 0 for all w ∈ X where mt(w) = 〈DI(t, z(t)), w〉+∆(w)+
χTz(t)E(w). This is equivalent to the inclusion 0 ∈ ∂mt(rd(z)(t)) or −DI(t, z(t)) ∈
∂ft(rd(z)(t)) where ft(w) = ∆(w) + χTz(t)E(w). By the duality theorem B.1 we
have rd(z)(t) ∈ ∂(Lft)(−DI(t, z(t))). Using Proposition B.3 we obtain an explicit
form for L which leads to the final result.

(SP)− [Sweeping Process Formulation] Find z ∈ BV−([0, T ], X) with
z(0) = z0 and z(t) ∈ E such that

rd(z)(t) ∈ ∂χF ∗+Nz(t)E(−DI(t, z(t))) for µz-a.a. t ∈ [0, T ]. (3.8)
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4 Time discretization

One of the standard methods to obtain solutions of nonlinear evolution equations
is that of approximation by time discretizations. To this end we choose discrete
times 0 = t0 < t1 < · · · < tN = T and consider the incremental problem.

(IP) For given z0 ∈ E find z1, . . . , zN ∈ E such that

zk ∈ argmin {I(tk, z) + ∆(z − zk−1) : z ∈ E} (4.1)

for k = 1, . . . , N .

Here “argmin J” denotes the set of all global minimizers of a functional J .
By weak lower semi-continuity and boundedness from below of I(t, ·) we obtain
the following result.

Theorem 4.1 The incremental problem (4.1) always has a solution. Any solution
satisfies for k = 1, . . . , N

(i) zk is stable for time tk

(ii)
∫
[tk−1,tk) ∂tI(s, zk) ds ≤ I(tk, zk) − I(tk−1, zk−1) + ∆(zk − zk−1)

≤
∫
[tk−1,tk) ∂tI(s, zk−1) ds

(iii)
∑N

k=1 ∆(zk − zk−1) ≤ I(0, z0) + C1T

(iii) ‖zk‖ ≤ ‖z0‖ + C
(1)
∆ (I(0, z0) + C1T )C(1)

∆ .

Remark: The assertions (i) and (ii) are the best replacements of the conditions
(S) and (E) in the time-continuous case.

Proof. From I(t, z) ≥ 0 we have

I(tk, z) + ∆(z − zk−1) ≥ C
(1)
∆ ‖z − zk−1‖.

Hence any minimizing sequence (zj
k)j∈N is bounded and a subsequence converges

weakly to zk ∈ E ⊂ X. Convexity of ∆ and weak lower semi-continuity of I(tk, ·)
give

I(tk, zk) + ∆(zk − zk−1) ≤ lim inf
k→∞

I(tk, zj
k) + lim inf

j→∞
∆(zj

k − zk−1)

≤ lim inf
j→∞

[I(tk, zj
k) + ∆(zj

k − zk−1)]

= inf{ I(tk, y) + ∆(y − zk−1) : y ∈ E }.

This is equivalent to zk ∈ argmin I(t, ·) + ∆(· − zk−1).
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The stability (i) is obtained by the minimization property and the triangle
inequality (2.3) as follows. For all w ∈ E we have

I(tk, w) + ∆(w − zk) = I(tk, w) + ∆(w − zk−1) + ∆(w − zk) − ∆(w − zk−1)
≥ I(tk, zk) + ∆(zk − zk−1) + ∆(w − zk) − ∆(w − zk−1) ≥ I(tk, zk).

The lower estimate in the energy estimate (ii) is deduced from the stability of
zk−1 with respect to zk:

I(tk, zk) + ∆(zk − zk−1) = I(tk−1, zk) + ∆(zk − zk−1) +
∫

[tk−1,tk)
∂tI(s, zk) ds

≥ I(tk−1, zk−1) +
∫

[tk−1,tk)
∂tI(s, zk) ds.

The upper estimate in (ii) follows since zk is a minimizer:

I(tk, zk) + ∆(zk − zk−1) ≤ I(tk, zk−1)

= I(tk−1, zk−1)d +
∫

[tk−1,tk)
∂tI(s, zk−1) ds.

Adding up (ii) for k = 1, . . . , N we find

I(T, zN ) − I(0, z0) +
N∑

k=1

∆(zk − zk−1) ≤
N∑

k=1

∫
[tk−1,tk)

∂tI(s, zk−1) ds.

Using I(t, z) ≥ 0 and |∂tI(t, z)| ≤ C1 we obtain (iii). Now (iv) follows from
C

(1)
∆ ‖zk − z0‖ ≤ ∆(zk − z0) ≤

∑N
j=1 ∆(zj − zj−1) and (iii). �

For each partition P = {0, t1, . . . , tN−1, T} of the interval [0, T ] and each
incremental solution (zk)k=1,...,N of (IP) we denote by ZP a piecewise constant
function with

ZP (t) = zk−1 for t ∈ [tk−1, tk) and ZP (T ) = zN , (4.2)

which is continuous from the right. Summing (ii) in Theorem 4.1 over k = i +
1, . . . , j we find the following result.

Corollary 4.2 If (zk)k=1...N solves (IP), then ZP satisfies the energy inequality

I(tj , ZP (tj)) +
∫

[ti,tj ]
∆(dZP ) ≤ I(ti, Zp(ti)) +

∫ tj

ti

∂tI(s, ZP (s))ds.

The minimization property of zk leads to a necessary local condition:
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Proposition 4.3 If zk solves (4.1) then

〈DI(tk, zk), w − zk + zk−1〉 + ∆(w) − ∆(zk − zk−1) ≥ 0 for all w ∈ Tzk
E. (4.3)

If I(tk, ·) is strictly convex and E = X, then (4.3) has a unique solution. Then
(4.1) and (4.3) are equivalent.

Proof. Let zθ = (1 − θ)zk + θzk−1 where θ ∈ [0, 1]. The minimization property of
zk gives

I(tk, zk) + ∆(zk − zk−1) ≤ I(tk, zθ) + ∆(zθ − zk−1)
= I(tk, zk) + θ〈DI(tk, zk), zk−1 − zk)〉 + o(θ) + (1 − θ)∆(zk − zk−1),

for θ → 0. Subtracting the terms of order θ0, dividing by θ and taking the limit
θ → 0 yields 〈DI(tk, zk), zk − zk−1)〉 + ∆(zk − zk−1) ≤ 0.

From Theorem 4.1 we know that zk is stable and comparing with z = zk+θw,
w ∈ Tzk

E, gives similarly 〈DI(tk, zk), w)〉 + ∆(w) ≥ 0. Subtracting the previous
inequality gives (4.3).

Let E = X and let z
(j)
k , j = 1, 2 be two solutions of (4.3). Then, we can use

w = z
(3−j)
k − z

(3−j)
k−1 as test-function in (4.3) and the estimates for j = 1 and 2 to

obtain 〈DI(tk, z
(1)
k )−DI(tk, z

(2)
k ), z(2)

k − z
(1)
k 〉 ≥ 0. Induction over k together with

strict convexity this implies z
(1)
k = z

(2)
k . �

For the uniformly convex case we obtain a Lipschitz bound for the incre-
mental Problem (4.1).

Theorem 4.4 If I(t, ·) is α-uniformly convex then any solution of (4.1) satisfies

‖zk − zk−1‖ ≤ C2

α
|tk − tk−1| for k = 1, . . . , N.

Proof. The stability of zk−1 at tk−1 implies via (Sloc) and zk − zk−1 ∈ Tzk−1E the
estimate

〈DI(tk−1, zk−1), zk − zk−1〉 + ∆(zk − zk−1) ≥ 0. (4.4)

Adding this to (4.3) with w = 0 we have 〈DI(tk−1, zk−1) − DI(tk, zk),
zk − zk−1〉 ≥ 0. With the uniform convexity and assumption (2.6) we continue

0 ≥ 〈DI(tk, zk) − DI(tk, zk−1), zk − zk−1〉
+ 〈DI(tk, zk−1) − DI(tk−1, zk−1), zk − zk−1〉

≥ α‖zk − zk−1‖2 − C2|tk − tk−1|‖zk − zk−1‖;

and the result is established. �
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5 Stable sets

The sets of stable points play an important role in the analysis. For t ∈ [0, T ] we
let

S(t) = {z ∈ E : I(t, z) ≤ I(t, y) + ∆(y − z) for all y ∈ E},

which is the set of all stable points at time t. The condition (S) now reads
“z(t) ∈ S(t)”.

Lemma 5.1 Let I(·, z) : [0, T ] → [0,∞) be continuous and I(t, ·) : E → [0,∞) be
lower semicontinuous. Then,

(a) for each t the set S(t) is closed;

(b) if tn → t and zn ∈ S(tn) with zn → z, then z ∈ S(t).

Proof. Let H(t, z, w) = I(t, w) + ∆(w − z) − I(t, z) and H(t, z) = inf{H(t, z, w) :
w ∈ E}. Clearly, H(t, z) ≤ 0 and z ∈ S(t) ⇔ H(t, z) = 0.

Assume zn ∈ S(t) and zn → z, then H(t, zn, w) ≥ 0 for all w. By continuity
of I(t, ·) and ∆(·) we find H(t, z, w) ≥ 0 and conclude z ∈ S(t). This proves (a).

Part (b) follows from (a) and the (strong) continuity of H(·, z, w) : [0, T ] → R.
�

In the case E = X, I(t, ·) convex and in C1(X, R) the stable set is simply
characterized by S(t) = {z : −DI(t, z) ∈ F ∗}. In the general case we have

z ∈ S(t) ⇒ −DI(t, z) ∈ F ∗ + NzE (5.1)

with equivalence if I(t, ·) is convex.
We will see in the following that weak closedness of S(t) is a very desirable

property. A natural way to obtain weak closedness of the stable sets is to show
convexity by using that F ∗ is sufficiently round. We say F ∗ is γ-round if

∀θ ∈ [0, 1]∀z∗
0 , z∗

1 ∈ F ∗ : {w∗ ∈ X∗ : ‖w − (θz∗
1 + (1 − θ)z∗

0)‖
≤ γθ(1 − θ)‖z∗

0 − z∗
1‖2} ⊂ F ∗. (5.2)

In a Hilbert space the ball BR(z∗) is (2R)−1-round.

Theorem 5.2 Assume E = X and that F ∗ is γ-round. Moreover, assume that
I(t, ·) ∈ C3(X, R) with ‖D3I(t, z)‖X×X×X→R ≤ M for all z and that I is α-
uniformly convex. Then the inequality M/(2α2) ≤ γ implies that S(t) is convex.

Proof. Take z0, z1 ∈ S(t). By (5.1) we have σ∗
j = DI(t, zj) ∈ F ∗ for j = 0 and 1.

For θ ∈ [0, 1] we let zθ = (1 − θ)z0 + θz1, then it suffices to show

‖DI(t, zθ) − (1 − θ)DI(t, z0) − θDI(t, z1)‖ ≤ γθ(1 − θ)‖σ∗
0 − σ∗

1‖2.
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The left-hand side takes the form∥∥∥∥∥θ(1 − θ)
∫

[0,1]

[
D2I(t, z1 + s(zθ − z1)) − D2I(t, z0 + s(zθ − z0))

]
(z0 − z1)‖ds

∥∥∥∥∥
and thus can be estimated by M

2 θ(1 − θ)‖z0 − z1‖2. Uniform convexity gives

‖σ∗
0 − σ∗

1‖ ≥ 〈DI(t, z0) − DI(t, z1), z0 − z1〉
‖z0 − z1‖

≥ α‖z0 − z1‖

and the result is established. �

An important special case is E = X and I being a convex quadratic
functional.

Corollary 5.3 Assume E = X and I(t, z) = 1
2 〈A(t)z, z〉 − 〈g(t), z〉 with A(t) ∈

Lin(X, X∗) and 〈A(t)z, z〉 > 0 for all z ∈ X. Then S(t) is convex.

For convenience, we give a direct proof. However, this result is a special case of
Theorem 5.2 and of Theorem 5.4.

Proof. Since I(t, ·) is convex and smooth we have z ∈ S(t) ⇔ −DI(t, z) = −
A(t)z + g(t) ∈ F ∗. Since F ∗ is convex and DI is linear we conclude convexity
of S(t). �

Theorem 5.4 If one of the following conditions holds, then the stable sets S(t)
are weakly closed:

(1) S(t) is convex.

(2) For all w ∈ E the mapping ∆(w − ·) : E → R is weakly continuous.

(3) E = X and the mapping DI(t, ·) : E → X∗ is weakly continuous.

Proof. Part (1) is clear since closed convex sets are weakly closed.
Part (2) follows by using weak continuity of ∆(·) and weak lower semi-

continuity of I(t, ·) as follows. Assume zn ⇀ z and zn ∈ S(t). With the notation
as in the proof of Lemma 5.1 we have

0 ≤ lim sup
n→∞

H(t, w, zn) = I(t, w) + lim
n→∞ ∆(w − zn) − lim inf

n→∞ I(t, zn)

≤ I(t, w) + ∆(w − z) − I(t, z) = H(t, w, z)

for all w ∈ E. Thus, z ∈ S(t).
Part (3) follows with (5.1) where NzE = {0}. �
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Note that the condition (2) together with 0 < C
(1)
∆ ≤ C

(2)
∆ < ∞ in (2.2) is

rather restrictive; it means that E ∩ Br(0) is compact for each r > 0.
In the following examples we give simple functionals I(t, z) and ∆(z)

such that the stable set S(t) is nonconvex and not weakly closed. See also
Example C.3.

Example 5.5 Let E = X = R×H where H is a Hilbert space. Let z = (a, h) ∈ X
and

I(t, z) =
1
4
(a2 + ‖h‖2)2 − γ(t)a, ∆(z) =

√
a2 + ‖h‖2.

Then z ∈ S(t) ⇔ ‖DI(t, z)‖ ≤ 1, where DI(t, (a, h)) = (a2+‖h‖2)
(

a
h

)
−

(
γ(t)
0

)
.

Now, assume γ(t1) = 2, then (a, 0) ∈ S(t1) if and only if a ∈ [1, 31/3]. Consider
z∗ = (a∗, h∗) with a∗ = (35/28)1/3 < 1 and ‖h∗‖ = (3 · 53/216)1/6, then a straight
forward calculation gives ‖DI(t1, z∗)‖ = 1. In fact, these z∗ are the ones having
the smallest a-component.

Clearly, S(t1) cannot be convex, since (a∗, h∗) and (a∗,−h∗) are in S(t1) but
(a∗, 0) /∈ S(t1), see Fig. 1 for a visualization. Moreover, if H is infinite dimensional
then S(t1) is not weakly closed. In fact, take any sequence hk with ‖hk‖ = ‖h∗‖
and hk ⇀ 0, then (a∗, hk) ∈ S(t1) and (a∗, hk) ⇀ (a∗, 0) /∈ S(t1).

1

1.2

1.4

a

–0.6 –0.4 –0.2 0 0.2 0.4 0.6
h

Figure 1 The visualization of the stable set in Example 5.5 in the case H = R clearly shows
that convexity can not be expected

Example 5.6 In this example I is quadratic but E ⊆ X. Consider E = BR(0) ⊂
X Hilbert space,

I(t, z) =
α

2
‖z‖2 − 〈g(t), z〉, ∆(z) = ‖z‖.
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Then z with ‖z‖ < R is stable if and only if ‖αz − g(t)‖ ≤ 1. For z with ‖z‖ = R
the boundary of E can stabilize; and stability holds if there exists γ ∈ [α,∞) such
that ‖γz − g(t)‖ ≤ 1.

Thus, in the case ‖g(t)‖ ≤
√

1 + α2R2 we have the convex stable set S(t) =
{z ∈ E : ‖αz − g(t)‖ ≤ 1} ∩ BR(0), which is the intersection of two balls. In the
case ‖g(t)‖ >

√
1 + α2R2 we have

S(t) = {z ∈ E : ‖αz − g(t)‖ ≤ 1}
∪ {z ∈ E : ‖z‖ = R, ‖

(
‖g(t)‖2 − 1

)1/2
z − Rg(t)‖ ≤ R}

which always contains a nonconvex part of the boundary of the sphere.

However, there are also many nontrivial examples where convexity of the
stable set can be shown directly. For instance, consider X = L1(Ω; Rn), ∆(z) =
‖z‖1 =

∫
Ω |z(x)| dx and E = L1(Ω; K) where K is a compact and convex subset

of Rn. Let W : [0, T ] × Ω × K → R be continuous and W (t, x, ·) : K → R be
convex. For I(t, z) =

∫
Ω W (t, x, z(x)) dx the stability of z ∈ E can be checked

pointwise: z is stable at time t if and only if for a.a. x ∈ Ω the vector z(x) is
stable for Î(t, ξ) = W (t, x, ξ) and ∆̂(ξ) = |ξ|. We refer to [MTL02] for a nontrivial
application of this idea.

6 Existence and uniqueness results
for general I

The existence theory can be approached in a rather general setting even with-
out convexity. We use the incremental method of Section 4. For a partition
P = {0, t1, . . . , tN−1, T} of [0, T ] the fineness is δ(P ) = max{ tk − tk−1 : k =
1, . . . , N } and ZP denotes the left-continuous, piecewise constant solution asso-
ciated to a solution of (IP), see (4.2). By our assumptions all these functions
ZP are bounded in BV([0, T ], X), since ZP (0) = z0 and

∑N
k=1 ∆(zk − zk−1) ≤

I(0, z0) + C1T , see Lemma 4.1 (iii). To extract a convergent subsequence we use
the following generalization of Helly’s selection principle, see [BaP86]. We sketch
the proof for the convenience of the reader.

Theorem 6.1 Let (zn)n∈N be a bounded sequence in BV([0, T ], X) with zn(t) ∈ E
for all n ∈ N and t ∈ [0, T ]. Then there exists a subsequence (nk) and functions
δ∞ ∈ BV([0, T ], R) and z∞ ∈ BV([0, T ], X) such that the following holds:

(a)
∫
[0,t) ∆(dznk

) → δ∞(t) for all t ∈ [0, T ];

(b) znk
(t) ⇀ z∞(t) ∈ E for all t ∈ [0, T ];

(c)
∫
[s,t) ∆(dz∞) ≤ δ∞(t) − δ∞(s) for all 0 ≤ s < t ≤ T .
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Proof. First consider the monotone functions δn(t) =
∫
[0,t) ∆(dzn). By the

real-valued version of Helly’s principle there exists a subsequence (nl) and a
monotone function δ∞ : [0, T ] → [0,∞) such that for all t ∈ [0, T ] we have
δnl

(t) → δ∞(t) for l → ∞.
Clearly, δ∞ has an at most countable jump set J ⊂ [0, T ]. Now choose a

sequence (tj)j∈N which is dense in [0, T ] and contains J . Since there is an R > 0
with ‖zn(t)‖ ≤ R we have weak compactness and can construct a further subse-
quence (nk) such that for all j ∈ N we have znk

(tj) ⇀ z∞(tj) for k → ∞. This is
the definition of z∞ at t = tj .

Using the weak lower semi-continuity of ∆ it follows that z∞ must be con-
tinuous except at the jump points of δ∞(t). Thus, we define z∞ on all of [0, T ] by
its continuous extension in [0, T ]/J .

Moreover, by b) we have weak convergence for all t ∈ [0, T ] as follows. The
case t ∈ J is clear, hence assume t ∈ [0, T ]/J and choose y∗ ∈ X∗. Then,

|〈znk
(t) − z∞(t), y∗〉| ≤ ‖znk

(t) − znk
(tj)‖‖y∗‖

+ |〈znk
(tj) − z∞(tj), y∗〉| + ‖z∞(tj) − z∞(t)‖‖y∗‖.

Since the first and the third term on the right hand side can be estimated by
|δ∞(t) − δ∞(tj)|2‖y∗‖ we can choose tj such that both terms are less that ε/3 for
all k ≥ k0. Keeping j fixed and increasing k0 if necessary the second term is less
than ε/3 as well as for k ≥ k0. �

In the above and in the following result the function z is a general BV-
function where at jump points z+(t), z(t) and z−(t) may all be different. Com-
bining the a-priori estimates in Section 4 and the previous theorem we arrive at
the following result.

Proposition 6.2 Let P (j) = {0, t
(j)
1 , . . . , t

(j)
N(j)−1, T} be a sequence of partitions

whose fineness δ(P (j)) tends to 0. Denote by z(j) = ZP (j) the associated step
functions (4.2) of the incremental problems (IP). Then there exists a subsequence
(jl)l∈N and functions δ∞, i∞ : [0, T ] → R and z∞ ∈ BV([0, T ], X) such that

(i) z(jl)(t) ⇀ z∞(t),
∫
[0,t) ∆(dz(jl)) → δ∞(t) for all t ∈ [0, T ];

(ii)
∫
[s,t) ∆(dz∞) ≤ δ∞(t) − δ∞(s) for all s < t,

(iii) i∞(t) = liml→∞ I(t, z(jl)(t)) ≥ I(t, z∞(t));

(iv) i∞(t) + δ∞(t) = I(0, z0) +
∫
[0,t) ∂tI(s, z∞(s)) ds.
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Proof. Applying Theorem 6.1 to the sequence z(j) we immediately obtain (i)
and (ii). The weak continuity of ∂tI(s, ·) (see assumption 2.6) implies∫

[0,t)
∂tI(s, z(jl)(s)) ds →

∫
[0,t)

∂tI(s, z∞(s)) ds

for all t ∈ [0, T ]. Adding the two-sided energy estimate (ii) in Lemma 4.1 we have∫
[0,t

(j)
n )

∂tI(s, z(j)(s)) ds ≤ I(t(j)n , z(j)(t(j)n )) − I(0, z0) +
∫

[0,t
(j)
n )

∆(dz(j))

≤
∫

[0,t
(j)
n )

∂tI(s, ẑ(j)(s)) ds, (6.1)

where ẑ(j) is the right-continuous step function defined in (4.2). At all continuity
points t of z∞ we have ẑ(jl)(t) ⇀ z∞(t) and hence the upper and lower estimates
in (6.1) both converge, for jl → ∞ and t

(jl)
nl → t, to the limit

∫
[0,t) ∂tI(s, z∞(s)) ds.

With (i) and (6.1) we conclude that the limit i∞(t) exists for all t ∈ [0, T ]
and (iv) holds. Lower semi-continuity of I(t, ·) implies (iii). �

The remaining task is to show that the limit function gives rise to a solu-
tion of our problem. The functions z = (z∞)± always satisfy the global energy
inequality (E), which follows from

I(t, z(t)) +
∫

[0,t)
∆(dz) ≤ i∞(t) + δ∞(t) = I(0, z0) +

∫
[0,t)

∂tI(s, z(s)) ds.

The major problem is to obtain stability of z(t) for all t ∈ [0, T ]. To derive this
from the stability of z(j) = ZP (j) at the times t ∈ P (j) we have two choices. Either
we improve the weak convergence in Proposition 6.2(i) to strong convergence and
use the closedness of the stable sets, see Lemma 5.1. Or we stay with the weak
convergence and show that S(t) is weakly closed.

Theorem 6.3 Assume that E, ∆ and I satisfy the above assumption. Take a
nested hierarchical sequence of partitions P (1) ⊂ P (2) ⊂ . . . with δ(P (j)) → 0 and
define ẑ(l) = ZP (jl) and z∞ as in Proposition 6.2. Then z = (z∞)± is a solution
of (GF) if there exists a dense subset T of [0, T ] with T ⊂

⋃∞
j=1 P (j) such that

one of the following two conditions holds

(1) ẑ(l)(t) → z∞(t) for all t ∈ T ;

(2) S(t) is weakly closed for all t ∈ T .

Proof. The two conditions are such that we can conclude z(t) ∈ S(t) for all
t ∈ T by using the stability of z(jl)(t) at time t for all sufficiently large l and the
closedness of S(t) in the suitable topology.

Lemma 5.1(b) and the density of T then imply that z is stable for all t ∈ [0, T ]
and the theorem is established. �
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Remark 6.4 The above theorem was derived under the assumption of reflexivity
of X. However, we only used that closed, bounded subsets of E are sequentially
weakly compact. Interesting applications involve the choice X = L1(Ω) and E =
{z : ‖z‖∞ ≤ 1}. We refer to [MTL02, MaM03] for more details.

Actually in case (1) the assumption of the weak continuity of ∂tI(t, ·) is unnec-
essary, strong continuity would suffice. A simple example to which the second
part of our theorem applies is the following. Let E = X where X is an infinite
dimensional Hilbert space. Let ∆(z) = ‖z‖ and

I(t, z) =
α

2
‖z‖2 + ‖z‖4 − 〈g(t), z〉

for a small α > 0 and a suitable smooth function g : [0, T ] → X. By Example 5.5
we know that the stable sets S(t) are not weakly closed for an open set of
functions g.

Following the spirit of the existence theorem we can also deduce a uniqueness
result which requires that the stable sets are convex.

Theorem 6.5 If in addition to the above assumptions the function I has the form
I(t, z) = J(z) − 〈g∗(t), z〉 where J is strictly convex and the stable sets S(t) are
convex for all t ∈ [0, T ], then there is a unique solution for each initial condition
z0 ∈ E.

Proof. The existence of a solution is a consequence of Theorem 6.3, since convexity
of S(t) implies weak closedness via the strong closedness, cf. Lemma 5.1.

For any two solutions zj : [0, T ] → E with zj(0) = z0 ∈ S(0) define
z̃(t) = 1

2 (z0(t) + z1(t)). By convexity of the stable sets we know that z̃(t) is
stable for all t. Now assume z0(t) �= z1(t) for some t > 0. Using strict convexity
of J , the energy identity 3.4 and the linearity of ∂tI we obtain

I(t, z̃(t)) +
∫

[0,t]
∆(dz̃)

<
1
2
[I(t, z0(t)) + I(t, z1(t))] +

∫
[0,t]

1
2
[∆(dz0) + ∆(dz2)]

=
1
2
[I(0, z0(0)) + I(0, z1(0))] −

∫ t

0

1
2
[〈ġ∗, z0〉 + 〈ġ∗, z1〉]ds

= I(0, z0) +
∫ t

0
∂tI(s, z̃(s))ds.

Thus, z̃ also satisfies the global energy condition (E) and is a solution as well.
However, by Lemma 3.7 every solution satisfies the energy equality (3.4) which
is not the case here due to the strict convexity. Hence, we conclude z0 = z1 on
[0, T ]. �
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In [CoV90] uniqueness for our situation is obtained only if E = X and I is a
quadratic functional, i.e., I(t, z) = 〈Az−g∗(t), z〉 where A : X → X∗ is symmetric
and positive definite. Clearly, this is a special case of the above result.

7 The good case: I uniformly convex
and X = E

In this section we establish the well posedness of the time-continuous evolution
problem in the convex case. By Theorem 3.4.c and Theorem 3.5.c we see that
all our formulations are equivalent. It is obvious that one can only expect that
the solutions are unique if the I is strictly convex. In the degenerate cases it
is easy to construct examples for nonuniqueness. If we additionally assume that
I satisfies a smoothness condition we get a pretty complete picture. For every
initial value z(0) = z0 ∈ X there exists a unique continuous process z and z(t)
depends continuously on z0. Furthermore the solutions to the incremental problem
converge to z as the fineness of the discretization tends to 0.

This improves the result in [HaR95] where the existence of a solution
z ∈ W 2,1([0, T ], X) (resp. with ż ∈ BV([0, T ], X), cf. Section 7.2) has to be
assumed before showing convergence of the incremental method. At the end of
the section we state the optimal regularity in time of the solutions. This requires
that the boundary of F ∗ is smooth.

Unfortunately our smoothness assumption on I(t, ·) rules out the case E �= X
and we are unable to generalize the methods of this chapter to cases where E has
a boundary.

Theorem 7.1 (Well posedness in the convex, smooth case) Assume E =
X and I(t, ·) ∈ C3(X) α-uniformly convex in z. Then for every z0 in X there
exists a unique solution z ∈ W 1,∞([0, T ], X) of (GF) (or alternatively of (LF),
(VI) or (SF)). For each t ∈ [0, T ] the state z(t) depends continuously on the
initial value z0. Furthermore there exists a constant C > 0 so that

‖z − ZP ‖L∞([0,T ],X) ≤ C
√

δ

with ZP from (4.2) and δ = min{ ti − ti−1 : i=1, . . . , N } is the fineness of the
time discretization.

Proof. The equivalence of (GF), (LF), (VI) and (SF) is established in the
Theorems 3.4 and 3.5. The proof of existence of the solutions to the Cauchy
problem is given in Theorem 7.3. There also the convergence of the solutions
of the incremental problems to the time continuous solution is established. The
uniqueness and the continuous dependence on the initial value is established in
Theorem 7.4 �
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7.1 Strong convergence

We first prove a stability result for the incremental problem when I is perturbed.
This will then be used to compare the incremental solutions for two different
partitions.

Proposition 7.2 Let E = X, j ∈ {1, 2}, Ij ∈ C3(X, R), Ij α-uniformly
convex. Then, there exists a constant C > 0 such that for all partitions
P = {0, t1, . . . , tN−1, T} the solution (zj

k)k=0,...N of the incremental problem
satisfies

‖z1
k − z2

k‖ ≤ Cρ
1
2

where ρ = supz∈X ‖DI1(·, z) − DI2(·, z)‖L∞([0,tk],X∗).

Proof. We generalize the idea of the proof of Theorem 2.3 in [HaR95]. We intro-
duce the notation σj(t, z) = DIj(t, z), ek = z1

k − z2
k and the difference operator

τkζ = ζk − ζk−1 where ζ stands for t, zj , σj(t, zl
k) or e.

Convexity, E = X and (4.3) give 〈σj(tk, zj
k), w−τkzj〉+∆(w)−∆(τkzj) ≥ 0

for all w ∈ X. Inserting w = τkz3−j and adding the equations for j = 1 and 2
gives

〈σ1(tk, z1
k) − σ2(tk, z2

k), τke〉 ≤ 0. (7.1)

The final estimate is derived using the quantity

γk
def= 〈σ1(tk, z1

k) − σ1(tk, z2
k), ek〉 = 〈DI1(tk, z1

k) − DI1(tk, z2
k), z1

k − z2
k〉

which by uniform convexity controls the error ek via α‖ek‖2 ≤ γk. The increment
τkγ = γk − γk−1 can be estimated via (7.1) as follows

τkγ = 〈σ1(tk, z1
k) − σ1(tk, z2

k), τke〉 + 〈τk(σ1(tk, z1
k) − σ1(tk, z2

k)), ek−1〉
= 2〈σ1(tk, z1

k) − σ2(tk, z2
k), τke〉 + βk

where βk = 〈τk(σ1(tk, z1
k) − σ1(tk, z2

k)), ek−1〉 − 〈σ1(tk, z1
k) − σ1(tk, z2

k), τke〉 +
2〈σ1(tk, z2

k) − σ2(tk, z2
k), τke〉 takes the form

βk = 〈Akek − Ak−1ek−1, ek−1〉 − 〈Akek, τke〉 + 2〈σ1(tk, z2
k) − σ2(tk, z2

k), τke〉
= −〈Akτke, τke〉 + 〈(Ak − Ak−1)ek−1, ek−1〉 + 2〈σ1(tk, z2

k) − σ2(tk, z2
k), τke〉.

The symmetric operators Ak ∈ Lin(X, X∗) are defined via Ak =
∫
[0,1] D

2I1(tk, z2
k +

θek) dθ and satisfy Akek = σ1(tk, z1
k) − σ1(tk, z2

k). By convexity and three-times
differentiability we obtain

〈Aky, y〉 ≤ 0 and ‖Ak − Ak−1‖ ≤ C3
(
‖τkz1‖ + ‖τkz2‖

)
.

Together with ‖τke‖ ≤ ‖τkz1‖ + ‖τkz2‖ we find

τkγ ≤
[
2Gk +

C3

α
γk−1

] (
‖τkz1‖ + ‖τkz2‖

)
,



176 Alexander Mielke and Florian Theil NoDEA

where Gk = supz∈X ‖σ1(tk, z) − σ2(tk, z)‖X∗ . The Lipschitz continuity of zj

(see Theorem 4.4) gives the existence of a constant C which is independent of the
partition P such that

γk ≤ γk−1 + (tk − tk−1)Ĉ[Gk + γk−1] for k = 1, . . . , N,

where Ĉ = C supz∈X [‖∂tσ
1(·, z)‖∞ + ‖∂tσ

2(·, z)‖∞]. With γ0 = 0 and Gk ≤ p we
obtain

γk ≤ ĈG

k∑
n=1

(tn − tn−1)
k∏

j=n+1

[1 + Ĉ(tj − tj−1)] ≤ ĈδeĈT T.

Together with ‖z1
k − z2

k‖2 ≤ 1
αγk this is the desired result. �

Theorem 7.3 Under the assumptions of Proposition 7.2 there is a unique solu-
tion z ∈ W 1,∞([0, T ], X) and for each partition P the incremental solution
zk = ZP (tk) satisfies the error estimate

‖zk − z(tk)‖ ≤ C[δ(P )]1/2 for tk ∈ P

where C is independent of P .

Proof. Uniqueness and Lipschitz continuity are shown in Theorems 7.4 and 7.5
below. The existence part is based on the global definition of solutions via sta-
bility (S) and energy inequality (E) and strong convergence. We use the parti-
tions P (j) = {kT2−j : k = 0, . . . , 2j} with the associated incremental solutions
z(j) = ZP (j) .

The idea is to consider z(j−1) as an incremental solution on P (j) of a slightly
modified problem. Then z(j−1) and z(j) can be compared using the previous
proposition. We let I(j)(kT2−j , ·) = I(kT2−j , ·) for even k and I(j)(kT2−j , ·) =
I((k + 1)T2−j , ·) for odd k. Between the points in P (j) the potential I(j) is
assumed to be linear in t. Thus, we have

‖DI(j) − DI

∥∥∥∥∞ ≤ T

2j−1

∥∥∥∥ ∂tDI‖∞ and ‖∂tDI(j)‖∞ ≤ 2‖∂tDI‖∞,

where ‖DI‖∞ = sup{‖DI(t, z)‖X∗ : t ∈ [0, T ], z ∈ X}.
Since z(j−1) is the incremental solution on P (j) with we can apply

Proposition 7.2 and obtain

‖z(j)(t) − z(j−1)(t)‖ ≤ C2−j/2 for t ∈ P (j). (7.2)

Thus, keeping t ∈ T n = {kT2−n : k ∈ N, k ≤ 2n} fixed, the sequence (z(j)(t))j∈N

is a Cauchy sequence. Its limit z∞(t) provides a Lipschitz continuous solution
by Theorem 6.3 (the incremental solutions satisfy a uniform Lipschitz bound,
cf. Theorem 4.4).
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The estimate for general partitions P = P (1) is obtained by successive
bisection of the previous partition P (j) such that δ(P (j+1)) = δ(P (j))/2. Doing the
same trick as above we again obtain ‖DI(j) −DI‖∞ ≤ 2δ(P (j)) and ‖∂tDI(j)‖∞ ≤
2‖∂tDI‖∞. Estimate (7.2) is replaced by

‖z(j−1)(t) − z(j)(t)‖ ≤ Cδ(P (j))1/2 for t ∈ P (j).

Restricting to t ∈ P = P (1) and adding all these estimates we find

‖z(1)(t) − z∞(t)‖ ≤
∞∑

j=1

C
(
δ(P )2−j+1)1/2

= C̃δ(P )1/2.

Since z(1)(tk) = zk is the original incremental solution and z∞(t) = z(t) the
time-continuous one the result is established. �

7.2 Uniqueness results

It is easy to construct examples with I(t, ·) (not strictly) convex such that the
solution is not unique, see e.g. Example 7.6. A first uniqueness result was obtained
in Theorem 6.5.

Theorem 7.4 Assume that E = X, that I is α-uniformly convex and that I(t, ·) ∈
C3(X, R). Then the solutions are unique and depend Lipschitz continuously on the
initial value.

Proof. Let z1 and z0 be two solutions. Define

γ(t) = 〈σ∗
1 − σ∗

0 , z1(t) − z0(t)〉 with σ∗
j = DI(t, zj(t)),

then ‖z1(t)−z0(t)‖2 ≤ γ(t)/α by α-uniform convexity. Moreover, by Theorem 7.5
below we know that żj = (1+‖żj‖)rd(zj) exists a.e. in [0, T ] and satisfies ‖żj(t)‖ ≤
C1/α. Thus, we have

γ̇(t) = 〈∂tDI(t, z1) − ∂tDI(t, z0), z1 − z0〉 + 〈r∗
1 , ż1〉 + 〈r∗

0 , ż0〉

where r∗
j = D2I(t, zj)[zj − z1−j ] − σ∗

1−j + σ∗
j = 2(σ∗

j − σ∗
1−j) + b∗

j . Using the
estimates

‖b∗
j‖ = ‖DI(t, z1−j) − DI(t, zj) − D2I(t, zj)[z1−j − zj ]‖ ≤ C3‖z1 − z0‖2

and ‖∂tDI(t, z1) − ∂tDI(t, z0)‖ ≤ C2‖z1 − z0‖ we find

γ̇ ≤ C2‖z1 − z0‖2 + 2C3‖z1 − z0‖2 C1

α
+ 2〈σ∗

0 , ż0 − ż1〉 + 2〈σ∗
1 , ż1 − ż0〉. (7.3)
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To estimate the sum of the last two terms we use the variational inequality (VI)
for the solutions z = zj where, by homogeneity, we can replace rd(zj) by żj . We
insert the test functions w = ż1−j and subtraction of the two equations yields

〈σ∗
1 − σ∗

0 , ż1 − ż0〉 ≤ 0. (7.4)

Here the characteristic functions vanish as Tzj(t)E = X (recall E = X) and the
terms involving ∆ annihilate.

Thus, (7.3) gives γ̇ ≤ C5γ with C5 = (C2 + 2C1C3/α)/α and, hence,
‖z1(t) − z0(t)‖2 ≤ eC5tγ(0)/α which implies uniqueness and Lipschitz continuity.

�

Theorem 7.4 can be generalized when we find a replacement for (7.4). Such
a generalization is given via the structure condition (C.1) in Appendix C.

7.3 Temporal regularity

In the general case solutions z : [0, T ] → E will not be continuous but just lie in
BV([0, T ], X). This includes the case of I being convex in z, when it is not strictly
convex. We obtain continuity if I(t, ·) is strictly convex and Lipschitz continuity if
I(t, ·) is uniformly convex. Even in the simplest case ż will have jumps due to the
intrinsic nondifferentiability of ∆ : X → R. Under suitable strong assumptions
we will show ż ∈ BV([0, T ], X).

Theorem 7.5 (a) If I : [0, T ] × E → R is continuous and if I(t, ·) : E → R is
strictly convex for all t ∈ [0, T ], then any solution z : [0, T ] → E is
continuous.

(b) If additionally I(t, ·) is α-uniformly convex, then z : [0, T ] → E is Lipschitz
continuous with

‖z(t) − z(s)‖ ≤ C2

α
|t − s|

where C2 is defined in assumption (2.6)(b).

Proof. (a) Take t ∈ [0, T ], then the left and right limits z− and z+ exist and satisfy
energy identity (2.7). For θ ∈ (0, 1) let zθ = θz+ +(1− θ)z− and assume z+ �= z−,
then strict convexity gives

I(t, zθ) + ∆(zθ − z−) < θI(t, z+) + (1 − θ)I(t, z−) + θ∆(z+ − z−) = I(t, z−).

This contradicts the stability of z− and we conclude the desired continuity
z+ = z−.

(b) Using uniform convexity, for t > s, we obtain

α‖z(t) − z(s)‖2 ≤ I(s, z(t)) − I(s, z(s)) − 〈DI(s, z(s)), z(t) − z(s)〉

≤ −
∫

[s,t)
∂tI(τ, z(t)) dτ + I(t, z(t)) − I(s, z(s)) + ∆(z(t) − z(s))
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=
∫

[s,t)
[∂tI(τ, z(τ)) − ∂tI(τ, z(t))] dτ −

∫
[s,t)

∆(dz) + ∆(z(t) − z(s))

≤
∫

[s,t)
|∂tI(τ, z(τ)) − ∂tI(τ, z(t))| dτ ≤

∫
[s,t)

C2‖z(τ) − z(t)‖ ds.

Here we have used (Sloc) at s for the second estimate, the energy balance (3.4)
on [s, t],

∫
[s,t) ∆(ż(τ)) dτ ≥ ∆(z(t) − z(s)) for the fourth estimate and finally

assumption (2.6).
Let t be fixed and define γ(s̃) = max{‖z(s)− z(t)‖ : s ∈ [s̃, t]}, then we have

shown α‖z(t) − z(s)‖2 ≤ C2|t − s|γ(s) ≤ C2|t − s̃|γ(s̃) for all s̃ ≤ s ≤ t. Thus, we
conclude αγ(s̃) ≤ C2|t − s̃| which is the desired result. �

After having established the well-posedness of the evolution problem
(i.e. existence and uniqueness) in certain cases it is desirable to check whether
any of the assumptions can be dropped. Unfortunately we do not have an example
for nonexistence, except in pathological cases. We can, however, give an example
which illustrates that the assumption of uniform convexity in Theorem 7.4 can
not be dropped.

Example 7.6 Let X = R, E = [−1, 1], ∆(v) = |v| and I(z) = α
2 z2 − g · z. The

existence of solutions is clear by trivial compactness in finite dimensions. Since
E � X we can not apply Theorem 7.4 directly but one can easily show that E
satisfies the structure condition (C.1). Therefore, by Proposition C.1 we have
uniqueness if α > 0. For every α ∈ R the solutions are monotone in time as long
as g is monotone, see Fig. 2 on the left side. For α ≤ 0 we lose uniqueness and
Lipschitz continuity. For α < 0 every solution z takes only values within {−1, 1},
see Fig. 2 on the right side.

−1 + α

1 + α−1 + α

−1 − α 1 − α

1 − αg g

z (g) z (g)

g > 0

g < 0
.

g < 0
.

.
g > 0
.

Figure 2 Solutions in Example 7.6 are unique and Lipschitz if α > 0 (to the left) and
discontinuous and nonunique if α < 0 (to the right)

In [HaR95] a convergence result for the incremental problem is given under
the assumption that the time continuous solution lies in z ∈ W 2,1([0, T ], X), that
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is z̈ = d2

dt2 z ∈ L1([0, T ], X). In fact, their error estimate is

‖zk −z(tk)‖2 ≤ C max
j=1,...,k

{tj −tj−1}
k∑

j=1

‖ż(tj)−
1

tj − tj−1
(z(tj)−z(tj−1))‖, (7.5)

where the constant C does not depend on k and the partition 0 = t0 < t1
< · · · < tk.

The last sum can be estimated by
∫
[0,tk] ‖dż‖, thus we only need

ż ∈ BV([0, T ], X) and not ż ∈ W 1,1([0, T ], X) as stated in [HaR95]. This dif-
ference is crucial since the latter inclusion is false for typical cases whereas the
former can be shown under natural additional assumptions.

Example 7.7 We consider a very simple example with E = X = R, ∆(v) = |v|,
I(t, z) = 1

2z2 − (4t − t2)z and the initial condition z(0) = 0. A simple calculation
gives the unique solution

z(t) =




0 for t ≤ 2 −
√

3,

4t − t2 − 1 for t ∈ [2 −
√

3, 2],
3 for t ∈ [2, 2 +

√
2],

4t − t2 + 1 for t ≥ 2 +
√

2.

The boundary of the set F ∗ = [−1, 1] is {−1, 1}, and ż jumps upon hitting it
(t = 2 −

√
3 or 2 +

√
2) but not upon leaving if (t = 2).

Theorem 7.8 Assume E = X = X∗∗ and that the boundary of F ∗ ⊂ X∗ is of
class C2. Let the functional I(t, z) be uniformly convex and C3. Then, the unique
solution z satisfies ż ∈ BV([0, T ], X).

Proof. According to Theorems 7.5, 7.4 and 7.3 we know that the solution
z : [0, T ] → X exists, is unique and Lipschitz continuous. Thus, we have
ż ∈ L∞([0, T ], X).

Since the boundary ∂F ∗ is smooth there is for each z∗ ∈ ∂F ∗ a unique
outward unit normal N(z∗) ∈ X. The mapping N : ∂F ∗ → X; z∗ → N(z∗) is
Lipschitz continuous and ∂χF ∗(z∗) = {λN(z∗) : λ ∈ [0,∞)}.

For the given solution z let σ∗(t) = DI(t, z(t)) ∈ F ∗. Since z is Lipschitz
and I is smooth we know that σ∗ : [0, T ] → X∗ is Lipschitz continuous. Moreover
(Eloc) and (Sloc) imply

ż(t) =
{
0 if − σ∗(t) ∈ int(F ∗),
λ(t)N(−σ∗(t)) for a.a. t ∈ T (7.6)

where T = {t ∈ [0, T ] : −σ∗(t) ∈ ∂F ∗} is closed. Now take any t ∈ T with λ(t) > 0
in (7.6). Since σ̇∗(t) = A(t)ż(t) + ∂tDI(t, z(t)) is perpendicular to N(−σ∗(t)), we
find λ(t) = −〈∂tDI(t,z(t)),N(−σ∗(t))〉

〈A(t)N(−σ∗(t)),N(−σ∗(t))〉 , where A(t) = D2I(t, z(t)) ∈ Lin(X, X∗). By



Vol. 11, 2004 On rate-independent hysteresis models 181

the implicit function theorem and the uniqueness (forward in time) it can be
shown that there exists ε > 0 such that z : [t, t + ε] → X satisfies the differential
equation

ż = F (t, z) :=
〈−∂tDI(t, z), Ñ(t, z)〉

〈D2I(t, z)Ñ(t, z), Ñ(t, z)〉
Ñ(t, z) (7.7)

where Ñ(t, z) = N(−DI(t, z)). By our smoothness assumptions F (t, z) is contin-
uous in t and Lipschitz in z ∈ Z(t) = {z ∈ X : DI(t, z) ∈ ∂F ∗} which is a smooth
manifold.

Define the functions

h(t) =
{
λ(t) for t ∈ T ,
0 else; and N̂(t) =

{
N(−σ∗(t)) for t ∈ T ,

linear interpolant else.

Then N̂ : [0, T ] → X is Lipschitz. The argument with (7.7) shows that h(t)
is Lipschitz continuous from the right with a fixed Lipschitz constant indepen-
dent of t and ε. In particular, h can only be discontinuous at points t∗ where
limt↗t∗ h(t) = 0 and limt↘t∗ h(t) > 0. Between such points h is Lipschitz with a
fixed constant. Hence, h can be written as a sum of a Lipschitz function h̃ and a
piecewise constant function with at most countably many positive jumps jl > 0
at times t∗l .

By Theorem 7.5 ‖ż(t)‖ and hence h(t) is bounded by C2/α, which gives

∞∑
l=1

jl + h(0) − TLip(h̃) ≤ C2

α
.

This implies that h is of bounded variation:

Var(h; [0, T ]) ≤ TLip(h̃) +
∞∑

l=1

jl ≤ 2TLip(h̃) − h(0) +
C2

α
.

Now the formula ż(t) = h(t)N̂(t) gives the desired result, since

Var(h(·)N̂(·); [0, T ]) ≤ Var(h; [0, T ])‖N̂(·)‖∞ + ‖h(·)‖∞Var(N̂ ; [0, T ])

≤ Var(h; [0, T ]) +
C2

α
TLip(N̂).

�

A The reduced derivative

As above we consider z ∈ BV−([0, T ], X). Our aim is to define a substitute for
the derivative which works well for rate-independent processes. It will be called
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reduced derivative and its properties are (i) it is a multiple of the derivative if it
exists and (ii) at jump points it is a multiple of the jump vector.

For z ∈ BV−([0, T ], X) we define τ̂ : [0, T ] → [0,∞) via

τ̂(t) = t +
∫

[0,t]
‖dz‖ = t + Var(z, [0, t]).

Then, τ̂ = τ̂− (left-sided limit) and τ̂+ (right-sided limit) are strictly increasing
and coincide except at the (at most countable) jump points of z. With T̂ = τ̂(T )
we define the continuous inverse

t̂ :
{
[0, T̂ ] → [0, T ],

τ → max{t ∈ [0, T ] : τ̂(t) ≤ τ}

and the stretched function ẑ ∈ C0([0, T̂ ], X) via

ẑ(τ) = (1 − θ)z−(t) + θz+(t) for τ = (1 − θ)τ̂−(t) + θτ̂+(t). (A.1)

Thus, we have z(t) = ẑ(τ̂(t)) and ẑ is linearly interpolated at jump points, i.e. at
points where τ̂+(t) > τ̂−(t).

By construction we have, for 0 ≤ τ1 < τ2 ≤ T̂ ,

‖ẑ(τ2) − ẑ(τ1)‖ ≤ τ2 − τ1 − (t2 − t1) ≤ τ2 − τ1,

where t1 ≤ t2 satisfies τj = (1 − θj)τ̂−(tj) + θj τ̂+(tj). Thus,

ẑ ∈ W1,∞([0, T̂ ], X),
∥∥∥∥ d

dτ
ẑ

∥∥∥∥
L∞([0,T̂ ],X)

≤ 1.

The derivative v̂z(τ) = d
dτ ẑ(τ) is defined almost everywhere in the sense of

Lebesgue measure (λ − a.e.) and the reduced derivative is the pullback of v̂z

via τ̂ : [0, T ] → [0, T̂ ], more precisely

rd(z)(t) def= v̂z

(
1
2
[τ̂−(t) + τ̂+(t)]

)
for t ∈ [0, T ]. (A.2)

Associated with this pullback of the derivative is the pullback µz of the Lebesgue
measure λ on [0, T̂ ]:

µz([t1, t2))
def= λ([τ̂(t1), τ̂(t2)) = τ̂(t2) − τ̂(t1) = t1 − t2 +

∫
[t1,t2]

‖dz‖.

By the general construction of pullbacks the reduced derivative rd(z) is defined
µz − a.e. in [0, T ]. In particular, if t is a jump point, we have µz({t}) = ‖z+(t) −
z−(t)‖ and rd(z)(t) = Sign(z+(t) − z−(t)) ∈ ∂BX

1 (0). If z has a derivative ż, then
rd(z)(t) = (1 + ‖ż(t)‖)−1ż(t) and µz((t1, t2)) =

∫ t2
t1

[1 + ‖ż(s)‖]ds.
We will need the following results.
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Theorem A.1 Consider z ∈ BV−([0, T ], X) with µz ∈ M([0, T ]) and rd(z) ∈ L∞

([0, T ], µz) as above.

(a) Let f : [0, T ] × X → R be continuous and f(t, ·) : X → R homogeneous of
degree 1, then ∫ T

0
f(·, dz) =

∫ T

0
f(t, rd(z)(t))µz(dt).

(b) For any A ∈ C0([0, T ], X∗) we have

∫ T

0
〈A(·), dz〉 =

∫ T

0
〈A(t), rd(z)(t)〉µz(dt).

(c) For any 0 ≤ s < t ≤ T and any g ∈ C1([0, T ] × X, R) we have

g(t, z(t)) − g(s, z(s)) =
∫ t

s

∂tg(r, z(r))dr +
∫

[s,t)
〈G(r), rd(z)(r)〉µz(dr)

where G(r) =
∫ 1

θ=0 Dg(r, (1 − θ)z−(r) + θz+(r))dθ.

Proof. ad (a): Let tj,n = jT/n and δj,n = τj,n − τj−1,n. Then

∫ T

0
f(·, dz) = lim

n→∞

n∑
j=1

f(tj,n, z(tj,n) − z(tj−1,n))

= lim
n→∞

n∑
j=1

f(t̂(τj,n),
1

δj,n
[ẑ(τj,n) − ẑ(τj−1,n)])δj,n

=
∫ T̂

0
f(t̂(τ),

d
dτ

ẑ(τ))dτ.

The latter convergence holds, since we may introduce further points on jump
intervals where τ̂+(t) > τ̂−(t) without changing the sum (use t̂ = t on this interval
and homogeneity of f(t, ·)). By pullback (transformation formula) we obtain the
desired result.

ad (b). For general Â ∈ C0([0, T̂ ], X∗) we obtain via pullback

∫ T̂

0
〈Â(τ),

d
dτ

ẑ(τ)〉dτ =
∫ T

0
〈B(t), rd(z)(t)〉µz(dt)

with B(f) =
∫ 1

θ=0 Â((1 − θ)τ̂−(t) + θτ̂+(t))dθ.

As in the proof of (a) we obtain Â(τ) = A(t̂(τ)) which gives B(t) = A(t)
and the assertion follows.
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ad (c). We replace z ∈ BV−([0, T ], X) by the stretched function
ẑ ∈ W1,∞((0, T ), X) and let σ = τ̂(s) and τ = τ̂(t). We find

g(t, z(t)) − g(s, z(s)) = g(t̂(τ), ẑ(τ)) − g(t̂(σ), ẑ(σ))

=
∫ τ

σ

d
dρ

[g(t̂(ρ), ẑ(ρ)]dρ

=
∫ τ

σ

∂tg(t̂(ρ), ẑ(ρ))t̂′(ρ)dρ +
∫ τ

σ

〈Dg(t̂(ρ), ẑ(ρ)), ẑ′(ρ)〉dρ

=
∫ t

s

∂tg(r, z(r))dr +
∫

[s,t)
〈G(r), rd(z)(r)〉µz(dr),

where we have used (b) for the last step. �

A simple consequence of (a) is∫
[s,t)

rd(z)(r)µz(dr) =
∫

[s,t)
dz = z(t) − z(s). (A.3)

B Duality and Cones

For a function f : X → (−∞,∞] we define the Legendre-Fenchel transform Lf
via

Lf : X∗ → (−∞,∞]; v∗ → sup{〈v∗, v〉 − f(v) : v ∈ X}.

For a function f∗ : X∗ → (−∞,∞] we define the inverse Legendre-Fenchel trans-
form L∗f∗ via

L∗f∗ : X → (−∞,∞]; v → sup{〈v∗, v〉 − f∗(v∗) : v∗ ∈ X∗}.

The functions Lf and L∗f∗ are always lower semicontinuous and convex. If f was
lower semicontinuous and convex from the beginning then L∗Lf = f . For these
results and the proof of the following theorem we refer to [EkT76].

For convex functions f the subdifferential ∂f is defined via

∂f(z) = { v∗ ∈ X∗ : ∀w ∈ W : f(w) ≥ f(z) + 〈v∗, w − z〉 }.

Theorem B.1 Let f : X → R ∪ {∞} be convex and lower semicontinuous. Set
f∗ = Lf . Then the following statements are equivalent:

1. v∗ ∈ ∂f(v)

2. f(v + w) ≥ f(v) + 〈v∗, w〉 for all w ∈ X

3. v ∈ argmax{〈v∗, w〉 − f(w) : w ∈ X}
4. 〈v∗, v〉 = f(v) + f∗(v∗)
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5. v∗ ∈ argmax{〈w∗, v〉 − f∗(w∗) : w∗ ∈ X∗}
6. f∗(v∗ + w∗) ≥ f∗(v∗) + 〈w∗, v〉 for all w∗ ∈ X∗

7. v ∈ ∂f∗(v∗).

Let C be a closed convex cone in X, i.e. v ∈ C implies αv ∈ C for all
α ∈ [0,∞). The dual cone C∗ is defined as

C∗ = {v∗ ∈ X∗ : 〈v∗, v〉 ≤ 0 for all v ∈ C}.

This duality can also be expressed by the characteristic functions of the
cones, namely LχC = χC∗ . The sum C1 + C2 and the intersection C1 ∩ C2 of
convex cones are again convex cones. Moreover, (C1 + C2)∗ = C∗

1 ∩ C∗
2 and

(C1 ∩ C2)∗ = C∗
1 + C∗

2 .
In particular, for convex sets E ⊂ X the (inward) tangent cone TzE

(see (2.1)) is closed and convex and its dual cone is the normal cone N∗
zE =

∂χE(z). The following lemma is used in Section 3.

Lemma B.2 Let E ⊂ X be closed and convex and take z0, z1 ∈ E. For θ ∈ (0, 1)
let zθ = (1 − θ)z0 + θz1; then Tzθ

E = Tz0E + Tz1E for all θ ∈ (0, 1).

Proof. We set Cθ = Tzθ
E and show Cj ⊂ Cθ for j = 0 and 1. By convexity of

Cθ this implies C0 + C1 ⊂ Cθ. To show C0 ⊂ Cθ we consider rn > 0 and vn ∈ X
such that wn = z0 + rnvn ∈ E and vn → v ∈ C0. Then zθ + (1 − θ)rnvn =
(1 − θ)wn + θz1 ∈ E and v ∈ Cθ follows.

The opposite inclusion follows by duality from showing C∗
0 ∩ C∗

1 ⊂ Cθ.
Choose ν∗ ∈ C∗

0 ∩ C∗
1 and consider the hyperplanes Hj ⊂ X which have the

same (not opposite) normal ν∗ and contain zj . As the set E touches in Hj in zj

and lies on one side of it, we conclude that H0 = H1. In particular, zθ ∈ H0 which
implies ν∗ ∈ C∗

θ . �

Proposition B.3 Let F ∗ ⊂ X∗ be closed convex set, C ⊂ X a closed convex cone
and f(v) = (L∗χF ∗)(v) + χC(v). Then, Lf = χF ∗+C∗ .

Proof. Each v∗ ∈ F ∗ + C∗ has the form v∗ = w∗ + y∗ with w∗ ∈ F ∗ and y∗ ∈ C∗.
Then,

(Lf)(v∗) = sup{〈w∗, v〉 − (L∗χF ∗(v) + 〈y∗, v〉 − χC(v) : v ∈ X}
≤ L(L∗χF ∗)(w∗) + L(χC)(y∗) = χF ∗(w∗) + χC∗(y∗) = 0 + 0 = 0.

Now assume v∗ /∈ F ∗ + C∗. By Mazur’s Lemma there exists α ∈ R and v ∈ X
such that 〈v∗, v〉 > α ≥ 〈z∗, v〉 for all z∗ ∈ F ∗ + C∗. This implies

(Lf)(v∗) ≥ 〈v∗, v〉 − (L∗χF ∗)(v) − L∗χC∗(v)
= 〈v∗, v〉 − sup

w∗∈F ∗
〈w∗, v〉 − sup

y∗∈C∗
〈y∗, v〉

= 〈v∗, v〉 − sup
w∗∈F ∗,y∗∈C∗

〈w∗ + y∗, v〉 ≥ 〈v∗, v〉 − α > 0.
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Testing with γv rather than v we conclude (L∗f)(v∗) ≥ γ[〈v∗, v〉−α] for all γ > 0
and obtain (L∗f)(v∗) = ∞. This concludes the proof. �

C Structure condition

Many of the above results need the assumption E = X. This is due to the fact that
the stability condition (Sloc) changes discontinuously near or on the boundary ∂E
via the tangent cone TzE. If we want to compare two different solutions z1 and z2,
then the local formulation (LF) involves two different tangent cones Tzj(t)E such
that we cannot guarantee ż1(t) ∈ Tz2(t)E and vice versa. However, this feature
was essential in the uniqueness and convergence result, see 7.4 and 7.1.

We propose a new structure condition. For zj ∈ E we define σ∗
j = DzI(t, zj)

which lies in the set −(F ∗ + N∗
zj

E) whenever zj is stable at time t. Our structure
condition involves E, F ∗ and I(t, z) simultaneously and reads as follows.

(SC) [Structure Condition] For all R > 0 there exists a constant Cstruc > 0
such that for all t ∈ [0, T ], all z1, z2 ∈ S(t) ∩ {‖z‖X ≤ R} and all vj ∈ Vzj the
estimate

〈σ∗
1 − σ∗

2 , v1 − v2〉 ≤ Cstruc‖z1 − z2‖2(‖v1‖ + ‖v2‖) (C.1)

holds, where Vz = N(−σ∗)(F ∗ + N∗
zE) is the set of possible velocities.

Note that we always have N(−σ∗
j
)(F ∗ +N∗

zj
E) ⊂ Tzj

E (cf. also the sweeping
process formulation (SW) in (3.8)). The intuition behind the structure condition
is that, for uniqueness, it is sufficient that the terms which involve the differentials
of I and the velocities have a sign.

Proposition C.1 Let I ∈ C3(E × [0, T ]) and let I be α-uniformly convex. If
additionally (SC) is satisfied, then every solution of (GF) depends continuously
on the initial data and, in particular, uniqueness holds.

Proof. The claim follows by repeating the proof of Theorem 7.4 where (SC) takes
the role of the estimate (7.4) which is just (SC) with Cstruc = 0. �

We illustrate now one case, where (SC) holds and one case where (SC) is
violated.

Example C.2 Let X = R2, E = [0,∞) × R, I(t, z) = 1
2‖z‖2

2 + 〈
(

t
0

)
, z〉 and

∆(v) = |v1| + |v2| or equivalently F ∗ = [−1, 1]2. Then, the structure condition
(SC) holds with Cstruc = 0.

We show this by direct calculation. The problem is especially simply as X
and X∗ can be identified by D2I(t, z) = idR2 . The stable sets are convex and
given by

S(t) = [0, max{0, 1 − t}] × [−1, 1] = { z ∈ E : DI(t, z) ∈ F ∗ }.
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z2

z2

z1

z1 (υ1 = 0)
z1−z2

z1−z2

υ2
υ2

υ1

E = {〈z, e1〉 ≥ 0} E = {〈z, e1+e2〉 ≥ 0}

S(t)

S(t)

DI 
−1(F 

+) DI 
−1(F 

+)

Figure 3 Illustration for the structure condition in Examples C.2 (to the left) and Example
C.3 (to the right). In both cases we have vj ∈ Vzj and the structure condition reduces to
〈z1 − z2, v1 − v2〉 ≤ 0. In the situation on the left-hand side it is satisfied but for the right-hand
side the structure condition can’t be satisfied.

The sets Vz = N−σ∗(F ∗ + NzE) of possible velocities satisfies Vz = {0} in the
interior of S(t) as well as on the (open) line {0} × (−1, 1) ⊂ ∂E. For the other
boundary points of ∂S(t) we find Vz = −NzS(t). In particular,

Vz =




{
( 0
−µ

)
: µ ≥ 0 } for z =

(
α
1

)
with α ∈ [0, 1 − t);

{
(−λ
−µ

)
: λ, µ ≥ 0 } for z =

(1−t
1

)
;

{
(−λ

0

)
: λ ≥ 0 } for z =

(1−t
β

)
with |β| < 1;

{
(−λ

µ

)
: λ, µ ≥ 0 } for z1 =

(1−t
−1

)
;

{
(0
µ

)
: µ ≥ 0 } for z =

(
α

−1

)
with α ∈ [0, 1 − t).

Using σ∗ = DI(t, z) = z+
(

t
0

)
the structure condition with constant Cstruc =

0 reduces to 〈z2 − z1, v2 − v1〉 ≤ 0 for all vj ∈ Vzj . However, by convexity of S(t)
we have z3−j − zj ∈ Tzj S(t) whereas −vj ∈ Nzj S(t), see Fig. 3. This implies
〈zj − z3−j , vj〉 ≤ 0 and adding these two relations gives the desired result.

Example C.3 We take the same X, I and ∆ as in the previous example, but
now E = { z ∈ R2 : 〈z,

(1
1

)
〉 ≤ 0 }. Now, the stable sets may be nonconvex:

S(t) =
([(

t
0

)
+ F ∗] ∩ E

)
∪ { z = θ

2

( 1
−1

)
: θ ∈ [−2 − t, 2 − t] }.

Now choose z1 =
( −1
1−ε

)
and z2 =

(−1−ε
1+ε

)
with a small positive ε. Then, we

find Vz1{
(
µ
0

)
: µ ≥ 0 } and Vz2 = {0}. With v1 =

(
µ
0

)
and v2 = 0 we obtain

〈σ∗
1 − σ∗

2 , v1 − v2〉 = εµ = 5−1/2‖z1 − z2‖(‖v1‖ − ‖v2‖), see Fig. 3. For ε → 0 we
see that (SC) cannot hold for any finite Cstruc.
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