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Abstract

In the article, we prove that the double inequality

x2 + p0

x + p0
<Ŵ(x + 1) <

x2 + 9/5

x + 9/5

holds for all x ∈ (0, 1), we present the best possible constants λ and μ such that

λ(x2 + 9/5)

x + 9/5
≤ Ŵ(x + 1) ≤

μ(x2 + p0)

x + p0

for all x ∈ (0, 1), and we find the value of x∗ in the interval (0, 1) such that

Ŵ(x + 1) > (x2 + 1/γ )/(x + 1/γ ) for x ∈ (0, x∗) and Ŵ(x + 1) < (x2 + 1/γ )/(x + 1/γ ) for

x ∈ (x∗, 1), where Ŵ(x) is the classical gamma function,

γ = limn→∞(
∑n

k=1 1/k – logn) = 0.577 . . . is Euler-Mascheroni constant and

p0 = γ /(1 – γ ) = 1.365 . . . .

MSC: 41A60; 33B15; 26D07

Keywords: gamma function; psi function; rational bound; completely monotonic

function

1 Introduction

For x > , the classical Euler gamma function Ŵ(x) and its logarithmic derivative, the so-

called psi function ψ(x) [] are defined by

Ŵ(x) =

∫ ∞



tx–e–t dt, ψ(x) =
Ŵ′(x)

Ŵ(x)
,

respectively.

A real-valued function f is said to be completely monotonic [] on an interval I if f

has derivatives of all orders on I and (–)nf (n)(x) ≥  for all n ≥  and x ∈ I . The well-

known Bernstein theorem [] states that a function f on [,∞) is completely monotonic

if and only if there exists a bounded and non-decreasing function ω(t) such that f (x) =
∫ ∞


e–xt dω(t) converges for all x ∈ [,∞).
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Recently, the gamma function have attracted the attention of many researchers. In par-

ticular, many remarkable inequalities and properties for Ŵ(x) can be found in the literature

[–].

Due to Ŵ(x + ) = xŴ(x) and Ŵ(n + ) = n!, we will only need to focus our attention on

Ŵ(x + ) with x ∈ (, ). Gautschi [] proved that the double inequality

n–s <
Ŵ(n + )

Ŵ(n + s)
< e(–s)ψ(n+) (.)

holds for all s ∈ (, ) and n ∈ N.

Inequality (.) was generalized and improved by Kershaw [] as follows:

(

x +
s



)–s

<
Ŵ(x + )

Ŵ(x + s)
< e(–s)ψ[x+(+s)/]

for all x >  and s ∈ (, ).

Elezović, Giordano and Pečarić [] established the double inequality

(




+

√




+ x

)–x

xx < Ŵ(x + ) < –xxx (.)

for the gamma function being valid for all x ∈ (, ), and asked for ‘other bounds for the

gamma function in terms of elementary functions’.

Ivády [] provided the bounds for gamma function in terms of very simple rational

functions as follows:

x + 

x + 
< Ŵ(x + ) <

x + 

x + 
(.)

for all x ∈ (, ). Inequality (.) can be regarded as a simple estimation of the value of the

gamma function.

In [], Zhao, Guo and Qi proved that the function

x →Q(x) =
logŴ(x + )

log(x + ) – log(x + )

is strictly increasing on (, ). The monotonicity ofQ(x) on the interval (, ) and the facts

that Q(+) = γ and Q(–) = ( – γ ) lead to the conclusion that

(

x + 

x + 

)(–γ )

< Ŵ(x + ) <

(

x + 

x + 

)γ

(.)

for all x ∈ (, ), where γ = limn→∞(
∑n

k= /k – logn) = . . . . is the Euler-Mascheroni

constant.

Let

L(x) =
x + 

x + 
, L(x) =

(

x + 

x + 

)(–γ )

, (.)

U(x) =
x + 

x + 
, U(x) =

(

x + 

x + 

)γ

. (.)
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Then we clearly see that

L(x) < L(x) (.)

for all x ∈ (, ), and numerical computations show that

U(/) = . . . . >U(/) = . . . . ,

U(/) = . . . . >U(/) = . . . . .
(.)

Motivated by (.)-(.), it is natural to ask what the better parameters p and q on the

interval (, ) are such that the double inequality

x + p

x + p
< Ŵ(x + ) <

x + q

x + q

holds for all x ∈ (, ). The main purpose of the article is to deal with this questions. Some

complicated computations are carried out using the Mathematica computer algebra sys-

tem.

2 Lemmas

In order to establish our main results we need several lemmas, which we present in this

section.

Lemma . (See [, Theorem .]) Let –∞ < a < b < ∞, f , g : [a,b] → R be continu-

ous on [a,b] and differentiable on (a,b), and g ′(x) 	=  on (a,b). If f ′(x)/g ′(x) is increasing

(decreasing) on (a,b), then so are the functions

f (x) – f (a)

g(x) – g(a)
,

f (x) – f (b)

g(x) – g(b)
.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . (See [, Lemma ]) Let n ∈ N and m ∈ N ∪ {} with n > m, ai ≥  for all

 ≤ i≤ n, anam >  and

Pn(t) = –

m
∑

i=

ait
i +

n
∑

i=m+

ait
i.

Then there exists t ∈ (,∞) such that Pn(t) = , Pn(t) <  for t ∈ (, t) and Pn(t) >  for

t ∈ (t,∞).

Lemma . (See [, Corollary .]) The inequality

ψ(x + ) <



log

(

x + x +




)

+



log

(

x + x +




)

holds for all x > .
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Lemma . (See [, Corollary .(ii)]) The double inequality

(x + 

)(x + x + 


)

x + x + 

x + 


x + 



<ψ ′(x + )

<
(x + 


)(x + x + π

(π–)
)

x + x + π–
(π–)

x + π–
(π–)

x + 
(π–)

holds for all x > .

Lemma . The inequalities



x + 


–


(x + 

)

≤ ψ ′(x + ) ≤


x + 


, (.)

–


(x + 

)

≤ ψ ′′(x + ) ≤ –


(x + 

)

+


(x + 

)
, (.)



(x + 

)

–


(x + 

)

≤ ψ ′′′(x + ) ≤


(x + 

)

(.)

hold for all x > –/.

Proof Let x > –/, and R(x) and R(x) be defined by

R(x) = ψ(x + ) – log

(

x +




)

, (.)

R(x) = –ψ(x + ) + log

(

x +




)

+


(x + 

)
, (.)

respectively. Then making use of the well-known formulas

ψ(x) =

∫ ∞



(

e–t

t
–

e–xt

 – e–t

)

dt, logx =

∫ ∞



e–t – e–xt

t
dt

we get

R(x) =

∫ ∞



(

e–t

t
–
e–(x+)t

 – e–t

)

dt –

∫ ∞



e–t – e–(x+/)t

t
dt

=

∫ ∞



(



t
–

e–t/

 – e–t

)

e–(x+/)t dt

=

∫ ∞



(



t
–



 sinh(t/)

)

e–(x+/)t dt

=

∫ ∞



sinh(t/) – t/

t sinh(t/)
e–(x+/)t dt,

(.)

R(x) = –

∫ ∞



(



t
–



 sinh(t/)

)

e–(x+/)t dt +




∫ ∞



te–(x+/)t dt

=

∫ ∞



(

(t – ) sinh(t/) + t

t sinh(t/)

)

e–(x+/)t dt, (.)

where sinh(t) = (et – e–t)/ is the hyperbolic sine function.
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Note that

t sinh(t/)
(t – ) sinh(t/) + t

t sinh(t/)
=

∞
∑

n=

(n – )(n + )

(n – )!

(

t



)n–

> , (.)

sinh(t/) –
t


>  (.)

for t > .

It follows from (.)-(.) and the Bernstein theorem for complete monotonicity prop-

erty that the two functions R(x) and R(x) are completely monotonic on the interval

(–/,∞).

Therefore, Lemma . follows easily from (.), (.) and the complete monotonicity of

R(x) and R(x) on the interval (–/,∞) together with the facts that

[

log

(

x +




)](n)

=
(–)n–(n – )!

(x + 

)n

,

[



(x + 

)

](n)

=
(–)n(n + )!

(x + 

)n+

.
�

Lemma . The double inequality

(

x + 

x + 

)/(q+)

<
x + q

x + q
<

(

x + 

x + 

)/q

(.)

holds for all x ∈ (, ) and q > .

Proof Let x ∈ (, ), q > , and H(x) and H(x) be defined by

H(x) = log
(

x + q
)

– log(x + q), H(x) = log
(

x + 
)

– log(x + ), (.)

respectively. Then simple computations lead to

lim
x→+

H(x)

H(x)
=


q
, lim

x→–

H(x)

H(x)
=



q + 
, (.)

H

(

+
)

=H

(

+
)

= , (.)

H

(

–
)

=H

(

–
)

= , (.)

H ′
(x)

H ′
(x)

=
(x + )(x + )(x + qx – q)

(x + q)(x + q)(x + x – )
,

[

H ′
(x)

H ′
(x)

]′
=

(q – )△(x,q)

(x + q)(x + q)(x + x – )
, (.)

where

△(x,q) =
[

x + x + ( – x)
(

x + x + 
)]

q + x
[

x + x + ( – x)
]

q

– x
(

x – x – x – x + 
)

> △(x, )

= ( – x)x + x + x +
(

x – 
)

+ x + x + x(x – )

> . (.)
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From (.) and (.) we clearly see that H ′
(x)/H

′
(x) is strictly increasing on

(,
√
 – ) ∪ (

√
 – , ). We assert that the function H(x)/H(x) is strictly increasing

on (, ). Indeed, if x ∈ (,
√
– ), thenH ′

(x) 	= , and Lemma . and (.) together with

the monotonicity of H ′
(x)/H

′
(x) on (,

√
 – ) lead to the conclusion that H(x)/H(x) is

strictly increasing on (,
√
 – ); if x ∈ (

√
 – , ), then H ′

(x) 	= , and Lemma . and

(.) together with the monotonicity of H ′
(x)/H

′
(x) on (

√
 – , ) lead to the conclusion

that H(x)/H(x) is strictly increasing on (
√
 – , ).

Therefore, Lemma . follows easily from (.) and (.) together with themonotonic-

ity of the function H(x)/H(x) on (, ). �

Let p > , x ∈ (, ), and f (p;x), f(p;x), f(p;x) and f(p;x) be defined by

f (p,x) = logŴ(x + ) – log

(

x + p

x + p

)

, (.)

f(p,x) =
∂f (p,x)

∂x
= ψ(x + ) –

x

x + p
+



x + p
, (.)

f(p,x) =
∂f (p,x)

∂x
= ψ ′(x + ) +

x

(x + p)
–



x + p
–



(x + p)
, (.)

f(p,x) =
∂f (p,x)

∂x
= ψ ′′(x + ) –

x

(x + p)
+

x

(x + p)
+



(x + p)
. (.)

Lemma . Let f(p,x) be defined by (.). Then

f(p, /) <  (.)

for p ∈ [/, /].

Proof From (.) and the second inequality in Lemma . we have

f(p, /) =

[

ψ ′(x + ) +
x

(x + p)
–



x + p
–



(x + p)

]

x=/

<

[ (x + 

)(x + x + π

(π–)
)

x + x + π–
(π–)

x + π–
(π–)

x + 
(π–)

]

x=/

+

[

x

(x + p)
–



x + p
–



(x + p)

]

x=/

=
(π – )

(π – ,)
–
(p + p + p – )

(p + )(p + )
. (.)

Elaborated computations lead to

(

(π – )

(π – ,)
–
(p + p + p – )

(p + )(p + )

)′

=
(p + ,p + p – p – )

(p + )(p + )
>  (.)

for p ∈ [/, /].
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From (.) and (.) we get

f(p, /) <

[

(π – )

(π – ,)
–
(p + p + p – )

(p + )(p + )

]

p=/

=
(π – )

(π – ,)
–
,,

,,
= –. . . . < . �

Lemma . Let f(p,x) be defined by (.). Then

f(/, /) > . (.)

Proof From (.) and the first inequality in Lemma . we have

f(/, /) =

[

ψ ′(x + ) +
x

(x + p)
–



x + p
–



(x + p)

]

p=/,x=/

>

[

(x + 

)(x + x + 


)

x + x + 

x + 


x + 



+
x

(x + p)
–



x + p
–



(x + p)

]

p=/,x=/

=
,,,,,

,,,,,,
> . �

Lemma . Let f(p,x) be defined by (.). Then

f(/,x) < 

for x ∈ (/, /).

Proof It follows from Lemma . and (.) that

f(/,x) <



log

(

x + x +




)

+



log

(

x + x +




)

–
x

x + /
+



x + /
. (.)

Elaborated computations lead to

[




log

(

x + x +




)

+



log

(

x + x +




)

–
x

x + /
+



x + /

]′

=
h(x)

(x + )(x + )(x + x + )(x + x + )
, (.)

where

h(x) = ,x + ,,x + ,,x + ,,x + ,,x

+ ,,x + ,x – ,,x – ,x + ,,

h(/) = –
,,,,

,,,
< , (.)

h′(x) = ,,x + ,,x + ,,x + ,,x + ,,x

+ ,,x + ,x – ,,x – ,, (.)

h′(/) = –
,,


< . (.)
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FromLemma., (.) and (.)we know that h(x) is strictly decreasing on (/, /),

then (.) leads to the conclusion that h(x) <  for x ∈ (/, /).

Therefore,

f(/,x) <

[




log

(

x + x +




)

+



log

(

x + x +




)

–
x

x + /
+



x + /

]

x=/

=



log

,

,
+



log

,

,
+
,

,
= –. . . . < 

for x ∈ (/, /) follows from (.) and (.) together with h(x) <  for x ∈
(/, /). �

Lemma. Let p ∈ [/, ] and f(p,x) be defined by (.).Then there exists η(p) ∈ (, )

such that f(p,x) <  for x ∈ (,η(p)) and f(p,x) >  for x ∈ (η(p), ).

Proof Let

g(p,x) =
(

x + p
)
f(p,x) =

(

x + p
)

ψ ′′(x + ) +
(x + p)

(x + p)
– x + px. (.)

Then simple computations lead to

g
(

p, +
)

= pψ ′′() + , g
(

p, –
)

= (p + )ψ ′′() + p – , (.)

∂g(p,x)

∂x
=

(

x + p
)

ψ ′′′(x + ) + x
(

x + p
)

ψ ′′(x + )

–
(x + p)

(x + p)
+
x(x + p)

(x + p)
– x + p. (.)

It follows from the first inequalities in (.) and (.) together with the identity

ψ (n)(x + ) = ψ (n)(x) + (–)nn!/xn+ that

ψ ′′(x + ) = ψ ′′(x + ) –


(x + )
≥ –



(x + /)
–



(x + )
, (.)

ψ ′′′(x + ) = ψ ′′′(x + ) +


(x + )
≥



(x + /)
–



(x + /)
+



(x + )
. (.)

From (.)-(.) we have

∂g(p,x)

∂x
≥

(

x + p
)

[



(x + /)
–



(x + /)
+



(x + )

]

+ x
(

x + p
)

[

–


(x + /)
–



(x + )

]

–
(x + p)

(x + p)
+
x(x + p)

(x + p)
– x + p

=
g(p,x)

(x + )(x + )(x + p)
, (.)
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where

g(p,x) =


∑

k=

bkx
k –


∑

k=

bkx
k (.)

with

b =
(

p + ,p – 
)

p,

b = 
(

,p + p + ,p + ,p – ,
)

p,

b =
(

,p + ,p + ,p + ,p + ,p – 
)

p,

b = 
(

,p + ,p + ,p + ,p + ,p + ,
)

p,

b =
(

,p + ,p + ,p + ,p + ,p + ,p + ,
)

p,

b = 
(

p + ,p + ,p + ,p + ,p + ,p + ,
)

p,

b = p + p + ,p + ,p + ,p + ,p + ,p – ,

b = –p + ,p + ,p + ,p + ,p + ,p + ,,

b = ,p + ,p + ,p + ,p + ,p + ,,

b = p + ,p + ,p + ,p + ,p + ,,

b = p + ,p + ,p + ,p + ,p + ,,

b = ,p + ,p + ,p + ,p + ,,

b = p + ,p + ,p + ,p + ,,

b = p + ,p + ,p + ,,

b = p + ,p + ,,

b = p + ,

b = ,

g(p, ) = –, – ,p – ,p – ,p + ,p

+ ,p + ,p + ,p, (.)

g(/, ) =
,,


> . (.)

From Lemma ., (.) and (.) we clearly see that

g(p, ) >  (.)

for p ∈ [/, ].

Making use of Lemma . again, and (.) and (.) together with the facts that bk > 

for p ∈ [/, ] and k = , , , . . . ,  we know that g(p,x) >  for p ∈ [/, ] and x ∈ (, ).

Then inequality (.) leads to the conclusion that the function x → g(p,x) is strictly in-

creasing on (, ) for p ∈ [/, ].
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From (.) and the identity ψ (n)(x) = ψ (n)(x + ) + (–)n+n!/xn+ we get

–


(x + /)
≤ ψ ′′(x + ) = ψ ′′(x + ) –



(x + )

≤ –


(x + /)
+



(x + /)
–



(x + )
. (.)

Taking x =  in the first inequality of (.) and x =  in the second inequality of (.),

one has

ψ ′′() ≥ –



, ψ ′′() ≤ –




. (.)

It follows from (.) and (.) that

g
(

p, +
)

≤ –



×

(





)

+  = –



< , (.)

g
(

p, –
)

≥ –



(p + ) + p –  (.)

for p ∈ [/, ].

Note that

[

–



(p + ) + p – 

]′
=



(p + )( – p). (.)

Inequality (.) and equation (.) imply that

g
(

p, –
)

≥ –




(




+ 

)

+ ×



–  =




>  (.)

for p ∈ [/, ].

Therefore, Lemma . follows easily from (.), (.), (.) and the monotonicity

of the function x → g(p,x) on the interval (, ). �

Lemma . Let p ∈ [/, /] and f(p,x) be defined by (.). Then there exist

η(p),η(p) ∈ (, ) with η(p) < η(p) such that f(p,x) >  for x ∈ (,η(p))∪ (η(p), ) and

f(p,x) <  for x ∈ (η(p),η(p)).

Proof It follows from (.) that

f
(

p, +
)

=
π

p

(

p –

√

(π + ) + 

π

)(

p +

√

(π + ) – 

π

)

> , (.)

f
(

p, –
)

=
(π – )p + (π – )p + π

(p + )
>  (.)

for p ∈ [/, /].

From Lemma . and [/, /] ⊂ [/, ] we know that there exists η(p) ∈ (, ) such

that the function x → f(p,x) is strictly decreasing on (,η(p)) and strictly increasing
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on (η(p), ). Then Lemma . leads to the conclusion that

f
(

p,η(p)
)

≤ f(p, /) < . (.)

Therefore, there exist η(p) ∈ (,η(p)) and η(p) ∈ (η(p), ) such that f(p,x) >  for x ∈
(,η(p))∪ (η(p), ) and f(p,x) <  for x ∈ (η(p),η(p)) follow from (.)-(.) and the

piecewise monotonicity of the function x → f(p,x) on the interval (, ). �

3 Main results

Theorem . Let p >  and p = γ /( – γ ) = . . . . . Then the inequality

Ŵ(x + ) >
x + p

x + p
(.)

holds for all x ∈ (, ) if and only if p ≤ p, and the inequality

Ŵ(x + ) ≤
μ(x + p)

x + p
(.)

holds for all x ∈ (, ) if and only if μ ≥ μ, where

μ =
(x + p)Ŵ(x + )

(x + p)
= . . . . (.)

and x = . . . . is the unique solution of the equation

ψ(x + ) –
x

x + p
+



x + p
=  (.)

on the interval (, ).

Proof If inequality (.) holds for all x ∈ (, ), then p ≤ p follows easily from

lim
x→–

logŴ(x + ) – log( x
+p
x+p

)

 – x
= –ψ() +



 + p
= γ –

p

 + p
≥ .

Next, we prove that inequality (.) holds for all x ∈ (, ) and p = p and (.) holds for

all x ∈ (, ) if and only if μ ≥ μ.

Let f (p,x), f(p,x), f(p,x) be defined by (.)-(.) and

g(x) =
(x + p)



x
f(p,x) =

(x + p)


x
ψ ′(x + ) –

p

x
–

(x + p)


x(x + p)
+ . (.)

Then elaborated computations lead to

f
(

p, 
+
)

= f
(

p, 
–
)

= , (.)

f
(

p, 
+
)

=
 – γ – γ 

γ
> , f

(

p, 
–
)

= , (.)

g
(

+
)

= –∞, g
(

–
)

=
(π – )p + (π – )p + π


> , (.)
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g ′(x) =
(x + p)

ψ ′′(x + )

x
–
(p – x)ψ ′(x + )

x

–
p[x

 – x – px
 – p(p + )x – (p + )p]

(x + p)x
. (.)

It follows from the second inequality in (.) and the first inequality in (.) together

with (.) that

g ′(x)≥ –
(x + p)



x(x + /)
–

(p – x)

(x + /)x

–
p[x

 – x – px
 – p(p + )x – (p + )p]

(x + p)x

=


x(x + )(x + p)
g(x),

where

g(x) = x + (p + )x + p(p – )x + p
(

p – p + 
)

x

– p
(

p – p – 
)

x – p(p + )
(

p – p – 
)

x

– p
(

p – p – 
)

x – p(p + )
(

p – p – 
)

x

– p
(

p – p – 
)

.

It is easy to verify that all the coefficients of the polynomial g(x) are positive, which

implies that g(x) is strictly increasing on (, ), then from (.) and (.) we know that

there exists η ∈ (, ) such that the function f(p,x) is strictly decreasing on (,η) and

strictly increasing on (η, ).

It follows from (.) and (.) together with the piecewise monotonicity of the function

f(p,x) on the interval (, ) that there exists x ∈ (, ) such that f (p,x) is strictly increas-

ing on (,x) and strictly decreasing on (x, ) and x is the unique solution of equation

(.) on the interval (, ).

Therefore, the desired results follow easily from (.), (.), (.) and the piecewise

monotonicity of the function f (p,x) on the interval (, ) together with the fact that the

function p→ (x + p)/(x + p) is strictly increasing.

Numerical computations show that x = . . . . and μ = (x +p)Ŵ(x + )/(x

 +p) =

. . . . . �

Theorem . The inequality

Ŵ(x + ) >
x + 

γ

x + 
γ

holds for all x ∈ (,x∗), and its reverse inequality

Ŵ(x + ) <
x + 

γ

x + 
γ



Yang et al. Journal of Inequalities and Applications  ( 2017)  2017:210 Page 13 of 17

holds for all x ∈ (x∗, ), where x∗ = . . . . is the unique solution of the equation

Ŵ(x + ) –
x + 

γ

x + 
γ

= 

on the interval (, ).

Proof Let f (p,x), f(p,x) and f(p,x) be, respectively, defined by (.), (.) and (.).

Then simple computations lead to

f

(



γ
, +

)

= f

(



γ
, –

)

= , (.)

f

(



γ
, +

)

= , f

(



γ
, –

)

=
 – γ – γ 

 + γ
> . (.)

From Lemma . and /γ = . . . . ∈ [/, /] we know that there exist

η(/γ ),η(/γ ) ∈ (, ) with η(/γ ) < η(/γ ) such that f(/γ ,x) is strictly increasing on

(,η(/γ ))∪ (η(/γ ), ) and strictly decreasing on (η(/γ ),η(/γ )). We claim that

f
(

/γ ,η(/γ )
)

< . (.)

Indeed, if f(/γ ,η(/γ )) ≥ , then the piecewise monotonicity of the function f(/γ ,x)

on the interval (, ) and (.) lead to the conclusion that f (/γ ,x) is strictly increasing on

(, ), which contradicts (.).

It follows from (.) and (.) togetherwith the piecewisemonotonicity of the function

f(/γ ,x) on the interval (, ) that there exist η∗
 (/γ ) ∈ (η(/γ ),η(/γ )) and η∗

(/γ ) ∈
(η(/γ ), ) such that f (/γ ,x) is strictly increasing on (,η∗

 (/γ ))∪ (η∗
(/γ ), ) and strictly

decreasing on (η∗
 (/γ ),η

∗
(/γ )).

Therefore, Theorem . follows easily from (.) and (.) together with the piecewise

monotonicity of f (/γ ,x) on (, ). Numerical computations show that x∗ = . . . . . �

Theorem . The double inequality

λ(x + 

)

x + 


≤ Ŵ(x + ) <
x + 



x + 


(.)

holds for all x ∈ (, ) with the best possible constant

λ =
(τ + )Ŵ(τ + )

τ + 
= . . . . , (.)

where τ = . . . . is the unique solution of the equation

ψ(x + ) –
x

x + 


+


x + 


=  (.)

on the interval (, ).
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Proof Let f (p,x), f(p,x) and f(p,x) be, respectively, defined by (.), (.) and (.).

Then simple computations lead to

f

(




, +

)

= f

(




, –

)

= , (.)

f

(




, +

)

=



– γ < , f

(




, –

)

=



– γ > . (.)

It follows from Lemma . that there exist η(/),η(/) ∈ (, ) with η(/) <

η(/) such that f(/,x) >  for x ∈ (,η(/)) ∪ (η(/), ) and f(/,x) <  for

x ∈ (η(/),η(/)), and f(/,x) is strictly increasing on (,η(/)) ∪ (η(/), ) and

strictly decreasing on (η(/),η(/)). Then Lemmas .-. lead to the conclusion that

η(/) ∈ (/, /) and

f
(

/,η(/)
)

< . (.)

From (.), (.), (.) and the piecewise monotonicity of f(/,x) on (, ) we clearly

see that there exists τ such that τ is the unique solution of equation (.) on the interval

(, ), and f (/,x) is strictly decreasing on (, τ) and strictly increasing on (τ, ).

Equation (.) and the piecewise monotonicity of the function f (/,x) on the interval

(, ) lead to the conclusion that

f (/, τ) ≤ f (/,x) <  (.)

for all x ∈ (, ).

Therefore, inequality (.) holds for all x ∈ (, ) follows from (.) and (.). We

clearly see that the parameter λ given by (.) is the best possible constant such that

the first inequality in (.) holds for all x ∈ (, ). Numerical computations show that

τ = . . . . and λ = . . . . . �

Remark . From Theorems . and . we clearly see that the double inequality

x + p

x + p
< Ŵ(x + ) <

x + p

x + p
(.)

holds for all x ∈ (, ) with p = γ /(–γ ) = . . . . and p = /, the constant p appears to

be the best possible, but this is not true for p, and a slightly smaller value for p is possible.

Unfortunately, we cannot find the best possible constant p in the article; we leave this as

an open problem for the reader.

Remark . From the monotonicity of the function p �→ (x + p)/(x + p) we clearly see

that both the upper and lower bounds for Ŵ(x + ) given in (.) are better than that

given in (.), and the first (second) inequality in Theorem . is the improvement of the

first (second) inequality in (.) for x ∈ (,x∗) (x ∈ (x∗, )), where x∗ = . . . . is given by

Theorem ..
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Remark . From Lemma ., γ + γ  < , /γ > , γ /( – γ ) >  and (x + )/(x + ) <  for

x ∈ (, ) one has

x + γ

–γ

x + γ

–γ

>

(

x + 

x + 

)(–γ )

,

(

x + 

x + 

)γ

>
x + 

γ

x + 
γ

>

(

x + 

x + 

)γ /(+γ )

>

(

x + 

x + 

)(–γ )

.

Therefore, the lower bound for Ŵ(x + ) given in (.) is better than that given in (.),

the first inequality in Theorem . is an improvement of the first inequality in (.) for

x ∈ (,x∗) and the second inequality in Theorem . is an improvement of the second

inequality in (.) for x ∈ (x∗, ), where x∗ = . . . . is given by Theorem ..

Remark . It is not difficult to verify that

min
x∈(,)

(

x + 

x + 

)γ

=
[

(
√
 – )

]γ
= . . . . ,

min
x∈(,)

(

–xxx
)

= e–/e = . . . . ,

x + 


x + 


< .

for x ∈ (., .) and

x + 


x + 


< .

for x ∈ (θ, θ), where θ = (. –
√
.)/ = . . . . and θ = (. +

√
.)/ =

. . . . . Therefore, the upper bound (x + /)/(x + /) for Ŵ(x + ) given in (.) is

better than that given in (.) for x ∈ (., .), and it is also better than that given in

(.) for x ∈ (θ, θ).

Remark . Let

L(x) =

(




+

√




+ x

)–x

xx, L(x) =
x + γ

–γ

x + γ

–γ

.

Then numerical computations show that

L(/) = . . . . < L(/) = . . . . ,

L(/) = . . . . < L(/) = . . . . ,

L(/) = . . . . < L(/) = . . . . ,

L(/) = . . . . < L(/) = . . . . ,

L(/) = . . . . < L(/) = . . . . ,

L(/) = . . . . < L(/) = . . . . ,

L(/) = . . . . < L(/) = . . . . .
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Therefore, there exists δ ∈ (, /) such that the lower bound for Ŵ(x+ ) given in (.)

is better than that given in (.) for x ∈ (δ, / + δ)∪ (/ – δ, / + δ)∪ (/ – δ, / + δ)∪
(/ – δ, / + δ)∪ (/ – δ, / + δ)∪ (/ – δ, / + δ)∪ (/ – δ, / + δ).

4 Results and discussion

In this paper, we provide the accurate bounds for the classical gamma function in terms

of very simple rational functions, which can be used to estimate the value of the gamma

function in the area of engineering and technology.

5 Conclusion

In the article, we present several very simple and practical rational bounds for the gamma

function, which can be regarded as a simple estimation of the value of the gamma function.

The given results are improvements of some well-known results.
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