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Abstract. Let ~' be a convex polytope with n facets in the Euclidean space of a 

(small) fixed dimension d. We consider the membership problem for ~ (given a query 

point, decide whether it lies in ~ )  and the ray shooting problem in ~ (given a query 

ray originating inside ~ ,  determine the first facet of ~ hit by it). It was shown in 

[AM2] that a data structure for the membership problem satisfying certain mild 

assumptions can also be used for the ray shooting problem, with a logarithmic 

overhead in query time. Here we show that some specific data structures for the 

membership problem can be used for ray shooting in a more direct way, reducing 

the overhead in the query time and eliminating the use of parametric search. 

We also describe an improved static solution for the membership problem, 

approaching the conjectured lower bounds more tightly. 

I. Introduction 

Let d be a fixed (small) integer, and let ~ be a convex polytope in ~:d with at most 

n facets, i.e., an intersection of n half-spaces. We consider the following algorithmic 

problems for ~ ,  listed in the order of increasing generality: 

* Part of the work on this paper by Jifi Matou~ek was supported by Humboldt Forschungs- 

stipendium. Otfried Schwarzkopf acknowledges support by the ESPRIT II Basic Research Action of 

the European Community under Contract No. 3075 (project ALCOM). This research was done while 

he was employed at Freie Universit~it Berlin. Furthermore, part of this research was done while he 

visited INRIA-Sophia Antipolis. 
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�9 The membership problem. We want to build some data structure (storing some 

information about ~), such that, for a given query point, we can quickly 

decide whether it lies in ~.  

�9 The membership with witness problem. This is as the membership problem, 

but if the answer to the query is NO (the query point lies outside ~), we 

require that one of the n half-spaces defining ~ is returned, which does not 

contain the query point. 

�9 The ray shooting problem. In this case the query is specified by a ray p, 

originating inside ~ ,  and the goal is to find the first facet of ~ crossed by 

the ray. 1 

The membership problem has been intensively studied in computational geo- 

metry (mainly in dimensions two and three), and it falls into the area known as 

point location problems. From another perspective, this problem can be viewed as 

belonging to range searching, and, indeed, the known efficient solutions for this 

membership problem come from research in range searching (at least those for 

dimension d > 4). The point location and range searching problems are of some 

interest for direct practical applications, but they are still more significant as 

subroutines used in other problems. 

Our main goal is to show that certain data structures for the membership 

problem for ~ can also be used (perhaps slightly augmented) for ray shooting in 

~ .  Ray shooting problems (which can also be formulated in many different settings) 

are also quite significant, e.g., they play an important role in various hidden surface 

removal algorithms and related problems directly motivated by computer 

graphics. Ray shooting in a convex polytope can also be applied to solve the so- 

called post-office problem, see below. 

The membership problem with witness is intermediate between membership 

and ray shooting. Rather surprisingly, the known data structures for the member- 

ship problem do not always provide a witness, and it seems nontrivial to find one. 

Finding a witness is essential in some applications of membership testing, see 

[MS]. 

In this paper we review some known data structures for the problem of 

membership in a convex polytope, and we add one new data structure, which is 

somewhat more efficient than the previously known ones. Our main goal is to 

extend known data structures for the membership problem, so that they are 

capable of handling the membership with withness and ray shooting. 

The observation that ray shooting queries are somewhat related to point 

location and range searching is implicitly present in many papers. For instance, 

de Berg et al. [dBH +] developed sophisticated methods for ray shooting using 

range searching structures. Agarwal and Matou~ek [AM2] observed that the 

transformation of a suitable range searching algorithm into an algorithm for ray 

shooting queries is possible under quite general conditions, if a sophisticated 

algorithmic technique, so-called parametric search (due to Megiddo [Me]), is 

t We say that a ray p crosses a hyperplane h if it intersects it but is not contained in it. Thus, it 
makes sense also to consider rays which go inside some face of ~, and we permit such rays. 
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Table 1. Summary of data structures for ray shooting 

in a convex polytope (m is an adjustable parameter, 

n < m <_ nL~12J). 

Space; Update time Ray shooting 

preprocessing (amortized) queries 

n; n log n log 2 n n ~-~/Ldi2j+~ 

nLd/23 +,~ nLa/22- ~ + 6 log n 

~11+~ n 

m 1+~ - -  log n 
n letl l /Ld /2 j  

n; n log n N/A n 1 - 1/Le/2J(log n) ~ 

/I 

re(log n) ~  N/A m llLdl2 j log n 

n~dl2J 

(log n) ka/22-'~ 
N/A log n 

employed. In particular, they obtained the first nontrivial algorithms for ray 

shooting in convex polytopes for an arbitrary dimension by this technique. 

This application of parametric search makes the resulting ray shooting algo- 

rithm somewhat complicated, both conceptually and practically. Moreover, it 

typically increases the query time by a logarithmic factor. 

We show that for some known data structures for the membership in a 

convex polytope, we can naturally pass to ray shooting without parametric search, 

only by a slight modification of the query answering algorithm and/or by 

augmenting the data structure. We then obtain the query time for ray shooting 

or witness finding exactly of the same order as for the membership problem. 

Let us now review the known and new results for the considered problems in 

a quantitative form (see also Table 1). We distinguish static solutions (where the 

set of half-spaces defining the polytope ~ is fixed once and for all) and dynamic 

ones (where we allow insertions and deletions of half-spaces defining ~). As is the 

case with many problems of this type, slightly more efficient solutions are known 

for the static case than for the dynamic one. 

For membership in a convex polytope, Clarkson [Cll]  gave a (static) solution 

with O(log n) query time, which uses O(n t-d/2j§ space and expected preprocessing 

time. 2 In [AM1] a dynamic counterpart of this data structure was given, with 

asymptotically the same space and query-time performance, and with O(n t-d/2j- 1 +,~) 

amortized update time. 3 

2 Throughout this paper, 6 denotes an arbitrarily small positive constant. The multiplicative 

constants in the asymptotic bounds may depend on 6. 

3 By saying that a data structure has f ( n )  amortized update time we mean that starting with a 

current structure storing a set of n hyperplanes, an arbitrary sequence of at most n insertions and 

deletions can be performed in at most nf(n)  time. 
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We describe a static data structure with O(log n) query time and with the space 

and preprocessing time requirement improved to O(nLa/2J/logLa/2J-6). We apply the 

technique of bootstrapping developed by ChazeUe and Friedman [CF] (they used 

it for point location among hyperplanes). 

Why should such a small improvement be interesting? The worst-case combina- 

torial complexity of a polytope with n facets is l~(nLa/2-~, and this is an intuitive 

reason to conjecture that, for membership queries with logarithmic time, the space 

requirements should be quite close to n Ld/2j. A more daring form of this conjecture 

says that if S(n) denotes the space and Q(n) denotes the worst-case query time of 

a data structure for the membership problem, then Q(n)" S(n) l/Ld/2j = ~q(n). Nothing 

even approaching a proof of this conjecture is known, but the work of Chazelle 

[Ch2] (which established a similar lower bound for simplex range searching, with 

d replacing Ld/2J), and of Br6nnimann and Chazelle [BC] (who proved a 

somewhat weaker lower bound for half-space range searching) give at least some 

ideological support to this conjecture. From this point of view, our algorithm 

would already be quite close to optimal, since it has Q(n)S(n) 1/L'~/2j = O(n(log n)~). 

Clarkson's solution gives O(n 1+~) for this product, and another solution by 

Mulmuley [Mu] yields O(n(log n) c) for a (not too small) constant c. 

The previous paragraphs consider solutions to the membership problem with 

a logarithmic query time. At the other end of the spectrum, there is a solution by 

[Ma2], with O(n) space, O(n log n) preprocessing time, and O(n 1-1/La/2J(log n) ~ 

query time. A dynamic version with O(n) space, O(n ~- ~/La/2j+~) query time, and 

O(1og 2 n) amortized update time is given in [AM1], as well as a dynamic version 

of Clarkson's data structure. Finally, the linear-space solutions can be easily 

combined with the previously mentioned large-space ones, obtaining a continuous 

tradeoff between space and query time, of the following form: Given a parameter 

m, n <_ m <_ n La/2j, a static data structure can be built using O(m(log n) ~ space 

and with O((n/m ~/La/2j) log n) query time, or a dynamic data structure with O(m ~ +~) 
space and preprocessing time, O((n/ml/La/2J)log n) query time, and O(rn~+6/n) 

amortized update time. 

Employing parametric search, any of the above-mentioned data structures for 

the membership problem can be used to answer ray shooting queries. The storage, 

preprocessing, and update time remain the same (as well as the whole data 

structure), but the query time increases by a polylogarithmic factor [AM2]. In 

this paper we obtain ray shooting algorithms for all these data structures, all of 

whose parameters (query time, storage, preprocessing time, and update time) are 

of the same order as the ones for the membership problem (given above). In 

particular, we can solve the membership problem with witness with these para- 

meters. The bounds are summarized in Table 1. 

Note that by a well-known lifting transformation (see, e.g., [El), nearest (and 

furthest) neighbor queries in dimension d - 1 can be solved by shooting a vertical 

ray in the intersection of n half-spaces in 1 :a. We obtain a data structure for the 

post-office problem which is an improvement over previous results. Even in 

three-dimensional space, for instance, the best previous solution with space O(n 2) 

had query time O(log 2 n), see [Chl] and [AESW]. We improve the query time to 

O(log n). 



On Ray Shooting in Convex Polytopes 219 

Let us mention some open problems. In our ray shooting algorithms we require 

that the query ray originates within the polytope ~ (which is the case in most 

applications). The general technique with parametric search can also handle rays 

originating outside ~ (see I'AM2]); it would be interesting to extend our approach 

to this situation too. 

The passage from membership queries to ray shooting can be viewed as giving 

one degree of freedom to the (originally fixed) query point, and performing 

one-dimensional optimization along the query ray. A natural further generaliza- 

tion considered in [MS] is to consider a query k-fiat (for some k > 1), and ask 

whether it intersects the polytope # ,  or ask for the optimum of some linear function 

over the intersection of the query k-fiat with ~.  This problem can indeed be solved 

using a data structure for the membership problem. In [MS] this is done by a 

k-wise application of a multidimensional variant of parametric search, which 

produces a rather mysterious algorithm and quite large overhead in query time. 

It would thus be interesting to extend the methods of this present paper for also 

handling the queries with a k-fiat and avoid the parametric search there. 

Another problem to consider is the ray shooting in an arrangement of n 

hyperplanes in E d. Applying parametric search to a suitable point location 

algorithm (e.g., that of Chazelle [Ch3]), O(log 2 n) query time with O(n a) space (or 

with O(nd/log d- ~) space, with some more tricks) is obtained. It would be interesting 

to get O(log n) query time with O(n d) or smaller space. This problem is solved in 

[CF] for vertical rays, but the solution does not extend to general ray shooting 

(see also [Ma3]). 

2. Algorithms with Almost Linear Space 

In this section it is more convenient to consider dual versions of the problems 

discussed in the introduction. Under a suitable duality transform, the set H of 

hyperplanes extending the facets of the polytope ~ becomes a set P of points. The 

membership problem then translates into the following query problem: given a 

query half-space ~, decide whether it is disjoint from P. The witness in the 

membership problem becomes simply a witness point of P contained in ?. We call 

this the half-space emptiness problem. 

We consider the linear-space data structures for the half-space emptiness 

problem of [Ma2] and its dynamization given in [AM1]. Neither of these data 

structures provides a witness directly. We show how to find one, and how to 

handle the (dual version of) ray shooting. 

We start with several definitions. Let P be an n-point set in ~:d A simplicial 
partition of P is a collection 

1-I = {(P, ,  A,)  . . . . .  ( P . ,  a . ) } ,  

where the Pi's are nonempty sets (called the classes of YI) forming a partition of 

P and each Ai is a relatively open simplex (not necessarily full-dimensional) 

containing Pi. The number m is the size of the partition. 
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The basis of the efficient algorithm for the half-space emptiness problem in 

I-Ma2] is the so-called Partition Theorem for shallow hyperplanes. We say that a 

hyperplane h is k-shallow (relative to P), if one of the half-spaces bounded by h 

contains no more than k points of P in its interior. We say that a hyperplane h 

crosses a simplex A if A c~ h # ~ but A ~ h. For  our purposes here, we use the 

following form of the theorem: 

Theorem ! [Ma2] (Partition Theorem for Shallow Hyperplanes). Let P be a set 

o f  n points in ~_d, d >_ 3, and let r be a parameter, 1 < r < n/2. Then there exists a 

simplicial partition FI of  P having size O(r) with classes o f  size between n/r and 2n/r, 

and such that any (n/r)-shallow hyperplane h crosses at most O(r I - 1/Ld/2j + log r) 

simplices o f  1-I. For  r < n ~, where ct > 0 is a certain constant (depending on the 

dimension d), such a simplicial partition can be found in time O(n log r). 

The preprocessing for a basic version of the half-space emptiness algorithm 

consists of building a partition tree using the above theorem. Each node v of the 

tree corresponds to some subset Pv c p, the root corresponds to the whole set P. 

We choose a suitable large constant r, we find a simplicial partition of P of size 

O(r) as in the above theorem and we store the description of the simplices of this 

partition in the root of the tree. For every subset P~ of this partition, we then 

build one subtree of the root in the same manner. The construction ends in the 

leaves of the tree, where the size of the subsets drops below some constant; 

then we explicitly store all the points of such a subset in the corresponding 

leaf. 

The query answering algorithm deciding the emptiness of an open half-space 

? with a bounding hyperplane h then uses the partition tree as follows: We start 

in the root of the tree, and we determine the simplices of the simplical partition 

stored there intersecting 7. If the number of such simplices is greater than the 

guaranteed maximal number r = O(r I - 1 / L d / 2 j  -I- log r) of simplices crossed by any 

(n/r)-shallow hyperplane, then 7 is nonempty, in fact it contains at least n/r points 

of P (since either there is a simplex completely contained in 7, or more than x 

simplices cross h, implying that h is not (n/r)-shallow). Otherwise we proceed 

recursively down the tree into the at most x children of the current node for which 

the corresponding simplices intersect 7- This recursion terminates in leaves of the 

partition tree, where we simply check if any of the points stored there is contained 

in 7. 

A straightforward analysis of this data structure shows that it requires O(n) 

space, O(n log n) preprocessing time, and O(n 1 - 1/Ld/2]+~) query time, where 6 > 0 

tends to 0 with increasing r. A dynamic version of this data structure is described 

in [AM1]. First, it is shown that deletions of points from this data structure can 

be performed (rebuilding subtrees from which many points have been deleted). 

Insertions are then handled in a standard way (the "binary counting" pattern of 

Bentley and Saxe [BS]), using the decomposability of the half-space emptiness 

problem. The resulting (amortized) update time is O(log 2 n). 

We now discuss several ways to find a witness using this data structure; later 
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we generalize the methods to ray shooting also. The problematic situation is the 

following: 

In the query answering algorithm we are at an inner node v, and we find that 

y intersects more than ~c simplices of the simplicial partition in v. 

We say that such a half-space 7 is deep for v. By the argument above, we have 

17 c~ P~[ > n~/r, n~ = [P~[, for any deep half-space ~. In the dynamic version of 

[AM1] the points get deleted from Pv, but after at most nv/2r deletions from Pv 

the subtree rooted at v is reconstructed from scratch, so in this case a deep 

half-space always contains at least nd2r points of P~. We describe three methods 

for finding a witness point of P~ contained in a deep query half-space. 

A Simple Randomized Algorithm. When we reach a node v for which y is deep, 

we pick a random point p in Pv. By the above, the probability that p e 7 is at least 

1/2r, which implies that the probability that we do not hit a point in y after 

O(r log n) trials is very small (less than i /n  c, for a constant c > 0 that can be made 

arbitrarily large). A random point in P~ can be found in time O(log n~) without 

having to store the set Pv explicitly: if we store the number of points in Pv with 

each node, we can just choose a random index in {1 . . . . .  nv} and track down the 

point in the corresponding subtree, in O(log nv) time. The time for witness finding 

is thus dominated by the total query time with high probability. We needed no 

auxiliary data structures (except for the point counts in nodes, whose maintenance 

is trivial), and so this query-answering algorithm can be used for the dynamic 

version as well. 

A Deterministic Algorithm (Static Version). The key to a deterministic query 

algorithm providing a witness is the notion of e-nets. A (1/r)-net for an n-point set 

P is a subset R c P with the property that every half-space 3' with 17 n P I > n/r 

contains a point of R. We use the following fact. 

Fact 2. Let  P be a set o f  n points in IF a, r <_ n a parameter. There exists a (1/r)-net 

R for  P with [R[ = O(r log r) [HW],  and it can be computed in time O(n log r) time 

if r < n ~, where ct > 0 is a certain constant, depending on the dimension [Mal l .  

We augment every inner node v of the partition tree as follows: We find a 

(1/r)-net Rv of size O(r log r) for Pv, and store it at v. When we reach a node v in 

a query with 7 for which y is deep, we test all points p e Rv for containment in 7. 

Since 7 contains at least nv/r points of Pv, it must contain some point of Rv. Such 

a point, the witness, is thus found in additional time O(I Rv[) = O(r log r). Query 

time and storage of the structure thus remain the same as before, and this also 

holds for the preprocessing time (since R~ can be computed in time linear in the 

size of P~). 

For a static data structure, the query time can be slightly improved, as in [Ma2]. 

We consider the case d _> 4. Instead of setting r to a large enough constant, we 

set r = n~ in a node v, where fl > 0 is a suitable sufficiently small constant. 
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Otherwise the data structure remains exactly the same. The space is still linear, 

the preprocessing time is O(n log n), and the query time is O(n 1-1/La/2J(log n)~ 

also when we count the additional witness finding time (this can be derived by 

analyzing simple recurrences, see [Ma2]). We do not know how to dynamize this 

improved data structure efficiently, so in the next algorithm we return to constant 

values of r at every node. 

A Deterministic Algorithm (Dynamic Version). In order to use the previous idea 

with e-net, in a dynamic setting, we need to maintain an g-net dynamically. This 

is nontrivial, since if we delete a point belonging to the current e-net, this ~-net 

has to be repaired somehow. Fortunately we can replace e-nets by suitable 

simplicial partitions, which behave as "robust e-nets" in some respect. 

Above we have considered simplicial partitions for which every k-shallow 

hyperplane crosses possibly few simplices, for a suitable k. Here we need simplicial 

partitions for which any hyperplane crosses few simplices only. The following is 

shown in [Ma2]: 

I~mma 3 [Ma2]. For every n-point set P in ~_a and a parameter t (1 < t < n/2), 

there exists a simplicial partition tF of size O(t) for P, with class sizes between nit 

and 2n/t, and such that every hyperplane crosses at most ~ = O(t 1- l/a) simplices of 

iF. For t bounded by a constant, such a tF can be computed in time O(n). 

Let us consider such a simplicial partition W for P, and let 7 be an open 

half-space which contains none of the simplices of 5' completely. Since the 

bounding hyperplane of 7 crosses at most ~ simplices of W, all but ~ simplices of 

are disjoint from y. Hence 7 contains at most k = 2n~/t = O(n/t l/d) points of P. 

In other words, an open half-space containing more than k points of P completely 

contains some simplex of W. 

We now return to our partition tree and apply this as follows. In an inner node 

v, set t = Cr d, for a large enough constant C, and build an auxiliary simplicial 

partition Wv for the set Po, as in Lemma 3. The constant C is chosen in such a 

way that every open half-space ~ containing at least nJ2r points of Po completely 

contains some simplex of Wv- The simplicial partition W~ will be our auxiliary 

data structure stored at v. 

Suppose that we came to a node v with a query half-space 7 which turned out 

to be deep for v (so 7 contains some simplices of W). Let 7'~_ 7 be the open 

half-space whose boundary is parallel to the boundary of 7, and such that it does 

not contain the closure of any simplex of W~ but it contains some (relatively open) 

simplex A of Wo. Thus, 7' arises by shifting 7 inward, until the boundary hits the 

last simplex of Wv remaining in the shifted half-space. Obviously 7' is nonempty, 

since it contains the points of P,  in A. On the other hand, IPv n 7'1 < nJ2r: if it 

were not the case, then we might shift the (open) half-space 7' a little bit more, 

obtaining a half-space 7" with 7" n Pv = 7' n P,  but such that no simplex of W~ is 

contained in 7", which is impossible. 
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Thus having a deep half-space y for a node v, we find 7' as above (in 

O(t log t) = O(1) time), and we continue the query with y'. This is contained in 7, 

intersects P~ but it is not deep for v anymore, so it intersects only 

X ---- O(r 1 - l/La/2j q_ log r) 

simplices of II v, and we can continue with the recursion in the appropriate children 

of v. Eventually we reach a leaf with a nonempty query half-space, and we find 

the desired withness there. 

It remains to show how to maintain the simplicial partitions qJv under deletions 

of points. This is not difficult: Whenever at least nv/2t points of Pv are deleted in 

a node v, we recompute the simplicial partition Wv anew, in O(nv) time. The 

amortized time is constant per deletion in one node, and O(log n) for the whole 

data structure. At the same time, these reconstructions guarantee that none of the 

simplices of Wv becomes empty, which is sufficient for a correct function of the 

algorithm. As for insertions, these need not be considered (since they are handled 

at a higher level of the dynamic data structure of JAM1]), but we could handle 

them easily anyway. 

Note that we could also store the list of points of Pv belonging to every simplex 

of the auxiliary simplicial partition Wv, and thus find a withness for a deep 

half-space without further recursion. However, storing the lists of points in every 

node would raise the space requirements to O(n log n). Also, the above approach 

generalizes to ray shooting, as we now explain. 

Ray Shooting Algorithms. For a point set P and a nonvertical hyperplane h, let 

us call a point p e P h-extreme if there is no point of P above the hyperplane 

passing through p and parallel to h (let us denote this hyperplane by h(p)). Let us 

consider the problem of finding an h-extreme point of P for a query hyperplane 

h. This is the dual counterpart of the ray shooting problem with vertical rays 

emanating from + ~ .  

It turns out that some of the data structures developed for half-space emptiness 

queries with witness can be used to find an h-extreme point quite easily. Let us 

consider the data structure for the static deterministic algorithm (the one with 

e-nets). Given a query hyperplane h, we start in the root of the partition tree. In 

an inner node v we proceed as follows: we find an h-extreme point q of R v (Rv is 

the (1/r)-net at v). Then we recursively find the h-extreme points for all children 

of v corresponding to simplices of H v intersecting the half-space above h(q) (if there 

is no such simplex, then q itself is h-extreme). Among these, we select an h-extreme 

one. In a leaf an h-extreme point is selected trivially. This algorithm is obviously 

correct, and the (1/r)-net property of Rv guarantees that h(q) is an n/r-shallow 

hyperplane (relative to Pv). Hence we recurse in at most x children of o. Thus the 

running-time analysis is the same as for the basic half-space emptiness algorithm 

and we also get the same query time. 

The h-extreme point problem can also be solved using the data structure for 
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the dynamic deterministic algorithm (the one using auxiliary simplicial partitions). 

In fact, this is exactly what the above-described query-answering algorithm does, 

only we need to select the h-extreme point from all the leaves reached in the 

recursion. 

As we pointed out, the h-extreme point problem is equivalent to vertical ray 

shooting from the inside of a convex polytope. The general ray shooting problem 

dualizes to the following problem: We are given a query (nonvertical)(d - 2)-flat 

a, such that there is a hyperplane h0 passing through a and having no points of 

P above.it. We want to find an a-rotation extreme point of P, which is a point 

p e P such that there are no points of P above the hyperplane passing through p 

and a. The previously considered problem corresponds to the situation when a is 

formally at infinity. An a-rotation extreme point can be found in almost the same 

way as we did for an h-extreme point; we leave details to the reader. Hence we 

can solve the ray shooting problem with the same complexity as the half-space 

emptiness problem. 

We have thus given a new proof of the following result of [AM 1] and [AM2]: 

Theorem 4. The ray shooting problem for a convex polytope with n facets in ~_d 

can be solved with O(n) space, O(n log n) preprocessing, O(log 2 n) amortized update 

time, and O(n 1- 1/Ld/2j+~) query time. For a static data strcture, the query time can 

be improved to O(n 1- 1/Ld/2J(log n)~ 

3. Ray Shooting with Logarithmic Query Time 

Another data structure for the polytope membership problem is a specialization 

of a result due to Clarkson [C12]; let us recall that it requires O(n Ld/2j+~) space 

and preprocessing time, and achieves O(log n) query time. A dynamic counterpart 

of this data structure was given in [AM1]. We explain a static data structure 

(similar to Clarkson's one) and the way we can find a witness point using this 

structure. Then we generalize to the ray shooting case. 

We return to the primal setting of the problems, as discussed in the introduction. 

We may and do assume that the polytope ~ is the upper unbounded cell in an 

arrangement of a set H of n hyperplanes, i.e., the set of points lying above all 

hyperplanes of H. In this situation the membership problem takes the following 

special form: "Given a query point, determine whether it lies above all hyperplanes 

of H." 

Let r < n be a parameter. For  the sake of simplicity, we assume that the 

hyperplanes of H are in general position. Let the level of a point p e n :d with respect 

to H be the number of hyperplanes h e H lying strictly above it. A collection E of 

simplices with disjoint interiors are called a (1/r)-cutting for the (<O)-level of H, 

provided that the simplices of E cover all points of level 0 (with respect to H, i.e., 

all points with no hyperplanes of H lying strictly above them), and that each 

simplex of E is intersected by at most n/r hyperplanes of H. We apply the following 

result: 
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Theorem 5 (Shallow Cutting Lemma [Ma2]). Let H, r be as above. Then there 

exists a (1/r)-cutting E for the (<O)-level of  H, consistin9 of  O(r Ld/2j) simplices. For 

r < n ~ (where ot > 0 is a certain constant, dependent on the dimension), such a cuttin9 

can be computed in O(n log r) time. 

For every simplex A e E, we say that a hyperplane h e H is relevant for A if it lies 

above A or intersects A. Let H a denote the collection of hyperplanes relevant for A. 

A slightly modified Clarkson's structure for the membership problem is a 

tree-like structure, built recursively as follows: If the number of hyperplanes in H 

is smaller than a suitable constant, then the list of hyperplanes of H is simply 

stored; this will be a leaf node. A query is answered by testing the query point 

against each hyperplane of H. 

If, on the other hand, H is larger, a suitable parameter r (a sufficiently large 

constant in Clarkson's original construction) is choosen, and a (1/r)-cutting E for 

the (<0)-level of H, consisting of O(r Ld/zj) simplices, is computed. We store the 

cutting E in the root of the data structure, and, for every A ~ E, we recursively 

build a subtree corresponding to the data structure for H a. The space S(n) occupied 

by this data structure obeys the recursion 

S(n) <_ O(r Ld/2j) + O(rLd/2J)S(n/r), 

which, for a sufficiently large but constant value of r, solves t o  O(nLd/2J+a). 
We now describe a query-answering algorithm finding a withness as well. A 

query with a point q on H is answered as follows: We begin at the root. Being in 

a nonleaf node v, we determine whether q belongs to some simplex of E v, the 

cutting stored at v, and if there is such a simplex, we proceed recursively into the 

corresponding child of v. If there is no such simplex, it means that there is a 

hyperplane strictly above q. 

In this situation we shoot a vertical ray p from q upward, we find the first 

simplex A of E v intersected by p and we recurse in the child corresponding to A. 

We claim that some of the hyperplanes relevant for A must lie above q. Indeed, 

let us take the last hyperplane h encountered along p in the upward direction. 

The point q c~ p has level 0, and so it has to be contained in some simplex. 

Therefore A contains this point or some point below it, and so h is relevant for 

A, showing the correctness of this step. 

In a leaf node we solve the query by inspecting all the hyperplanes in that node. 

This finishes the query algorithm. Since we spend a constant time in every node, 

the query time is O(log n). 

The same method also works for the dynamic data structure of [AM1] and 

provides a witness hyperplane, while retaining the same (O(log n)) query time. (The 

reader has to be familiar with the dynamic data structure in order to check our 

claim, since we do not explain the dynamic data structure. We apologize for 

withholding this information, but the data structure in question is technically fairly 

complicated.) Since the dynamic data structure requires a larger (nonconstant) 

value of r, we need some auxiliary data structure to find the first simplex of a 



226 J. Matou~ek and O. Schwarzkopf 

cutting E crossed by the vertical ray p. This is clone by point location in the 

projection of the cutting E on a horizontal hyperplane. The combinatorial 

complexity of this projection is bounded by a polynomial in the size of E, and 

since this size is a very small fractional power of n, the complexity is still small 

compared with n. We can thus afford quite a wasteful approach: we extend every 

(d - 2)-dimensional feature in this projection into a full hyperplane, and we use 

an algorithm for point location among hyperplanes with a logarithmic query time 

and a polynomial space (see, e.g., [CF]). This additional data structure does not 

increase the asymptotic space or query-time requirements. 

Let us now turn to the ray shooting problem. We use the same data structure 

as for the membership problem, but with a slightly modified query algorithm. For  

the static case, assume we are given a query ray p with origin p lying above all 

hyperplanes in H. We begin the query answering at the root of the data structure. 

Being in a nonleaf node v, we determine the last simplex A of Ev intersected by p. 

Since p lies above all hyperplanes of H, it is contained in a simplex of Ev, hence 

such a last simplex A exists. We proceed recursively into the child of v correspond- 

ing to A. In a leaf node we simply test all hyperplanes to find the first one crossed 

by the ray p. 

To prove the correctness of this algorithm, we have to show that the first 

hyperplane h crossed by p is relevant for A. The argument is similar to the one 

employed above: Consider the point p n h. It has level 0 and must thus be 

contained in some simplex. Thus, A contains this point or a point on p lying 

behind it (in the order along the ray/9). Since h contains the point p n h, h must 

be relevant for A. 

In the dynamic data structure the size of the cuttings used is larger and we 

need a secondary point location structure to find the last simplex of Ev intersected 

by a query ray. It  is sufficient to have a data structure with O(log s) query time 

and space and preprocessing time polynomial in s, the size of E. This is discussed 

in the Appendix. We thus get 

Theorem 6. The ray shooting problem for a convex polytope with n facets in E d 

can be solved with O(n kd/Ej+6) space and preprocessing time, O(log n) query time, and 

O(nLa/E d- 1 +6) amortized update time. 

4. Reducing Storage for Static Data Structures with Logarithmic Query Time 

If we do not need a dynamic data structure, we can use the static data structure 

described in the previous section, but with the parameter  r set to m ~ in an m-point 

node, where 0t > 0 is a suitable small constant. If  ~ is chosen small enough, 

the storage requirement S(n) follows the following recurrence: S(n)= O(1) for 

b < n o = 0(1), and 

S(n) = c::2JS(n/r) + czn La/~j 

for some constants ct, c 2. This solves to S(n) = O(n La/2J log c n), where the constant 
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c depends on c 1, c 2. The query time follows a recursion of the form 

Q(n) = Q(n 1 -~) + O(log n), 

which gives Q(n) = O(log n). 

Let us now turn to the preprocessing time. The shallow cutting E can be 

constructed in time O(n log r) according to Theorem 5. Identification of the sets 

HA can trivially be done in time O(nr L~/2j) by testing every hyperplane with every 

simplex of the cutting. 

The time to construct the secondary structure on -= according to Lemma 11 

(which is given in the Appendix) is polynomial in r = n ~, and for sufficiently small 

ct > 0 all this is bounded by O(n Ld/2j) again. Thus we get the same recursion as for 

the space requirement and find that the proprocessing time is also bounded by 

O(n La/2A log c n). We obtain 

Lemma 7. The (static) ray shooting problem in a convex polytope with n facets in 

E d can be solved with preprocessing time and storage O(nL~/2J(log n) ~ and with 

query time O(log n). 

The partition tree data structures for ray shooting with linear space as in 

Section 2) can be combined with the data structures with logarithmic query time 

to obtain a continuous space-query-time tradeoff. Namely, we build only an upper 

part of the partition tree (as in the linear-space algorithm), stopping the recursive 

construction as soon as the size of the point set in a node drops below a suitably 

chosen number s, where 1 < s < n. For such a node v, instead of building the 

subtree for Pv, we store the data structure with logarithmic query time for P, at 

the node v. A similar construction appears in many previous papers (e.g., [CSW]), 

so we omit the details. A somewhat worse tradeoff for the ray shooting problem 

is given in [AM2]. We obtain the following: 

Theorem 8. Given a parameter m (n < m < nLd/2d), there is a dynamic data structure 

for ray shooting queries in a convex polytope with n facets in E ~ with space and 

preprocessing time O(ml+~), amortized update time O(ml+~/n), and query time 

O((n/m 1/La/EA) log n). For a static data structure, the space and preprocessing time 

can be improved to O(m(log n)~ 

We now show that the idea of bootstrapping used by Chazelle and Friedman 

in [CF] can be used to improve the storage in Lemma 7 to O(nLa/2J/(log nLd/2J-6). 

While [CF] needs four bootstrapping steps, we employ somewhat more powerful 

tools to obtain our result with a single such step. This idea could be used for the 

point location in hyperplane arrangements as well, and, in fact, the time bound 

given in [CF] can be slightly imporoved by following exactly the same ideas as 

presented here. 

We need a lemma on random sampling due to Clarkson [Cll] ,  see also [-CS]. 

For a collection H of hyperplanes, let q/(H) denote the set of all vertices of the 

upper envelope of H. 
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Lemma 9. Let H be a set of n hyperplanes in FY and let fl > 0 be a constant. For 

a random sample R of t  hyperplanesfrom H, with probability at least 1/2 the following 

is true:for all vertices v e all(R), the number no of hyperplanes h ~ H lying above v is 

bounded by O(n log r/r), and the sum of ~v~tR) n~ is bounded by O(rL~/2J(n/r)B). 

The improved structure can now be derived as follows: We take a random 

sample R of H of size r = n/log k n for some parameter k (which is determined 

later), and build a structure according to Lemma 7 for ray shooting in the upper 

cell of the arrangement of R. Furthermore, for every vertex v of the upper envelope 

of R we identify the set H~ of hyperplanes h ~ H lying above v. Let no = I H~I. 

We then construct, for every such vertex v, a secondary structure as in Theorem 

8 with storage s = O(n~(logn~y) (? a constant) and query time O(n~ -a/Ld/2J) 

(1 < fl < Ld/2d is yet another constant to be chosen later4). By Lemma 9 we can 

choose R such that nv = O(log k § ~ n) for all vertices v E ~(R), and at the same time 

the total storage for the secondary structures is 

Z 
v~at/(R) 

n~(log n~y = O(rl-d/2J(n/r)P(log log ny) 

= O(nt-d/2J(log n)kp-kLa/2J(log log ny). (1) 

Consider now a query with a ray p with origin p above the upper envelope of 

H. Let h be the first hyperplane in R crossed by p, and let q = p c~ h. We determine 

a set V of vertices of the upper envelope of R such that q lies in the convex hull 

of V. This can be done by repeated ray shooting queries in the upper cell of the 

arrangement of R: We first find q and h by shooting with the ray p. Then take 

an arbitrary vertex Pl of the upper envelope of R which is incident to h, and shoot 

with a ray pl with origin Pl and going through q. This ray lies in h. Let h~ be the 

first hyperplane in R crossed by Pl, and let ql be the point of intersection. Take 

an arbitrary point Pz incident to h and hi. Shoot again with the ray P2 with origin 

P2 and going through q~, finding a new hyperplane h z e R and a point qz. In this 

fashion we proceed until the intersection of h n h~ n h 2 n . . -  n h i is a vertex Pi+ r 

Then we can take V = {Pl, Pz . . . . .  Pi+I}. The size of V is at most d. 

We now query the secondary structures associated with the at most d vertices 

in V with the ray p, and output the first hyperplane crossed in any of the 

subproblems. 

It remains to show that the first hyperplane h' in H crossed by p appears in 

Hv for some vertex v e V. If the solution hyperplane h' is not identical to h, it must 

lie above the point q where p intersects h. Since q lies in the convex hull of the v ~ V, 

h' lies above at least one of the vertices v. 

Since nv = O(log k § ~ n), the query time of our combined structure is bounded by 

O(log n + (log n) tk+ 1)(1 -p/Ld/2J)). 

4 A weaker form of the tradeoff with storage O(m 1+8) would suffice, such as in JAM2]. 
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We choose fl = td/2J(k/(k + 1)). This implies that the query time is bounded by 

O(log n). The storage for the primary data structure for ray shooting in the upper 

cell of the arrangement of R is (by Lemma 7) O(rLd/2J(log n) c') for some constant 

c r For k large enough, this will not exceed O((n/log n)Ld/2J). The storage for the 

secondary structures is bounded by 

i nLd/2j n)~) ' 
O\(log n)Ld/2~-Ld/E j/Ck + 1~ (log log 

as we find from (1) and the choice of ft. Choosing k large enough we get the total 
storage of order O(nLa/2J/(log n)La/2J-~). 

Let us turn to the cost of preprocessing. The problem is to find a sample R 

which conforms to the requirements of Lemma 9. Those can be checked once we 

know the number of hyperplanes in the lists Hv for every vertex v e q/(R) (these 

lists have to be computed anyway). We just take a random sample R of the 

appropriate size, and construct its upper envelope 0-//(R). Then we sequentially 

take all n hyperplanes h from H and find all v ~ q/(R) which lie below h. It is well 

known that this can be done in time linear in the number of such vertices once 

one such vertex is known (see, e.g., [CS]). On the other hand, we get such a vertex 

by linear programming on R in time O(r) (see [S]), so the total time for this step 

is O(nr) plus the total number of vertices found. We stop this algorithm if it tries 

to report more than O(nr ka/2j- 1) such vertices (because then the sample R is bad), 

otherwise we check whether it fulfills the requirements of Lemma 9. If not, we 

discard R and take a new random sample. By Lemma 9, the expected number of 

such trials is constant, so we can find R in expected time O(nr ta/2J- 1) (and identify 

the lists Hv in the same time). The secondary structures can be computed in time 

linear in their storage, so again we have the same recursion as for the space. We 

have thus proven 

Theorem 10. The (static) ray shooting problem in a convex polytope with n facets 

in E ~ can be solved with preprocessin# time and storage O(nLd/2J/(log n) Ld/2j-a) and 

with query time O(log n). 
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Appendix. Finding the Last Simplex Intersected by a Query Ray 

Here we treat the problem arising in Section 3: given a set of s simplices in E a 

with disjoint interiors, preprocess it in polynomial time and space so that, given 

a query ray p, the last simplex intersected by p can be detected in O(log s) time. 
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Lemma 11. Given a set E of  s simplices with disjoint interiors in E d. We can build 

in time O(s sa+ 2) a data structure of  size O(s sa- 6 § ~) that permits queries of  the form 

"Given a query ray p, f ind the last simplex A in E intersected by p"  with query time 

O(log s). 

Proof. We apply a standard locus approach. We consider the space of all rays. 

The loci corresponding to rays with the same last simplex induce a subdivision of 

this space. We can do point location in this subdivision using the following result 

by Chazelle et al. [CEGS].  [] 

Lemma 12 [CEGS].  Let f l  . . . . .  fN be D-variate polynomials o f  degrees bounded 

by a constant (D is also considered a constant). For a D-dimensional variable 

x := (xl ,  x2 . . . . .  xD), let signi(x ) be the sign offi(x),  and 

sign(x) := (signl(x) . . . . .  signN(x)) 

be the sign vector o f  x with respect to the family  (fi). Assume we are given a label 

for  every possible value o f  sign(x). 

There is a data structure with storage and preprocessing time O(N 2~ 3 + ~) which, 

given a D-dimensional vector x, f inds the label associated with sign(x) in time 

O(log N). 

This result is applied as follows. We represent the query ray p by its origin p and 

by a direction vector u. We thus have a D := 2d dimensional 5 representation for 

p. Consider now a fixed simplex A. We compute a constant number of polynomials 

in the D = 2d variables representing p to test whether p intersects A. We first 

observe that p intersects A if either the origin p of p lies in A, or if some facet f 

of  A is visible from p and the direction u lies in the convex cone with apex p spanned 

by f .  The first case can easily be tested by d + 1 linear inequalities (polynomials of 

degree one). For the second case we first identify the facets f visible from p using 

the same inequalities as in the first case. 

We now have a facet f of A visible from p and wish to test whether u lies in 

the cone spanned by f .  This can be done by checking the orientation of u with 

respect to the d hyperplanes that pass through p and the d ridges ((d - 2)-faces) 

of f .  For every ridge, we choose d - 1 affinely independent points ql, q2 . . . . .  qa-1. 

The orientation of u with respect to the hyperplane spanned by p and ql, 

q2 . . . . .  qa-1 can be tested by computing the orientation of the simplex spanned 

by u and the d - 1 vectors ql - p, q2 - P . . . . .  qa- ~ - P. This orientation can be 

found by computing the determinant of the matrix whose rows are these d vectors, 

which corresponds to the evaluation of a polynomial of degree d. 

In this fashion we have determined a set of O(s) polynomials. The signs of these 

polynomials for the variable representing a given ray p give us complete informa- 

tion as to which simplices are intersected by p, and, if a simplex A is intersected, 

through which facet f of A the ray p enters the simplex A. It remains to determine 

the last simplex intersected by p. 

5 This is admittedly not optimal. 
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To this end we add another set of O(s 2) polynomials. Assume that p intersects 

two simplies A 1 and A 2, and enters them through their facets f l  and f2, 

respectively. Let hi and h 2 be the hyperplanes containing f~ and f2. We can then 

test which of the two simplices is intersected first by testing which of the two 

intersections of p with h~ and h 2 lies closer to p. However, this can again be tested 

by determining the orientation of u with respect to the hyperplane through p and 

the (d - 2)-flat h~ c~ h 2. This can be dealt with as above. In this fashion we can 

add a polynomial for every pair of facets of different simplices. 

The sign sequence of the resulting set of polynomials uniquely determines which 

simplex is the last one intersected by p. We can therefore appeal to Lemma 12, 

with parameters N r O(s 2) and D = 2d, to obtain a search structure with the time 

bounds claimed above. Given a ray p, this structure returns the label of the last 

simplex A intersected by p. 
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