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The paper compares the methods of re-normalization introduced by the Dupree-
Weinstock theory of turbulence with those in the theories of Kadomtsev,
Rudakov and Tsytovich. It is shown to what extent they are equivalent.

1. Introduction
The physics of a high-temperature plasma is described by the Vlasov equation,

together with Maxwell's equations, so long as particle correlation can be ignored.
Assuming the same holds for them, we may construct a theory of turbulent plas-
mas by obtaining a solution of the nonlinear Vlasov equation. The first success-
ful step in this direction was taken by so-called weak-turbulence theory, which
involves solving the Vlasov and Maxwell equations in a perturbation series.
(See e.g. Kadomtsev 1965; Sagdeev & Galeev 1969; Tsytovich 1970; Davidson
1972.) Individual terms are evaluated using the free particle propagator to
integrate along a particle orbit, and the 'free' plasmon propagator to solve the
nonlinear Maxwell equations by iteration. The free particle propagator is the
solution of the Vlasov equation neglecting self-consistent fields, while the free
plasmon propagator is the solution of the Maxwell equations neglecting mode
coupling.

It is well known that weak-turbulence theory suffers from various divergences,
which originate in the use of free propagators. Recent advances in the theory of
solving nonlinear problems on plasma turbulence have shown that, to eliminate
these divergences, one must in some sense renormalize the free propagators. In
what has become known as the Dupree-Weinstock theory, a particle propagator
is redefined to include perturbing effects of a self-consistent field (Dupree 1966;
Weinstock 1969). Applying another method, Rudakov & Tsytovich (1971)
re-normalized the particle propagator. Finally, in the theory of Makhankov &
Tsytovich (1970), a plasmon propagator is redefined to include the effects of
'turbulent collisions'. (But the first to re-normalize both plasmon and particle
propagators was Kadomtsev (1965), in his 'weak-coupling' equations, which he
derived from semi-intuitive considerations.)

The work presented here began in an effort to understand the methods intro-
duced by the theories of the above authors, and their inter-relation. The purpose
of this communication is to derive the main results of the theories from a unified
viewpoint, and to show how far the theories are equivalent.
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316 J. Vaclavik

2. Basic equations
Let us consider a collisionless plasma, in which the distribution function of a

species of charge obeys the Vlasov-Poisson equations (for simplicity we neglect
the magnetic field):

div E(r, 0 = inq (J/(r, v, t) dv - n0). (2)

/(r, v, t) is the distribution function of species of charge at position r and velocity
v at time t. q and TO, respectively, denote the charge (including sign) and mass of
the species. n0 is the density of a uniform background of neutralizing charge.
For notational convenience, we define the linear operator

Sometimes we simply denote/(r, v,t) by/(<), so that (1) can be written

(d/dt + L(t))f(t) = O. (4)

Our object is to obtain a set of equations for an ensemble average of/(<), which
we denote by f(t). Following Weinstock, we introduce a linear operator A, which
has the property of taking the ensemble average of everything on which it
operates. We thus define

AF(t) = (F(t)) = F(t), AFltJFfa) = <*"&) •*•(*>)>, (5)
where F(t) is an arbitrary function of t. The distribution function/(<) can thus be
divided into an average part/(() = Af{t) and fluctuating part/(<) = (l-A)f(t):

/(0=/(0+/'(*)• (6)
The Vlasov equation can then be written as two equations, by operating on both
sides of (4) with A and (1 -A), to obtain

(7)

(8l8t + L(t))f'(t) = -L'(t)f(t) + (A-l)L'(t)f(t), (8)

where L(t) = AL(t), L'(t) = (l-A)L(t).

In what follows, we confine ourselves to the case (E(r,£)> = 0. Consequently,
E'(r,i) = E(r, t), and the quantities L and L' are given by the relations

The Poisson equation (2) now reads

J , v , 0 d v . (11)

Equations (7), (8) and (11), together with (9) and (10), form a complete set of
basic equations for the quantities / , / ' and E. We now solve them by means of two
different methods.
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Re-normalization theory 317

3. Dupree-Weinstock method
As a first step, we wish to solve (8) for/'(£) in terms oif(t). Following Birming-

ham & Bornatici (1971) we introduce the 'Vlasov' propagator U(t,t0), which is
denned by

(8l8t + L(t)) U(t,t0) = 0, U(tQ,t0) = 1, (12)

and we rewrite (8) as

(dldt + L(t))f'(t) = AL'{t)f\t)-L'{t)f{t). (13)

The formal solution of this equation can then be written

/'(<) = U(t, g / ' i y + f' dtx U(t, tx) [AL'itjf'M - L'itjfa)]. (14)

Next we neglect the term in (14) associated with the initial value f'(t0), and
define the operator U(t,t0) by

U(t, y ir{t) = f' U(t, tt) #&) dtv (15)
Jt,

i]f(t) is an arbitrary function. Thus, in operator form, (14) reads

f'=tt(AL'f'-L'j). (16)

It is straightforward to solve this equation by iteration to any desired order in L'.
With accuracy up to O(L'3), we obtain

f = -V(l+AL'U+AL'UAL'U)L'f. (17)

We would now like to express the operator U by means of the ensemble-aver-
age Vlasov propagator U. An equation relating U and U is obtained by averaging
(12), and subtracting the resulting equation from (12) itself:

(dldt + L(t))(U(t,to)-U(t,to)) = (L'(t)U(t,to))-L'(t)U(t,to). (18)

Equation (18) formally integrates to

,t0) = U(t,to)+ P U{t,tx)[(L'itJ U(t1)t0))-L'(t1)U(t1,t0)]dt1, (19)U(t,

or briefly, in operator form,

U = U + U((L'U)-L'U). (20)

Equation (20), solved by iteration to accuracy O(L'2), yields

U = U -WU + U[L'UL'U -(L'UL'U)]. (21)

Upon substituting this U into (17), and neglecting terms of order higher than
L'3, we obtain

/ ' = -U[l- (l-A)L'U + (l-A)L'U(l-A)L'U-(L'UL'U)]L'f, (22)
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318 J. Vaclavik

or, in a more explicit form,

f'(t) = - !tU(t,tl)L'(t1)f(t1)dt1+ Cdt2 [t'dt1U{t,t2){l

x U(t2J1)L'(t1)f(t1)+ fdt3 \l'dt2 [lldtJJ{t,tz)
Jto Jta Jt.

x [(L'(t3) U(t3, y L'(t2) U(t2, y > - (1 - A) L'(t3) U(t3, <2)

x{l-A)L'{ti)U{t2,t1)]L'{tx)J{t1). (23)

After reversing the order of integrations, (23) can be rewritten

/'(<) = - [ldtx\u(t,tx)- [tdtJ]{t,^){l-A)L'{^)U{t2,t1)+ f'dtSdt3U(t,t3)
Ju L Jh Jtx Jt,

x{(l-A)L'(t3)U(t3,t2)(l-A)L'(t2)U(t2,t1)

- (L'(t3) U(t3, «2) L'(t2) U(t2> ^)>}] L'Mfa). (24)

Here, the expression in the square bracket represents the expansion of Wein-
stock's operator UA to second order in L' in terms of U. If we now keep only the
lowest-order term in this expansion, and substitute the corresponding/'(() into
(7) and (11), we obtain the set of the equations of the 're-normalized' quasi-
linear approximation:

(8l8t+L)f(t)= Cdt1(L'(t)U(t,tl)L'(tl)yf(tl), (25)
Jt.

div E(r, t) = - 4mq [dv\ dtx U(t, tx) L'^f^). (26)

The obvious difference between (25) and (26) and the equations of the conven-
tional quasi-linear approximation is that, in the latter, the 'free' particle propa-
gator

?70(<,<1) = exp{(i1-«)v.a/ar} (27)
replaces U.

Up to this point, the operator U is completely unknown. Bearing in mind,
however, that the Vlasov propagator satisfies

f(t) = U(t,tQ)f(t0), (28)

and neglecting the same term as was neglected (14), we can make the approxima-
tion _

f(t) = U(t,to)f(tQ). (29)

Equation (25) can then be expressed in terms of U, instead of/, by substituting
(29), to obtain

r (30)= r
J tD

Equations (26), (29) and (30) form a complete set for [7,/and E.
In the Dupree-Weinstock theory, (30) is not solved. Instead, one makes use
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Re-normalization theory 319

of the relationship between U and the characteristic trajectories of the Vlasov
equation. Let r* and v* be the solutions of the characteristic equations

with boundary conditions r*(r = t) = r, V*(T= t) = v. The formal solution of
(12) is then

j | ^ j (32)
For brevity we introduce it, the six-component phase-space vector. Thus,

U(t, g = < êxp {(n*(g - it). ̂  £ exp {<An*(g>. i -

+ |[<A**(g An*(t0) > - <A«*(«0)> <An*(g>]: J ^ } , (33)
where An*(g = n*(g - n.

In the last form of (33), we have made a cumulant expansion, and dropped
cumulants higher than second order. By integrating the characteristic equations
(31), A7i*(g can be expressed in terms of fluctuating fields along a particle tra-
jectory. The operator U is then represented in terms of statistical correlations of
the fluctuating field.

To proceed further, we make an additional simplification. We assume that /
changes sufficiently slowly with r, v and t that, in (25) and (26),/may be removed
from both the U operation and also from the time integration. With this approxi-
mation, (25) and (26) read

divE(r,«) = - -^L tdv 8^r' V '^ . I dtiUfatJEfatJ, (35)

where

D ( r , v , « , g = f'"'*eft1<F(r,O^(*,*-<i)F(r,*-«1)>. (36)
Jo

Consequently, it is sufficient to consider U in the form

U(t,t0) = expj<Ar*(g>. i + J[<Ar*(gAr*(g> -<Ar*(g><Ar*(«0)>]:~j.
(37)

Let us now formally integrate (31). We have

A r * ( r ) - v ( T - 0 = C(T-T')F(r*(T'),T')dTf. (38)

Iterating once, and neglecting the terms of order higher than F2, (38) become s

. fT (T' - T") F(r + V(T" -1), T") dr"\. (39)
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320 J. Vaclavik

It follows that

<Ar*(r)>-v(T-0 = ft
dr'(T-T')fT

t dr"(r'-T")

If we now assume that the turbulence is homogeneous in space and stationary
in time, the correlation { F ^ , tx) F(r2, t2)) becomes a function of r2 — rt and t2 — tx

only. The relation (40) can then be transformed in such a way that

<Ar*(r)>- V(T-t) = Jdr'(T-r')j dr" 1 <F(r + v(r"-1),r")

(T'-«),T')>. (41)

Performing one of the integrations, we finally obtain

(42)

The latter approximation follows, because the correlation peaks at z = 0.
Since U ̂  U, to lowest order in F, the diffusion tensor D (equation (36)) can

be written

D(r,v,M0)= f f'*1{F(r,()!7(M-f1)F(r)(-l1))Jo

= f~V<F(r,0F(r*(*-fiM-y). (43)
Jo

By combining (42) and (43), we conclude that
<Ar*(«-r)> = - VT-iT23/avTr{D(v,T)} (44)

for homogeneous and stationary turbulence. Tr {D} is the trace of D.
Applying the same technique, one can show that

<Ar*(f-T)Ar*(<-T)>-<Ar*(*-T)><Ar*(«-T)> = |T 3 D(V,T) . (45)

Together with (44) and (37), (45) yields

| | j (46)

We plug (46) into (36), and expand the F in a Fourier series, to obtain

D(V,T) = fT^T'SW<|Fk|2>exp{tT'(wk-k.v)}
Jo k
x e x p ( - i t T ' 2 k . ^ T r { D ( v , T ' ) } - K 3 k k : D ( v . T ' ) l (47)

(| Fk |
2) is the average square amplitude of the Fourier mode with wave vector k;

fc is the unit vector along k; and wk is the real eigenfrequency. Equation (47) was
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Re-normalization theory 321

derived by Birmingham & Bornatici (1972). Dupree (1966) and Weinstock
(1969) found the asymptotic expression for D only. Their formula reads

D(v,oo)= (a'dT'Zlc&(\Fk\
2)ex-p{iT(a>k-k.v)-%T3kk:D(v,oo)}. (48)

Jo k
Let us calculate the asymptotic D from (47). Since, in the integral of (47),

D( v, T) occurs in terms that drop off abruptly with T -> oo we may use the small T
expansion of D(v, T) in these terms. From (47), we have, in the small T limit,

D ( V , T ) S S « < | F k | 2 > [ r - i K - k . V)2T3]. (49)
k

Substituting (49) into the integral of (47), and letting T -*• oo, we obtain

D(v,oo)= eZTS^(|Fk|2)exp{iT(wk —k. v)}
Jo k

xexp{-i iT5k.Sk '< |Fk , | 2>(wk ' -k ' .v)}

'<|Fk'|2>}. (50)
k'

Having found the explicit expression for U (46), we can, as a last step, derive a
dispersion equation. Substituting (46) into the space and time Fourier transform
of (35) taken in the limit t0 ->• — oo, we find

O2 f 8f

4J
477O2 f

e(k, w)s 1 + . I (
%k mj

xexpJ- | iT2k.^Tr{D(v,r)}- jT3kk:D(v,T)j = 0. (51)

D(v, T) is given by the approximate formula (49). Equations (51) and (34),
together with (50), are the main result of this theory.

4. The method of Kadomtsev, Rudakov and Tsytovich
4.1. Re-normalization of the particle propagator

Let us add an effective turbulent collision frequency operator v to both sides of (8):

(d/dt + L + i>)f' = —L'f+$f' + (A — i)L'f'. (52)

We also define a propagator G(t, t0) by

{djdt + L + v)G(t,tQ) = 0, G(to,to) = 1. (53)

Neglecting the term associated with/'(£„), and further defining an operator G in
the same manner as U, (15), the solution to (52) can be written in operator form as

Suppose we iterate once on the last term of (54). Then we obtain

f' = d[-L'f+i>f' + (A-l)L'G'{-L'f+i>f' + (A-l)L'f'}]. (55)

If we now identify vf = - (L'QL')f', (56)
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322 J. Vadavik

(55) becomes

/ ' = G[-L'f-(L'GL')f' + (A-l)L'G{-L'f-(L'GL')f' + (A-l)L'f'}]. (57)

We iterate on this equation once again, and keep only terms up to O(L'3). We have

f = -G{l-(l-A)L'G + (l-A)L'G(l-A)L'G-(L'GL')G}L'f. (58)

Substituting (56) into (53), we see that the propagator G satisfies

(d/Bt+L- (L'GL')) G = 0. (59)

From (59), we conclude that G has no stochastic part. The last term in the brackets
of (58) can then written (L'GL'G). Thus, (58) reads

f' = -G{l-(l-A)L'G + (l-A)L'G(l-A)L'G-(L'GL'G)}L'f. (60)

If we now rewrite (59) in the more explicit form

o)> (61)= P
JUU

and compare it with (30), we see immediately that G satisfies the same equation
as does the propagator U. Moreover, the stochastic part of the distribution
function/' is expressed in terms of/and L', (60), exactly in the same manner as itis
done in (22), if we replace GbyU. Hence, we argue that, up to this point, and in the
approximation considered, the present method and that of Dupree-Weinstock
are completely equivalent. When seeking an explicit form of G in the present
theory, however, one does not invoke those properties it has as the average
Vlasov propagator. Instead, one endeavours to solve (61).

Let us define a Green's function g(r, v, t; r0, v0, t0) by

G{t, t0) ir(r, v, t0) = jg(r, v, t; r0, v0, t0) f (r0, v0, t0) drodvo,\

g(r,v,tQ;r0,v0,t0) = 8{r-ro)8(v- v0). J

xjr is an arbitrary function. Equation (61) is then transformed into

l ^ + v. —U(r, v ,<;r o ,vo ,y = f | j — . 1 dt' I dr'dv'g{r, \,t;r', v',t')

x <E(r, 0 E(r', <')>. A g ( r ' f v', *'; r0, v0, g . (63)

For homogeneous and stationary turbulence, we conclude, from (63), that

g(r, v, t; r0, v0, t0) = g(r -ro,t-10, v, v0).

It is then easy to perform the Fourier-Laplace transformation of (63) in space

and time. We obtain

-M —. \dk'k'k'I(k') \dv'g(k-k',v,v')

.j-,g(k,y',vQ) = -8(v-v0), (64)

where k = {k, w}, dk = dkdw, I(k) = (\<f>(k)\2).

We have introduced the electric field potential by E(&) = — ik<j>(k).
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Equation (64) was solved approximately by Rudakov & Tsytovich (1971) in
the neighbourhood of the resonance w = k. v. They showed that

g(k,v,vo)^go(k,v)d(v-vo), (65)

/•«
where go(k,v)^\ exp{i(w-k. v)T-D(k, v) %T3}dr (66)

Jo
and

D(k,v) = (2?7)-4{q\mf [dk'{k.k'f I (k1) f "drexp {-»(«'-k'.v)?}

xexp{-ir3D(k-k',v)}. (67)
In lowest order in D, (67) yields

D(k, v) = (2n)-i(q/m)27T jdk' (k.k')2I(k')S(o)' - k ' . v). (68)

To compare these results with (46), let us represent the operator U by a Green's
function u, defined by

U(t, t0) i/r(r, y = / «(r - r0) t - 1 0 , v) f{r0, t0) dr0. (69)

Making use of (46), it is easy to show that the Fourier-Laplace transform of u
is given by

u(k,v) = I °°rfTexp{i(w-k.v)T-i|T2k. d/dvTr{D(v,T)}}
Jo

xexp{- |T3kk:D(v,r)}. (70)

We see immediately that u(k, v) differs from go(k, v), (66). Moreover, according to
the assumption made, the operator U, as given by (46), does not operate in velo-
city space. In the present theory, such a property of G was not assumed, but
demonstrated within the approximation (65).

To proceed further, we now make the same assumption concerning the be-
haviour of the function/with respect to r and t as we did in § 3, and take t0 -> — oo.
It is then simple to derive an equation for/. Replacing U by 0 in (25), and making
use of (62), (65), (66) and (68), we again arrive at (34). But here the diffusion
tensor

D(v) = (277)-4(?/m)2 (kkl(k)dk f " exp {i(w - k. v)T}

xexp{-£T%(277)-4^|j2 (dk' (k.k')*I{k')8(<D'-k'.v)\dr. (71)

We discuss the question of an equation for the electric field potential (analogous
to (35) or (51)) in §4.2.

4.2. Re-normalization of the plasmon propagator

Let us substitute (60)into (11), and perform the Fourier transform of the resulting
equation in space and time. Making use of (65), we obtain

e(k)(f>(k) = (271)-^ jd^dk^ik-^-k^eik,^,^)^-A) ^(kj)^^)

+ (2n)-s J dkxdk2dk3 d(k - kx - k2 - k3) e(k, kv k2) k3)

(72)
PLA 14
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324 J. Vaclavik

where

j dvQihv)[kS'fe v) k2.—2j

and

dvg^k.v)^.—

. ^ . (75)

Had we retained the lowest-order term in <f> only in (11), we should have
arrived at (51) with. u(k, v), (70), replaced by go(k, v). Such an approximation
would correspond to the re-normalized quasi-linear theory described in §3.
The present theory also includes the mode-coupling effects in the three-wave
approximation, represented by the right-hand side of (72).

We now multiply (72) by <fi*(k'), integrate over k', and take the ensemble
average. Also, in the resulting equation, we convert the average value of four <]>
into products of two 0, by making use of the random-phase approximation. We
thus obtain

x J e(k, kv k2) {<j>*{k') <j>{kx) <j>{k2)) S(k -kx- k2) dk' dkxdk2. (76)

To reduce (76) further requires evaluation of the triple correlation function
(<t>*{k') (p(kx) <f>(k2)). For this, we add to both sides of (72) the term 7j(k) <f>(k); and
we assume that the right-hand side of the resulting equation is small. Iterating on
it once, we find

where

' 7 \ U. lfi\ / 7 \ i / f
k) <j>m(k) + (£

e(k)

x(l-A)f°m
= e(k) + 7,(k).

If J/* I/* I
fVy A/1 j fl>Q 1

(78)

If (77) is used to iterate for each of the three <j> in the triple correlation function,
and the random-phase approximation is then applied, (76) can be reduced to

n)~j \e(k, kv k, - kx) + 4 ^,Kk-k^k-kv-kv

+ j^ie(k)*-ij\e(k,k1,k2)\*I(k1)I(k2)d(k-k1-k2)dk1dk2. (79)

If we now identify

V(k) = - (ar)-J{e(*,M, -*i) + 4 e ( k ' K k " g ^ ^ 1 ' "Kk))UK)dh,
(80)
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(79) becomes

\ ^ J (81)
Equations (80) and (81) constitute a complete system for the unknowns n(k)
and I(k).

If we replace the 're-normalized' plasmon propagator, e(k), by the 'free'
one, e(k), in (79), we arrive at a single equation for I(k), which was derived by
Rudakov & Tsytovich (1971). Equations of the same type as (80) and (81) were
obtained by Kadomtsev (1965) and Makhankov & Tsytovich (1970), applying
a method different from that used here.

This work was supported by the Swiss National Science Foundation.

REFERENCES

BIRMINGHAM, T. J. & BORNATICI, M. 1971 Phys. Fluids, 14, 2239.
BIRMINGHAM, T. J. & BORNATICI, M. 1972 Phys. Fluids, 15, 1778.
DAVIDSON, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.
DUPREE, T. H. 1966 Phys. Fluids, 9, 1773.
KADOMTSEV, B. B. 1965 Plasma Turbulence. Academic.
MAKHANKOV, V. G. & TSYTOVICH, V. N. 1970 Nuclear. Fusion, 10, 405.
RUDAKOV, L. I. & TSYTOVICH, V. N. 1971 Plasma Phys. 13, 213.
SAGDEEV, R. Z. & GALEEV, A. A. 1969 Nonlinear Plasma Theory. Benjamin.
TSYTOVICH, V. N. 1970 Nonlinear Effects in Plasma. Plenum.
WEINSTOCK, J. 1969 Phys. Fluids, 12, 1045.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377800009600
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:41:45, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377800009600
https:/www.cambridge.org/core

