
Journal of Arti�cial Intelligence Research 14 (2001) 1-28 Submitted 2/00; published 1/01

On Reachability, Relevance, and Resolution in the Planning

as Satis�ability Approach

Ronen I. Brafman brafman@cs.bgu.ac.il

Department of Computer Science, Ben-Gurion University

P.O.Box 653, Beer-Sheva 84105, Israel

Abstract

In recent years, there is a growing awareness of the importance of reachability and
relevance-based pruning techniques for planning, but little work speci�cally targets these
techniques. In this paper, we compare the ability of two classes of algorithms to propagate
and discover reachability and relevance constraints in classical planning problems. The �rst
class of algorithms operates on SAT encoded planning problems obtained using the linear
and Graphplan encoding schemes. It applies unit-propagation and more general resolu-
tion steps (involving larger clauses) to these plan encodings. The second class operates at
the plan level and contains two families of pruning algorithms: Reachable-k and Relevant-
k. Reachable-k provides a coherent description of a number of existing forward pruning
techniques used in numerous algorithms, while Relevant-k captures di�erent grades of back-
ward pruning. Our results shed light on the ability of di�erent plan-encoding schemes to
propagate information forward and backward and on the relative merit of plan-level and
SAT-level pruning methods.

1. Introduction

The success of the planning as satis�ability (PAS) approach (Kautz & Selman, 1992, 1996)
has led to various attempts to re�ne the initial methods used and to improve our under-
standing of its performance. In particular, various methods for generating formulas from
planning instances have been compared (Ernst, Millstein, & Weld, 1997), and various sys-
tematic alternatives to the original stochastic method have been examined (e.g., Bayardo
& Schrag, 1997; Li & Anbulagan, 1997). Still, many issues surrounding this approach are
poorly understood. In particular, little is known about the inuence of the encoding method
on performance.

Concentrating on the two encoding methods proposed by Kautz and Selman (1996), the
linear and the Graphplan-based encodings, we examine their inuence on the ability to
propagate reachability and relevance information via unit propagation and, more generally,
k-clause resolution. We do so by comparing the pruning ability of these techniques to that
of a class of algorithms for reachability and relevance analysis that operate on the original
problem formulation: Reachable-k and Relevant-k. Reachable-k is a simpli�ed variant of
a similar algorithm for state pruning in Markov decision processes (Boutilier, Brafman, &
Geib, 1998), while Relevant-k is a natural counterpart used for relevance analysis. Both
algorithms provide a coherent framework for discussing di�erent grades of reachability and
relevance-based pruning methods that appear in the literature.

Our work is motivated by the growing role that forward and backward pruning methods
play in current planning algorithms and the important role of propagation techniques in

c2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Brafman

all SAT solvers used in the planning as satis�ability approach. Unit propagation plays
a central role in the Davis-Putnam algorithm (Davis & Putman, 1960) and many of its
o�springs (e.g., Crawford & Auton, 1993; Freeman, 1995; Gomes, Selman, & Kautz, 1998;
Li & Anbulagan, 1997) and it is used as a preprocessing step when stochastic methods are
applied. Moreover, a limited form of binary propagation is used in Crawford's Compact
program for simplifying CNF formulas which is utilized in the Blackbox planner (Kautz
& Selman, 1999). Our results shed some light on the relationship between these pruning
techniques.

The paper is organized as follows. Section 2 provides background material, describing
the basic ideas of the PAS framework and the Graphplan algorithm. In Section 3, we
discuss Reachable-k, an algorithm for performing reachability analysis, and compare its
ability to prune possible actions to that of k-clause resolution. In Section 4 we describe
Relevant-k which is similar to Reachable-k and is applied to relevance analysis. Again, we
compare it to methods based on resolution. In Section 5 we empirically compare the results
of various methods for k = 1; 2. We conclude with a discussion of future and related work
in Section 6. Proofs appear in the appendix, but their main arguments are described in the
body of the paper.

2. Background

The Graphplan algorithm (Blum & Furst, 1997) and the Satplan algorithm (Kautz
& Selman, 1996) have profoundly altered the direction of research within the planning
community. Two of the main concepts studied in this paper, reachability analysis and plan
encodings, have become central to current planning research thanks to these planners. We
briey discuss these planners, and in particular, their aspects pertaining to our topic.

2.1 Reachability Analysis in Graphplan

The purpose of reachability analysis is to discover unreachable states of the world and
infeasible actions, i.e., actions that cannot be performed in the course of a successful plan.
By discovering such actions ahead of time, we reduce the space that needs to be searched to
�nd a valid plan. In principle, full edged reachability analysis requires forward search in
the space of possible states. This is a very expensive operation, and instead, we can opt for
sound, but incomplete methods. Such methods do not discover all the actions that can be
ruled out. However, any action that they rule out is infeasible and need not be considered
when searching for a plan.

The Graphplan planner provides a good example of the utility of approximate reach-
ability analysis. Graphplan has two main stages: In the �rst stage, approximate reach-
ability analysis is conducted, yielding a data-structure called the planning graph which
represents a sound, but incomplete, approximation of the set of states reachable from the
initial state. In the second stage, Graphplan searches for a plan over this structure.
Graphplan's planning graph construction algorithm presents a particularly good tradeo�
between computational complexity and pruning power, and its utility in pruning the search
space is attested to by the planner's good performance.

The planning graph construction algorithm can be viewed as generating a list of anno-
tated sets. The odd elements in this list contain sets of propositions. The even elements

2



Reachability, Relevance, and Resolution

in this list contain sets of actions. Each such set is annotated with mutual exclusion con-
straints on its members. Intuitively, the ith action set contains the list of actions that could
be performed at the ith step of a concurrent action plan (i.e., a plan allowing for concurrent
execution of actions that do not interfere with each other). The ith proposition set contains
propositions that could hold after i � 1 (sets of concurrent) actions have been performed.
The mutual exclusion constraints circumscribe these sets by indicating that certain pairs of
actions or propositions cannot occur at the same time at a particular stage. Hence, if the
propositions p; q appear in the ith proposition set, then it is possible (or more accurately
{ the algorithm does not rule out the possibility) that an i-step plan applied at the initial
state could lead to a world in which p and/or q hold. However, if p and q are marked
mutually exclusive then we know that p and q cannot hold together after some i-step plan
has been performed.

The sets are constructed as follows: The �rst proposition set contains the propositions
that hold at the initial state. The �rst action set contains the actions that can be performed
at the initial state. In general, the ith set of propositions contains the e�ects of actions in
the i-1th action set, and the ith action set contains actions whose preconditions appear in
the i-1th set of propositions, provided that their preconditions are not marked as mutually
exclusive. Mutual exclusion constraints are added as follows: Two actions are marked
mutually exclusive at the ith action set if their preconditions are marked mutually exclusive
at the i-1th. Clearly, if all the preconditions of these actions cannot hold at this time
point, we cannot perform both actions together at this time point. Another reason for
marking actions as mutually exclusive is if they conict. That is, if one action destroys a
precondition or an e�ect of the other action. Two propositions at the ith proposition set
are marked mutually exclusive if all pairs of actions in the i-1th action set that have them
as e�ects are mutually exclusive. When that is the case, there is no way for us to achieve
both of these propositions together at this stage.

The initial construction of the planning graph is terminated once all goal propositions
appear in the last proposition set. At that point,Graphplan performs a form of regression-
based search on the planning-graph structure. If this search fails, the planning graph is
extended by one additional layer of actions and one additional layer of propositions and
searched again. For more details, see the article by Blum and Furst (1997).

2.2 The Planning as Satis�ability Approach

The Planning as Satis�ability approach (PAS for short), works as follows: given a planning
problem and a bound n on the size of the plan, the plan encoder generates a propositional
formula in conjunctive normal form. This formula has the following property: it is satis�able
i� the planning problem has a solution with at most n time steps. Intuitively, the formula
is composed of propositions describing the state of the world throughout the execution of
an n-step plan.

The propositional language on top of which the formula is de�ned contains a proposition
for each possible aspect of the world at each time point. For example, suppose we are looking
at the blocks' world domain where states are described using the on and clear relations.
In that case, for any pair of blocks x; y, and any time point 0 � t � n we shall introduce
a proposition pon(x;y;t) which corresponds to x being on top of y at time t. Similarly, for

3



Brafman

every block x and time point 0 � t � n, we shall introduce a proposition pclear(x;t) which
corresponds to x being clear at time t.

A truth assignment to the language described above can be viewed as describing the state
of the world during the execution of an n-step plan. For instance, if pon(A;B;3) is assigned
true, then block A is on top of block B at time 3. Of course, most truth assignments
to this language would not correspond to anything resembling the true state of the world
during the execution of an actual plan. For example, both on(A,B) and on(B,A) could
be assigned true. The goal of the encoding scheme is to generate a formula such that any
assignment satisfying this formula will correspond to the true state of the world during
the execution of an actual plan that achieves the desired goal. Each axiom in this formula
places some constraint on the value of these propositions so that the combined e�ect of
these constraints is to ensure that the resulting formula has precisely the desired truth
assignments. For example, one type of axiom will be a conjunction of all the propositions
corresponding to the initial state. Any truth assignment satisfying this axiom must ensure
that these propositions hold at time 0. Another class of axioms could state that if some
action a is performed at time t then the world at time t� 1 must satisfy the preconditions
of a. In the next sections we discuss two of the central plan encodings in more detail.

Once an appropriate formula has been generated, it is simpli�ed using various well
known techniques. In particular, all simpli�ers employ a unit-resolution step (Genesereth
& Nilsson, 1987). Unit resolution (also known as unit propagation) works as follows: To
satisfy a CNF formula, we must satisfy each of its clauses. In particular, if one of the
clauses contains a single literal (such a clause is known as a unit clause) we immediately
know that the variable appearing in this clause must be assigned an appropriate value. Any
clause containing the same literal will be satis�ed now, and it can be removed from the
formula. Any clause c containing the negation of that literal can be resolved against this
unit clause, and the resulting clause (which is smaller than c) can replace c. For example,
suppose we have the formula (p)^ (:q_:p)^ (r_p). The �rst disjunct, (p) is a unit clause.
Hence, p must be assigned true. This makes the third clause, (r _ p), satis�ed. The second
clause is now resolved with the �rst clause, and we replace (:q _ :p) by (:q). We now
have a new unit clause, (:q), and so the proposition q must be assigned the value false. If
we had additional clauses containing q or :q, we could remove them, or simplify them, as
appropriate.

After simpli�cation, we apply our favorite algorithm for �nding satisfying assignments,
and if one is attained, a decoder is used to obtain an actual plan from this solution. If we
do not �nd a satisfying assignment, we increase the value of n (the size of the plan), and
try again.

Finally, we note that the Blackbox planner (Kautz & Selman, 1999) combines PAS
with Graphplan's reachability analysis. It constructs a planning graph, and uses it to
generate a particular plan encoding.

3. Reachability and Resolution

Reachability and relevance analysis form an essential part of successful modern planning
algorithms. The most notable example of reachability analysis is Graphplan's planning
graph (Blum & Furst, 1997), and many recent planners employ either reachability analysis

4



Reachability, Relevance, and Resolution

(e.g., Bonet, Loerincs, & Ge�ner, 1997), relevance analysis (e.g., McDermoot, 1996; Nebel,
Dimopoulos, & Koehler, 1997), or both (Kambhampati, Parker, & Lambrecht, 1997). The
importance of reachability and relevance analysis has been noted in the context of decision-
theoretic planning as well. For example, Boutilier and Dearden (1994) employ relevance
analysis to reduce the state-space, and Boutilier, Brafman, and Geib (1998) describe a
general method for reachability analysis for MDPs. Below, we discuss this method in a
simpli�ed form suitable for classical planning problems described using the Strips repre-
sentation language (Fikes & Nilsson, 1971). In Section 4, we present a counterpart of this
method for performing relevance analysis and relate these algorithms to k-clause resolution
in the context of SAT-encoded planning problems.

3.1 Propagating Reachability Information

Reachable-k (Boutilier, Brafman, & Geib, 1998) is an algorithm for estimating the states
reachable from a given initial state. As formulated, it is quite general and applies to do-
mains with non-deterministic actions and conditional e�ects. In Figure 1, we present a
simpli�ed version of that algorithm, Reachable-k, which deals with deterministic, uncondi-
tional actions represented in the Strips representation language. A prolog implementation
of Reachable-k is available at www.cs.bgu.ac.il/~pdm.

An important reason for our interest in Reachable-k is its similarity to the inuen-
tial planning graph construction of the Graphplan planner (Blum & Furst, 1997). In
fact, it generalizes the ideas behind Graphplan's planning graph, which is equivalent to
Reachable-2. We use Ai to denote the set of actions feasible i steps from the initial state,
Si to denote the corresponding set of propositions, and CS�i to denote constraints on these
propositions, such that if fp1; : : : ; pmg 2 CS�i then these propositions cannot co-occur after
i steps. CA�i denotes similar constraints on actions. Here, � 2 fL;Pg, where L is used when
we restrict our attention to linear action sequences, and P is used when we allow concurrent
non-conicting actions (i.e., actions that do not destroy each others' e�ects or preconditions
and whose preconditions are not constrained not to co-occur). Of course, for k = 1 the sets
CS�i and CA�i are empty for all i � 0. (Actually, as de�ned, CAL

i is not empty even when
k = 1, but it plays no real part in the algorithm, and it should be ignored). Finally, note
that in this description, the set of possible actions contains all actions of the form noop[l],
where l is a literal.

When k = 2, Si and Ai represent the propositional and action levels of Graphplan's
planning graph, and CSi and CAP

i hold their respective mutual exclusion constraints.
We have not stated a termination condition for Reachable-k, but one can be formulated

based on the content of Si or the index i itself. In the PAS framework, where the number
of time-steps is �xed, one would opt for the second alternative. Reachable-k gives us sets
of actions and propositions, Aj ; Sj , that could occur after the performance of j actions (or
j sets of concurrently non-conicting actions) from the initial state. It is easy to see that
Reachable-k is sound in the following sense:

Theorem 1 If a set of propositions or actions is excluded by Reachable-k at time j then

there is no feasible plan in which, at time j, these propositions hold or, respectively, these

actions appear.

5



Brafman

� S0 = literals that hold in the initial state.

� CS0 = fg.

� A0 = actions all of whose preconditions are in S0.

� CAL
0
= ffai; ajgjai; aj 2 A0; i 6= j; neither ai nor aj are noops or aj is a noop whose e�ect

is destroyed by aig.

� CAP
0
= ffai; ajgjai; aj 2 A0; i 6= j; and ai deletes a precondition or an e�ect of ajg.

We de�ne Si; Ai inductively as follows:

� Si = literals that appear in the e�ects of Ai�1.

� CS�i = l-tuples of literals, where l � k, appearing in Si such that some subset of any set
of actions from Ai�1 that has these literals appearing among their e�ects, appears in CA�i�1

(where � 2 fL; Pg as appropriate).

� Ai = actions whose preconditions appear in Si and no subset of their preconditions appears
in CS�i .

� CAL
i = ffal; ajgjal; aj 2 Ai; l 6= j; neither al nor aj are noops, or aj is a noop whose e�ect is

destroyed by alg.

� CAP
i = ffaj1 ; : : : ; ajlgjl � k; aj1 ; : : : ; ajl 2 Ai; jm 6= jn for m 6= n; and either (1) ajm

deletes a precondition or an e�ect of ajn for some m 6= n or (2) some subset of the union of
preconditions of aj1 ; : : : ; ajl appears in CS�i g.

Figure 1: The Reachable-k Algorithm

Sometimes, all actions that can be executed at a particular time point in which p holds
have :p as an e�ect. In that case, we can ignore the noop[p] action, as it will not be part
of any useful plan.1 However, as formulated, p will appear in Reachable-k's next level. We
denote by Reachable�-k a variant in which noop[p] does not appear in such a case.

The computational complexity of Reachable-k is O(njAjjLjkEk + njLjjAjk), where n is
the number of levels we generate, jAj is the number of possible actions, jLj is the size of the
propositional language used, and E is the maximal number of actions that have a particular
shared e�ect. A more detailed explanation appears in Appendix B.
Example: To illustrate the parallel action version of Reachable-k, we use the following
planning domain: There are four propositions, p1; p2; p3; p4. Intuitively, we can think of
them as representing a binary counter with 4 bits. There are 4 actions, each of which
increases the counter by one at di�erent states. In this domain only a single non-noop
action is applicable at each state. a1 changes the least-signi�cant bit, a2 changes the next
bit, a3 changes the third bit, and a4 changes the most signi�cant bit. ai is applicable only
if the �rst i� 1 bits are one. More speci�cally the actions are:

1. For some planning algorithms, e.g., in the PAS approach, it may be necessary to leave the noops in.

6



Reachability, Relevance, and Resolution

a1 Precondition: :p1; e�ect: p1.

a2 Precondition: p1 ^ :p2; e�ect: :p1 ^ p2.

a3 Precondition: p1 ^ p2 ^ :p3; e�ect: :p1 ^ :p2 ^ p3.

a4 Precondition: p1 ^ p2 ^ p3 ^ :p4; e�ect: :p1 ^ :p2 ^ :p3 ^ p4.

We compare Reachable-1 and Reachable-2 using the initial state: :p1^:p2^:p3^:p4,
which corresponds to a binary representation of 0. We concentrate on the (more interesting)
parallel action version of the algorithm, and we shall not mention noops explicitly or obvious
mutual exclusion constraints between propositions and their negations.

In the context of Reachable-1, CSi and CAi are empty, for all practical purpose. We
start with S0 = f:p1;:p2;:p3;:p4g; Only the action a�ecting the �rst bit is applicable, and
A0 = fa1g (and all the relevant noops); We now have S1 = fp1;:p1;:p2;:p3;:p4g. Because
the preconditions for both a1 and a2 appear in S1, we have that A1 = fa1; a2g. Consequently
S2 = fp1;:p1; p2;:p2;:p3;:p4g. Now, we can also apply a3, and we have A2 = fa1; a2; a3g;
S3 = fp1;:p1; p2;:p2; p3;:p3;:p4g. Finally, at this stage all preconditions of a4 appear as
well, and A3 = fa1; a2; a3; a4g.

Next, consider Reachable-2. Again, S0 = f:p1;:p2;:p3;:p4g, CS0 is empty, and A0 =
fa1g. In the next step we have: S1 = fp1;:p1;:p2;:p3;:p4g, with no interesting constraints
in CS1, and A1 = fa1; a2g. However, now CAi contains (a1; a2), which are interfering
actions. S2 = fp1;:p1; p2;:p2; p3;:p3;:p4g, as in the case of k = 1. However, CS2 contains
(p1; p2). This follows from the fact that the only actions in A1 capable of producing p1 are
a1 and noop[p1], and the only action in A1 capable of producing p2 is a2. a2 interferes
with both a1 an noop[p1]. Therefore, because CS2 contains (p1; p2), a3 is not applicable
at this stage. Hence, A2 = fa1; a2g, which is one action less than the set A2 in Reachable-
1. S3 = S2 = fp1;:p1; p2;:p2; p3;:p3;:p4g. However, now CS3 does not contain (p1; p2)
(because noop[p2] can be used to achieve p2, and it does not conict with, e.g., noop[p1]).
Therefore, A3 = fa1; a2; a3g.

To see how k = 3 improves our ability to prune over k = 2, suppose that S0 =
fp1; p2;:p3;:p4g (i.e., the counter's value is 0011) and consider k = 2 �rst. We have
A0 = a3 and S1 = f:p1; p1;:p2; p2;:p3; p3;:p4g, with (p1; p3); (p1;:p2); (:p1; p2) and
(p2; p3) in CS1. Each of these mutual exclusion relations stems from the fact that a3
is mutually exclusive with noop[p1] and noop[p2]. Therefore, A1 = fa1; a3g. Again
S2 = S1 = f:p1; p1;:p2; p2;:p3; p3;:p4g, but now CS2 contains (p1; p2) only, and so
A2 = fa1; a2; a3g. Now, CS3 is empty, and so A3 = fa1; a2; a3; a4g. However, if k = 3,
CS1 contains the ternary constraint (p1; p2; p3). This ternary constraint remains in CS2 as
well, and in CS3. Because it is in CS3 for k = 3, we have that a4 62 A3.

3.2 k-Clause Resolution and Reachability

k-clause resolution (or propagation) refers to the resolution of pairs of clauses one of whose
length is k at most. The k = 1 variant, i.e., unit propagation, is an integral part of all
major algorithms for generating satisfying assignments.

We wish to compare the type of reachability information derived by performing k-clause
resolution on SAT-encoded planning problems, with the information obtained by running

7



Brafman

the Reachable-k algorithm. By reachability information we mean constraints on the set of
actions possible at a time point or constraints on world states (in the form of, e.g., sets of
unreachable propositions or k-tuples of propositions). Hence, for example, a constraint of
the form a(t) _ a0(t) implies that one of the actions a or a0 must appear at time t in the
plan. A constraint of the form :a(t)_:a0(t) implies that one of the actions a or a0 must not
appear in the plan. Similar constraints on the propositions holding at a time point can also
be derived. In principle, such constraints reduce our search space and could help us attain
a solution more quickly. However, the e�ectiveness of such deduced constraints depends
on the precise algorithm used. Moreover, comparison over a very large class of constraints
seems quite diÆcult. Therefore, in this article we concentrate on a very concrete class of
reachability information of the form :a(t), i.e., the action a cannot be performed at any
state reachable via t steps. These are powerful constraint which can be utilized e�ectively
by almost all planners (perhaps with the exception of partial-order planners). Consequently,
we shall say that an algorithm Alg1 generates more reachability information than another
algorithmAlg2 if whenever Alg2 is able to determine that some action a cannot be performed
at some time t, Alg1 is able to reach this conclusion as well, and in addition, there are such
conclusions which Alg1 can reach but which Alg2 cannot reach. Hence, Alg1 generates a
strict superset of the constraints on actions (of the type we are interested in) generated
by the other algorithm. Note that this does not mean that Alg1 is better than Alg2 on
every instance, only that it is always as good, and in some cases better. In this section
we shall compare the pruning ability of the two Reachable-k variants and two encoding
methods discussed by Kautz and Selman (1996):2 the linear encoding and the Graphplan
encoding.

3.2.1 Linear Plan Encoding

The linear plan encoding (Kautz & Selman, 1992) is a simple and natural method for
translating a planning problem into a formula that is satis�able i� there is a valid plan of
length n (for some given n). The clauses in the linear plan encoding fall into the following
classes:

1. an action implies its preconditions prior to its execution;

2. an action implies its e�ects following its execution;

3. an action does not a�ect any other proposition (frame axioms);

4. there is at least one action at each time point;

5. there is at most one action at each time point.

Because we have explicit frame axioms, noops are not needed in the linear encoding (as
opposed to the Graphplan encoding). In addition, the formula contains unary clauses
describing the initial and goal states. However, for the purpose of analyzing reachability
e�ects, we exclude the description of the goal state (which plays a role in relevance analysis).

Consider the mechanism by which resolution can yield reachability information: Given
the propositions that hold at the initial state, we can derive the negation of actions whose

2. The third (state-based) encoding method cannot be generated automatically.

8



Reachability, Relevance, and Resolution

preconditions do not hold using unit propagation on axioms of class 1. Propagating these
unit clauses with the appropriate instance of axiom class 4, we will obtain a disjunction
of all actions that can be executed at the �rst time point. So far, this is identical to
what Reachable�-k provides. To propagate this information forward, we can resolve these
action disjunctions with axioms of class 2 and 3. This, however, requires binary resolution
(discussed below). Hence, except for the unlikely case in which a single action is possible,
there is no more that we can derive using unit propagation alone. Reachable�-1, on the
other hand, can provide us with a list of all possible e�ects of these actions and possibly
prune out future actions whose preconditions do not appear in this list. We conclude:

Lemma 1 In the context of the linear encoding, Reachable�-1 yields more reachability in-

formation than unit propagation.

Example: Consider a blocks' world domain with a single action schema move(object,source,
destination).3 Its preconditions are: on(object,source), clear(object), clear(destination)
and its e�ects are: on(object,destination), clear(source), :on(object,source), : clear
(destination) (except when the destination is the table which is always clear). If we have k
stacks of blocks initially, k2 actions can be performed at the initial state (i.e., moving a block
from the top of a stack to the top of another stack or the table). This will be discovered by
both algorithms. In particular, unit propagation will yield a disjunction of all these actions.
We know that all blocks that are 2 or more blocks below the top cannot participate in
the second move action. Reachable-1 will �nd this out due to the fact that they are not
clear. Suppose that A is one such block. All initially feasible move actions participate in
a frame axiom of the form move(o,s,d)^:clear(A; 0) ! :clear(A; 1), which, in clausal
form is :move(o,s,d)_clear(A; 0) _ :clear(A; 1). Resolving against :clear(A; 0), we
have :move(o,s,d)_:clear(A; 1). If we could deduce :clear(A; 1), we could rule out all
actions that have it as a precondition. But if we are restricted to unit propagation, this
requires deducing move(o,s,d) for some initially feasible action, and we cannot make such
a deduction.

If we propagated information forward using axioms of class 2 and 3 and used binary
resolution (as discussed before Lemma 1), we now have a set of disjunctions of the possible
e�ects (including frame e�ects) of the initially allowable actions. The number of such
disjuncts is O(em), where e is the maximal number of e�ects of an action and m is the
number of actions that can be executed initially. In some cases, these disjunctions could
contain a single literal, e.g., when all initially allowable actions leave some proposition
unchanged. When one of these disjunctions contains only literals that are negations of
some action's precondition, we can deduce the negation of this action by resolving with
axioms of class 1.
Example: In the example considered above we would generate a disjunction of the form
move(o1; s1; d1) _move(o2; s2; d2) _move(o3; s3; d3), containing all instances of the move
action for time 0 whose negations have not been deduced. As discussed above, for all such
actions, we can obtain a clause of the form :move(oi; si; di)_:clear(A; 1). Once we resolve
these binary clauses against the clause above, we obtain a unary clause :clear(A; 1), that

3. In fact, since we use plain Strips, we need three action schemas: one for moving a block to a block, one
for moving a block to a table, and one from moving a block from the table. However, as this does not
a�ect our analysis, we stick to a single move action in this and the following examples.

9



Brafman

can be used in conjunction with class 1 axioms to deduce the negations of step 2 actions
whose preconditions include clear(A; 1).

As we saw, the e�ect disjunctions discussed above allow us to rule out certain proposi-
tions or combinations of propositions. These are analogous to mutual exclusion constraints.
These mutual exclusion constraints can be used to prune actions. For example, if we de-
duce :p1 _ � � � _ :pm and all the pi are preconditions of some action a, we can deduce :a
using binary resolution (by resolving precondition axioms with this disjunction). However,
as we show below, binary resolution has trouble propagating even binary mutual exclusion
constraints forward. We believe that this is generally true, i.e., k-clause resolution will have
trouble propagating k-ary constraints. We can show the following:

Lemma 2 Reachable-2 and binary resolution (in the case of the linear encoding) are in-

comparable.

We prove this by providing two examples. One in which Reachable-2 is able to prune
an action that binary resolution cannot, and one in which the converse hold.

First, consider the 4-bit counter with initial value 0000 (i.e., :p1;:p2;:p3;:p4). Af-
ter four steps we obtain the following: S4 = f:p1; p1;:p2; p2;:p3; p3;:p4g and CS4 =
f(p1; p3); (p2; p3)g. Therefore, A4 = fa1; a2; a3g. This implies that S5 = S4. We claim
that (p2; p3) 2 CS5 as well, which means that a4 62 A5. To see this, consider all pairs of
actions that have p2 and p3 as e�ects. They are: (a2; a3); (a2;noop[p3]); (noop[p2]; a3), and
(noop[p2];noop[p3]). (a2; a3) is a pair of real actions, which are always mutually exclusive
in the linear encoding. The preconditions of (a2;noop[p3]) are mutually exclusive according
to CS4, and so are the preconditions of (noop[p2];noop[p3]). Finally, (noop[p2]; a3) are
interfering actions. We conclude that (p2; p3) 2 CS5 and a4 62 A5.

When we run a binary resolution procedure on the linear encoding of this problem,
we could not deduce a4 62 A5. This stems from the fact that ternary resolution is needed
to propagate the mutual exclusion of p2 and p3. Recall that we obtain mutual exclusion
constraints by resolving against a disjunction of actions that have not been ruled out. In
the above case, at time 4 we would have the following disjunction: a41_a

4
2_a

4
3_noop[:p1]_

� � � _noop[6= p4]. Our goal is to deduce :p
5
2 _:p

5
3 using :p

4
2 _:p

4
3 and the various axioms.

To do this, we will try to deduce either :p52_:p
5
3 from each of the actions in the disjunction.

It is easy to deduce :p52 from a43 and :p
5
2 from a42. However, we believe that it is impossible

to deduce :p52 _:p
5
3 from a41 and from some of the noops.4 The reason for this is that such

a deduction involves the use of frame axioms, which are ternary. If we know that, e.g., :p42
holds, we apply unit resolution to the frame axioms and obtain a binary clause. However,
here we only know :p42 _ :p

4
3. Once we resolve this against a frame axiom we remain with

a ternary clause. To get our desired result we must resolve two such ternary clauses.
Finally, let us see an example in which we use binary resolution to derive a ternary

constraint. By de�nition, Reachable-2 cannot derive such constraints. Suppose that the
initial state is :p;:q;:r. We have four actions: a1 has p; r as e�ects, a2 has q; r as e�ects,
a3 has p; q as e�ects, and a4 has p; q; r as preconditions. Using Reachable�-2 we deduce that
a1; a2; a3 are possible at time 0. We get as their possible e�ects p; q; r;:p;:q;:r (recall

4. The fact that the deduction is impossible has been veri�ed. What we are hypothesizing here is the reason
for it.

10



Reachability, Relevance, and Resolution

that we must include all noop actions in Reachable-k in order to capture frame e�ects). No
strict subset of p; q; r can appear in the set of constraints CS�1 . Since we deal with binary
constraints only, the set fp; q; rg does not appear in CS�1 . Therefore, we will consider a4
possible at time 1, although, in fact, it is impossible. Using binary resolution, we would
have obtained the constraint :p _ :q _ :r (referring to time 1) which would have enabled
us to deduce that a4 is impossible at time 1.

3.2.2 The Graphplan Encoding

TheGraphplan encoding di�ers from the linear encoding by its ability to consider multiple
concurrent (non-interfering) actions, allowing one to obtain shorter plans which, in turn,
can reduce the search space size. It constructs the following sets of clauses:

1. An action implies its preconditions;

2. An e�ect implies one of the actions that has this e�ect;

3. There is at least one action at each time-point;

4. Two conicting actions cannot occur together.

Besides the obvious ability to consider multiple parallel (non-interfering) actions, the impor-
tant di�erence between the Graphplan and Linear encoding is in axiom class 2 (referred
to in (Ernst et al., 1997) as explanatory frame axioms.) Clauses in this class will contain
positive occurrences of action literals and negative occurrences of state literals.

As in the linear case, using unit propagation we can infer which actions cannot be
applied at the initial state. Using axioms of class 2, we can propagate this information for-
ward, deducing the negation of all e�ects that cannot be produced by the initially allowable
actions. This information enables us to exclude actions whose preconditions cannot be pro-
duced. This forward propagation is essentially identical to Reachable-1. We can informally
conclude:

Lemma 3 In the context of the Graphplan encoding, unit propagation and Reachable-1

yield the same reachability information, if we ignore the explicit constraints appearing in

axiom class 4. If we use these constraints, unit propagation can yield more reachability
information.

To be precise we have to carefully de�ne the notion of reachability constraints in the context
of the Graphplan encoding. For example, in the Graphplan encoding we can derive a
constraint that says that one of a group of actions must appear in the plan. This constraint
will not necessarily rule out any action because the Graphplan encoding permits multiple
actions at the same time point.5 However, in the linear encoding such a constraint will
immediately rule out all other actions because only a single action is allowed at each time
point. As we mentioned earlier, in this paper we concentrate on strict exclusion constraints

5. However, because actions that interfere with each other cannot occur concurrently, if we know that action
a will occur then we can deduce that any action a

0 that interferes with a will not occur. This is precisely
where class 4 axioms enter the picture.

11



Brafman

which lead to an immediate reduction in the search space by ruling out the need for certain
actions at certain time points.

When k > 1, the mechanism remains the same. But now, axioms of class 4 can play
a more prominent role because we can use them to exclude actions in more cases than
before. However, the same problem of propagating mutual exclusion constraints forward
which we had with the linear encoding reappear here. Consequently, k-clause resolution in
the context of the Graphplan encoding and Reachable-k are incomparable.

4. Relevance and Resolution

Relevance analysis is a complex task and it can be performed to various degrees. For
instance, considering the last action level, one can exclude actions that do not produce a
literal in the goal. However, some actions producing a goal literal can also be irrelevant.
For example, consider a blocks' world planning problem in which the color of the blocks
is speci�ed as part of the goal. As observed by Nebel, Dimopoulos, and Koehler (1997), a
paint-block action is still, intuitively, irrelevant if the initial and �nal colors of the blocks
are the same. However, it does have a goal literal as an e�ect.

In this section, we formulate an algorithm for relevance analysis, called Relevant-k.
Relevant-k does not perform the deeper relevance analysis needed to determine that the
paint-block action is irrelevant in the above example. Rather, Relevant-k is similar in its
motivation and form to Reachable-k, and it has a similar soundness property. Relevant-k
prunes the search space by excluding states from which the goal is not reachable within a
given number of steps and actions that are not useful for achieving the goal state within a
given number of steps.

Relevant-1 is similar to a number of existing components of existing planners, such
as McDermott's greedy regression graph (McDermoot, 1996) and Nebel, Dimopoulos, and
Koehler's And-Or trees (Nebel et al., 1997). Relevant-k generalizes these ideas to arbitrary
levels of interactions, taking into consideration mutual-exclusion constraints that relevant
states must satisfy. Relevant-k is slightly more complicated then Reachable-k because the
Strips formalism allows incomplete description of goal states, and propagating this par-
tial information raises some diÆculties. Naturally, if the goal state is partially speci�ed,
fewer constraints are available to start with, and so fewer constraints will be derived. The
algorithm is described in Figure 2. We are not aware of a similar, general formulation of
these ideas. Therefore, it is worthwhile going over the central points of this algorithm,
concentrating on the more interesting and complex case in which parallel actions are al-
lowed. However, before we do this, we point out an important assumption we shall make
on the action representation used: No proposition symbol shall appear only in the precon-
ditions or only in the e�ects of an action. This restriction is not diÆcult to enforce, as any
Strips-based domain representation can be transformed into a description in which this
assumptions is satis�ed. For example, if p is a precondition of action a that does not appear
in the e�ect of a, we can simply add it to the e�ect, as we know that it must hold after
the action is executed. If p appears in the e�ect of a but neither p nor :p appear in the
preconditions of a, we can decompose a into two versions of the a action, one in which p is
a precondition and one in which :p is a precondition. Note that in the worst case, such a
transformation can cause an exponential blow-up in the number of actions.

12



Reachability, Relevance, and Resolution

� Ar
0
contains all actions that are useful and safe w.r.t. the goal.

� A0 contains Ar
0
and all noops that are safe w.r.t. the goal.

� CA0 contains all pairs of interfering actions in A0.

We de�ne Ri; Si; A
r
i ; Ai inductively as follows:

� Ri is the union of preconditions of actions in Ar
i�1.

� Si is the union of preconditions of actions in Ai�1.

� CSi contains sets S of literals such that S � Si, jSj � k and for any set of actions A � Ai�1

whose preconditions contain S it is the case that A 2 CAi�1.

� Ar
i contains all actions that are useful w.r.t. Ri but no subset of their e�ects is contained in

CSi.

� Ai contains A
r
i and all noops useful w.r.t. Si.

� CAi contains all action sets A such that A � Ai and either (1) A contains two interfering
actions, or (2) Some subset of the set of e�ects of A is in CSi.

Action descriptions must contain the same set of propositional symbols in their precondition and
e�ect lists.

Figure 2: The Relevant-k Algorithm

For k = 1 the algorithm is quite simple (and identical in the parallel and linear cases). In
that case, we can ignore the sets Si; CSi; Ai and CAi (as they are degenerate) and consider
the sets Ri and Ar

i only. Starting with the goal literals, at each stage we have a set of
literals from which we construct the next set of actions. This action set contains actions
with an e�ect in the current literal set. However, if all the goal e�ects of an action are all
part of its preconditions, we can ignore that action as irrelevant. Next, a new literal set is
constructed, containing the set of preconditions of the current set of actions, and we repeat
the process with this new set.

When k > 1, the picture becomes a bit more complicated. We start with the set
of relevant actions, Ar

i . These are actions that achieve one of the desired literals. In
particular, Ar

0 contains only actions that have one of the goal literals as an e�ect (but not
as a precondition). If the goal is partially speci�ed, literals that are not part of it could hold
in the previous time step. Hence, we include the appropriate noop actions in a larger set,
Ai, which contains both Ar

i and noops that do not destroy needed propositions. A subset
of the actions in Ai is mutually exclusive if it contains interfering actions or actions whose
e�ects are mutually exclusive. Given the set Ar

i�1, we generate the set Ri, which includes
the preconditions of Ar

i�1. The set Si is de�ned as the set of preconditions of actions in Ai.
If the goal is a completely speci�ed state, there is no the sets Ri and Si and the sets Ar

i

and Ai are identical, and so we need not distinguish between them.

13



Brafman

To facilitate the description of the Relevant-k algorithm, it would be useful to add a
few simple de�nitions. First, we wish to revise the de�nition of interfering actions in the
context of the Relevant-k algorithm. We say that actions a; a0 interfere with each other if
some e�ect of a conicts with some precondition or e�ect of a0 or (and this is beyond the
previous de�nition of this term) if their preconditions are inconsistent. An action a is useful
w.r.t. (with respect to) some literal l if a is the noop action preserving l or l is an e�ect,
but not a precondition, of a. a is useful w.r.t. some set of literals if it is useful w.r.t. one of
the set's elements. A set A of actions is safe w.r.t. some set of S of literals if no action in
A has an e�ect that negates an element of S.

Relevant-k embodies the intuitions described above. Note that an increased index cor-
responds to points earlier in time. The de�nition of the sets Si; Ri; Ai; A

r
i is quite intuitive:

Si contains the preconditions of the actions in the previous Ai, and Ri contains the precon-
ditions of actions in Ar

i . A
r
i contains actions that have a useful, but not mutually exclusive,

e�ects. Ai is de�ned much like Ar
i , but w.r.t. Si rather than Ri. The set CSi contains

literals that are mutually exclusive at a particular point. A set L of literals is mutually
exclusive if any set of relevant actions that have L among their preconditions are mutually
exclusive. The set CAi contains mutually exclusive sets of actions. A set of actions A is
mutually exclusive if it contains interfering actions or if the set of its e�ects is mutually
exclusive.
Example: In order to illustrate the Relevant-k algorithm, we shall once again use the counter
example used in Section 3.1, starting with a three bit counter and using the propositions,
p1; p2; p3. Each of the actions a1; a2; a3 can change the value of a single bit from 0 to 1,
provided the values of the lower bits are 1.

We start with the �nal state f:p1;:p2; p3g and k = 1. Since the �nal state is fully
speci�ed, there is no distinction between the sets Si and Ri and between Ar

i and Ai. A0

contains the action a3 and the three relevant noops. S1 contains fp1;:p1; p2;:p2; p3;:p3g,
A1 now contains a1; a2; a3, and the appropriate noops, and the remaining sets look the
same.

If k = 2, A0 and S1 are as in the k = 1 case. However, CS1 contains (:p1; p2) and
(p1;:p2), which implies that a2 cannot be applied. Hence, A1 contains a1 and a3, but not
a2, unlike the case of k = 1. The action a2 would be introduced only in the next step.

Next, consider a partially speci�ed goal, such as fp3; p2g and with k = 2. Ar
0 =

fa2;noop[p2];noop[p3]g because a2 has p2 as an e�ect, and a2 does not destroy p3; whereas
a1, for example, does not have an e�ect in the goal. A0 would now contain Ar

0 as well as
the noops for p1 and :p1. R1 = fp1; p2;:p2; p3g and S1 = fp1;:p1; p2;:p2; p3g. Next, A

r
1

contains fa1; a2g, etc.
Finally, suppose we have four bits, and the goal state is f:p1;:p2; p3; p4g (i.e., the

counter's bit value is 1100). If k = 2, A0 contains a3 and S1 = fp1;:p1; p2;:p2; p3;:p3; p4g.
However, CS1 contains pairs such as (:p1;:p3); (:p2;:p3) and others. A1 contains a1; a3
and some noops. S2 = S1, but now, CS2 does not contain (:p1;:p3), it does contain
(:p2;:p3), though, and that precludes action a4 from being in A2. In the next step, we
have S3 = S2 = S1, and CS3 no longer contains (:p2;:p3). This implies that we can
add a4 to A3 because its e�ects are no longer mutually exclusive. So overall, we have
A0 = fa3g; A1 = fa1; a3g; A2 = fa1; a2; a3g, and A3 = fa1; a2; a3; a4g. However, if k = 3, at

14



Reachability, Relevance, and Resolution

CS3 we would still have a mutual exclusion constraint on (:p1;:p2;:p3), which would not
allow us to add a4. Hence, when k = 3, A3 = fa1; a2; a3g.

We can prove the following soundness results:

Theorem 2 Let s be some state from which the goal is reachable using an m-step plan

(where each step can contain a number of non-interfering actions). Then (1) the set of

literals satis�ed in s is a subset of Sm, no subset of which is in CSm, and (2) there exists

an m-step plan for reaching the goal from s such that if A is the set of actions in the plan

v steps before last then A � Av and no subset of A is in CAv.

A corollary of this theorem is:

Corollary 1 For any initial state s from which the goal is reachable and any minimal (in

the number of operators) plan P = A0m; : : : A
0
0 (where the steps are numbered backwards) for

reaching the goal from s, we have A0i � Ai and CAi does not contain any subset of A0i.

The complexity of Relevant-k is O(jAjkjLj + jLjkmk
pjAj), where jAj is the number of

actions, jLj is the number of proposition in the language, and mp is the maximal number
of preconditions of an action. For more details, see Appendix B.

We now compare the amount of relevance information that can be propagated backwards
using k-clause resolution and the goal literals as opposed to Relevant-k. Consider unit
propagation �rst. In the context of the linear encoding, we see that all actions that destroy
some goal condition will be ruled out. However, actions that are irrelevant because they
produce irrelevant e�ects will not be pruned.6 On the other hand, Relevant-1 prunes both
actions that destroy some goal literal and actions that are simply irrelevant. There is a
slightly degenerate case in which all actions but one destroy some goal proposition. In that
case, using unit propagation we will be able to deduce the previous state. Consequently, we
have:

Lemma 4 In the context of the linear encoding, unless there is a single safe, �nal action,

unit propagation yields less relevance information than Relevant-1.

In the context of the Graphplan encoding the situation is often worse, and unit prop-
agation prunes even less than in the linear encoding. The goal propositions appear only in
class 2 (e�ect) axioms. Propagating them against these axioms, we obtain disjunctions of
positive action propositions explaining a particular goal proposition. If we assume that all
literals have more than one explanation, we see that no new unit clauses emerge. Conse-
quently, we can prune nothing.
Example: Consider the blocks' world domain once again. Suppose that there are three
blocks A,B, and C, and that the goal is on(A,B). Clearly, any action that moves block C
or moves another block on top of block C is irrelevant as a last action. When we consider
the Graphplan encoding, the only unit clause we have is on(A,B,t) (where t is the last
time point). We can resolve it against the e�ect axiom that lists the the possible causes for
on(A,B,t). Aside from the noop action, there are actions such as moving A from C to B

6. In general, proving that an action should be ruled out means that we have shown that in all models, i.e.,
all plans, this action does not appear. We cannot expect to be able to do this for an irrelevant action
since it could possibly be inserted into the plan without a�ecting it.

15



Brafman

and moving A from the Table to B. This yields a new ternary clause and no additional unit
clauses. There are no other axioms in which on(A,B,t) appears negated.

Notice that we have no means of excluding actions that destroy one of the goal literals.
For example, if our goal was clear(A,t), we would not want the action move(B,C,A,t-1) as
a last action. However, as above, all that we can deduce from clear(A,t) is: move(B,A,C,t-
1)_move(B,A,Table,t-1)_ move(C,A,B,t-1)_move(C,A,Table,t-1)_ noop[clear(A; t�1)].
If we could use binary resolution at this stage, we could deduce the negation of any action
with the e�ect :clear(A,t), because any such action would be mutually exclusive from
any of the above �ve actions.

If a goal literal l has a single explanation it must be a noop action (which implies that
there is no \real" operator that has it as an e�ect). In that case, we would be able to deduce
that this noop action must hold, and using the precondition axioms, we would deduce that
l must hold at the previous step. Using the mutex axioms (class 4) we could deduce the
negation of any action that destroys l. However, we cannot deduce the negation of any
action that does not interact with l, whether it is simply irrelevant or it destroys some
other goal literal.
Example: Consider a domain such as the Rocket domain, where a rocket can have fuel,
but there is no action for fueling a rocket. Suppose that the rocket has fuel in the goal
state. Hence, fuel(t) holds. Since the explanation axiom for fuel is a binary clause (i.e.,
:fuel(t)_noop[fuel(t� 1)]. Resolving this axiom with the fact fuel(t), we derive a new
unit clause noop[fuel(t � 1)]. Using the precondition axioms, we can derive fuel(t-1).
Using the mutex axiom, we can derive an action such as fly(t-1), one of whose e�ects is
:fuel(t � 1). Notice, though, that we cannot deduce the negation of an action that does
not interact with the proposition fuel, whether or not it is irrelevant. For example, if fuel
is the only proposition in the goal, then an action such as loading the rocket, which does
not a�ect the value of the proposition fuel need not be considered for the �nal action of
the plan. However, as before, there is no way of deducing :load(t� 1).

Because no action can produce fuel the same reasoning would apply to any step, and
we will be able to deduce the fact that fuel holds at each time point during the plan.
Using this fact, we will be able to prune out all actions that have :fuel as a precondition.
Relevant-1 will not be able to do so: If a has :fuel as a precondition but a has an e�ect
that is relevant at some point, a will be considered a relevant action.7

Lemma 5 In the context of the Graphplan encoding, if there is an action for chang-

ing the value of every literal, then unit propagation yields less relevance information than

Relevant-1.

Some actual values appears in Section 5. In particular, in the examples we looked at,
the Graphplan encoding could not prune any action. This follows from the (quite typical)
fact that in these domains, each of the facts that hold at the �nal state can be achieved
by a number of actions. Hence, unit propagation can deduce only disjunctions of possible

7. Of course, in this particular domain we do not have an action whose precondition is :fuel, but the
observation is still valid. For example, we may have a maintenance action which can be performed only
when the rocket is without fuel.

16



Reachability, Relevance, and Resolution

actions, none of which are a unit clause. Since we have no way of deducing negated actions,
propagation stops at this point.

The general case is similar. In the linear encoding, having obtained a disjunction of
allowable actions, we can generate a disjunction of allowable preconditions. This information
is propagated backwards much like the forward case. Yet, as in the k = 1 case, all we can
expect is a form of backwards reachability analysis from the goal state, rather than true
relevance analysis. Again, Relevant-k is likely to do a much better job here, because it
takes explicit relevance issues into account. However, as in the case of reachability analysis,
because of the ability of k-clause resolution to yield constraints of order greater than k, we
cannot show that Relevant-k is always better.

In the context of the Graphplan encoding, we will generate disjunctions of relevant
actions, from which disjunctions of relevant preconditions can be deduced, etc. However,
irrelevant actions will not be excluded explicitly (since more than one action is allowed at
each step) and we will only conclude that some relevant action must appear. Nor can we
exclude actions that destroy a goal proposition. Again, because we can deduce constraints
of order greater than k via k-clause resolution, we cannot provide a general result here.

Finally, we note that (1) the Graphplan planner does not incorporate relevance anal-
ysis, but Mea-Graphplan, a more recent variant, does (Kambhampati et al., 1997), as
well as IPP (Nebel et al., 1997). (2) Ernst, Millstein, and Weld (1997) discuss an enhanced
version of the Graphplan encoding which contains e�ects axioms as well (i.e., axioms of
the form action ! e�ect). In terms of the ability to propagate reachability and relevance
information, we see an added ability to rule out actions that destroy needed propositions
(as in the linear encoding.)

5. Empirical Evaluation

In the previous sections we attempted to understand the mechanisms by which resolution
yields reachability and relevance information and to compare them to a natural class of
direct reachability and relevance algorithms. As we noted, the relationship is not always
that of subsumption, and it is of interest to examine the actual pruning abilities of these
algorithms. In this section we describe the performance of these algorithms on a number
of standard planning problems. Because of the limited number of domains used, caution
should be exercised in interpreting these results. However, some interesting results emerge.

Our �rst set of experiments examined the performance of unary methods on large blocks
world and logistics domain problems. We used the blocks' world problems bw-dir.a/b/c/d
from the Satplan distribution8 involving 9/11/15/19 blocks, respectively, and (minimal)
plans of length 6/9/14/18. The logistics' domain problems are based on instances described
in (Brafman & Hoos, 1999) involving 8 packages and 3 cities, with minimal plans of size
6/10/16, respectively. SAT-encodings were generated using the Medic program (Ernst
et al., 1997). We used the crse options to obtain a linear encoding and the erpe options
to obtain a Graphplan-like encodings. However, the encoding obtained via the erpe op-
tions contain explicit e�ect axioms, as in the linear encoding. These axiom improve the
Graphplan-encoding's ability to propagate relevance information.

8. These instances are part of the UCPOP distribution, maintained by the University of Washington, or
from http://www.research.att.com/ kautz/blackbox/index.html, the BlackBox home page.

17



Brafman

jAj Reach Rel R+R U-rch(l) U-rel(l)

log.a 4565 2922 617 3476 401 38

log.b 5941 3517 680 3905 442 20

log.c 8021 5051 2782 6214 600 32

bw.a 3888 1697 408 2105 639 300

bw.b 10890 3565 830 4395 1201 440

bw.c 44100 12818 2394 15212 3141 840

bw.d 116964 26963 5238 32201 6482 5114

Table 1: Pruning E�ects of Unary Methods. jAj is the number of possible actions in
the course of a minimal length plan. The following entries hold the number of
actions pruned using: Reachable-1, Relevant-1, both combined, unit propagation
on linear encoding using initial state, and using the �nal state. Unit propagation
in the Graphplan encoding using the �nal state yielded no pruning. Execution
times for the Reach/Relevant algorithms are � 0:01 seconds except for bw.c (0.03
sec.), and bw.d (0.07 sec.).

In this set of experiments we measured the number of potential actions eliminated by
the following algorithms: Reachable-1, Relevant-1, Reachable-1 and Relevant-1 combined,
reachability analysis via unit-resolution using the initial state, and relevance analysis via
unit-resolution using the goal state. We did not consider the Graphplan encoding for the
following reasons:
(1) Unit-propagation in theGraphplan encoding yields as much information as Reachable-
1. (2) For our particular experiments (and in most other cases), unit-resolution based on
the �nal state in the Graphplan encoding prunes little, if any, actions because for each
fact appearing in the goal state there are a number of potential producing actions. (3)
The version of the Graphplan-encoding produced by Medic is basically equivalent to the
linear-encoding in terms of relevance information because it contains explicit e�ect axioms.

The actual numbers appear in Table 1. The �rst column provides the size of the set of
actions for the minimal plan length. The following columns provide the number of actions
pruned by the various methods tested. It is evident that Reachable-1 is extremely e�ective.
Relevance analysis seems much less useful, although Relevant-1 does prune a non-negligible
number of actions. The results for unit-resolution are quite disappointing, although in line
with our theoretical analysis. Recalling that unit-resolution in the Graphplan encoding
is equivalent to Reachable-1, we see that there is a much greater potential for pruning in
the Graphplan encoding. Another interesting observation is that there is little overlap
between the reachability and relevance analysis. This stems from the fact that the pruning
e�ect of these algorithms is often quite shallow: most of the pruning is done on the very
�rst steps (in reachability) or very last steps (in relevance). Finally, we note that the
k = 1 algorithms are quite fast: Unit propagation is an important heuristic in all SAT
solution algorithms based on the David-Putnam algorithm (Davis & Putman, 1960), and
it is extremely fast, with negligible running times (i.e., < 0:01 seconds). Not surprisingly,

18



Reachability, Relevance, and Resolution

jAj Rch1 Rch2 Rel1/2 rch1(l) rch2(l) rch1(gp) rch2(gp) rel1/2(l/g)

bw-sm.a 18 21 22 8 15 22 21 22 4

bw-sm.b 48 68 70 44 44 74 68 70 6

bw-sm.c 100 199 204 184 96 210 199 204 12

log-sm.a 18 39 57 8 14 49 39 44 1

log-sm.b 42 111 165 18 36 141 111 126 3

log-sm.c 66 196 292 26 58 244 196 220 5

hanoi-3 38 94 97 21 36 117 94 118 9

hanoi-4 68 224 230 34 66 281 224 280 14

hanoi-5 110 450 460 50 108 558 450 551 20

Table 2: E�ects of Unary and Binary Methods. jAj is the number of possible ac-
tions per step. The following columns hold the number of actions pruned during
the course of a minimal-length (or longer) plan using Reachable-1, Reachable-2,
Relevant-1 and 2 (which yield the same value), unit propagation on the linear
encoding using initial state, binary propagation on the linear encoding using ini-
tial state, unit propagation on the Graphplan encoding using initial state, and
binary propagation on the Graphplan encoding using initial state. The �nal
column correspond to propagation using the goal state. All methods (i.e., unit
and binary) on both encodings yielded the same values.

Reachable-1 and Relevant-1 are also extremely fast. Execution times for these algorithms
were less than � 0:01 seconds, except for bw.c (0.03 sec.), and bw.d (0.07 sec.), for which
these amount to a small fraction of the running times required by modern SAT algorithms.9

The next set of experiments, shown in Table 2, introduces binary pruning methods
as well. Here, we were limited by the slow performance of our prolog implementation of
Reachable-2 and the Medic encoder (Ernst et al., 1997). We looked at blocks world prob-
lems involving 3,4, and 5 blocks, respectively, and we looked at logistics domain problems
involving one package and two cities, three packages and two cities, and three packages and
three cities. In addition, we looked at three hanoi-tower problems with 3,4, and 5 disks.

There are a number of points worth mentioning:

� In two domains (blocks' world and hanoi), Reachable-2 is only slightly more useful
than Reachable-1. In the logistics domain, on the other hand, Reachable-2 is much
more e�ective. However, we must remember that Reachable-2 yields mutual exclusion
constraints which we did not measure. These constraints can be quite useful and they
have an important role in the Graphplan planner.

� No clear winner emerges. In the blocks-world domain, binary resolution in the linear
encoding prunes more than Reachable-2, whereas in the logistics domain, Reachable-
2 prunes more. Interestingly, binary resolution in the Graphplan-encoding is less

9. These experiments were conducted on a PC with a PentiumII-200 processor.

19



Brafman

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reach-1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reach-2 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6

U-Res(lin) 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

B-Res(lin) 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9

U/B-Res(gp) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3: Reachability Analysis in a 16-bit Counter. Shown are the number of un-
pruned actions per time step. Rows correspond to Reachable-1, Reachable-2, unit
resolution on the linear encoding, binary resolution on the linear encoding. The
last row corresponds to unit and binary resolution on the Graphplan encoding,
which had identical e�ect.

e�ective than in the linear encoding. However, the Graphplan-encoding allows for
shorter plans, and consequently, smaller search spaces. Therefore, the Graphplan-
encoding is still likely to be more eÆcient.

� Relevant-2 has no advantage over relevant-1. In fact, this behavior was observed when
using resolution as well: unit and binary resolution on both the linear andGraphplan
encodings pruned the same amount of actions. Consequently, we present them in one
column. Indeed, we see from both sets of experiments reported in Tables 1 and 2,
that relevance analysis contributes little. One obvious reason is that the goal state is
often incomplete and much less constrained than the initial state (at least explicitly).
Therefore, the algorithms have diÆculty deriving relevance constraints. However,
one's intuition seems to indicate that this should not be the case, at least not to
the extent observed. There should be means of providing better relevance analysis,
although they may require more sophisticated derivation of state constraints.

� As predicted, relevance analysis is much more useful at the state-space level than at
the truth-assignment level.

� As expected, the Graphplan encoding is typically better than the linear encoding.

Finally, we ran some tests on a 16 bit version of the counter domains described in
the text. This is a very constrained domain in which only a single action is applicable
at each state and we wanted to see how much of this would be discovered by the algo-
rithms. The results are shown in Tables 3 and 4, where the number of permisable actions
is given as a function of the the time step. Table 3 presents the results for forward pruning
using Reachable-1, Reachable-2, and unit and binary propagation using the Graphplan
and linear encodings. Table 4 presents the results for backward pruning using Relevant-1,
Relevant-2, and unit and binary propagation using the linear encodings.

20



Reachability, Relevance, and Resolution

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rel1/2,U/B-Res(gp) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U-Res(l) 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

B-Res(l) 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9

Table 4: Relevance Analysis in a 16-bit Counter. Shown are the number of unpruned
actions per time step. The (identical) results for Reachable-1, Reachable-2, unit-
resolution on theGraphplan encoding, and binary-resolution on theGraphplan
encoding appear in the �rst row. The next rows correspond to unit and binary
resolution on the linear encoding, respectively.

6. Conclusion

We have shown a connection between the scheme used to encode planning instances and the
ability to propagate reachability and relevance information from the initial and �nal steps
to other time points. We hope that these results will serve to improve our understanding of
the factors contributing to the performance of di�erent encoding methods. In addition, we
provided a crisp and general formulation of a class of reachability and relevance algorithms
that appear in various forms in di�erent planning algorithms. We compared the pruning
ability of resolution-based propagation methods which operate on encoded plans, to that of
the Reachable-k and Relevant-k algorithms which operate at the plan level. Our empirical
results show a complex picture, where no clear winner emerges. However, it seems that
when the domain is constrained (making parallel actions less useful) binary methods have
little advantage over unary methods. In addition, they show that relevance analysis is best
conducted at the plan level. For SAT-based planning algorithms, this would suggest the use
of a simple plan-level relevance analysis stage prior to the plan encoding. This observation
is con�rmed by recent results reported by Do, Srivastava, and Kambhampati (2000).

In (Brafman, 1999), we pointed out that binary clauses form a large fraction of the
clauses in SAT-encoded planning problems. Given our results regarding the utility of binary
resolution, a natural idea is to augment standard clause simpli�cation techniques (e.g., unit
propagation) with some limited form of binary clause preprocessing. Initial results presented
there indicated the utility of this idea: In instances where unit clauses could be derived from
this form of binary resolution, nice reductions in running time were demonstrated. When
unit clauses were not derivable via this method, only a small overhead was incurred. A
more principled, systematic, and eÆcient technique based on these ideas is investigated in
(Brafman, 2000).

This work is among the �rst attempts to theoretically analyze di�erent encoding schemes.
We have concentrated on one particular aspect of such encodings, i.e., their ability to propa-
gate concrete state information backwards and forwards. Naturally, this attempt is a-priori
limited in its scope, as this ability is only one factor inuencing the performance of various
algorithms, and its inuence is probably more signi�cant in systematic methods based on
the David-Putnam procedure than in methods based on stochastic local search.

21



Brafman

Other authors have considered some of the ideas presented here, too. Kautz and Selman
(1999) discuss the relation between Graphplan's mutex constraint and a restricted form
of binary propagation. In particular they show that mutex computation is a limited form
of negative binary propagation. In mutex propagation, two assertions of mutual exclusion
yield a new one. Of course, each mutual exclusion statement is equivalent to a binary
clause (e.g., either action a is not performed or action b is not performed), hence we can
view this process as a limited form of binary propagation: From f:p _ :qg and fp _ :rg
deduce f:q _ :rg. Graphplan performs this operation, but in an incomplete manner. In
addition, they tested additional limited inference methods such as the failed literal strategy
(attempting to prove that a particular literal is inconsistent using unit propagation) and the
binary failed literal strategy (attempting to prove that a binary clause is inconsistent using
unit propagation). These methods do not directly correspond to the methods considered
in this paper. More closely related is one of the options in the Medic system for encoding
planning problems: a simple inference method which is referred to as simple data-ow
analysis (Ernst et al., 1997). This method is basically an instance of Reachable-1.

Haslum and Ge�ner (2000) present a parametrized class of admissible heuristics func-
tions Hk. There is an interesting and important relation between the heuristic function
generation technique discussed in that paper and the parameterized class of reachability
analysis algorithms discussed in this paper. When a heuristic function assigns 1 to some
state s this means it believes that goal is not reachable from s. If the heuristic function is
admissible, then in fact, this is true. Thus, admissible heuristic functions provide a sound
tool for pruning { the goal is not reachable from any state to which they assign the value
1. In fact, the derivation of the heuristic functions of class Hk is closely related to our
computation of Reachable-k. In both cases, instead of analyzing actual states, we analyze
subsets of states of size k and their interactions. However, in designing heuristic functions,
a greater emphasis is put on the distance from the current state to a state in which some
set of literals appears without mutual exclusion constraints (i.e., the indices of the sets Si
and CSi).

Finally, a recent paper by Do, Srivastava, and Khambhampati (2000) examines encoded
planning problems generated by the Blackbox planner. Blackbox utilizes mutual ex-
clusion constraints derived from Graphplan's planning graph. The authors show that
these constraints are useful, despite the fact that they increase the size of the encoding.
In addition, the authors examine the utility of adding explicit mutual-exclusion constraints
stemming from (state-space based) relevance analysis. These constraints appear to improve
the planner's performance. In fact, it seems that the constraints described by Do, Srivas-
tava, and Kambhampati (2000) are more powerful than those generated by Relevant-2. We
believe that Relevant-k can and should be strengthened, and we hope to examine this issue
more closely in the future.

Acknowledgments

I wish to thank Craig Boutilier and Chris Geib for valuable discussions on reachability anal-
ysis and the anonymous reviewers for very useful and detailed comments. I am particularly
grateful to Olga Rozenfeld who implemented the algorithms in Prolog, suggested the use of

22



Reachability, Relevance, and Resolution

the counter example for illustrating the algorithms, and provided important corrections to
previous drafts. This work was supported in part by the Paul Ivanier Center for Robotics
Research and Production Management.

Appendix A. Proofs

Theorem 1 If a set of propositions or actions is excluded by Reachable-k at time j then

there is no feasible plan in which, at time j, these propositions hold, or, respectively, these

actions appear.

Proof: This is immediate: Consider any valid plan and the states of the world during the
execution of this plan. It is straightforward to show that both appear within the sets Ai

and Si without being constrained by virtue of this being a valid plan.

Lemma 1 In the context of the linear encoding, Reachable�-1 yields more reachability in-

formation than unit propagation.

Proof: Given the de�nitions used earlier on, a more formal statement of this lemma is as
follows: Let k be some integer denoting the length of a plan. Let Areach�1 be the set of
actions pruned by Reachable�-1 up to the k-th level given some planning domain and initial
state. Let Au�res be the set of actions that are pruned by unit-resolution on the linear
encoding of this planning domain using k steps (i.e., actions for which we can deduce a unit
clause containing the negation of their corresponding variable), but without a goal state
supplied. Then Areach�1 � Au�res, and for some planning instances Areach�1 � Au�res.

First let us consider unit resolution. The unit clauses that are available initially corre-
spond to the propositions that hold at the initial state. The only axioms in which proposi-
tions denoting the state at time 0 appear are those of class 1 (precondition axioms) and 3
(frame axioms). However, the clauses in class 3 are ternary and contain at most one such
proposition. These ternary frame clauses can yield a unit clause only if we are able to rule
out all actions but one, which we cannot, at this stage. Therefore, unit clauses can only
be derived by resolving the current unit clauses with class 1 clauses. Such resolutions can
yield new unit clauses containing negated actions. These negated actions can be resolved
against clauses containing positive action variables. Such variables appear only in class 4
(at-least-one-action) axioms.

Now there are two cases to consider. First, suppose that we have been able to rule out
all actions but one. Using the frame and e�ect axioms, we can derive the state at time 1.
Our situation now is analogous to that in which we were at time 0 with knowledge of the
initial state. Since Reachable�-1 puts us in the same position, our claim follows (using a
simple inductive argument). Next, suppose that we cannot rule out all actions but one. In
that case, we have no new unit clauses, and so unit propagation stops. Reachable�-1 will be
able to rule out all actions ruled out by the unit propagation process. Moreover, if all the
actions that are not ruled out have some common e�ect, that e�ect can be deduced using
Reachable-�-1, and it can rule out actions that require its negation as a precondition. This
type of information is not obtained via unit propagation.

23



Brafman

Lemma 3 In the context of the Graphplan encoding, unit propagation and Reachable-1
rule out the same sets of actions, if we ignore the explicit constraints appearing in axiom

class 4. If we use these constraints, unit propagation can yield more reachability informa-

tion.

Proof: First, suppose we ignore the mutex axioms of class 4. Using unit propagation, we
deduce the negation of those actions whose preconditions are violated at time 0. Negated
action literals can be resolved against class 2 (e�ect explanation) axioms. If we have been
able to rule out all explanations of some time 1 proposition, we can deduce its negation
in this manner. The same mechanism will allow us to exclude this variable when using
Reachable-1. Similarly, negated action literals can be resolved against class 3 (at-least-one-
action) axioms, but this yields no more information. Those time 1 variables we can deduce
can be used to rule out time 1 actions.

Notice the following. If we can deduce p at time 1, then one of the actions that produce p
must hold at time 0. This information is not explicit in the Reachable-1 algorithm (although
it appear in the Graphplan's planning graph in the form of edges). However, it cannot
be used to rule out other actions if we are restricted to unit resolution.

Class 4 axioms can make a di�erence in the above case. Suppose we have been able
to conclude that a particular action a that produces p must occur (i.e., by deducing p and
ruling out all its causes except a). In that case, all actions that are mutually exclusive
with a cannot occur. These actions may not a�ect p at all, and their negation need not
necessarily be derivable using Reachable-1.

Theorem 2 Let s be some state from which the goal is reachable using an m-step plan

(where each step can contain a number of non-interfering actions). Then (1) the set of

literals satis�ed in s is a subset of Sm, no subset of which is in CSm, and (2) there exists

an m-step plan for reaching the goal from s such that if A is the set of actions in the plan

v steps before last then A � Av and no subset of A is in CAv.

Proof: Recall that we assume that any proposition appearing in the e�ects of an action
appears in its preconditions as well. We can always enforce this requirement by converting
an action that does not satisfy it into an a set of actions that satisfy it.

Our proof proceeds by induction on the number of steps by which the goal is reachable.
Let S be some state from which the goal G is reachable by a single step. Let A be the set
of actions in such a one-step plan for reaching G from S. By de�nition, A does not contain
interfering actions. In addition, we know that if G is reachable from S by performing A

then the preconditions of A and G n E�ects-Of (A) must hold in S.
First, suppose to the contrary that for some literal l 2 S, we have that l 62 S1. Notice

that by de�nition of A0, we have that S1 contains all literals that are consistent with
G. Therefore, l must be inconsistent with G, i.e., :l 2 G. Since l 2 S, there must be
some action a 2 A with the precondition l and the e�ect :l (otherwise, l would hold after
performing A). Such an action would be in Ar

0 and its preconditions, l among them, would
be in S1. We conclude that S � S1.

Next, we want to show that there is a one-step plan for reaching G from S all of whose
actions are in A0. From the discussion above we see that the plan A for reaching G from

24



Reachability, Relevance, and Resolution

S contains an action from Ar
0 for changing the value of every proposition l that holds in

S and that is inconsistent with G. Clearly, none of these actions can have an e�ect that
is inconsistent with G. Let A0 � A denote the set of such actions. By applying A0 at S
we transform all literals inconsistent with G to their value in G and we do not destroy the
value of any literal consistent with G. Since A0 � A, it constitutes a valid plan (i.e., its
actions do not interfere with each other) that achieves G. By de�nition, A0 � A0.

To conclude the proof of the base step, we must show that no subset of S is in CS1.
Suppose, to the contrary that some subset S0 of S is in CS1. We have seen that for any
such S0, there is some set of actions A0 � A such that A0 � A0 and each l 2 S0 is either
a precondition of some action in A0 or l is consistent with G and is not destroyed by A0.
Denote by A00 the set consisting of A0 and any noop[] corresponding to those l 2 S0 that
are not preconditions of an element in A0. By de�nition of A0, we have that A

00 2 A0.
However, if S0 2 CS1 then A

00 2 CA0 which implies that A00 contains interfering actions.
We claim that this is impossible. First, all the e�ects of A00 are either in G or consistent
with G, by construction. In addition, all the preconditions of A00 are in S0 and therefore in
S. Because S is an actual state of the world, it cannot contain conicting literals. Hence,
S0 62 CS1.

Next, suppose that we have established our inductive hypothesis for all i < m and let
us prove that it holds for i = m. Hence, let S be some state for which there exists an m-
step plan A = A1; : : : ; Am for attaining G. Let S+1 denote the state obtained by applying
A1 to S. We know that there is an m � 1 step plan for achieving G from S+1. By our
inductive hypothesis, S+1 satis�es the conditions of the Theorem. In particular, we know
that S+1 � Sm�1 and no subset of S+1 is in CSm�1. To complete our proof it would be
suÆcient to show that S+1 is reachable by a one-step plan A0 whose actions are in Am but
not in CAm. The proof is similar to the base case.

Corollary 1 For any initial state s from which the goal is reachable and any minimal (in

the number of operators) plan P = A0m; : : : A
0
0 (where the steps are numbered backwards) for

reaching the goal from s, we have A0i � Ai and CAi does not contain any subset of A0i.

Proof: An inspection of the proof of the previous theorem shows that in every step we
have found some subset of the set of actions in each candidate plan that satis�ed the
relevant conditions. In particular, consider a minimal plan, all its elements must satisfy
these conditions.

Lemma 4 In the context of the linear encoding, unless there is a single safe, �nal action,

unit propagation yields less relevance information than Relevant-1.

Initially, our only unit clauses are goal literals. We can resolve then against the e�ect
axioms only. This would yield negation of various actions (i.e., unsafe actions). These
negated action literals can be resolved only against the action disjunction (axiom class 4).
However, if there is more than one safe �nal action, we will not obtain a unit clause from
this disjunction, and there is nothing farther that we can do. The same information, and
more, is easily obtainable from Relevant-1.

25



Brafman

Lemma 5 In the context of the Graphplan encoding, if there is an action for chang-
ing the value of every literal, then unit propagation yields less relevance information than

Relevant-1.

Proof: See text prior to this Lemma.

Appendix B. The Complexity of Reachable-k and Relevant-k

The computational complexity of Reachable-k is O(njAjjLjkEk + njLjjAjk), where n is the
number of levels we generate, jAj is the number of possible actions, jLj is the size of the
propositional language used, and E is the maximal number of actions that have a particular
shared e�ect. As we explain below, the complexity is dominated by the time required to
produce the sets CSi and CAi.

The set of possible e�ects, Si, is produced in O(jAj �me) steps, where me is the maximal
number of e�ects.

CSi requires examining all l-tuples of elements in Si, for l � k, and there are at most
O(jLjk) such elements. For each such tuple we have to �nd the set of actions that produce
it. This can be done quickly, provided we maintained pointers to these actions. The number
of such sets of actions is O(EK) (since no more than k actions are needed). For each such
set of actions we must check whether some subset of it is a member of CAi�1. Given an
appropriate representation of CAi�1, this can be done in time O(jAj). To accomplish this,
we can use a binary tree whose leafs correspond to bit vectors. The depth of this tree is
jAj and its size is O(jCAi�1j). Finally, we need to maintain CSi as a similar tree of bit-
vectors. This can be done in O(jLjk) (or, if CSi is small, at a lower cost). The overall cost
of producing CSi is O(jLj

kjEjkjAj).
To produce the set Ai, we go over all actions and check whether their preconditions

appear in Si. This requires O(jAj �mp) steps (assuming a bit-vector representation of Si),
where mp is the maximal number of preconditions of an action. We also have to check
whether the preconditions appear in CSi. Since jAij � jAj and we can check whether a
subset of the set of preconditions appears in CSi in time O(jLj), this requires O(jAjjLj)
steps.

Finally, we need to produce the CAi. This requires generating all subsets of Ai of size
k or less, taking O(jAjk) steps. For each such subset we must check whether its precon-
ditions contain an element of CSi. Again, provided an appropriate data-structure for CSi
is maintained, this can be done in O(jLj) for each set of preconditions. As in the case of
CSk, we assumed CAi is maintained as a tree of bit-vectors, which can be generated in time
O(jAjk). The overall complexity of this step is O(jLjjAjk).

Note that for small values of k other data-structures are likely to provide better perfor-
mance.

Next, we address Relevant-k. Our analysis is under the assumption that the same
set of variables appear in the preconditions and e�ects of each operator. As we noted,
transforming a set of operators that do not satisfy this property into a set of operators that
satisfy it may cause an exponential blow-up in the worst case.

The complexity of Relevant-k is O(jAjkjLj + jLjkmk
pjAj), where jAj is the number of

actions, jLj is the number of proposition in the language, and mp is the maximal number of

26



Reachability, Relevance, and Resolution

preconditions of an action. The analysis is quite similar to the case of Reachable-k, and we
ignore the sets Ri and Ar

i which are subsets of the larger Si and Ai and whose generation
contributes constant factors:

The set of preconditions, Si, is produced in O(jAj �mp) steps.
To compute CSi, we iterate over O(jLj

k) sets of literals. For each such set we examine
all sets of actions that have it as preconditions, and there are at most O(mk

p) such sets. For
each such set of actions, we need to check that it is not in CAi�1. Each such check can be
performed in O(jAj) steps. The overall complexity of this step is O(jLjkmk

pjAj).
To produce the set Ai, we go over all actions useful for Si, which require O(jLjE) (where

as before, E is the maximal number of actions that have a particular e�ect). For each action,
we check whether its e�ects are in CSi. Since we need to perform this check at most once
for every action, the overall complexity of O(jLjE + jLjjAj).

Finally, we need to produce the sets CAi. Interfering actions can be pre-computed with
the cost amortized over all steps. In any case, their computation requires no more than
O(mjAj2) steps, where m is the maximal sum of preconditions and e�ects for an action.
Next, we have to examine the e�ects of all l-tuples of actions, where l � k, and see whether
these e�ects have a subset in CSi. This takes O(jAj

kjLj) steps.
Again, for small values of k (and in particular, k = 1; 2) a tighter analysis is possible.

References

Bayardo, R. J., & Schrag, R. C. (1997). Using CSP look-back techniques to solve real-world
SAT instances. In Proc. AAAI-97, pp. 203{208.

Blum, A., & Furst, M. L. (1997). Fast planning through planning graph analysis. Arti�cial
Intelligence, 90, 281{300.

Bonet, B., Loerincs, G., & Ge�ner, H. (1997). A robust and fast action selection mechanism
for planning. In Proc. AAAI-97, pp. 714{719.

Boutilier, C., Brafman, R. I., & Geib, C. (1998). Structured reachability analysis for markov
decision processes. In Proc. of 14th Conference on Uncertainty in AI, pp. 24{32.

Boutilier, C., & Dearden, R. (1994). Using abstractions for decision theoretic planning with
time constraints. In Proc. of AAAI'94, pp. 1016{1022.

Brafman, R. I. (1999). Reachability, relevance, resolution, and the planning as satis�ability
approach. In IJCAI'99, pp. 976{981.

Brafman, R. I., & Hoos, H. H. (1999). To encode or not to encode - i: linear planning. In
IJCAI'99, pp. 988{993.

Brafman, R. I. (2000). A simpli�er for propositional formulas with many binary clauses.
Tech. rep. 00-04, Dept. of Computer Science, Ben-Gurion University.

Crawford, J., & Auton, L. D. (1993). Experimental results on the cross-over point in
satis�ability problems. In Proc. AAAI'93, pp. 21{27.

27



Brafman

Davis, M., & Putman, H. (1960). A computing procedure for quanti�cation theory. Journal
of the ACM, 7, 201{215.

Do, M. B., Srivastava, B., & Kambhampati, S. (2000). Investigating the e�ect of relevance
and reachability constraints on sat encodings of planning. In Proc. of the Fifth Intl.

Conf. on AI Planning and Scheduling Systems.

Ernst, M. D., Millstein, T. D., & Weld, D. S. (1997). Automatic SAT-compilation of
planning problems. In Proceedings of the International Joint Conference on Arti�cial

Intelligence.

Fikes, R., & Nilsson, N. (1971). Strips: A new approach to the application of theorem
proving to problem solving. Arti�cial Intelligence, 2 (3{4), 189{208.

Freeman, J. W. (1995). Improvements to Propositional Satis�ability Search Algorithms.
Ph.D. thesis, U. Pennsylvania Dept. of Computer and Information Science.

Genesereth, M. R., & Nilsson, N. J. (1987). Logical Foundations of Arti�cial Intelligence.
Kaufmann, Los Altos, CA.

Gomes, C. P., Selman, B., & Kautz, H. (1998). Boosting combinatorial search through
randomization. In Proc. of 15th Nat. Conf. AI, pp. 431{437.

Haslum, P., & Ge�ner, H. (2000). Admissible heuristics for optimal planning. In Proc. of

the Fifth Intl. Conf. on AI Planning and Scheduling Systems, pp. 140{149.

Kambhampati, S., Parker, E., & Lambrecht, E. (1997). Understanding and exending graph-
plan. In Proc. 4th European Conf. on Planning, pp. 260{272.

Kautz, H., & Selman, B. (1992). Planning as satis�ability. In Proc. of the 10th European

Conf. on AI, pp. 359{363.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proc. of the 13th National Conference on AI (AAAI'96), pp.
1194{1201.

Kautz, H., & Selman, B. (1999). Unifying sat-based and graph-based planning. In Proc.

16th Intl. Joint Conf. on AI (IJCAI'99), pp. 318{325.

Li, C. M., & Anbulagan (1997). Heuristics based on unit propagation for satis�ability
problems. In Proc. IJCAI-97.

McDermoot, D. (1996). A heuristic estimator for means-ends analysis in planning. In Proc.

3rd Int. Conf on AI Planning Systems, pp. 142{149.

Nebel, B., Dimopoulos, Y., & Koehler, J. (1997). Ignoring irrelevant facts and operators in
plan generation. In Proc. 4th European Conf. on Planning.

28


