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ON REAL FIXED POINTS OF ONE PARAMETER FAMILY OF

FUNCTION x/(bx −1)

MOHAMMAD SAJID

Abstract. In the present paper, the real fixed points of one parameter family T = { fλ(x)
= λ x

bx−1 and fλ(0) = λ
lnb : λ> 0, x ∈ R,b > 0,b ̸= 1} are investigated. Further, the nature of

these fixed points of fλ(x) are shown for b > 0 except b = 1.

Mostly, the dynamical behavior of functions play interesting role near to fixed points.

The dynamics or iteration of polynomial, rational function or transcendental function with-

out discontinuity points are simpler than transcendental functions with discontinuity points.

Using the dynamics of functions near to real fixed points, the dynamics of functions in com-

plex plane are induced by the following researchers: The dynamics of families of entire func-

tions λ sinh(z)
z and λ ez−1

z , λ > 0 with infinitely many bounded singular values are studied by

Prasad [6], and Kapoor and Prasad [4] respectively. Prasad and Nayak [7] also found the dy-

namics of certain class of critically bounded entire transcendental functions. The dynamics

of λ sinh2(z)
z4 with infinitely many bounded singular values is found in [8] and the dynamics of

certain transcendental meromorpsic functions with unbounded singular values is discussed

in [5]. The dynamics of λez is found in [2]. The theory of fixed points of functions and its

applications can be seen in [1, 3].

A point x is said to be a fixed point of function f (x) if f (x) = x. A fixed point x0 is called

an attracting, neutral (indifferent) or repelling if | f ′(x0)| < 1, | f ′(x0)| = 1 or | f ′(x0)| > 1 respec-

tively.

The present work describes the real fixed points of the function x
bx−1 by considering one

parameter family

T =
{

fλ(x) =λ
x

bx −1
and fλ(0) = λ

lnb
: λ> 0, x ∈R,b > 0,b ̸= 1

}
.
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The present paper is organized as follows: In Theorem 1, the real fixed point of fλ ∈ T

are determined. The nature of these fixed points of fλ(x) are shown in Theorem 2.

For sake of convenience, let fλ(x) =λ f (x), where f (x) = x
bx−1 . Further, consider the func-

tion ψ(x) = x f ′(x)+ f (x). It is easily seen that the function ψ(x) is continuous at x = 0 and

ψ(0) = 1
lnb .

Lemma 1.

(a) For 0 < b < 1,

ψ(x) = x

(bx −1)2 [(2−x lnb)bx −2]


< 0 for x∗

1 < x < 0

= 0 for x = x∗
1

> 0 for x < x∗
1

where x∗
1 is the unique negative real root of the equation (2− x lnb)bx −2 = 0.

(b) For b > 1

ψ(x) = x

(bx −1)2 [(2−x lnb)bx −2]


> 0 for 0 < x < x∗

2

= 0 for x = x∗
2

< 0 for x > x∗
2

where x∗
2 is the unique positive real root of the equation (2− x lnb)bx −2 = 0.

Proof. The function

ψ(x) = x
(bx −1−xbx lnb)

(bx −1)2 + x

bx −1
= x

(bx −1)2 [(2−x lnb)bx −2] (1.1)

Suppose the function r (x) = (2−x lnb)bx −2. Then,

r ′(x) = (1−x lnb)bx lnb

and

r ′′(x) = −xbx (lnb)3.

(i) For 0 < b < 1

It is seen that, x ∈R+,

r ′′(x) > 0 (1.2)

By Equation (1.2), the function r ′(x) is increasing on R+. Since r ′(0) = lnb, r ′(x) → ∞ as

x →−∞ and r ′(x) is continuous on R, it gives that there is a unique x̃1 < 0 such that r ′(x) > 0

for x < x̃1, r ′(x̃1) = 0 and r ′(x) < 0 for x̃1 < x. Thus, r (x) increases in (−∞, x̃1), decreases in

(x̃1,∞) and attains its maximum at x̃1. Since r (0) = 0 and r (x) →−∞ as x →−∞, it conclude

that there is a unique negative x∗
1 < x̃1 such that r (x) < 0 for −∞ < x < x∗

1 , r (x∗
1 ) = 0 and

r (x) > 0 for x∗
1 < x < 0. Since x

(bx−1)2 < 0 for all x < 0. Now, we have

ψ(x) = x

(bx −1)2 r (x)


< 0 for x∗

1 < x < 0

= 0 for x = x∗
1

> 0 for x < x∗
1
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where x∗
1 is the unique negative real root of the equation (2−x lnb)bx −2 = 0.

(ii) For b > 1

It is seen that, for x ∈R+,

r ′′(x) < 0 (1.3)

By Equation (1.3), the function r ′(x) is decreasing on R+. Since r ′(0) = lnb, r ′(x) → −∞ as

x →+∞ and r ′(x) is continuous onR+, it shows that there is a unique x̃2 > 0 such that r ′(x) > 0

for 0 ≤ x < x̃2, r ′(x̃2) = 0 and r ′(x) < 0 for x > x̃2. Therefore, r (x) increases in [0, x̃2), decreases

in (x̃2,+∞) and attains its maximum at x̃2. Since r (0) = 0 and r (x) → −∞ as x → +∞, it

establish that that there is a unique positive x∗
2 > x̃2 such that r (x) > 0 for 0 < x < x∗

2 , r (x∗
2 ) = 0

and r (x) > 0 for x > x∗
2 . Since x

(bx−1)2 > 0 for all x > 0. Now, it follows that

ψ(x) = x

(bx −1)2 r (x)


> 0 for 0 < x < x∗

2

= 0 for x = x∗
2

< 0 for x > x∗
2

where x∗
2 is the unique positive real root of the equation (2−x lnb)bx −2 = 0. ���

Let us define

λ∗ = x∗

f (x∗)
= bx∗ −1 (1.4)

where x∗ is the unique real root of the equation (2−x lnb)bx −2 = 0. The root x∗ is negative if

0 < b < 1 and positive if b > 1.

The following theorem shows that the function fλ(x) has a unique real fixed point:

Theorem 1. Let fλ ∈ T . Then, the function fλ(x) has a unique real fixed point xλ. The fixed

point xλ is negative if 0 < b < 1 and positive if b > 1.

Proof. Since fλ(x) < 0 if 0 < b < 1 and fλ(x) > 0 if b > 1 for all x ∈ R, each real fixed point

of fλ(x) is negative for 0 < b < 1 and positive for b > 1. For x ∈ R and b > 0 except b = 1,

f ′
λ

(x) =λ (1−x lnb)bx−1
(bx−1)2 < 0.

Let hλ(x) = fλ(x)− x for x ∈R. Since the function f ′
λ

(x) is continuous at x = 0, f ′
λ

(0) =−λ
2

and f ′
λ

(x) < 0 for x ∈R, b > 0 except b = 1, then h′
λ

(x) = f ′
λ

(x)−1 < 0. Hence, the function hλ(x)

is decreasing. Moreover, (i) for 0 < b < 1, hλ(0) = λ
lnb < 0, hλ(x) →+∞ as x →−∞ and hλ(x)

is continuous on R−, (ii) hλ(0) = λ
lnb > 0, hλ(x) →−∞ as x →+∞ and hλ(x) is continuous on

R+, by the intermediate value theorem, there exists a unique xλ such that hλ(xλ) = 0. Thus, it

follows that fλ(x) has a unique real fixed point xλ. ���

Remark 1. For λ > λ∗, there may exist periodic points of period greater than or equal to 2.

This case is not considered here. It is left for forthcoming work.
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In the following theorem, the nature of fixed points of fλ(x) are determined:

Theorem 2. Let fλ ∈ T . Then, the fixed point xλ of the function fλ(x) is (i) an attracting for

0 <λ<λ∗ (ii) rationally indifferent for λ=λ∗ (iii) repelling for λ>λ∗.

Proof. Since the derivative of x
f (x) is negative for x ∈ R−, 0 < b < 1 and is positive for x ∈ R+,

b > 1, the function x
f (x) is decreasing on R− for 0 < b < 1 and is increasing on R+ for b > 1. We

prove the following cases for 0 < b < 1:

(i) For 0 <λ<λ∗, since the function x
f (x) is decreasing on R− and λ= xλ

f (xλ) , we have xλ

f (xλ) <
x∗

f (x∗) . It means that bxλ < bx∗
. Hence, xλ > x∗. By Lemma 1(a), ψ(xλ) < 0. Since f ′

λ
(xλ) =

ψ(xλ)
f (xλ) − 1, it follows that f ′

λ
(xλ)+ 1 = ψ(xλ)

f (xλ) > 0. Since f ′
λ

(x) is negative on R−, it shows

that −1 < f ′
λ

(xλ) < 0 and consequently, the fixed point xλ of fλ(x) is an attracting for

0 <λ<λ∗ .

(ii) For λ = λ∗, it is easy to prove xλ = x∗. Now, by Lemma 1(a), it follows that f ′
λ

(xλ)+1 =
ψ(xλ)
f (xλ) = 0 which implying f ′

λ∗(xλ) =−1. Therefore, the fixed point x∗ of fλ(x) is rationally

indifferent for λ=λ∗.

(iii) Forλ>λ∗, by similar arguments used in (i), it follows that xλ < x∗ . Again, by Lemma 1(a),

we have ψ(xλ) > 0. It gives that f ′
λ

(xλ)+1 = ψ(xλ)
f (xλ) < 0 and hence f ′

λ
(xλ) <−1. Therefore,

xλ is repelling fixed point of f (xλ) for λ>λ∗.

For b > 1, by using Lemma 1(b), the proof of all cases are similar and easily derived as

above. ���
It is observed that, from Theorem 2, the nature of the fixed point changes when parame-

ter λ crosses parameter value λ∗.
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