ON REAL HYPERSURFACES IN QUATERNIONIC PROJECTIVE SPACE WITH
 \mathcal{D}^{\perp}-PARALLEL SECOND FUNDAMENTAL FORM

Juan De Dios Pérez and Young Jin Suh*

Abstract

In this paper we give a complete classification of real hypersurfaces in a quaternionic projective space $Q P^{m}$ satisfying certain conditions on the orthogonal distribution \mathcal{D}.

§1. Introduction

Throughout this paper let us denote by M a connected real hypersurface in a quaternionic projective space $Q P^{m}, m \geq 3$, endowed with the metric g of constant quaternionic sectional curvature 4. Let N be a unit local normal vector field on M and $U_{i}=-J_{i} N, i=1,2,3$, where $\left\{J_{i}\right\}_{i=1,2,3}$ is a local basis of the quaternionic structure of $Q P^{\boldsymbol{m}},[3]$. Several examples of such real hypersurfaces are well known, see for instance ([1],[5],[6],[7]).

Now, let us consider the following conditions that the second fundamental tensor A of M in $Q P^{m}$ may satisfy

$$
\begin{gather*}
\left(\nabla_{X} A\right) Y=-\Sigma_{i=1}^{3}\left\{f_{i}(Y) \phi_{i} X+g\left(\phi_{i} X, Y\right) U_{i}\right\} \tag{1.1}\\
g\left(\left(A \phi_{i}-\phi_{i} A\right) X, Y\right)=0 \tag{1.2}
\end{gather*}
$$

for any $i=1,2,3$, and any tangent vector fields X and Y of M, where the connection of M induced from the connection of $Q P^{m}$ is denoted by ∇.

Pak [7] investigated the above conditions and showed that they are equivalent to each other. Moreover he used the condition (1.1) to find a lower bound of $\|\nabla A\|$ for real hypersurfaces in $Q P^{m}$. In fact, it was shown that $\|\nabla A\|^{2} \geq 24(m-1)$ for such hypersurfaces and the equality holds if and only if the condition (1.1) holds. In this case it was also known that M is locally congruent to a real hypersurface of type A_{1} or A_{2}, which means a tube of radius r over $Q P^{k}(1 \leq k \leq m-1)$ in the notion of Berndt [1], and Martinez and the first author [5].

Now let us define a distribution \mathcal{D} by $\mathcal{D}(x)=\left\{X \in T_{x} M: X \perp U_{i}(x), i=1,2,3\right\}$,$x \in M$, of a real hypersurface M in $Q P^{m}$, which is orthogonal to the structure vector fields $\left\{U_{1}, U_{2}, U_{3}\right\}$ and invariant with respect to structure tensors $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$, and by $\mathcal{D}^{\perp}=S \operatorname{pan}\left\{U_{1}, U_{2}, U_{3}\right\}$ its orthogonal complement in $T M$.

[^0]There exist many studies about real hypersurfaces of quaternionic projective space $Q P^{m}$. Among them Martinez and the first author [6] have classified real hypersurfaces of $Q P^{\boldsymbol{m}}$ with constant principal curvatures when the distribution \mathcal{D} is invariant by the second fundamental tensor, that is, the shape operator A. It was shown that these real hypersurfaces of $Q P^{m}$ could be divided into three types which are said to be of type A_{1}, A_{2}, and B, where a real hypersurface of type B denotes a tube over a complex projective space $C P^{m}$. Hereafter, let us say A-invariant when the distribution \mathcal{D} is invariant by the shape operator A.

As a further improvement of this result, Berndt [1], recently showed that any real hypersurfaces of $Q P^{m}$ satisfying $g\left(A \mathcal{D}, \mathcal{D}^{\perp}\right)=0$ must be of one of the above three types, avoiding the additional assumption about constancy of principal curvatures.

If we restrict the above properties (1.1) and (1.2) to the orthogonal distribution \mathcal{D}, then the second fundamental tensor A of M satisfies the following conditions

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\left(A \phi_{i}-\phi_{i} A\right) X, Y\right)=0 \tag{1.4}
\end{equation*}
$$

for any $i=1,2,3$ and for any vector fields X, Y and Z in \mathcal{D}. Then the second fundamental form of M satisfying the condition (1.3) is said to be \mathcal{D}^{\perp}-parallel . Moreover, the condition (1.3) is weaker than (1.1) (respectively, (1.4) is weaker than (1.2)). Thus it is natural that real hypersurfaces of type A_{1}, and A_{2} should satisfy (1.3) and (1.4). Moreover, by a theorem of Berndt [1] it was known that the orthogonal distribution \mathcal{D} of this type is A-invariant.

About a ruled real hypersurface of $Q P^{m}$ some properties are investigated by Martinez [5] and the first author [9]. It will be shown in section 3 that the second fundamental form of the ruled real hypersurfaces is \mathcal{D}^{\perp}-parallel. Contrary to real hypersurfaces of type A_{1}, A_{2}, and B given by Berndt [1] and Martinez and the first author [6], it can be easily seen that the orthogonal distribution \mathcal{D} of any ruled real hypersurface of $Q P^{m}$ is not A-invariant. From this point of view we give a classification theorem as the following

Theorem. Let M be a real hypersurface in $Q P^{m}, m \geq 3$. If it satisfies (1.3) and (1.4), then M is congruent to one of the following spaces:
$\left(A_{1}\right)$ a tube of radius r over a hyperplane $Q P^{m-1}$, where $0<r<\frac{\pi}{2}$,
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $Q P^{k}(1 \leq k \leq m-2)$, where $0<r<\frac{\pi}{2}$.
(R) a ruled real hypersurface foliated by totally geodesic quaternionic hyperplanes $Q P^{m-1}$.

§2. Preliminaries

Let X be a tangent vector field to M. We write $J_{i} X=\phi_{i} X+f_{i}(X) N, i=1,2,3$, where $\phi_{i} X$ is the tangent component of $J_{i} X$ and $f_{i}(X)=g\left(X, U_{i}\right), i=1,2,3$. As $J_{i}^{2}=-i d, i=1,2,3$, where id denotes the identity endomorphism on $T Q P^{m}$, we get

$$
\begin{equation*}
\phi_{i}^{2} X=-X+f_{i}(X) U_{i}, \quad f_{i}\left(\phi_{i} X\right)=0, \quad \phi_{i} U_{i}=0, \quad i=1,2,3 \tag{2.1}
\end{equation*}
$$

for any X tangent to M. As $J_{i} J_{j}=-J_{j} J_{i}=J_{k}$, where (i, j, k) is a cyclic permutation of $(1,2,3)$ we obtain

$$
\begin{equation*}
\phi_{i} X=\phi_{j} \phi_{k} X-f_{k}(X) U_{j}=-\phi_{k} \phi_{j} X+f_{j}(X) U_{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(X)=f_{j}\left(\phi_{k} X\right)=-f_{k}\left(\phi_{j} X\right) \tag{2.3}
\end{equation*}
$$

for any vector field X tangent to M, where (i, j, k) is a cyclic permutation of $(1,2,3)$. It is also easy to see that for any X, Y tangent to M and $i=1,2,3$

$$
\begin{equation*}
g\left(\phi_{i} X, Y\right)+g\left(X, \phi_{i} Y\right)=0, \quad g\left(\phi_{i} X, \phi_{i} Y\right)=g(X, Y)-f_{i}(X) f_{i}(Y) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{i} U_{j}=-\phi_{j} U_{i}=U_{k} \tag{2.5}
\end{equation*}
$$

(i, j, k) being a cyclic permutation of $(1,2,3)$. From the expression of the curvature tensor of $Q P^{\boldsymbol{m}}, m \geq 2$, we have the equations of Gauss and Codazzi respectively given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+\Sigma_{i=1}^{3}\left\{g\left(\phi_{i} Y, Z\right) \phi_{i} X-g\left(\phi_{i} X, Z\right) \phi_{i} Y\right. \tag{2.6}\\
& \left.+2 g\left(X, \phi_{i} Y\right) \phi_{i} Z\right\}+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\Sigma_{i=1}^{3}\left\{f_{i}(X) \phi_{i} Y-f_{i}(Y) \phi_{i} X+2 g\left(X, \phi_{i} Y\right) U_{i}\right\} \tag{2.7}
\end{equation*}
$$

for any X, Y, Z tangent to M, where R denotes the curvature tensor of M, see [7]. From the expressions of the covariant derivatives of $J_{i}, \quad i=1,2,3$, it is easy to see that

$$
\begin{equation*}
\nabla_{X} U_{i}=-p_{j}(X) U_{k}+p_{k}(X) U_{j}+\phi_{i} A X \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \phi_{i}\right) Y=-p_{j}(X) \phi_{k} Y+p_{k}(X) \phi_{j} Y+f_{i}(Y) A X-g(A X, Y) U_{i} \tag{2.9}
\end{equation*}
$$

for any X, Y tangent to $M,(i, j, k)$ being a cyclic permutation of $(1,2,3)$ and $p_{i}, \quad i=1,2,3$, local 1-forms on $Q P^{m}$.
§3. \mathcal{D}^{\perp}-parallel second fundamental form
Let M be a real hypersurface in a quaternionic projective space $Q P^{m}$, and let \mathcal{D} be a distribution defined by $\mathcal{D}(x)=\left\{X \in T_{x} M: X \perp U_{i}(x), i=1,2,3\right\}$. Then a real hypersurface M in $Q P^{m}$ is said to be \mathcal{D}^{\perp}-parallel if $g\left(\left(\nabla_{X} A\right) Y, Z\right)=0$ for any X, Y and $Z \in \mathcal{D}$.

In this section we define the notion of ruled real hypersurfaces in $Q P^{m}$. By investigating some fundamental properties of these ruled real hypersurfaces we can prove that its second fundamental form is \mathcal{D}^{\perp}-parallel. Moreover, from the condition (1.1) we know that real hypersurfaces of type A_{1} or A_{2} in $Q P^{m}$ have its second fundamental form \mathcal{D}^{\perp}-parallel.

Now in order to prove our theorem in the introduction we need a lemma obtained from the restricted condition (1.4) as the following
Lemma 3.1. Let M be a real hypersurface of $Q P^{m}$. If it satisfies the condition (1.4) for any $i=1,2,3$ and for any vector fields X, Y in \mathcal{D}, then we have

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=\mathfrak{S} g(A X, Y) g\left(Z, V_{i}\right), \quad i=1,2,3 \tag{3.1}
\end{equation*}
$$

where \mathfrak{S} denotes the cyclic sum with respect to X, Y and Z in \mathcal{D} and V_{i} stands for the vector field defined by $\phi_{i} A U_{i}$.
Proof. Taking the covariant derivative of (1.4), for any vector fields X, Y and Z in \mathcal{D} we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) \phi_{i} Y\right. & \left.+A\left(\nabla_{X} \phi_{i}\right) Y+A \phi_{i} \nabla_{X} Y-\left(\nabla_{X} \phi_{i}\right) A Y-\phi_{i}\left(\nabla_{X} A\right) Y, Z\right) \\
& -g\left(\phi_{i} A \nabla_{X} Y, Z\right)+g\left(\left(A \phi_{i}-\phi_{i} A\right) Y, \nabla_{X} Z\right)=0
\end{aligned}
$$

Now let us consider the following for the case where $i=1$

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) Y, \phi_{1} Z\right) & +g\left(\left(\nabla_{X} A\right) Z, \phi_{1} Y\right)=-g\left(\left(\nabla_{X} \phi_{1}\right) Y, A Z\right)-g\left(\phi_{1} \nabla_{X} Y, A Z\right) \\
& +g\left(\left(\nabla_{X} \phi_{1}\right) A Y, Z\right)-g\left(A \nabla_{X} Y, \phi_{1} Z\right)+\Sigma_{i} \theta_{i}(Y) g\left(\phi_{i} A X, Z\right)
\end{aligned}
$$

where $g\left(\left(A \phi_{1}-\phi_{1} A\right) Y, U_{i}\right)$ is denoted by $\theta_{i}(Y)$ and we have used the fact that

$$
\begin{aligned}
g\left(\left(A \phi_{1}-\phi_{1} A\right) Y, \nabla_{X} Z\right) & =\Sigma_{i} \theta_{i}(Y) g\left(U_{i}, \nabla_{X} Z\right) \\
& =-\Sigma_{i} \theta_{i}(Y) g\left(\nabla_{X} U_{i}, Z\right) \\
& =-\Sigma_{i} \theta_{i}(Y) g\left(\phi_{i} A X, Z\right)
\end{aligned}
$$

Then by taking account of (2.8) and (2.9) and using the condition (1.4) again, we have

$$
\begin{align*}
g\left(\left(\nabla_{X} A\right) Y, \phi_{1} Z\right)+ & g\left(\left(\nabla_{X} A\right) Z, \phi_{1} Y\right)=f_{1}(A Z) g(A X, Y)+f_{1}(A Y) g(A X, Z) \tag{3.2}\\
& +\Sigma_{i} \theta_{i}(Z) g\left(\phi_{i} A X, Y\right)+\Sigma_{i} \theta_{i}(Y) g\left(\phi_{i} A X, Z\right)
\end{align*}
$$

In this equation we shall replace X, Y and Z in \mathcal{D} cyclically and we shall then add the second equation to (3.2), from which we subtract the third one. Then by means of Codazzi equation (2.7) we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) Y, \phi_{1} Z\right)= & f_{1}(A Z) g(A X, Y)+\Sigma_{i} \theta_{i}(X) g\left(A \phi_{i} Y, Z\right) \\
& +\Sigma_{i} \theta_{i}(Y) g\left(A \phi_{i} X, Z\right)
\end{aligned}
$$

From this, replacing Z by $\phi_{1} Z$, we have

$$
\begin{align*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)= & g\left(V_{1}, Z\right) g(A X, Y)-\Sigma_{i} \theta_{i}(X) g\left(A \phi_{i} Y, \phi_{1} Z\right) \\
& -\Sigma_{i} \theta_{i}(Y) g\left(A \phi_{i} X, \phi_{1} Z\right) \tag{3.3}
\end{align*}
$$

where V_{1} denotes $\phi_{1} A U_{1}$ and the second term of the right hand side is given by the following

$$
\begin{aligned}
\Sigma_{i} \theta_{i}(X) g\left(A \phi_{i} Y, \phi_{1} Z\right)= & -g\left(X, \phi_{1} A U_{1}\right) g(A Y, Z)+\left\{g\left(A \phi_{1} X, U_{2}\right)\right. \\
& \left.+g\left(A X, U_{3}\right)\right\} g\left(A Y, \phi_{3} Z\right)-\left\{g\left(A \phi_{1} X, U_{3}\right)\right. \\
& \left.-g\left(A X, U_{2}\right)\right\} g\left(A Y, \phi_{2} Z\right)
\end{aligned}
$$

from this, the third term can be given by exchanging X and Y. Thus substituting this into (3.3), we have

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=\mathfrak{S} g\left(V_{1}, Z\right) g(A X, Y)+\alpha(X, Y, Z)+\alpha(Y, X, Z) \tag{3.4}
\end{equation*}
$$

where \mathfrak{S} denotes the cyclic sum with respect to X, Y and Z in \mathcal{D} and $\alpha(X, Y, Z)$ denotes
$-\left\{g\left(A \phi_{1} X, U_{2}\right)+g\left(A X, U_{3}\right)\right\} g\left(A Y, \phi_{3} Z\right)+\left\{g\left(A \phi_{1} X, U_{3}\right)-g\left(A X, U_{2}\right)\right\} g\left(A Y, \phi_{2} Z\right)$
so that, it is skew-symmetric with respect to Y and Z. Thus taking cyclic sum of (3.4) and using the skew-symmetry of $\alpha(X, Y, Z)$ and the equation of Codazzi (2.7), we have the above result for $i=1$. For cases where $i=2$ or 3 by using the similar method we can also prove the above result.

Remark 3.1. Let us denote by $S^{4 m+3}$ a ($4 m+3$)-dimensional unit sphere. Given a real hypersurface of $Q P^{m}$, one can construct a hypersurface N of $S^{4 m+3}$ which is a principal S^{3} - bundle over M with totally geodesic fibres and the projection $\pi: N \rightarrow M$ in such a way that the diagram

is commutative (ι, ι^{\prime} being the isometric immersions). Then it is seen ([1],[7]) that the second fundamental tensor A^{\prime} of N is parallel if and only if the second fundamental tensor A of M satisfies the condition (1.1) or (1.2). Thus M is congruent
to real hypersurfaces of type A_{1} or A_{2} in $Q P^{m}$. Moreover, in this case it satisfies the condition (1.3), that is, its second fundamental form is \mathcal{D}^{\perp}-parallel.

Now let us define a ruled real hypersurface M of $Q P^{m}$ as follows: Let $\gamma: I \rightarrow Q P^{m}$ be any regular curve. Then for any $t(\in I)$ let $Q P_{(t)}^{m-1}$ be a totally geodesic quaternionic hypersurface of $Q P^{m}$ which is orthogonal to a quaternionic cubic spanned by $\gamma^{\prime}(t)$, and $J_{i} \gamma^{\prime}(t), i=1,2,3$. Set $M=\left\{x \in Q P_{(t)}^{m-1}: t \in I\right\}$. Then ,by the construction, M becomes a real hypersurface of $Q P^{m}$, which is called a ruled real hypersurface. This construction gives us that there are many ruled real hypersurfaces of $Q P^{m}$. Let \mathcal{D} be a distribution defined by $\mathcal{D}(x)=\left\{X \in T_{x} M: X \perp U_{i}(x), i=1,2,3\right\}$ in the tangent space $T_{x} M$ of M at any point x in M. Then from this construction it can be easily verified that

$$
\begin{equation*}
A U_{i}=\Sigma_{j} \alpha_{i j} U_{j}+\epsilon_{i} X_{i}, A X_{i}=\Sigma_{j} \epsilon_{j} g_{i j} U_{j}, A X=0 \tag{3.5}
\end{equation*}
$$

for any vector field X orthogonal to U_{i} and X_{i}, where $g_{i j}=g\left(X_{i}, X_{j}\right)$ and $X_{i}, i=$ $1,2,3$, denote unit vector fields in \mathcal{D}, and $\epsilon_{i}\left(\epsilon_{i} \neq 0\right), \alpha_{i j}$ are smooth functions on M. Moreover, a unit vector field X_{i} can be defined only for a non vanishing ϵ_{i}. But for such a ruled real hypersurface we know that at least one of $\epsilon_{i}, i=1,2,3$, can not vanish.

From Remark 3.1 we know that real hypersurfaces of type A_{1}, or A_{2} in $Q P^{m}$ are \mathcal{D}^{\perp}-parallel, because the condition (1.3) is weaker than the condition (1.1). Further, we can verify that ruled real hypersurfaces in $Q P^{m}$ are \mathcal{D}^{\perp}-parallel by the following

Proposition 3.2. Let M be a ruled real hypersurface in $Q P^{m}$. Then the second fundamental form of M is \mathcal{D}^{\perp}-parallel.
Proof. Let M be a ruled real hypersurface. Then the expression of its second fundamental form is given by (3.5).

Now let us consider for the case where all of $\epsilon_{i}, i=1,2,3$ do not vanish. Then we denote by \mathcal{D}_{1} a subdistribution of the tangent space $T_{x} M, x \in M$, defined by $\mathcal{D}_{1}(x)=\left\{U_{i}(x), X_{i}(x): i=1,2,3\right\}$.

Now by (3.5) we have

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) Y, Z\right) & =g\left(\nabla_{X}(A Y)-A \nabla_{X} Y, Z\right) \\
& =-g\left(A \nabla_{X} Y, Z\right) \\
& =0
\end{aligned}
$$

for any $X, Y, Z \in \mathcal{D}_{1}^{\perp}$. Also from (2.8) for any $X, Y \in \mathcal{D}_{1}^{\perp}$ we have

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) Y, X_{j}\right) & =g\left(\left(\nabla_{X}(A Y)-A \nabla_{X} Y, X_{j}\right)\right. \\
& =-g\left(\nabla_{X} Y, A X_{j}\right) \\
& =\Sigma \epsilon_{j} g_{k j} g\left(Y, \nabla_{X} U_{k}\right) \\
& =0
\end{aligned}
$$

so that, by using the equation of Codazzi (2.7)

$$
\begin{aligned}
g\left(\left(\nabla_{X_{j}} A\right) Y, Z\right) & =g\left(\left(\nabla_{Y} A\right) X_{j}, Z\right)=0 . \\
- & 190-
\end{aligned}
$$

Moreover, for any $X, Z \in \mathcal{D}_{1}^{\perp}$ we have the following

$$
\begin{aligned}
g\left(\left(\nabla_{X_{j}} A\right) X_{k}, Z\right) & =g\left(\left(\nabla_{X_{j}}\left(A X_{k}\right)-A \nabla_{X_{j}} X_{k}, Z\right)\right. \\
& =g\left(\Sigma_{l} X_{j}\left(\epsilon_{l} g_{k l}\right) U_{l}+\Sigma_{l} \epsilon_{l} g_{k l} \nabla_{X_{j}} U_{l}, Z\right) \\
& =0 \\
g\left(\left(\nabla_{X} A\right) X_{k}, X_{l}\right)= & g\left(\left(\nabla_{X_{k}} A\right) X, X_{l}\right)=g\left(\left(\nabla_{X_{k}} A\right) X_{l}, X\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(\left(\nabla_{X_{i}} A\right) X_{j}, X_{k}\right)= & g\left(\nabla_{X_{i}}\left(A X_{j}\right)-A \nabla_{X_{i}} X_{j}, X_{k}\right) \\
= & g\left(\Sigma_{l} X_{i}\left(\epsilon_{l} g_{j l}\right) U_{l}+\Sigma_{l} \epsilon_{l} g_{j l} \nabla_{X_{i}} U_{l}, X_{k}\right) \\
& -g\left(\nabla_{X_{i}} X_{j}, A X_{k}\right) \\
= & \Sigma_{l} \epsilon_{l} g_{k l} g\left(X_{j}, \nabla_{X_{i}} U_{l}\right) \\
= & 0 .
\end{aligned}
$$

From these formulas we have the above assertion. Using the same method for the cases where one or two of ϵ_{i} do not vanish, we can also obtain the above assertion.

Also for the case where M is a real hypersurface of type B in $Q P^{m}$ we have the following
Proposition 3.3. Let M be a real hypersurface of type B in $Q P^{m}$. Then the second fundamental form of M is \mathcal{D}^{\perp}-parallel.

Proof. The tangent space $T_{x} M$ of M can be decomposed as follows

$$
T_{x} M=V_{\lambda_{1}} \oplus V_{\lambda_{2}} \oplus V_{\mu_{1}} \oplus V_{\mu_{2}}
$$

where $V_{\lambda_{i}}, V_{\mu_{i}}, i=1,2$ are eigenspaces of principal vectors with principal curvatures $\lambda_{1}=\operatorname{cotr}, \lambda_{2}=-\operatorname{tanr}, \mu_{1}=2 \operatorname{cotr}$, and $\mu_{2}=-2 \tan 2 r$, where $0<r<\frac{\pi}{4}$ or $\frac{\pi}{4}<r<\frac{\pi}{2}$, respectively. Then we can take an orthonormal basis $\left\{e_{1}, \ldots, e_{\boldsymbol{m}-1}\right.$: $\left.\phi_{1} e_{1}, \ldots, \phi_{1} e_{m-1}: \phi_{2} e_{1}, \ldots, \phi_{2} e_{m-1}: \phi_{3} e_{1}, \ldots, \phi_{3} e_{m-1}, U_{1}, U_{2}, U_{3}\right\}$ with principal curvatures cotr,-tanr, 2cot2r, and -2tan2r of multiplicity 2(m-1), 2(m-1), 1 and 2 respectively.

Firstly we know

$$
\begin{aligned}
g\left(\left(\nabla_{e_{j}} A\right) e_{k}, e_{l}\right) & =g\left(\nabla_{e_{j}}\left(A e_{k}\right)-A \nabla_{e_{j}} e_{k}, e_{l}\right) \\
& =\operatorname{cotrg}\left(\nabla_{e_{j}} e_{k}, e_{l}\right)-\operatorname{cotrg}\left(\nabla_{e_{j}} e_{k}, e_{l}\right) \\
& =0
\end{aligned}
$$

where the indices j, k, l run over the range $1,2, \ldots, n$.
Secondly we want to calculate

$$
\begin{align*}
g\left(\left(\nabla_{e_{j}} A\right) e_{k}, \phi_{2} e_{l}\right)= & g\left(\nabla_{e_{j}}\left(A e_{k}\right)-A \nabla_{e_{j}} e_{k}, \phi_{2} e_{l}\right) \\
= & (\operatorname{cotr}+\operatorname{tanr}) g\left(\nabla_{e_{j}} e_{k}, \phi_{2} e_{l}\right) \tag{3.6}\\
& -191
\end{align*}
$$

Thus it suffices to show $g\left(\nabla_{e_{j}} e_{k}, \phi_{2} e_{l}\right)=0$. In fact, by using the equation of Codazzi (2.7) we have

$$
\begin{align*}
\left(\nabla_{\phi_{2} e_{j}} A\right) e_{k}-\left(\nabla_{e_{k}} A\right) \phi_{2} e_{j} & =2 \Sigma_{k} g\left(\phi_{2} e_{j}, \phi_{l} e_{k}\right) U_{l} \\
& =2 \delta_{j k} U_{2} \tag{3.7}
\end{align*}
$$

from which, the left side becomes

$$
\left(\nabla_{\phi_{2} e_{j}} A\right) e_{k}-\left(\nabla_{e_{k}} A\right) \phi_{2} e_{j}=(\operatorname{cotr} I-A) \nabla_{\phi_{2} e_{j}} e_{k}-(-\operatorname{tanr} I-A) \nabla_{e_{k}} \phi_{2} e_{j}
$$

From these formulas, taking the inner product with e_{l}, we have

$$
\begin{aligned}
0 & =g\left((\operatorname{cotr} I-A) \nabla_{\phi_{2} e_{j}} e_{k}, e_{l}\right)+g\left((\operatorname{tanr} I+A) \nabla_{e_{k}} \phi_{2} e_{j}, e_{l}\right) \\
& =(\operatorname{cotr}+\operatorname{tanr}) g\left(\left(\nabla_{e_{k}} \phi_{2} e_{j}, e_{l}\right)\right.
\end{aligned}
$$

where we have used the fact that the first term in the right side of the first equality vanishes. From this, together with (3.6) we know

$$
\begin{equation*}
g\left(\left(\nabla_{e_{j}} A\right) e_{k}, \phi_{2} e_{l}\right)=0 \tag{3.8}
\end{equation*}
$$

Finally we can also obtain the following

$$
\begin{aligned}
g\left(\left(\nabla_{e_{j}} A\right) \phi_{2} e_{k}, \phi_{3} e_{l}\right) & =-\operatorname{tanrg}\left(\nabla_{e_{j}} \phi_{2} e_{k}, \phi_{3} e_{l}\right)+\operatorname{tanrg}\left(\nabla_{e_{j}} \phi_{2} e_{k}, \phi_{3} e_{l}\right) \\
& =0, \\
g\left(\left(\nabla_{e_{j}} A\right) \phi_{2} e_{k}, \phi_{2} e_{l}\right) & =-\operatorname{tanrg}\left(\nabla_{e_{j}} \phi_{2} e_{k}, \phi_{2} e_{l}\right)+\operatorname{tanrg}\left(\nabla_{e_{j}} \phi_{2} e_{k}, \phi_{2} e_{l}\right) \\
& =0
\end{aligned}
$$

Therefore these formulas and (3.8) imply that the second fundamental form of M is \mathcal{D}^{\perp}-parallel.

Remark 3.4. For real hypersurfaces of type B in $Q P^{m}$ it can be easily seen that they do not satisfy the condition (1.4). In fact, for the case $i=2$ we have

$$
A \phi_{2} e_{k}-\phi_{2} A e_{k}=-(t a n r+\operatorname{cotr}) \phi_{2} e_{k}
$$

so that $g\left(A \phi_{2} e_{k}-\phi_{2} A e_{k}, \phi_{2} e_{k}\right)=-(t a n r+\cot r) \neq 0$ for $0<r<\frac{\pi}{4}$ or $\frac{\pi}{4}<r<\frac{\pi}{2}$.

§4. Proof of the Theorem

The purpose of this section is to prove the main theorem in the introduction. Now let us denote by \mathcal{D} the distribution in M orthogonal to $\mathcal{D}^{\perp}=S p a n\left\{U_{1}, U_{2}, U_{3}\right\}$, where $U_{i}=-J_{i} N, N$ is a unit normal to M. Now we prove the main theorem case by case. Thus firstly we consider the following.

Case 1) \mathcal{D} is A-invariant on M. That is, $g\left(A \mathcal{D}, \mathcal{D}^{\perp}\right)=0$ on M. Then by a theorem of Berndt [1] M is congruent to one of either type A_{1}, or A_{2} or B. For the case where M is of type either A_{1} or A_{2} we know that the conditions (1.3) and (1.4) hold on it (see Remark 3.1). Though Proposition 3.3 gives that real hypersurfaces
of type B satisfy the condition (1.3), but as was shown in Remark 3.4 they do not satisfy the condition (1.4). Thus real hypersurfaces of type B do not appear among them.

Case 2) \mathcal{D} is not A-invariant on M, that is, a set $M_{0}=\left\{p \in M: g\left(A \mathcal{D}, \mathcal{D}^{\perp}\right)_{p} \neq 0\right\}$ is not empty. Then we can prove this case in two steps. First one is to show that $g(A \mathcal{D}, \mathcal{D})=0$ on M_{0}, which means that M_{0} is congruent to a ruled real hypersurface. And the other one is to show that the set M_{0} can be extended to the whole set M.

On M_{0} we can put $A U_{i}=\epsilon_{i} X_{i}+\Sigma_{j} \alpha_{i j} U_{j}$. Then from the definition of the set M_{0} we know that at least one of $\epsilon_{i}, i=1,2,3$ must not vanish. Thus for convienience sake let us put $\epsilon_{1} \neq 0$. Then we can write

$$
\begin{aligned}
V_{1} & =\phi_{1} A U_{1} \\
& =\epsilon_{1} \phi_{1} X_{1}+\Sigma_{j} \alpha_{1 j} \phi_{1} U_{j}, X_{1} \in \mathcal{D} .
\end{aligned}
$$

From the assumption of (1.3) and Lemma 3.1 we have the following

$$
\epsilon_{1} g\left(\phi_{1} X_{1}, Z\right) g(A X, Y)+\epsilon_{1} g\left(\phi_{1} X_{1}, Y\right) g(A Z, X)+\epsilon_{1} g\left(\phi_{1} X_{1}, X\right) g(A Z, Y)=0
$$

for any X, Y and Z in \mathcal{D}. From this, putting $Z=\phi_{1} X_{1}$, then

$$
\begin{equation*}
g(A X, Y)+g\left(\phi_{1} X_{1}, Y\right) g\left(A \phi_{1} X_{1}, X\right)+g\left(\phi_{1} X_{1}, X\right) g\left(A \phi_{1} X_{1}, Y\right)=0 \tag{4.1}
\end{equation*}
$$

where we have used $\epsilon_{1} \neq 0$. So also by taking $Y=\phi_{1} X_{1}$ in (4.1) we have

$$
\begin{equation*}
2 g\left(A X, \phi_{1} X_{1}\right)+g\left(\phi_{1} X_{1}, X\right) g\left(A \phi_{1} X_{1}, \phi_{1} X_{1}\right)=0 \tag{4.2}
\end{equation*}
$$

From this, putting $X=\phi_{1} X_{1}$, we have

$$
g\left(A \phi_{1} X_{1}, \phi_{1} X_{1}\right)=0
$$

From this and (4.2) we have for any X in \mathcal{D}

$$
2 g\left(A X, \phi_{1} X_{1}\right)=0
$$

Thus it can be written

$$
A \phi_{1} X_{1} \in \mathcal{D}^{\perp}
$$

From this and (4.1) it follows that for any X, Y in \mathcal{D}

$$
g(A X, Y)=0
$$

From this we know $A X \in \mathcal{D}^{\perp}$ for any $X \in \mathcal{D}$. That is $g(A \mathcal{D}, \mathcal{D})=0$ on M_{0}. Accordingly, the distribution \mathcal{D} is integrable on M_{0}.

In fact for any $X, Y \in \mathcal{D}$ we have $[X, Y]=\nabla_{X} Y-\nabla_{Y} X \in \mathcal{D}$, because

$$
g\left(\nabla_{X} Y, U_{i}\right)=-g\left(Y, \nabla_{X} U_{i}\right)=-g\left(Y,-p_{j}(X) U_{k}+p_{k}(X) U_{j}+\phi_{i} A X\right)=0
$$

Now we want to show that M_{0} coincides with M. Thus let us suppose that the interior of $M-M_{0}$ is not empty. Then on this open subset $g\left(A \mathcal{D}, \mathcal{D}^{\perp}\right)=0$. So by a theorem of Berndt [1] this open set is congruent to an open part of one of real hypersurfaces of type A_{1}, A_{2} and B. From this we know that all of its principal curvatures are constant on $\operatorname{Int}\left(M-M_{0}\right)$. Thus by the continuity of principal curvatures $\operatorname{Int}\left(M-M_{0}\right)$ must be closed and open. Since we have assumed the set M_{0} is not empty and M is connected, $\operatorname{Int}\left(M-M_{0}\right)$ must be empty and therefore by the continuity of principal curvatures again we can conclude that M_{0} coincides with M. Accordingly, the distribution \mathcal{D} is integrable on M.

Moreover, any integral manifold of \mathcal{D} is totally geodesic in $Q P^{m}$. In fact, for any $X, Y \in \mathcal{D}$ we write

$$
D_{X} Y=\nabla^{\prime}{ }_{X} Y+\Sigma_{i} \sigma_{i}(X, Y) U_{i}+\rho(X, Y) N
$$

where D and ∇^{\prime} denote the connection of $Q P^{m}$ and the induced connection from ∇ defined on an integral manifold of the distribution \mathcal{D} respectively.

For this if we take the inner product with U_{i}, we have

$$
g\left(D_{X} Y, U_{i}\right)=g\left(\nabla_{X} Y, U_{i}\right)=-g\left(Y, \phi_{i} A X\right)=0
$$

This means $\sigma_{i}(X, Y)=0$. Also taking the inner product with the unit normal N, we have $\rho(X, Y)=0$. Moreover, it can be easily verified that \mathcal{D} is J_{i}-invariant, $i=1,2$, and 3, and its integral manifold is a quaternionic manifold and therefore quaternionic hyperplane $Q P^{m-1}$ of $Q P^{m}$. Thus M is locally congruent to a ruled real hypersurface. From this we complete the proof of our theorem.

References

[1] J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9-26.
[2] T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[3] S. Ishihara, Quaternion Kaehlerian manifolds, J. Diff. Geom. 9 (1974), 483500.
[4] U-H. Ki and Y.J. Suh, On a characterization of real hypersurfaces of type A in a complex space form, Canadian Math. Bull. 37 (1994), 238-244.
[5] A. Martinez, Ruled real hypersurfaces in quaternionic projective space, Anal. Sti. Univ. Al I Cuza 34 (1988), 73-78.
[6] A. Martinez and J.D. Pérez, Real hypersurfaces in quaternionic projective space, Ann. Math. Pura Appl. 145 (1986), 355-384.
[7] J.S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kodai Math. Sem. Rep. 29 (1977), 22-61.
[8] J.D. Pérez, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} A$ = 0, J. Geom. 49 (1994), 166-177.
[9] J.D. Pérez, A characterization of real hypersurfaces of quaternionic projective space, Tsukuba J. Math. 15 (1991), 315-323.
[10] J.D. Pérez and Y.J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} R=0$, to appear in Differential Geom. and its Appl.
[11] R. Takagi, On homogeneous real hypersurfaces of a complex projective space, Osaka J. Math. 10 (1973), 495-506.

Juan De Dios Pérez
Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain
E-mail: jdperez@goliat.ugr.es

Young Jin Suh

Department of Mathematics,
Kyungpook National University,
Taegu 702-701, Korea
E-mail: yjsuh@bh.kyungpook.ac.kr

Received April 3, 1996 Revised July 12, 1996

[^0]: 1991 Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

 * The second author was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1995 and partly by TGRC-KOSEF.

