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ON REAL HYPERSURFACES IN QUATERNIONIC
PROJECTIVE SPACE WITH

$\mathcal{D}^{\perp}$-PARALLEL SECOND FUNDAMENTAL FORM

JUAN DE DIOS P\’EREZ AND YOUNG JIN SUH*

ABSTRACT. In this paper we give a complete claesification of real hypersurfaces in
a quaternionic projective $8paceQP^{m}8atisfying$ certain conditions on the orthogonal
distribution $\mathcal{D}$ .

\S 1. Introduction

Throughout this paper let us denote by $M$ a connected real hypersurface in a
quaternionic projective space $QP^{m},m\geq 3$ , endowed with the metric $g$ of constant
quaternionic sectional curvature 4. Let $N$ be a unit local normal vector field on $M$

and $U:=-J_{i}N,$ $i=1,2,3$ , where $\{J_{i}\}_{i=1,2,3}$ is a local basis of the quaternionic
structure of $QP^{m},$ $[3]$ . Several examples of such real hypersurfaces are well known,
see for instance ([1],[5],[6],[7]).

Now, let us consider the folowing conditions that the second fundamental tensor
$A$ of $M$ in $QP^{m}$ may $satis\theta$

(1.1) $(\nabla_{X}A)Y=-\Sigma_{i=1}^{3}\{f_{1}(Y)\phi_{i}X+g(\phi_{i}X,Y)U_{1}\}$ ,

(1.2) $g((A\phi_{i}-\phi_{i}A)X,Y)=0$ ,

for any $i=1,2,3$ , and any tangent vector fields $X$ and $Y$ of $M$ , where the connection
of $M$ induced from the connection of $QP^{m}$ is denoted by $\nabla$ .

Pak [7] investigated the above conditions and showed that they are equivalent to
each other. Moreover he used the condition (1.1) to find a lower bound of $\Vert\nabla A||$

for real hypersurfaces in $QP^{m}$ . In fact, it was shown that $||\nabla A||^{2}\geq 24(m-1)$ for
such hypersurfaces and the equality holds if and only if the condition (1.1) holds.
In this case it was also known that $M$ is localy congruent to a real hypersurface
of type $A_{1}$ or $A_{2}$ , which means a tube of radius $r$ over $QP^{k}(1\leq k\leq m-1)$ in the
notion of Berndt [1], and Martinez and the first author [5].

Now let us define a distribution $\mathcal{D}$ by $\mathcal{D}(x)=\{X\in T_{x}M : X\perp Ui(x), i=1,2,3\}$

$x\in M$ , of a real hypersurface $M$ in $QP^{m}$ , which is orthogonal to the structure vector
fields $\{U_{1}, U_{2}, U_{3}\}$ and invariant with respect to structure tensors $\{\phi_{1}, \phi_{2}, \phi_{3}\}$ , and
by $D^{\perp}=Span\{U_{1}, U_{2}, U_{3}\}$ its orthogonal complement in $TM$ .
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There exist many studies about real hypersurfaces of quaternionic projective
space $QP^{m}$ . Among them Martinez and the first author [6] have classified real
hypersurfaces of $QP^{m}$ with constant principal curvatures when the distribution $\mathcal{D}$

is invariant by the second fundamental tensor, that is , the shape operator $A$ . It was
shown that these real hypersurfaces of $QP^{m}$ could be divided into three types which
are said to be of type $A_{1},A_{2}$ , and $B$ , where a real hypersurface of type $B$ denotes a
tube over a complex projective space $CP^{m}$ . Hereafter, let us say A-invariant when
the distribution $\mathcal{D}$ is invariant by the $8hape$ operator $A$ .

As a further improvement of this result, Berndt [1], recently $8howed$ that any real
hypersurfaces of $QP^{m}$ satisfying $g(A\mathcal{D},\mathcal{D}^{\perp})=0$ must be of one of the above three
types, avoiding the additional assumption about constancy of principal curvatures.

If we restrict the above properties (1.1) and (1.2) to the orthogonal distribution
$\mathcal{D}$ , then the second fiidmentd tensor $A$ of $Msatisfie8$ the folowing conditions

(1.3) $g((\nabla_{X}A)Y, Z)=0$

and

(1.4) $g((A\phi_{i}-\phi_{i}A)X,Y)=0$

for any $i=1,2,3$ and for any vector fields $X,$ $Y$ and $Z$ in $\mathcal{D}$. Then the second
fundarnental fom of $Msati\Phi ing$ the condition (1.3) is said to be $D^{\perp}$-parallel.
Moreover, the condition (1.3) is weaker than (1.1) (respectively, (1.4) is weaker
than (1.2)). Thus it is natural that real hypersurfaces of type $A_{1}$ , and $A_{2}$ should
satisfy (1.3) and (1.4). Moreover, by a theorem of Berndt [1] it was known that the
orthogonal distribution $\mathcal{D}$ of this type is A-invanant.

About a ruled real hypersurface of $QP^{m}$ some properties are investigated by
Martinez [5] and the first author [9]. It wil be shown in section 3 that the second
fUidamental fom of the ruled real hypersurfaces is $D^{\perp}$-parallel. Contrary to real
hypersurfaces of type $A_{1},$ $A_{2}$ , and $B$ given by Berndt [1] and Martinez and the first
author [6], it can be easily seen that the orthogonal distribution $\mathcal{D}$ of any ruled
real hypersurface of $QP^{m}$ is not A-invariant. From $thi8$ point of view we give a
classification theorem as the folowing

Theorem. Let $M$ be a real hypersurface in $QP^{m},m\geq 3$ . If it satisfies $($1. $S)$ and
(1.4), then $M$ is congruent to one of th $e$ following spaces:

$(A_{1})$ a tube of radius $r$ over a hyperplane $QP^{m-1}$ , where $0<r<\frac{\pi}{2}$ ,
$(A_{2})$ a tube of radius $r$ over a totally geodesic $QP^{k}(1\leq k\leq m-2)$ , where

$0<r<\frac{\pi}{2}$ .
$(R)$ a ruled real hypersurface fohated by totally geodesic quatemionic hyperplanes

$QP^{m-1}$ .
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\S 2. Preliminaries

Let $X$ be a tangent vector field to $M$ . We write $J_{1}X=\phi_{i}X+f:(X)N,$ $i=1,2,3$ ,
where $\phi_{i}X$ is the tangent component of $J_{i}X$ and $f_{1}(X)=g(X, U;),$ $i=1,2,3$ . As
$J^{2}=-id,$ $i=1,2,3$ , where $id$ denotes the identity endomorphism on $TQP^{m}$ , we
get

(2.1) $\phi_{i}^{2}X=-X+f_{i}(X)U_{i}$ , $f_{i}(\phi_{i}X)=0$ , $\phi_{i}U_{i}=0$ , $i=1,2,3$

for any $X$ tangent to $M$ . As $J_{i}J_{j}=-J_{j}J;=J_{k}$ , where $(i,j,k)$ is a cyclic permu-
tation of (1, 2, 3) we obtain

(2.2) $\phi_{i}X=\phi_{j}\phi_{k}X-f_{k}(X)U_{j}=-\phi k\phi jX+fj(X)Uk$

and

(2.3) $f_{1}(X)=f_{j}(\phi_{k}X)=-f_{k}(\phi_{j}X)$

for any vector field $X$ tangent to $M$ , where $(i,j, k)$ is a cyclic permutation of $(_{l}1,2,3)$ .
It is also easy to see that for any $X,$ $Y$ tangent to $M$ and $i=1,2,3$

(2.4) $g(\phi_{i}X,Y)+g(X,\phi_{i}Y)=0$ , $g(\phi_{i}X,\phi_{i}Y)=g(X,Y)-fi(X)fi(Y)$

and

(2.5) $\phi_{i}U_{j}=-\phi_{j}U_{1}=U_{k}$

$(i,j, k)$ being a cyclic permutation of (1, 2, 3). From the expression of the curvature
tensor of $QP^{m},$ $m\geq 2$ , we have the equations of Gauss and Codazzi respectively
given by

(2.6)
$R(X,Y)Z=g(Y, Z)X-g(X, Z)Y+\Sigma_{1=1}^{3}\{g(\phi;Y, Z)\phi iX-g(\phi iX, Z)\phi iY$

$+2g(X,\phi_{i}Y)\phi iZ\}+g(AY, Z)AX-g(AX, Z)AY$,

and

(2.7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\Sigma_{1=1}^{3}\{f_{1}(X)\phi;Y-f_{i}(Y)\phi_{i}X+2g(X,\phi_{i}Y)U_{i}\}$

for any $X,$ $Y,$ $Z$ tangent to $M$ , where $R$ denotes the curvature tensor of $M$ , see [7].
From the expressions of the covariant derivatives of $J;$ , $i=1,2,3$ , it is easy to

see that

(2.8) $\nabla_{X}U_{i}=-p_{j}(X)U_{k}+p_{k}(X)Uj+\phi iAX$

and

(2.9) $(\nabla_{X}\phi_{i})Y=-p_{j}(X)\phi_{k}Y+p_{k}(X)\phi_{j}Y+f_{i}(Y)AX-g(AX, Y)Ui$

for any $X,$ $Y$ tangent to $M,$ $(i,j, k)$ being a cyclic permutation of (1, 2, 3) and
$p_{i}$ , $i=1,2,3$ , local l-forms on $QP^{m}$ .
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\S 3. $\mathcal{D}^{\perp}$ -parallel second fundamental form

Let $M$ be a real hypersurface in a quaternionic projective space $QP^{m}$ , and let
$\mathcal{D}$ be a distribution defined by $D(x)=\{X\in T_{x}M : X\perp U_{i}(x),i=1,2,3\}$ . Then a
real hypersurface $M$ in $QP^{m}$ is said to be $D^{\perp}$-parvsllel if $g((\nabla xA)Y, Z)=0$ for any
$X,Y$ and $Z\in \mathcal{D}$.

$h1$ this section we define the notion of ruled real hypersurfaces in $QP^{m}$ . By
investigating some ftndamental properties of these ruled real hypersurfaces we can
prove that its second fiidmentd form $i8\mathcal{D}^{\perp}$-parallel. Moreover, $hom$ the condition
(1.1) we know that real hypersurfaces of type $A_{1}$ or $A_{2}$ in $QP^{m}$ have its second
fundamental form $\mathcal{D}^{\perp}$-parallel.

Now in order to prove our $th\infty rem$ in the introduction we need a lemma obtained
ffom the restricted condition (1.4) as the folowing

Lemma 3.1. Let $M$ be a rcal hypersurface of $QP^{m}$ . If it satisfies the condition
(1.4) for any $i=1,2,3$ and for any vector fields $X,Y$ in $\mathcal{D}_{l}$ then we have

(3.1) $g((\nabla_{X}A)Y, Z)=6g(AX,Y)g(Z,V_{i})$ , $i=1,2,3$

where $\mathfrak{S}$ denotes the cyclic sum with respect to $X,Y$ and $Z$ in $\mathcal{D}$ and $V_{i}$ stands for
the vector field defined by $\phi_{i}AU_{i}$ .
Proof. Taking the covariant derivative of (1.4), for any vector fields $X,Y$ and $Z$

in $\mathcal{D}$ we get

$g((\nabla xA)\phi iY+A(\nabla x\phi i)Y+A\phi i\nabla xY-(\nabla x\phi i)AY-\phi i(\nabla xA)Y, Z)$

$-g(\phi_{i}A\nabla xY, Z)+g((A\phi i-\phi iA)Y,\nabla xZ)=0$ .

Now let us consider the folowing for the case where $i=1$

$g((\nabla_{X}A)Y,\phi_{1}Z)+g((\nabla_{X}A)Z,\phi_{1}Y)=-g((\nabla_{X}\phi_{1})Y,AZ)-g(\phi_{1}\nabla_{X}Y,AZ)$

$+g((\nabla x\phi_{1})AY,Z)-g(A\nabla xY,\phi_{1}Z)+\Sigma_{i}\theta_{i}(Y)g(\phi_{i}AX, Z)$ ,

where $g((A\phi_{1}-\phi_{1}A)Y, Ui)$ is denoted by $\theta_{i}(Y)$ and we have used the fact that

$g((A\phi_{1}-\phi_{1}A)Y,\nabla_{X}Z)=\Sigma_{i}\theta_{i}(Y)g(U:,\nabla_{X}Z)$

$=-\Sigma_{i}\theta_{i}(Y)g(\nabla_{X}U_{i}, Z)$

$=-\Sigma_{i}\theta_{i}(Y)g(\phi_{i}AX, Z)$ .

Then by taking account of (2.8) and (2.9) and using the condition (1.4) again, we
have

(3.2)
$g((\nabla xA)Y,\phi_{1}Z)+g((\nabla_{X}A)Z,\phi_{1}Y)=f_{1}(AZ)g(AX,Y)+f_{1}(AY)g(AX, Z)$

$+\Sigma_{i}\theta i(Z)g(\phi iAX,Y)+\Sigma_{i}\theta_{i}(Y)g(\phi_{i}AX, Z)$ .
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In this equation we shall replace $X,$ $Y$ and $Z$ in $\mathcal{D}$ cyclically and we shal then
add the second equation to (3.2), from which we subtract the third one. Then by
means of Codazzi equation (2.7) we get

$g((\nabla xA)Y,\phi_{1}Z)=f_{1}(AZ)g(AX,Y)+\Sigma_{i}\theta i(X)g(A\phi iY, Z)$

$+\Sigma_{i}\theta_{i}(Y)g(A\phi_{i}X, Z)$

Fhrom this, replacing $Z$ by $\phi_{1}Z$ , we have

$g((\nabla xA)Y, Z)=g(V_{1}, Z)g(AX,Y)-\Sigma i\theta i(X)g(A\phi;Y,\phi_{1}Z)$

(3.3)
$-\Sigma;\theta_{i}(Y)g(A\phi;X,\phi_{1}Z)$ .

where $V_{1}$ denotes $\phi_{1}AU_{1}$ and the second term of the right hand side is given by the
folowing

$\Sigma_{i}\theta i(X)g(A\phi iY,\phi_{1}Z)=-g(X, \phi_{1}AU_{1})g(AY, Z)+\{g(A\phi_{1}X, U_{2})$

$+g(AX, U_{3})\}g(AY,\phi 3Z)-\{g(A\phi_{1}X, U_{3})$

$-g(AX, U_{2})\}g(AY, \phi_{2}Z)$ ,

from this, the third term can be given by exchanging $X$ and Y. Thus substituting
this into (3.3), we have

(3.4) $g((\nabla_{X}A)Y, Z)=6g(V_{1}, Z)g(AX, Y)+\alpha(X, Y, Z)+\alpha(Y,X, Z)$

where 6 denotes the cyclic sum with respect to $X,Y$ and $Z$ in $\mathcal{D}$ and $\alpha(X,Y, Z)$

denotes

$-\{g(A\phi_{1}X, U_{2})+g(AX, U_{3})\}g(AY, \phi_{3}Z)+\{g(A\phi_{1}X, U_{3})-g(AX, U_{2})\}g(AY, \phi_{2}Z)$

so that, it is skew-8ymmetric with respect to $Y$ and $Z$ . Thus taking cyclic $8um$

of (3.4) and using the skew-symmetry of $\alpha(X, Y, Z)$ and the equation of Codazzi
(2.7), we have the above result for $i=1$ . For cases where $i=2$ or 3 by using the
similar method we can also prove the above result.

Remark 3.1. Let us denote by $S^{4m+3}$ a $(4m+3)$-dimensional unit sphere. Given
a real hypersurface of $QP^{m}$ , one can construct a hypersurface $N$ of $S^{4m+3}$ which
is a principal $S^{3}$ –bundle over $M$ with totaly geodesic fibres and the projection
$\pi$ : $N\rightarrow M$ in such a way that the diagram

$N\rightarrow^{\iota}S^{4m+3}$

$\pi\downarrow$ $\downarrow\pi$

$M\rightarrow^{\iota^{\prime}}QP^{m}$

is commutative ( $\iota,\iota^{\prime}$ being the isometric immersions). Then it is seen ([1],[7]) that
the second fundamental tensor $A^{\prime}$ of $N$ is parallel if and only if the second fiida-
mental tensor $A$ of $M$ satisfies the condition (1.1) or (1.2). Thus $M$ is congruent

–189–



to real hypersurfaces of type $A_{1}$ or $A_{2}$ in $QP^{m}$ . Moreover, in this case it satisfies
the condition (1.3), that is, its second fundamental form is $\mathcal{D}^{\perp}$-parallel.

Now let us define a ruled real hypersurface $M$ of $QP^{m}$ as folows: Let $\gamma$ : $I\rightarrow QP^{m}$

be any regular curve. Then for any $t(\in I)$ let $QP_{(\ell)}^{m-1}$ be a totaly geodesic quater-
nionic hypersurface of $QP^{m}$ which is orthogonal to a quaternionic cubic spanned by
$\gamma^{\prime}(t)$ , and $J_{i}\gamma^{\prime}(t),i=1,2,3$ . Set $M=\{x\in QP_{(\ell)}^{m-1} : t\in I\}$ . Then ,by the construc-
tion, $M$ becomes a real hypersurface of $QP^{m}$ , which is called a ruled real hyper-
surface. This construction gives us that there are many ruled real hypersurfaces of
$QP^{m}$ . Let $\mathcal{D}$ be a $di8tribution$ defined by $\mathcal{D}(x)=\{X\in T_{x}M : X\perp Ui(x),i=1,2,3\}$

in the tangent space $T_{x}M$ of $M$ at any point $x$ in $M$. Then &om this construction
it can be easily verified that

(3.5) $AU_{1}=\Sigma_{j}\alpha_{ij}U_{j}+\epsilon_{i}X_{i},$ $AX_{i}=\Sigma_{j}\epsilon_{j}g_{ij}U_{j},$ $AX=0$

for any vector field $X$ orthogonal to $U_{i}$ and $X_{i}$ , where $g|j=g(Xi,X_{j})$ and $X;,i=$

$1,2,3$ , denote unit vector $field8$ in $\mathcal{D}$, and $\epsilon i(\epsilon_{i}\neq 0),$
$\alpha ij$ are smooth functions on $M$ .

Moreover, a unit vector field $X_{i}$ can be defined only for a non vanishing $\epsilon i$ . But for
such a ruled real hypersurface we know that at least one of $\epsilon ii=1,2,3,$ cm not
vanish.

From Remark 3.1 we know that real hypersurfaces of type $A_{1}$ , or $A_{2}$ in $QP^{m}$ are
$\mathcal{D}^{\perp}$-parallel, because the condition (1.3) is weaker than the condition (1.1). Further,
we can $veri\theta$ that ruled real $hypersurface8$ in $QP^{m}$ are $\mathcal{D}^{\perp}$-parallel by the folowing

Proposition 3.2. Let $M$ be a ruled real hypersurface in $QP^{m}$ . Then the second
fundamental form of $M$ is $\mathcal{D}^{\perp}$ -parallel.

Proof. Let $M$ be a ruled real hypersurface. Then the expression of its second
fundamental fom is given by (3.5).

Now let us consider for the case where all of $\epsilon i,i=1,2,3$ do not vanish. Then
we denote by $D_{1}$ a subdistribution of the tangent $8paceT_{x}M,x\in M$ , defined by
$D_{1}(x)=\{U_{i}(x),X_{i}(x) : i=1,2,3\}$ .

Now by (3.5) we have

$g((\nabla_{X}A)Y,Z)=g(\nabla x(AY)-A\nabla_{X}Y,Z)$

$=-g(A\nabla_{X}Y,Z)$

$=0$

for any $X,Y,$ $Z\in \mathcal{D}_{1}^{\perp}$ . Also $hom(2.8)$ for any $X,Y\in D_{1}^{\perp}$ we have

$g((\nabla_{X}A)Y,X_{j})=g((\nabla_{X}(AY)-A\nabla_{X}Y,X_{j})$

$=-g(\nabla_{X}Y,AX_{j})$

$=\Sigma\epsilon_{j}g_{kj}g(Y,\nabla_{X}U_{k})$

$=0$ ,

so that, by using the equation of Codazzi (2.7)

$g((\nabla_{X_{j}}A)Y, Z)=g((\nabla_{Y}A)X_{j},Z)=0$ .
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Moreover, for any $X,$ $Z\in \mathcal{D}_{1}^{\perp}$ we have the folowing

$g((\nabla_{X_{j}}A)X_{k}, Z)=g((\nabla_{X_{j}}(AX_{k})-A\nabla_{X_{j}}X_{k}, Z)$

$=g(\iota j(\epsilon\iota gk\iota)U\iota+\Sigma_{I}\epsilon\iota gk\iota\nabla x_{j}U\iota, Z)$

$=0$ ,

$g((\nabla_{X}A)X_{k},X_{I})=g((\nabla_{X_{k}}A)X,X_{I})=g((\nabla_{X_{k}}A)X_{I},X)=0$ ,

and

$g((\nabla_{X_{i}}A)X_{j},X_{k})=g(\nabla_{X_{i}}(AX_{j})-A\nabla_{X_{i}}X_{j},X_{k})$

$=g(\Sigma_{I}X_{i}(\epsilon\iota g_{jl})U_{I}+\Sigma_{l}\epsilon\iota g_{jI}\nabla_{X_{i}}U_{l},X_{k})$

$-g(\nabla_{X_{i}}X_{j},AX_{k})$

$=\Sigma_{l}\epsilon\iota g_{kI}g(X_{j}, \nabla_{X;}U_{l})$

$=0$ .

From these formulas we have the above assertion. Using the same method for
the cases where one or two of $\epsilon_{i}$ do not vanish, we can also obtain the above
assertion.

Also for the case where $M$ is a real hypersurface of type $B$ in $QP^{m}$ we have the
folowing

Proposition 3.3. Let $M$ be a real hypersurface of type $B$ in $QP^{m}$ . Then the
second fundamental form of $M$ is $\mathcal{D}^{\perp}$ -parallel.

Proof. The tangent space $T_{x}M$ of $M$ can be decomposed as folows

$T_{x}M=V_{\lambda_{1}}\oplus V_{\lambda_{2}}\oplus V_{\mu_{1}}\oplus V_{\mu_{2}}$

where $V_{\lambda_{i}},$ $V_{\mu\{},$ $i=1,2$ are eigenspaces of principal vectors with principal curva-
tures $\lambda_{1}=$ cotr, $\lambda_{2}=$ -tanr, $\mu_{1}=2cotr$ , and $\mu_{2}=-2tan2r$ , where $0<r<\frac{\pi}{4}$

or $\frac{\pi}{4}<r<\frac{\pi}{2}$ respectively. Then we can take an orthonormal basis { $e_{1},$
$\ldots,$ $e_{m-1}$ :

$\phi_{1}e_{1},$
$\ldots,$

$\phi_{1}e_{m-1}$ : $\phi_{2}e_{1},$
$\ldots,$

$\phi_{2}e_{m-1}$ : $\phi_{3}e_{1},$
$\ldots,$

$\phi_{3}e_{m-1},$ $U_{1},$ $U_{2},$ $U_{3}$ } with principal cur-
vatures cotr,-tanr, $2cot2r$ , and $-2tan2r$ of multiplicity $2(m- l),$ $2(m- 1),1$ and 2
respectively.

Firstly we know

$g((\nabla_{e_{j}}A)e_{k}, e_{l})=g(\nabla_{e_{j}}(Ae_{k})-A\nabla_{e_{j}}e_{k}, e_{l})$

$=cotrg(\nabla_{e_{j}}e_{k}, e_{l})-cotrg(\nabla_{\epsilon_{j}}e_{k}, e_{I})$

$=0$ ,

where the indices $j,$ $k,l$ run over the range 1, 2, ..., $n$ .
Secondly we want to calculate

$g((\nabla_{e_{j}}A)e_{k},\phi_{2}e_{l})=g(\nabla_{\epsilon_{j}}(Ae_{k})-A\nabla_{\epsilon_{j}}e_{k}, \phi_{2}e_{I})$

(3.6)
$=(cotr+tanr)g(\nabla_{e_{j}}e_{k},\phi_{2}e_{I})$
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Thus it suffices to show $g(\nabla_{e_{j}}e_{k},\phi_{2}e_{I})=0$ . In fact, by using the equation of
Codazzi (2.7) we have

$(\nabla_{\phi_{2}e_{j}}A)e_{k}-(\nabla_{e_{k}}A)\phi_{2}e_{j}=2\Sigma kg(\phi_{2}eJ,\phi\iota ek)U\iota$

(3.7)
$=2\delta_{jk}U_{2}$ ,

from which, the left side becomes

$(\nabla_{\phi_{2}e_{j}}A)e_{k}-(\nabla_{e_{k}}A)\phi_{2}e_{j}=(cotrI-A)\nabla e-(-tanrI-A)\nabla_{e_{k}}\phi_{2}eJ$ .
From these formulas, taking the inner product with $e_{I}$ , we have

$0=g((cotrI-A)\nabla_{\phi_{2}}e,e\iota)+g((tanrI+A)\nabla_{e_{k}}\phi_{2j}e,e\iota)$

$=(cotr+tanr)g((\nabla_{e_{k}}\phi_{2}e,e)$ ,

where we have used the fact that the first term in the right side of the first equality
vanishes. Fhrom this, together with (3.6) we know

(3.8) $g((\nabla_{e_{j}}A)e_{k},\phi_{2}e_{I})=0$ .

Finaly we can also obtain the folowing

$g((\nabla_{e_{j}}A)\phi_{2}e_{k},\phi_{3}e_{l})=-tanrg(\nabla_{c_{j}}\phi_{2}e_{k},\phi_{3}e_{I})+tanrg(\nabla_{C}i\phi_{2}e_{k},\phi_{3}e_{I})$

$=0$ ,
$g((\nabla_{e_{j}}A)\phi_{2}e_{k},\phi_{2}e\iota)=-tanrg(\nabla_{Cj}\phi_{2}ek,\phi_{2}e\iota)+tanrg(\nabla_{e_{j}}\phi_{2}ek,\phi_{2}e\iota)$

$=0$ .

Therefore these fomulas and (3.8) imply that the second fiidamentd form of $M$

is $\mathcal{D}^{\perp}$ -parallel. $\square $

Remark S.4. For real hypersurfaces of type $B$ in $QP^{m}$ it can be easily $8een$ that
they do not $sati\phi$ the condition (1.4). In fact, for the case $i=2$ we have

$A\phi_{2}e_{k}-\phi_{2}Ae_{k}=-(tanr+cotr)\phi_{2}e_{k}$ ,

so that $g(A\phi_{2}e_{k}-\phi_{2}Ae_{k},\phi_{2}e_{k})=-(tanr+cotr)\neq 0$ for $0<r<\frac{\pi}{4}$ or $\frac{\pi}{4}<r<\frac{\pi}{2}$ .
\S 4. Proof of the Theorem

The purpose of this section is to prove the main theorem in the introduction. Now
let us denote by $D$ the $di8tribution$ in $M$ orthogonal to $\mathcal{D}^{\perp}=Span\{U_{1}, U_{2}, U_{3}\}$ ,
where $U_{1}=-J_{i}N,$ $Ni8$ a unit normal to $M$ . Now we prove the main theorem case
by case. Thus firstly we consider the folowing.

Case 1) $\mathcal{D}$ is A-invariant on $M$ . That is, $g(A\mathcal{D},D^{\perp})=0$ on $M$ . Then by a
theorem of Berndt [1] $M$ is congruent to one of either type $A_{1}$ , or $A_{2}$ or $B$ . For the
case where $M$ is of type either $A_{1}$ or $A_{2}$ we know that the conditions (1.3) and (1.4)
hold on it (see ${\rm Re} mark3.1$ ). Though Proposition 3.3 gives that real hypersurfaces
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of type $B$ satisfy the condition (1.3), but as was shown in Remark 3.4 they do not
satisfy the condition (1.4). Thus real hypersurfaces of type $B$ do not appear among
them.

Case 2) $\mathcal{D}$ is not A-invariant on $M$ , that is, a set $M_{0}=\{p\in M : g(AD,\mathcal{D}^{\perp})_{p}\neq 0\}$

is not empty. Then we can prove this case in two steps. First one is to show
that $g(AD,\mathcal{D})=0$ on $M_{0}$ , which means that $M_{0}$ is congruent to a ruled real
hypersulface. And the other one is to show that the set $M_{0}$ can be extended to the
whole set $M$ .

On $M_{0}$ we can put $AU_{i}=\epsilon_{i}X;+\Sigma_{j}\alpha_{ij}U_{j}$ . Then from the definition of the set $M_{0}$

we know that at least one of $\epsilon_{i},$ $i=1,2,3$ must not vanish. Thus for convienience
sake let us put $\epsilon_{1}\neq 0$ . Then we can write

$V_{1}=\phi_{1}AU_{1}$

$=\epsilon_{1}\phi_{1}X_{1}+\Sigma_{j}\alpha_{1j}\phi_{1}U_{j},$ $X_{1}\in \mathcal{D}$ .

Erom the assumption of (1.3) and Lemma 3.1 we have the folowing

$\epsilon_{1}g(\phi_{1}X_{1}, Z)g(AX,Y)+\epsilon_{1}g(\phi_{1}X_{1},Y)g(AZ,X)+\epsilon_{1}g(\phi 1X1,X)g(AZ,Y)=0$ ,

for any $X,$ $Y$ and $Z$ in $\mathcal{D}$ . Fhrom this, putting $Z=\phi_{1}X_{1}$ , then

(4.1) $g(AX,Y)+g(\phi_{1}X_{1},Y)g(A\phi_{1}X_{1},X)+g(\phi_{1}X_{1},X)g(A\phi_{1}X_{1},Y)=0$ ,

where we have used $\epsilon_{1}\neq 0$ . So also by taking $Y=\phi_{1}X_{1}$ in (4.1) we have

(4.2) $2g(AX,\phi_{1}X_{1})+g(\phi_{1}X_{1},X)g(A\phi_{1}X1, \phi 1X1)=0$ .
From this, putting $X=\phi_{1}X_{1}$ , we have

$g(A\phi_{1}X_{1},\phi_{1}X_{1})=0$ .

From this and (4.2) we have for any $X$ in $D$

$2g(AX, \phi_{1}X_{1})=0$ .

Thus it can be written
$A\phi_{1}X_{1}\in \mathcal{D}^{\perp}$ .

From this and (4.1) it follows that for any $X,$ $Y$ in $\mathcal{D}$

$g(AX, Y)=0$ .

From this we know $AX\in D^{\perp}$ for any $X\in \mathcal{D}$ . That is $g(A\mathcal{D},\mathcal{D})=0$ on $M_{0}$ . Accord-
ingly, the distribution $D$ is integrable on $M_{0}$ .

In fact for any $X,Y\in \mathcal{D}$ we have [X, $Y$] $=\nabla xY-\nabla YX\in \mathcal{D}$ , because

$g(\nabla xY, U_{i})=-g(Y,\nabla_{X}U_{i})=-g(Y, -p;(X)Uk+pk(X)Uj+\phi iAX)=0$ .
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Now we want to show that $M_{0}$ coincides with $M$ . Thus let us suppose that the
interior of $M-M_{0}$ is not empty. Then on this open subset $g(A\mathcal{D},\mathcal{D}^{\perp})=0$ . So by
a theorem of Bemdt [1] this open set is congruent to an open part of one of real
hypersurfaces of type $A_{1},$ $A_{2}$ and $B$ . IFMrom this we lmow that al of its principal
curvatures are constant on Int$(M-M_{0})$ . Thus by the continuity of principal
curvatures Int$(M-M_{0})$ must be closed and open. Since we have assumed the set
$M_{0}$ is not empty and $M$ is connected, Int$(M-M_{0})$ must be empty and therefore
by the continuity of principal curvatures again we can conclude that $M_{0}coincide8$

with $M$ . Accordingly, the distribution $\mathcal{D}$ is integrable on $M$ .
Moreover, any integral manifold of $\mathcal{D}$ is totaly geodesic in $QP^{m}$ . In fact, for any

$X,Y\in D$ we write

$D_{X}Y=\nabla_{X}^{l}Y+\Sigma_{i}\sigma_{i}(X,Y)U_{i}+\rho(X,Y)N$,

where $D$ and $\nabla^{\prime}$ denote the connection of $QP^{m}$ and the induced connection $hom$

$\nabla$ defined on $an$ integral manifold of the distribution $D$ respectively.
For this if we take the inner product with $U_{1}$ , we have

$g(D_{X}Y, U_{i})=g(\nabla_{X}Y, U_{i})=-g(Y,\phi_{i}AX)=0$ .

This means $\sigma_{i}(X,Y)=0$ . Also taking the inner product with the unit normal $N$ , we
have $\rho(X,Y)=0$ . Moreover, it can be easily verified that $Di8J_{i}-invariant,i=1,2$ ,
and 3, and its integral manifold is a quaternionic manifold and therefore quater-
nionic hyperplane $QP^{m-1}$ of $QP^{m}$ . Thus $M$ is locaJly conffuent to a ruled real
hypersurface. IFMrom this we complete the proof of our theorem. $\square $
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