Mathematical Journal of Okayama University

Volume 32, Issue 1 1990 Article 24 JANUARY 1990

On Real Hypersurfaces of a Comples Space Form

U-Hang Ki*

Young Jin Suh[†]

*Kyungpook University †Andong University

Copyright ©1990 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 32 (1990), 207-221

ON REAL HYPERSURFACES OF A COMPLEX SPACE FORM

U-HANG KI* and YOUNG JIN SUH

Introduction. A complex *n*-dimensional Kaehler manifold of constant holomorphic sectional curvature *c* is called a complex space form, which is denoted by $M_n(c)$. Let *F* be its complex structure. The complete and simply connected complex space form consists of a complex projective space CP^n , a complex Euclidean space C^n or a complex hyperbolic space CH^n , according as c > 0, c = 0 or c < 0.

In the study of real hypersurfaces of a complex projective space CP^n , Takagi [11] classified all homogeneous real hypersurfaces of CP^n . He showed also that real hypersurfaces of CP^n with 2 or 3 distinct constant principal curvatures are homogeneous.

On the other hand, Cecil and Ryan [2] studied pseudo-Einstein real hypersurfaces of CP^n on which $\xi = -FC$ is principal, where C is the unit normal vector field on M. They showed that if ξ is principal, then M lies on a tube over a Kaehler submanifold. By making use of this notion and the results of Takagi's classification, Kimura [3] proved the following.

Theorem A. Let M be a connected real hypersurface of \mathbb{CP}^n . Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following

- (A₁) a tube over a hyperplane CP^{n-1} .
- (A₂) a tube over a totally geodesic $CP^k(1 \le k \le n-2)$.
- (B) a tube over a complex quadric Q_{n-1} .
- (C) a tube over $CP^1 \times CP^{(n-1)/2}$ and $n \geq 5$ is odd.
- (D) a tube over a complex Grassmann $G_{2,5}(C)$ and n = 9.
- (E) a tube over a Hermitian symmetric space SO(10)/U(5), and n = 15.

According to Takagi's classification [11], the principal curvatures and their multiplicities of the above homogeneous real hypersurfaces are given.

On the other hand, real hypersurfaces of a complex hyperbolic space CH^n have also been investigated by Berndt [1], Montiel [8], Montiel and

^{*}This research was partially supported by KOSEF.

Romero [9]. In particular, by using the notion of the tube in Cecil and Ryan [2], Montiel [8] also classified the real hypersurface of complex hyperbolic space with at most two distinct principal curvatures. Recently, Berndt [1] classified all real hypersurfaces with constant principal curvature of CH^n under the condition such that ξ is principal. Namely he proved the following.

Theorem B. Let M be a connected real hypersurface of $CH^n (n \ge 2)$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following

- (A₁) a horosphere in CH^n .
- (A₂) a tube over CH^k for a k = 0, 1, ..., n-1.
- (B) a tube over RH^n .

For the principal curvatures and their multiplicities of the above hypersurfaces are also given in [1].

The purpose of this paper is to characterize some real hypersurfaces of $M_n(c)$, $c \neq 0$, by using above classification theorems. The authors would like to express their thanks to the referee for his valuable comments.

1. Preliminaries. Let M be a real hypersurface of a complex n dimensional complex space form $M_n(c)$, and let C be a unit normal vector field on a neighborhood of a point x in M. Let us denote by F the almost complex structure of $M_n(c)$. For any local vector field X on a neighborhood of x in M, the transformations of X and C under F can be given by

$$FX = \phi X + \eta(X)C, FC = -\xi,$$

where ϕ defines a skew-symmetric transformation on the tangent bundle *TM* of *M*, while η and ξ denote a 1-form and a vector field on a neighborhood of *X* in *M* respectively. Then it is seen that $g(\xi, X) = \eta(X)$, where g denotes the induced Riemannian metric on *M*. The set of tensors (ϕ, ξ, η, g) is called an almost contact structure on *M*. They satisfy the following

(1.1)
$$\phi^2 = -I + \eta \otimes \xi, \ \phi \xi = 0, \ \eta(\phi X) = 0, \ \eta(\xi) = 1,$$

where I denotes the identity transformation. Furthermore, the covariant derivatives of the structure tensors are given by

(1.2)
$$(\nabla_{x} \phi) Y = \eta(Y) AX - g(AX, Y)\xi, \quad \nabla_{x} \xi = \phi AX,$$

where ∇ is the Riemannian connection of g and A denotes the shape operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given as follows

(1.3)
$$R(X, Y)Z = c | g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z | / 4 + g(AY, Z)AX - g(AX, Z)AY,$$

(1.4)
$$(\nabla_X A) Y - (\nabla_Y A) X = c | \eta(X) \phi Y - \eta(Y) \phi X - 2g(\phi X, Y) \xi |/4,$$

where R denotes the Riemannian curvature tensor of M and $\nabla_x A$ denotes the covariant derivative of the shape operator A with respect to X.

The Ricci tensor S' of M is the tensor of type (0, 2) given by $S'(X, Y) = tr\{Z \rightarrow R(Z, X)Y\}$. Also it may be regarded as the tensor of type (1,1) and denoted by $S: TM \rightarrow TM$; it satisfies S'(X, Y) = g(SX, Y). From (1.3) we see that the Ricci tensor S of M is given by

(1.5)
$$S = c | (2n+1)I - 3\eta \otimes \xi | / 4 + hA - A^2,$$

where we have put h = trA. A real hypersurface M of $M_n(c)$ is said to be pseudo-Einstein if the Ricci tensor S satisfies

$$SX = aX + b\eta(X)\xi$$

for any vector field X tangent to M and some functions a and b on M.

2. Certain Lemmas. Let M be a real hypersurface of a complex space form $M_n(c)$. The shape operator A of M can be considered as a symmetric (2n-1, 2n-1)-matrix. Now we assume that the structure vector ξ is an eigenvector of A, that is, $A\xi = \alpha\xi$. Then the second formula of (1.2) gives

 $(\nabla_{x} A)\xi = (X\alpha)\xi + \alpha\phi AX - A\phi AX,$

from which it follows that

(2.1)
$$g((\nabla_X A) Y, \xi) = (X\alpha)\eta(Y) + \alpha g(Y, \phi AX) - g(Y, A\phi AX).$$

By using equation of Codazzi to (2.1) we have

(2.2)
$$cg(X, \phi Y)/2 = (X\alpha)\eta(Y) - (Y\alpha)\eta(X) + \alpha g((\phi A + A\phi)X, Y) - 2g(A\phi AX, Y).$$

Putting $X = \xi$ or $Y = \xi$ in (2.2), then we see that $X_{\alpha} = (\xi_{\alpha})\eta(X)$, or $Y_{\alpha} = (\xi_{\alpha})\eta(Y)$ and hence (2.2) reduces to

(2.3)
$$cg(X, \phi Y)/2 = \alpha g((\phi A + A\phi)X, Y) - 2g(A\phi AX, Y).$$

First of all we prove the following.

Lemma 2.1. Let M be a real hypersurface of a complex space form $M_n(c)$. If $\phi A + A\phi = 0$, then c = 0.

Proof. By the assumption we have that ξ is an eigenvector of A. From this assumption, and the almost contact structure (ϕ, ξ, η, g) and (2.3) it follows that

(2.4)
$$A^{2} = -cI/4 + (a^{2} + c/4)\eta \otimes \xi.$$

We notice here that the holomorphic sectional curvature c is non-positive. Thus (2.1) and (2.3) imply

(2.5)
$$g((\nabla_X A) Y, \xi) = -cg(Y, \phi X)/4 + \alpha g(Y, \phi AX) + (X\alpha)\eta(Y).$$

Differentiating (2.4) covariantly along M, we find

(2.6)
$$(\nabla_{x} A) AY + A((\nabla_{x} A) Y) = 2\alpha(\xi\alpha)\eta(X)\eta(Y)\xi + (\alpha^{2} + c/4) \\ \times \{g(\nabla_{x}\xi, Y)\xi + \eta(Y)\nabla_{x}\xi\},$$

from which, taking the skew-symmetric part and using the equation of Codazzi, we have

$$(\nabla_X A)AY - (\nabla_Y A)AX = c\alpha g(\phi X, Y)\xi/2 + \alpha^2 |\eta(Y)\phi AX - \eta(X)\phi AY|,$$

where we have used the fact $\phi A + A\phi = 0$. Equivalently it follows that

$$g(AY, (\nabla_z A)X) - g(AZ, (\nabla_Y A)X) = c\alpha\eta(X)g(\phi Z, Y)/2 + \alpha^2 \{\eta(Y)g(\phi AZ, X) - \eta(Z)g(\phi AY, X)\},$$

from which, also using the equation of Codazzi, we have

(2.7)
$$g(AY, (\nabla_{X} A)Z) - g(AZ, (\nabla_{X} A)Y) = c\alpha/2 | \eta(X)g(Y, \phi Z) + \eta(Y)g(X, \phi Z) + \eta(Z)g(Y, \phi X) | + (\alpha^{2} - c/4) | \eta(Y)g(\phi AZ, X) - \eta(Z)g(\phi AY, X) |.$$

Summing up (2.6) and (2.7), we have

$$(\nabla_{X} A) AY = \alpha(\xi \alpha) \eta(X) \eta(Y) \xi + \alpha^{2} \eta(Y) \phi AX + cg(\phi AY, X) \xi / 4 + c\alpha | -\eta(X) \phi Y - \eta(Y) \phi X + g(Y, \phi X) \xi | / 4.$$

From which, substituting AY into Y and using (2.4) and (2.5), we have that

(2.8)
$$c(\nabla_{x} A) Y = c(\xi \alpha) \eta(X) \eta(Y) \xi + c^{2} | g(\phi Y, X) \xi - \eta(Y) \phi X | / 4 + c\alpha | \eta(X) \nabla_{Y} \xi + g(\nabla_{Y} \xi, X) \xi + \eta(Y) \nabla_{X} \xi |.$$

Now we take an orthonormal frame $|E_i|$ of $T_x(M)$ such that $\nabla_{E_i} E_j = 0$ (i, j, ..., = 1, 2, ..., 2n-1). Differentiating (2.8) with respect to E_i and using

the fact that $E_i \alpha = (\xi \alpha) \eta(E_i)$, it follows from the almost contact structure that we have

$$\sum_{l,j} cg(\phi E_i, E_j)(\nabla_{E_l} \nabla_{E_j} A) Y = \frac{c^2}{4} \sum_i |g(\phi Y, \phi E_i) \nabla_{E_l} \xi - g(\nabla_{E_i} \xi, Y) \phi^2 E_i|$$

$$(2.9) + c\alpha \sum_i |g(\nabla_{E_i} \xi, \phi E_i) \nabla_Y \xi + g(\nabla_{E_i} \nabla_Y \xi - \nabla_{\nabla_{E_i}} Y\xi, \phi E_i) \xi$$

$$+ g(\nabla_{E_i} \xi, Y) \nabla_{\phi E_i} \xi + g(\nabla_Y \xi, \phi E_i) \nabla_{E_i} \xi + \eta(Y) \nabla_{E_i} \nabla_{\phi E_i} \xi|.$$

On the other hand, we have

$$\sum_{t} g(\nabla_{E_{t}} \xi, \phi E_{t}) = \sum_{t} |g(AE_{t}, E_{t}) - g(AE_{t}, \eta(E_{t})\xi)| = 0$$

where in the last step we have used the fact that the mean curvature of A coincides with α because of the assumption $A\phi + \phi A = 0$. From the almost contact structure and the fact ξ is principal the following formula also vanishes.

$$\sum_{i} |g(\nabla_{E_{i}}\xi, Y)\nabla_{\phi E_{i}}\xi + g(\nabla_{Y}\xi, \phi E_{i})\nabla_{E_{i}}\xi| = -\nabla_{AY}\xi + \nabla_{AY}\xi = 0.$$

If we use the formula $c\sum_{i} (\mathcal{P}_{E_{i}} A) E_{i} = c(\xi \alpha) \xi$ and $cg((\mathcal{P}_{\mathfrak{g}} A) Y, \xi) = c(\xi \alpha) \cdot \eta(Y)$ which come from (2.8), then we get

$$c\sum_{i} g(\nabla_{E_{i}}\nabla_{Y}\xi - \nabla_{P_{E_{i}}Y}\xi, \phi E_{i}) = c\{\sum_{i} g(Y, (\nabla_{E_{i}}A)E_{i}) - g((\nabla_{\xi}A)Y, \xi)\} = 0.$$

Also using the formula $c\sum_{i} (\nabla_{E_i} A) E_i = c(\xi \alpha) \xi$, we have

$$c\sum_{l} \nabla_{E_{l}} \nabla_{\phi E_{l}} \xi = c\sum_{l} \left\{ (\nabla_{E_{l}} A) E_{l} - g(\xi, (\nabla_{E_{l}} A) E_{l}) \xi \right\} = 0.$$

Thus from these equations we see that (2.9) reduces to the following

$$\sum_{i,j} cg(\phi E_i, E_j) (\nabla_{E_i} \nabla_{E_j} A) Y = \frac{c^2}{4} \sum_i |g(\phi Y, \phi E_i) \nabla_{E_i} \xi - g(\nabla_{E_i} \xi, Y) \phi^2 E_i |$$
(2.10)

$$= \frac{c^2}{4} |\nabla_Y \xi + \sum_i g(\nabla_{E_i} \xi, Y) E_i| = \frac{c^2}{2} \phi AY,$$

where in the last equality we have used the assumption $A\phi + \phi A = 0$.

If we use the Ricci-formula to (2.10) for the shape operator A, then we get

(2.11)
$$c\sum_{i,j} g(\phi E_i, E_j) | R(E_i, E_j) AY - A(R(E_i, E_j) Y) | = c^2 \phi AY.$$

U·H. KI and Y. J. SUH

On the other hand, from the equations of Gauss and the assumption $A\phi + \phi A = 0$ it follows that

$$\sum_{i,j} g(\phi E_i, E_j) R(E_i, E_j) Y = \frac{c}{4} \sum_i |g(\phi E_i, Y) E_i - g(E_i, Y) \phi E_i + g(\phi^2 E_i, Y) \phi E_i - g(\phi E_i, Y) \phi^2 E_i - 2g(\phi E_i, \phi E_i) \phi Y |$$

+
$$\sum_i |g(A\phi E_i, Y) AE_i - g(AE_i, Y) A\phi E_i | = -cn\phi Y + 2A^2 \phi Y,$$

from which together with (2.4), (2.11) reduces to

212

$$c^2 \phi A Y = 0.$$

If $c \neq 0$, then $\phi AY = 0$. It follows from the almost contact structure that we have $AY = \alpha \eta(Y)\xi$. The rank of A at a point x in M is called the type number and is denoted by t(x). Thus it means that the type number t(x) of any point x in M is at most 1. It is however seen that (cf. Yano and Kon [13]) t(x) > 1 at some point x of M for $c \neq 0$. So it is contradiction. Hence we have c = 0. This completes the above proof.

From Lemma 2.1. we have the following.

Proposition 2.2. Let M be a real hypersurface of a complex space form $M_n(c)$. If $\phi A + A\phi = 0$, then M is cylinderical.

Proof. From the assumption it follows that $A\xi = \alpha\xi$. Since c = 0 by Lemma 2.1, (2.3) implies $A\phi A = 0$, from which it follows that $(\phi A)^2 = \phi A\phi A = -\phi AA\phi = \phi A^t(\phi A)$. Thus $tr(\phi A)^t(\phi A) = 0$, that is, $\phi A = 0$. Then $AX = \alpha\eta(X)\xi$. Hence *M* is cylinderical.

Also by using Lemma 2.1 we get the following.

Lemma 2.3. Let M be a real hypersurface of a complex space form $M_n(c)$, $c \neq 0$. If ξ is an eigenvector of A, then $\alpha = \eta(A\xi)$ is locally constant.

Proof. Since $X_{\alpha} = \beta \eta(X)$, we have $\nabla_x \operatorname{grad} \alpha = (X\beta)\xi + \beta \nabla_x \xi$, where we have put $\beta = \xi \alpha$. From which together with the fact $g(\nabla_x \operatorname{grad} \alpha, Y) = g(\nabla_y \operatorname{grad} \alpha, X)$ it follows that

(2.12)
$$(X\beta)\eta(Y) - (Y\beta)\eta(X) + \beta g((\phi A + A\phi)X, Y) = 0.$$

Putting $X = \xi$ or $Y = \xi$ in (2.12), we get $X\beta = (\xi\beta)\eta(X)$ or $Y\beta = (\xi\beta)\eta(Y)$. Thus (2.12) reduces to

$$\beta g((\phi A + A\phi) X, Y) = 0.$$

By Lemma 2.1 there are no points on M at which $\phi A + A\phi = 0$, which yields that $\beta = 0$ on M. This means α is constant on M.

Remark. For a real hypersurface of a complex projective space CP^n Maeda proved that α is constant ([7]).

3. Real hypersurfaces of CH^n satisfying certain commutative condition. A characterization of the class of hypersurfaces with more than 3 distinct principal curvatures of CP^n is studied by Kimura [4], who proves the following.

Theorem C. Let M be a real hypersurface of $CP^n (n \ge 3)$. Then M satisfies $S\phi = \phi S$ if and only if M lies on a tube of radius r over one of the following Kaehler submanifolds;

- (A) a totally geodesic CP^k , $(1 \le k \le n-1)$, where $0 < r < \pi/2$,
- (B) a complex quadric Q^{n-1} , where $0 < r < \pi/4$ and $\cot^2 2r = n-2$,
- (C) $CP^{(n-1)/2}$, where $0 < r < \pi/4$, $\cot^2 2r = 1/(n-2)$ and $n \ge 5$ is odd,
- (D) complex Grassmann $G_{2,5}(C)$, where $0 < r < \pi/4$, $\cot^2 2r = 3/5$ and n = 9,
- (E) Hermitian symmetric space SO(10)/U(5), where $0 < r < \pi/4$, $\cot^2 2r = 5/9$ and n = 15.

This section is devoted to the investigation about certain real hypersurfaces of CH^n under the condition such that the Ricci tensor and the structure tensor are commutative. Now we introduce the following.

Lemma 3.1. Let M be a real hypersurface of $CH^n (n \ge 3)$ and $P = A^2 - fA$ such that f is a smooth function on M. If M satisfies the condition

$$(3.1) P\phi = \phi P,$$

then ξ is a principal vector at each point of M.

For the real hypersurface of $CP^n (n \ge 3)$ Kimura [4] proved that ξ is principal under the condition (3.1) by using Cecil-Ryan's method in the paper [2]. If we use the same method as used in [4], we can obtain the above Lemma. Thus we omit the proof of the Lemma 3.1.

By the above Lemma and Lemma 2.3 we get the following

214 U·H. KI and Y. J. SUH

Lemma 3.2. Let M be a real hypersurface of $CH^n (n \ge 3)$ satisfying $S\phi = \phi S$. Then the principal curvature α corresponding to ξ is locally constant.

By Lemma 3.1 we have (2.3). Thus for the complex hyperbolic space $CH^{n}(2.3)$ implies that $2\phi+2A\phi A = \alpha(A\phi+\phi A)$. From which, for a unit vector X orthogonal to ξ such that $AX = \lambda X$ we get

$$(3.3) \qquad (2\lambda - \alpha) A\phi X = (\alpha\lambda - 2)\phi X.$$

Let V be an open set consisting of points x of M at which $(2\lambda - \alpha)_x \neq 0$. Then $A\phi X = \mu\phi X$ on V, where we have put $\mu = (\alpha\lambda - 2)/(2\lambda - \alpha)$. From (1.5) and (3.1) it follows that

(3.4)
$$(\mu - \lambda) |(\mu + \lambda) - h| = 0,$$

where h means the trace of A. Thus $\mu = \lambda$ or $h = \lambda + \mu$ holds on V.

For the case $\mu = \lambda$, it is a root of a quadratic equation $x^2 - \alpha x + 1 = 0$ with constant coefficients, which means that λ is constant. Since $\alpha^2 \ge 4$, we put $\alpha = \pm 2$ or $\alpha = 2 \operatorname{coth} 2\theta$. Then it is seen that $\lambda = \pm 1$ for $\alpha = \pm 2$ and $\lambda = \operatorname{coth} \theta$ or $\tanh \theta$ for $\alpha = 2 \operatorname{coth} 2\theta$. This means that we have at most of five kinds of principal curvatures α , $\operatorname{coth} \theta$, $\tanh \theta$, and λ , μ such that $\lambda + \mu = h$. Since (3.3) implies that multiplicities of λ and μ are equal, say m_1 , we can put

$$h = (\lambda + \mu) m_1 + m_2 \operatorname{coth} \theta + m_3 \operatorname{tanh} \theta + \alpha$$
,

from which together with $h = \lambda + \mu$ it follows that

$$(3.5) (1-m_1) h = m_2 \coth \theta + m_3 \tanh \theta + \alpha.$$

Since the right hand side of (3.5) is positive or negative according as $\theta > 0$ or $\theta < 0$, respectively, we have $m_1 \neq 1$, and h is constant.

On the other hand, it follows from $h = \lambda + \mu$ that $2\lambda^2 - 2h\lambda + \alpha h - 2 = 0$. Thus all principal curvatures are constant on V. Since V is open and the constancy of principal curvatures gives that V is closed, V coincides with M itself or it is empty. If V is empty, then $2\lambda = \alpha$ gives $\alpha\lambda = 2$ because of (3.3). Thus $\lambda = \pm 1$. Together with this fact we conclude that all principal curvatures are constant on M. Thus we have the following.

Theorem 3.3. Let M be a real hypersurface of $CH^n (n \ge 3)$. Then the Ricci tensor of M commutes with the almost contact structure of M induced from CH^n if and only if M is of type A_1, A_2 .

Proof. By the classification Theorem of Berndt M is of type A_1, A_2 or B.

On the other hand, Montiel and Romero show that the real hypersurface M of CH^n is of type A_1 , A_2 if and only if the almost contact structure tensor commutes with the second fundamental form. Hence the type A_1 , A_2 naturally satisfy $S\phi = \phi S$.

Now we suppose that M is of B-type. Then the table of Berndt [1] gives that $\alpha = 2 \tanh 2\theta$, $\lambda = \tanh \theta$ and $\mu = \coth \theta$. Since multiplicities of λ and μ are equal, (3.4) gives $h = \alpha + (n-1)(\lambda + \mu) = \alpha + (n-1)h$. Thus $(n-2)h + \alpha = 0$, from which together with the fact that $\alpha = 4\lambda/(1 + \lambda^2)$ it follows that $4\lambda^2 + (n-2)(1 + \lambda^2)^2 = 0$. This contradicts.

Remark. For the real hypersurface of $CP^n(n \ge 3)$ Kimura [4] proved that $S\phi = \phi S$ if and only if M is of type A_1, A_2 , or M is locally congruent to one of a certain hypersurface of type B, C, D or E.

4. Real hypersurfaces of $M_n(c)$, $c \neq 0$. Let M be a pseudo-Einstein real hypersurface of a complex space form $M_n(c)$, $c \neq 0$. Then the Ricci tensor S of M is given by $SX = aX + b\eta(X)\xi$ where a and b are C^{∞} -functions. From which it naturally satisfies the following.

$$(4.2) R(X, Y)(SZ) + R(Y, Z)(SX) + R(Z, X)(SY) = 0$$

for any X, Y, and Z in ξ^{\perp} , where we have put ξ^{\perp} the orthogonal complement of ξ in $T_x(M)$ for any x in M.

In this section, we are concerned with the converse problem. Namely we will give another characterization of pseudo-Einstein real hypersurfaces of $M_n(c)$, $c \neq 0$, with (4.1) and (4.2). From (4.1) it follows that $\eta(AX)$ = 0 for any X in ξ^{\perp} . By taking account of (1.3) and (1.5), the above equation (4.2) is equivalent to

(4.3)
$$g(QZ, Y)\phi X + g(QX, Z)\phi Y + g(QY, X)\phi Z + 2g(\phi Y, Z)\phi PX + 2g(\phi Z, X)\phi PY + 2g(\phi X, Y)\phi PZ = 0$$

for any X, Y and Z in ξ^{\perp} , where we have put $P = A^2 - hA$, h = trA, and $Q = P\phi + \phi P$. Since ϕ is non-degenerate on ξ^{\perp} , (4.3) reduces to

(4.4)
$$g(QZ, Y)X + g(QX, Z)Y + g(QX, Y)Z + 2\{g(\phi Y, Z)PX + g(\phi Z, X)PY + g(\phi X, Y)PZ\} = 0.$$

For a symmetric transformation $P = A^2 - hA$ let X, Y, and Z be orthonormal eigenvectors such that

$$(4.5) PX = \alpha_r X, PY = \alpha_s Y, and PZ = \alpha_t Z.$$

Thus, from which together with (4.4) it follows that

(4.6)
$$g(QZ, Y) - 2 a_r g(\phi Z, Y) = 0, g(QX, Z) - 2 a_s g(\phi X, Z) = 0, g(QY, X) - 2 a_t g(\phi Y, Z) = 0.$$

Using (4.5) again to (4.6), we have

(4.7)

$$(a_s + a_t - 2a_r)g(\phi Y, Z) = 0,$$

$$(a_r + a_t - 2a_s)g(\phi X, Z) = 0,$$

$$(a_r + a_s - 2a_t)g(\phi Y, X) = 0.$$

Let us now decompose $T_x(M)$ as following: $T_x(M) = P(\alpha_1) \oplus \cdots \oplus P(\alpha_p)$, where $P(\alpha_r) = |X \in T_x(M)| PX = \alpha_r X | (r = 1, ..., p), \alpha_1, ..., \alpha_p$ are all distinct, and ξ in $P(\alpha_1)$.

Lemma 4.1. If $p \ge 2$ and dim $P(\alpha_1) \ge 2$, then dim $P(\alpha_1) = 2$, and dim $P(\alpha_r) = 1$ ($r \ge 2$).

Proof. Suppose dim $P(\alpha_1) \ge 3$ or dim $P(\alpha_r) \ge 2$ for some $r \ge 2$. Then for any $s \le p$, $s \ne r$, and any linearly independent vectors X, Y in $P(\alpha_r)(r = 1, ..., p)$, and Z in $P(\alpha_s)$, (4.7) give rise to

(4.8)

$$(\alpha_s - \alpha_r)g(\phi Y, Z) = 0,$$

$$(\alpha_s - \alpha_r)g(\phi X, Z) = 0,$$

$$(\alpha_r - \alpha_s)g(\phi Y, X) = 0.$$

Since $a_r \neq a_s$, $g(\phi Y, Z) = g(\phi X, Z) = g(\phi Y, X) = 0$, from which it follows that ϕX is orthogonal to $P(\alpha_s)$ for any *s* different from *r*. Thus ϕX is contained in $P(\alpha_r)$. In particular, if we put Y = X, then $g(\phi X, Y) = g(\phi X, \phi X) \neq 0$. This contradicts. Thus we have the above Lemma.

Lemma 4.2. If $p \ge 2$, then dim $P(\alpha_1) = 1$.

Proof. If we suppose dim $P(\alpha_1) \neq 1$, then by Lemma 1, we get dim $P(\alpha_1) = 2$. Thus we can take a vector X in $P(\alpha_1)$ orthogonal to ξ . Since dim $P(\alpha_1) = 2$, ϕX is not contained in $P(\alpha_1)$. Thus ϕX is in $P(\alpha_2) \oplus \cdots \oplus P(\alpha_p)$. Hence we can assume that there exists an element Y in $P(\alpha_2)$ such

217

that $g(\phi X, Y) \neq 0$.

Now let $P \ge 3$. Then let us take X, Y, and Z be orthonormal vectors in $P(\alpha_1)$, $P(\alpha_2)$, and $P(\alpha_r)$ ($r \ge 3$), respectively. From which and (4.7) it follows that $(\alpha_1 + \alpha_2 - 2\alpha_r)g(\phi X, Y) = 0$. Thus, we get $2\alpha_r = \alpha_1 + \alpha_2$ for $r \ge 3$ because of $g(\phi X, Y) \ne 0$. Hence we have p = 3. This implies that $\dim P(\alpha_1) + \dim P(\alpha_2) + \dim P(\alpha_3) = 4$ by virtur of Lemma 1. This contradicts the fact $\dim T_x(M) \ge 5$ for $n \ge 3$. Thus we should have p = 2. But in this case we also have $\dim P(\alpha_1) + \dim P(\alpha_2) = 3$ by Lemma 1. This also makes contradiction. Thus we get the above Lemma.

Lemma 4.3. p = 2.

Proof. Firstly we now consider for the case $p \ge 3$. Then by Lemma 4.2. dim $P(\alpha_1) = 1$. And we will show dim $P(\alpha_r) = 1$ $(r \ge 2)$ for $p \ge 3$. Thus, if we suppose dim $P(\alpha_r) \ge 2$ for some $r \ge 2$, then for any linearly independent vectors X, Y in $P(\alpha_r)$ and Z in $P(\alpha_s), r \ne s, s \ge 2$, we get $g(\phi X, Y) = g(\phi Y, Z) = g(\phi Z, X) = 0$ by virture of (4.8). Hence we evoke the same contradiction as Lemma 4.1. Thus we have dim $P(\alpha_r) = 1$ for any $r \ge 2$.

Now we consider for $p \ge 4$. Then from above facts dim $P(\alpha_r) = 1$ for any $r \ge 2$. Thus for X in $P(\alpha_2)$, ϕX is contained in $P(\alpha_3) \oplus \cdots \oplus P(\alpha_p)$. Hence we can take an element Y in $P(\alpha_3)$ such that $g(\phi X, Y) \neq 0$. For Z in $P(\alpha_r), r \ge 4$, we have

$$(\alpha_2 + \alpha_3 - 2\alpha_r)g(\phi X, Y) = 0.$$

Since $g(\phi X, Y) \neq 0$, we get $2\alpha_r = \alpha_2 + \alpha_3$ for $r \ge 4$. Thus p = 4. This implies $\sum_{r=1}^{4} \dim P(\alpha_r) = 4$. This contradicts. Hence p = 3. For this case we can also have $\sum_{r=1}^{3} \dim P(\alpha_r) = 3$. This also makes contradiction. Thus we should have p = 2.

From Lemmas 4.1, 4.2 and 4.3 we get the following.

Theorem 4.4. Let M be a real hypersurface of a complex space form $M_n(c), c \neq 0$. If M satisfies (4.1) and (4.2), then M is pseudo-Einstein.

Proof. By Lemma 4.3 we have dim $P(\alpha_1) = 1$, and dim $P(\alpha_2) = 2n$ -2. Thus U·H. KI and Y. J. SUH

$$P = \begin{pmatrix} \alpha_1 & 0 \\ \alpha_2 & \\ & \ddots & \\ 0 & & \alpha_2 \end{pmatrix}$$

This gives $P = \alpha_2 I + (\alpha_1 - \alpha_2)\eta \otimes \xi$. From which and (1.5) it follows that $S = |(2n+1)c/4 - \alpha_2| I + (\alpha_2 - \alpha_1 - 3c)\eta \otimes \xi$. Hence *M* is pseudo-Einstein.

Remark. Recently Kimura and Maeda [5] introduced the notion of η parallel second fundamental form A, that is, $g((\nabla_X A) Y, Z) = 0$ for any X, Y, and Z in ξ^{\perp} . And they showed that any real hypersurface M of \mathbb{CP}^n with η -parallel second fundamental form A and principal vector ξ is of type A_1, A_2 and B.

The condition ξ is principal can not be omitted because a ruled real hypersurface M in \mathbb{CP}^n has η -parallel second fundamental form A but ξ is not principal.

5. Real hypersurfaces of CP^n satisfying certain conditions. To give another characterization of some type of real hypersurfaces of the complex projective space CP^n we now introduce the following.

Lemma 5.1. (Takagi [12]) If M is a connected complete totally η umbilical real hypersurface in $\mathbb{CP}^n (n \ge 2)$, then M is of type A_1 .

Lemma 5.2. (Yano and Kon [14]) Let M be a connected complete real hypersurface in $CP^n (n \ge 3)$. If $\phi A + A\phi = k\phi$ for some constant $k \ne 0$, then M is of type A_1 or B.

By above Lemmas we can see that the type A_1 or B satisfies the condition

(*)
$$S\phi + \phi S = k_1 \phi$$
 (k_1 : constant).

And also pseudo-Einstein real hypersurfaces of CP^n satisfy (*). As the converse problem in this section we are devoted to the investigation of the real hypersurfaces of CP^n satisfying (*) and with principal structure vector field ξ .

By (1.5), (*) is equivalent to

(5.1)
$$A^2 \phi + \phi A^2 - h(A\phi + \phi A) = k\phi,$$

where we have put $k = 2(2n+1) - k_1$, and h means the trace of A.

218

Since CP^n has the Fubini-Study metric and the constant holomorphic sectional curvature c = 4, (2.3) implies that

(5.2)
$$\alpha(\phi A + A\phi) - 2A\phi A + 2\phi = 0.$$

From which it follows that if X is an eigenvector of A with eigenvalue λ and if X is orthogonal to ξ , then ϕX is an eigenvector of A with eigenvalue $\mu = (\alpha \lambda + 2)/(2\lambda - \alpha)$. With this fact (5.1) implies

(5.3)
$$\mu^2 + \lambda^2 - h(\mu + \lambda) = k.$$

Substituting $\mu = (\alpha \lambda + 2)/(2\lambda - \alpha)$ into (5.3), we get

(5.4)
$$4\lambda^4 - 4(\alpha+h)\lambda^3 + 2(\alpha^2+h\alpha-2k)\lambda^2 + 4(\alpha-h+k\alpha)\lambda + 4 + 2\alpha h - \alpha^2 k = 0.$$

Let λ_1 , λ_2 , λ_3 and λ_4 be the roots of the above equation. Then from the roots and coefficient of (5.4) it follows that

(5.5)
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = \alpha + h, \\ \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4 = (\alpha^2 + h\alpha - 2k)/2, \\ \lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \lambda_4 + \lambda_2 \lambda_3 \lambda_4 + \lambda_1 \lambda_2 \lambda_4 = -(\alpha - h + k\alpha), \\ \lambda_1 \lambda_2 \lambda_3 \lambda_4 = (4 + 2\alpha h - \alpha^2 k)/4. \end{cases}$$

Substituting $h = \alpha + m_1 \lambda_1 + m_2 \lambda_2 + m_1(\alpha \lambda_1 + 2)/(2\lambda_1 - \alpha) + m_2(\alpha \lambda_2 + 2)/(2\lambda_2 - \alpha)$ into the above equation, and noticing α and k are constant, we can see that (5.5) consists of 4 linearly independent equation, where m_j denotes the (constant) multiplicities of pricipal curvatures (j = 1, 2). Thus M has at most five distinct constant principal curvatures. Hence by Theorem A, M is homogeneous. Then by Takagi's classification of homogeneous real hypersurfaces we can suppose M is of type A_1 , A_2 , B, C, D, and E.

Firstly, we suppose that *M* is one of type *B*, *C*, *D* and *E*. Then from the table given in [11] its type has the following roots : $\lambda = \cot(r - \pi/4)$, $\mu = -\tan(r - \pi/4)$, and $\alpha = 2 \cot 2r$. Hence $\lambda + \mu = -4/\alpha$, $\lambda\mu = -1$. Thus, by (5.3) we get $k = (4/\alpha)^2 + h(4/\alpha) + 2$. From which, (5.4) can be rewritten as following

(5.6)
$$2\alpha^{2}\lambda^{4} - 2\alpha^{2}(\alpha+h)\lambda^{3} + |\alpha^{4} + h\alpha^{3} - 4\alpha^{2} - 8h\alpha - 32|\lambda^{2}| + 2(3\alpha^{3} + 3h\alpha^{2} + 16\alpha)\lambda - \alpha^{2}(\alpha^{2} + \alpha h + 6) = 0$$

Then (5.6) can be decomposed into

(5.7)
$$(\alpha\lambda^2+4\lambda-\alpha)(2\alpha\lambda^2-2(\alpha^2+h\alpha+4)\lambda+(\alpha^3+h\alpha^2+6\alpha))=0.$$

220

Since $\cot(r - \pi/4)$, $-\tan(r - \pi/4)$ satisfy $\alpha \lambda^2 + 4\lambda - \alpha = 0$, another roots $\cot r$, $-\tan r$ of C, D, and E should satisfy

(5.8)
$$2\alpha\lambda^2 - 2(\alpha^2 + h\alpha + 4)\lambda + \alpha^3 + h\alpha^2 + 6\alpha = 0.$$

On the other hand, cot r, $-\tan r$ are roots of $\lambda^2 - \alpha \lambda - 1 = 0$. From this fact and the root and coefficient of of (5.8), it follows that

$$h\alpha + 4 = 0$$
, and $\alpha^2 + h\alpha + 8 = 0$.

Thus $\alpha^2 + 4 = 0$. This contradicts. Thus the type of C, D, and E can not occur.

Next we consider for the type A_1 , A_2 . Then we introduce the following.

Lemma 5.3. (Okumura [10]) Let M be a real hypersurface of \mathbb{CP}^n . Then M is of type A_1 or A_2 if and only if $A\phi = \phi A$.

Since by Lemma 5.1. the type A_1 naturally satisfies (*) and its structure vector ξ is principal, we restrict our attention to the type A_2 . Then using Lemma 5.3 to (5.1), we get

$$(5.9) A2 \phi - hA\phi = k\phi/2.$$

From the table of type A_2 given in [11] it follows that for an eigenvector X such that $AX = -\tan r X$

$$(5.10) 2 \cot^2 r - 2h \cot r = k.$$

Also for the case $AX = \cot rX$, $A\phi X = -\tan r\phi X$ we get

$$(5.11) 2 \tan^2 r + 2h \tan r = k.$$

From (5.10) and (5.11) it follows that $(\cot r + \tan r)(\cot r - \tan r - h) = 0$. Since $\cot r + \tan r \neq 0$, $h = \cot r - \tan r = a$. Thus k = 2. Then (*) implies $S\phi + \phi S = 4n\phi$. From which and Lemma 5.3, it follows $S\phi = \phi S = 2n\phi$. Hence $S = 2nI - 2\eta \otimes \xi$. Thus the type of A_2 satisfying (*) is pseudo-Einstein and M is M(2n-1, m, (m-1)/(n-m)) (cf. Yano and Kon [13]). Hence we have the following.

Theorem 5.4. Let M be a connected complete real hypersurface of \mathbb{CP}^n and assume that ξ is principal vector field on M. If M satisfies (*), then M is of type A_1 , B or M is locally congruent to one of a certain hypersurface of type A_2 .

221

References

- [1] J. BERNDT: Real hypersurfaces with constant principal curvature in complex hyperbolic space, Preprint.
- [2] T. E. CECIL and P. J. RYAN: Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- [3] M. KIMURA: Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [4] M. KIMURA: Some real hypersurfaces of a complex projective space, Saitama Math. J. 5 (1987), 1-5.
- [5] M. KIMURA and S. MAEDA : On real hypersurfaces of a complex projective space, Preprint.
- [6] U-H. KI and H. NAKAGAWA and Y. J. SUH: Real hypersurfaces with harmonic Weyl tensor of a complex space form, Preprint.
- [7] Y. MAEDA: On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- [8] S. MONTIEL: Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
- [9] S. MONTIEL and A. ROMERO: On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20 (1986), 245-261.
- [10] M. OKUMURA : On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [11] R. TAKAGI: On homogeneous real hypersurfaces of a complex projective space, Osaka. J. Math. 10 (1973), 495-506.
- [12] R. TAKAGI: Real hypersurfaces in a complex projective space with constant principal curvatures I, II. J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
- [13] K. YANO and M. KON: CR-submanifolds of Kaehlerian and Sasakian manifold, Birkhauser, 1983.

Kyungpook University	and	University of Tsukuba
Department of Mathematics		Institute of Mathematics
Taegu, 702–701		Tsukuba, Ibaraki, 305
Korea		Japan
ANDONG UNIVERSITY	and	University of Tsukuba
Andong University Department of Mathematics	and	University of Tsukuba Institute of Mathematics
	and	

(Received March 27, 1989)