
1196 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

On Real-Time AER 2-D Convolutions Hardware for
Neuromorphic Spike-Based Cortical Processing
Rafael Serrano-Gotarredona, Teresa Serrano-Gotarredona, Member, IEEE, Antonio Acosta-Jiménez,

Clara Serrano-Gotarredona, José A. Pérez-Carrasco, Bernabé Linares-Barranco, Alejandro Linares-Barranco,
Gabriel Jiménez-Moreno, and Antón Civit-Ballcels

Abstract—In this paper, a chip that performs real-time image
convolutions with programmable kernels of arbitrary shape is pre-
sented. The chip is a first experimental prototype of reduced size
to validate the implemented circuits and system level techniques.
The convolution processing is based on the address–event-rep-
resentation (AER) technique, which is a spike-based biologically
inspired image and video representation technique that favors
communication bandwidth for pixels with more information. As
a first test prototype, a pixel array of 16 16 has been imple-
mented with programmable kernel size of up to 16 16. The
chip has been fabricated in a standard 0.35- m complimentary
metal–oxide–semiconductor (CMOS) process. The technique also
allows to process larger size images by assembling 2-D arrays of
such chips. Pixel operation exploits low-power mixed analog–dig-
ital circuit techniques. Because of the low currents involved (down
to nanoamperes or even picoamperes), an important amount of
pixel area is devoted to mismatch calibration. The rest of the
chip uses digital circuit techniques, both synchronous and asyn-
chronous. The fabricated chip has been thoroughly tested, both at
the pixel level and at the system level. Specific computer interfaces
have been developed for generating AER streams from conven-
tional computers and feeding them as inputs to the convolution
chip, and for grabbing AER streams coming out of the convolution
chip and storing and analyzing them on computers. Extensive
experimental results are provided. At the end of this paper, we
provide discussions and results on scaling up the approach for
larger pixel arrays and multilayer cortical AER systems.

Index Terms—Address–event representation (AER), analog
circuits, asynchronous circuits, bioinspired systems, cortical layer
processing, image convolutions, image processing, low power
circuits, mixed-signal circuits, spike-based processing.

Manuscript received June 7, 2006; revised December 4, 2006, June 20, 2007,
and September 4, 2007; accepted November 9, 2007. First published April 18,
2008; last published July 7, 2008 (projected). This work was supported by the
European Commission under Grants IST-2001-34124 (CAVIAR) and 216777
(NABAB), the Spanish Ministry of Education and Science under Grants
TIC-2000-0406-P4 (VICTOR), TIC-2003-08164-C03-01 (SAMANTA), and
TEC2006-11730-C03-01 (SAMANTA2), and the Junta de Andalucia under
Grant TIC-1417 (Brain System). The work of R. Serrano-Gotarredona was
supported by the Spanish Ministry of Education and Science under the FPU
scholarships. The work of J. A. Pérez-Carrasco was supported by a scholarship
from Junta de Andalucia.

R. Serrano-Gotarredona was with the CSIC Instituto de Microelectronica
Sevilla (IMSE–CNM), 41012 Sevilla, Spain. He is now with the R&D Depart-
ment, NXP, Graz, Austria.

T. Serrano-Gotarredona, A. Acosta-Jiménez, C. Serrano-Gotarredona, J.
A. Pérez-Carrasco, and B. Linares-Barranco are with the CSIC Instituto
de Microelectronica Sevilla (IMSE–CNM), 41012 Sevilla, Spain (e-mail:
bernabe@imse.cnm.es).

A. Linares-Barranco, G. Jiménez-Moreno, and A. Civit-Ballcels are with
the Departamento de Arquitectura y Tecnología de Computadores, ETSI
Informática, Universidad de Sevilla, 41012 Sevilla, Spain.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2008.2000163

I. INTRODUCTION

S
TANDARD image transmission and processing is done
using frame-based techniques. Since the invention of

cinema, television, and even for modern computer-based mo-
tion pictures, a video stream is formed by a sequence of still
frames. If some kind of image processing is required for en-
hancing the image, or extracting recognition features out of it,
complex processing and recognition algorithms are performed
on individual frames. If all the required processing can be
performed within the frame rate timing of the video stream
(usually 30–40 ms per frame for commercial video), then we
can say vision processing is performed in real time. However,
many of today’s known algorithms capable of performing
complex image processing tasks for vision require tremendous
amount of computing power, impossible to be achieved in real
time with today’s most sophisticated computers. For example,
consider the boundary contour system–feature contour system
(BCS–FCS) image segmentation software algorithm [1] (see,
also, [30, Fig. 1]). A captured image is processed by a sequence
of eight convolution layers. These convolutions have different
kernels. Each layer consists of several sublayers in parallel,
because from one layer to the next the same kernel is applied
but with different spatial characteristics (for example, rotated
for different angles). The structure includes a feedback path:
the output of the last layer is fed back to an intermediate layer.
The whole structure consists of different identical structures
that run in parallel. The only difference between them is the
spatial scale of the kernels in the convolution operations. If
the complete BCS–FCS algorithm is to be performed on a
computer, then for each input frame, all convolution operations
need to be iterated until the feedback settles to a steady-state
solution at all layers. Consequently, implementing such an
algorithm in real time with frame-based convolution processing
is completely unfeasible with today’s computer technology.
The creators of the BCS–FCS software algorithm talk about
processing times of several hours for a single image. On the
other hand, the spike-based hardware convolution technique
presented in this paper makes it realistically plausible. In a
hardware spike-based processing system, pixels at the input
image sensor send spikes (events) as soon as they detect activity
(intensity, contrast, motion, etc.). These spikes are very short in
time (typically, tens of nanoseconds). Consequently, the most
relevant pixels send a spatio–temporal wavefront of spikes in
a very short time (microseconds), containing the most salient
information of an input visual stimulus. This is consistent with
discoveries of fast human visual processing [2]. As soon as
they are produced, these spikes can travel very quickly (nano-

1045-9227/$25.00 © 2008 IEEE

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1197

Fig. 1. Illustration of AER point-to-point communication.

to microseconds) through a complex hardware structure of pro-

cessing layers performing very fast detection and recognition

of the most salient features of an input visual stimulus.

Other examples of complicated software vision processing

systems based on convolutions are the so-called convolution

neural networks [6]–[10]. First realization of such a system was

already proposed by Fukushima in 1980 [4]. Software convo-

lution neural networks have been successfully applied for char-

acter recognition [4]–[8], object detection [7], and face recogni-

tion [8]–[10]. Reported kernel sizes go up to 11 11 for 64 64

pixel images.

This is for software algorithms running on conventional com-

puters. For more dedicated hardware, today’s hardware solu-

tions for real-time convolution processing rely entirely on indi-

vidual frame-by-frame computations. In the literature, one may

find solutions based on digital signal processors (DSP) or spe-

cialized parallel architectures like simple instruction multiple

data (SIMD) processors. The vast majority of examples usu-

ally perform convolutions of small-size kernels (3 3), which

require computation power in the order of 30 Gops/s (gigaop-

erations per second)1 to achieve rates of 30 frames/s [11]. A

clever DSP architecture specialized for large kernel convolu-

tions was presented in 1999 by Wall et al. [12]. It handles kernels

of up to 15 15 and can compute the convolution of one single

256 256 image in about 55 ms. The processing speed grows

quadratically with image dimension, but linearly with kernel

size. For DSP type of implementations, algorithmic tricks can

be used to optimize speed (or power) [13]. On the other hand,

SIMD processors are array-based microchips, where each pixel

is prepared to perform a certain amount of operations among

local data available on each pixel. All pixels perform the same

operation on a given clock cycle, but each pixel operates on its

local data. Pixels are connected to nearest neighbors and data

can easily be transferred between them. It is very simple to per-

form 3 3 convolutions with them, and it is not impossible to

perform larger kernel convolutions but at the expense of com-

plicated sequencing and data transfers, which degrade speed

rapidly with kernel size. Many SIMD architectures have been

proposed in the literature [14], [15]. For example, the SIMPiL

system reported in 1996 could perform 3 3 kernel convolu-

tions on 256 256 images at rates of 60 frames/s. Other archi-

tectures tailored for convolution processing have been proposed

by Etienne–Cummings [16], where convolutions are computed

in a clever way during sequential readout of the video images.

1This refers to elementary operations such as additions and subtractions.

However, all these proposals are based on frame-by-frame pro-

cessing techniques. In this paper, we rely on spiking techniques

which do not process frames. Consequently, relevant image fea-

tures will be communicated and processed first, resulting in ex-

tremely high-speed processing throughput.

The BCS–FCS algorithm [1], as well as the convolution

neural networks [6]–[10], are claimed by the authors to be

bioinspired. This is because the processing in the brain is

supposed to be based on projection-field operations between

consecutive layers [17]. A projection-field operation means that

one cell (neuron or pixel) in one layer connects to an ensemble

of cells in the next layer. Each connection is characterized by a

weight. If the spatial distribution of weights going out of neuron

in a layer with position is the same as for any other

neuron in the same layer with position , then the pro-

cessing performed from this layer to the next is a convolution

operation. The kernel of this convolution is precisely the spatial

distribution of the connection weights for one neuron. But then,

how can living brains implement multilayer projection-field

algorithms in real time? The key issue is that the brain does

not acquire images by frames and performs convolutions on

each frame. The visual stimuli sensed and processed by the

retina are coded and transmitted through the optic nerve to the

cortex using spikes (quick electrical impulses) and the spikes

represent activity for individual neurons. This way, as soon

as there is a feature on the retina that elicits the firing of a

set of simultaneous spikes in one layer, it may elicit a set of

other spikes in the next layer, and so on from layer to layer,

producing a wave of spikes through the layered structure of the

cortex. This propagation of simultaneous spikes from layer to

layer is equivalent to processing first the most active pixels of

an image, and as time passes, the less and less active pixels are

processed as well. Note that this way of processing does not

wait for a complete frame to be processed in a layer, before

starting the computations in the next layer.

The hardware convolution processor we present in this paper

is based on the address–event-representation (AER) scheme,

which is event (spike)-based, as opposed to frame-based repre-

sentation. AER has some interesting capabilities for hardware

implementations, one of which is the possibility of performing

convolutions “on the fly,” as we describe in this paper. In

Section II, AER is briefly summarized. Section III explains

how AER can be applied for generic convolution processing,

and Section IV describes the specific system architecture and

circuits we have implemented for this. Section V provides

experimental results obtained from the fabricated prototype.

1198 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Finally, Section VI discusses up-scaling issues for multichip

multilayer visual recognition system.

II. ADDRESS–EVENT-REPRESENTATION PROTOCOL

AER-based interchip communication was originally pro-

posed by Mahowald and Sivilotti [18]–[20] to reproduce the

state of a 2-D array of neurons from one emitter chip onto

another receiver chip, continuously and in real time. A growing

community of researchers is using the scheme for bioinspired

vision [21]–[29] and audition [31] systems. Since then, the

scheme has been evolving in efficiency and processing power.

Fig. 1 shows the essence behind the AER protocol. The

emitter chip contains an array of cells or pixels whose intensity

or activity changes in time with slow time constants. This hap-

pens, for example, in commercial cameras or artificial retinas

where the bandwidth of the signal sensed by an individual pixel

is in the order of hundreds of hertz at the most. Each pixel

contains an integrate-and-fire neuron whose output frequency

is proportional to pixel intensity.2 The neuron produces spikes

of very short duration (in the order of nanoseconds) but with

much longer spike intervals (in the order of milliseconds).

These spikes are called events. Every time a pixel sends a spike,

its coordinate is written on an interchip high-speed digital

bus and sent to one or more receiver chips. Events are generated

asynchronously. Therefore, additional handshaking signals are

required for proper transmission of events from chip to chip.

Also, Because events are generated asynchronously, collisions

of events generated simultaneously by different pixels may

occur. Several ways of handling collisions have been reported

in the literature. One way is to detect and discard events that

collide [21]–[24], while another is to introduce arbitration [33],

[35], [36] and enforce sequencing of colliding events. The latter

is more sophisticated but can handle much higher event traffic

loads. The prototype presented in this paper uses the arbitrated

approach.

In Fig. 1, each event produced by the emitter chip is received

by one receiver chip. The receiver chip decodes the address of

the event and sends it to the pixel with the same coordi-

nate. This pixel contains some type of integration mechanism

that reconstructs the original low-frequency time waveform of

the same coordinate pixel in the transmitter chip. The delay be-

tween events produced in the emitter pixel until they are re-

ceived by the receiver pixel is in the order of nanoseconds. One

can say the signals at the receiver pixels are identical and si-

multaneous to those in the emitter pixels, as if there were wires

between pixels of the same coordinate. However, the only phys-

ical wires between chips are the ones forming the high-speed

digital bus, which has a relatively small number of pins com-

pared to the number of pixels of the images.3

Other researchers communicate directly analog values from

chip to chip [37]. Besides the inherent limitations of this ap-

proach with respect to noise, precision, and fan-out, one could

not take advantage of the extra computational processing capa-

bilities offered by AER, as explained next.

2In this paper, we consider that pixel activity is coded as spike frequency.
This is called “rate coding.” However, this is not a restriction of AER. Different
coding schemes can be adopted such as rank order coding [32], derivative of
activity [33], and synchronicity, [34].

3If there are N pixels, only n = log (N) physical wires are required.
If N = 128� 128 = 16384, then n = 14.

The AER protocol not only allows for a virtual wiring be-

tween pixels of emitter and receiver chips, but allows for extra

processing on the addresses while they travel between chips. For

example, image translation can be performed by inserting digital

adders between chips that would add fixed offsets to the travel-

ling coordinates. Image rotations could be performed by

inserting properly coded lookup tables, as well as any arbitrary

transformations and distortions. Even sophisticated microcon-

troller-based approaches have been reported that generate a se-

quence of events (obtained through lookup tables) for each orig-

inal event [38], [39]. In 1999, Serrano et al. introduced an ar-

chitecture for performing AER-based real-time programmable

convolutions [29]. However, these convolution operations were

limited to kernels , which are decomposable into and

components . The processor presented

in this paper does not suffer from this restriction and can be pro-

grammed to perform convolutions with arbitrary kernels. Other

researchers presented in the past AER circuits for convolution

processing. For example, Vernier et al. presented a chip with

a fixed hardwired diffusive elliptical kernel, although spatial

shape could be slightly fine tuned through analog biases [23].

Choi et al. [25], [26] have recently presented another way of

performing real-time AER-based convolutions, but their tech-

nique is restricted to Gabor type of kernels. Another approach

based on external microcontrollers was proposed by Goldberg

et al. [38]. However, this scheme introduces a severe speed re-

duction in processing throughput.

III. AER FOR GENERIC KERNEL CONVOLUTION OPERATIONS

The convolution processor presented in this paper is based on

weighted charge package integration operations at the pixels.

The idea is schematically illustrated in Fig. 2. Every time the

receiver chip (in this case, our convolution chip) receives an

event of coordinate , the convolution kernel

(programmed on an on-chip RAM) is copied around coordi-

nate . This way, a pixel of coordinate

contains the kernel value , which is used to modu-

late current of Fig. 2. This modulated current is used to

generate a charge packet for this event which is integrated on

this pixel capacitor. The duration of the current pulse is fixed

and identical for all pixels. The capacitor is part of an inte-

grate-and-fire neuron: after the integration of each modulated

charge packet, capacitor voltage increases; when reaches

a fixed threshold (common for all pixels), the capacitor is reset

and this pixel generates an event that is transmitted out of the

chip to the next processing layer.

Many image processing applications require kernels with

positive and negative weights. Consequently, in practice, the

kernel values can be positive or negative, and the

charge integration circuits need to handle signed integration.

As a consequence, pixels generate as well signed events, de-

pending on whether capacitor voltage reaches a positive or

negative threshold. Therefore, in general, the coordinate

transmitted between AER chips should include a sign bit as

well. Furthermore, if we want to cascade convolution chips,

then each convolution chip should be capable of receiving

and processing signed events with signed kernels. Thus, the

simplified diagram of Fig. 2 needs to be extended to handle

signed incoming events together with signed kernel values,

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1199

Fig. 2. Architecture of AER convolution chip, indicating the main blocks. The inset illustrates the weighted charge package integration principle used for the
convolution computations.

and should be capable of producing signed events. The details

of such circuits are described in Section IV. However, before

going into circuit descriptions, let us first mention the multichip

assembly capability of AER for convolution operations.

Suppose we have been able to fabricate an AER convolution

chip with an array of 64 64 integrators. The convolution chip

contains a RAM for storing kernels of size . In general,

could be larger or smaller than 64 (for example, the convo-

lution chip presented in this work has a RAM size equal to the

pixel array size). Let us assume . Suppose we would

like to process images of size 256 256 with kernels of size

up to . Then, we could use our 64 64 convolution

chips to assemble an array of 4 4 of such chips, as shown in

Fig. 3. Each chip needs to know its own , , , and

coordinates, and each chip sees the complete address space

and . Also, each chip stores the

complete kernel (of up to 64 64) in its own RAM. Suppose

now the 4 4 chips receive an event of coordinate , and

kernel size is maximum, as shown in Fig. 3. Then, in general,

there are four chips that need to process this event, and each

chip has to copy a different part of the kernel to a different part

of its own array of integrators. Note that each chip operates au-

tonomously, without interacting with the rest. The only inter-

action is the sharing of the incoming AER address space and

the proper handling of handshaking signals.4 Alternatively, AER

convolution chips can be designed to have multireceiver AER

communication capability [40]. Consequently, AER convolu-

4In practice, we do this by using AER bus splitters at the input of the array,
and mergers at the output [63].

tion chips can be tiled to process larger images, but the kernel

size is limited to the size of the kernel-RAM of each chip.

The fact that a convolution chip can see an input address

space larger than the address space of its own pixels also al-

lows to compensate for the boundary problem of convolution

processing. As long as input space extends beyond the convo-

lution array space by the size of the kernel, no boundary effects

are observed.

IV. ARCHITECTURE AND CIRCUIT DESCRIPTION OF THE

CONVOLUTION CHIP PROCESSOR

The basic architecture of the convolution chip is shown in

Fig. 2. It includes an array of pixels, a row decoder (-decoder

in Fig. 2), a kernel static-RAM (SRAM), an x-neighborhood

selection block, a digital controller, a set of configuration reg-

isters, a monostable, an input/output (I/O) block for handling

incoming AER events, a high-speed clock, and an AER-out

block that generates the outgoing AER events. The controller

and I/O block are conventional digital state machines, described

in VHDL5[41], and synthesized using standard digital system

design procedures. They are synchronous blocks, clocked by

an on-chip high-speed clock. The configuration registers set the

input address space and kernel size. The I/O block handles the

communication with the incoming AER bus, samples period-

ically the “Rqst” line and, if active, reads the event address,

and returns the “Ack” signal. Interchip communication is asyn-

chronous, using conventional four phase handshaking signals

5This allows to easily add more functionalities in the future.

1200 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Fig. 3. Multichip AER tiling mechanism.

for request “Rqst” and acknowledge “Ack.” For each event, the

controller first computes the limiting rows and columns of the

pixel array onto which the kernel needs to be copied. Then, it

sends a shift left/right signal word to the x-neighborhood block

so that the RAM output columns are redirected left/right as

many positions as required by the kernel copy operation. Af-

terwards, kernel rows of the RAM are copied sequentially to

pixel array rows, one after the other. Once the kernel words

are loaded onto registers in the appropriate pixels, the monos-

table triggers a fixed duration pulse for all pixels during which

weighted charge packages are integrated at each pixel. Indepen-

dently, when a pixel reaches its integration threshold, it produces

an event that is transmitted to the AER-out block. This block

uses digital asynchronous circuit techniques [35]. It arbitrates

rows and columns to avoid event collisions, and generates the

output event addresses, together with handshaking signals, of

the events produced in the pixel array. This summarizes briefly

the operations of the architecture of Fig. 2. Next, we describe in

more detail some of the main blocks.

A. High-Speed Clock

An autonomous high-speed clock based on a five-inverter

ring oscillator has been implemented. Two inverters have an

analog control voltage that fine tunes their delay, so that the fre-

quency of the oscillator could be tuned between 75–200 MHz.

We do not expect this clock circuit will inject harmful noise

by itself into the rest of the chip. However, the clock distribu-

tion circuit inside the controller will certainly be much more

harmful. For this reason, careful layout isolation guard rings are

added around this clock and the controller.

B. I/O Block for Incoming AER Events

This is a synchronous circuit described in VHDL and syn-

thesized using standard cells. The circuit samples periodically

the “Rqst” line of the AER-in bus. If it is active, it reads the in-

coming event address and stores it in a shift register. Then, it ac-

tivates the “Ack” signal and finishes the handshaking. Incoming

addresses are queued in a shift register. This way, the circuit can

fetch in addresses faster than the controller would process them,

until the queue is full. This allows to free the interchip bus be-

fore a bundle of events are processed, which comes in handy

during short bursts of events. A shift register of positions is

used. It includes a pointer to one of the shift register positions.

Addresses are loaded in starting from the last position . If

there are addresses in the queue, the pointer value is ,

which is the location of the latest address. Every time the con-

troller reads an address from the last position , all addresses

are transferred one position ahead and the pointer increment by

one.6 In our convolution chip prototype, we have implemented

a queue of 4 positions.

C. Control Block

The function of the controller block, once it has read an event

address from the AER-in I/O block, is to do the following: 1)

6In the actual implementation, a circular register is implemented. This way,
instead of transferring all addresses one position, an extra reference pointer is
shifted. This speeds up significantly the whole process.

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1201

compute the kernel left/right shift, 2) copy sequentially kernel

rows from the RAM to the pixel array, 3) trigger the monos-

table, and 4) erase the copied kernel values in the pixel array. In

practice, this sequence is performed in a pipe-lined manner, so

that the maximum delay for processing an event is equal to the

slowest step instead of the sum of all. Usually, the slowest step

is the sequential copy of kernel rows from RAM to pixel array,

except for very small kernel sizes.

Whether or not the convolution chip is part of a tile, as was

shown in Fig. 3, or is alone, it knows its limiting coordinates

, , , and . For this, the chip contains a set

of configuration registers, which are loaded at startup together

with the kernel. Another two configuration registers define the

horizontal and vertical size of the kernel stored in the RAM. If

the kernel is of size , these two registers

store the values and . Note that we are here imposing an

odd number of columns and rows for the kernel. This way, there

exists a physical kernel center position which coincides with the

incoming event address position7 . The following four

different situations need to be distinguished, in general, by the

controller before starting to copy kernel rows from the RAM to

the pixel array (see Fig. 3 as a reference).

1) No kernel rows lie within the present chip. This happens

when either or .

2) The top kernel rows need to be copied to the bottom part

of the pixel array. This happens when and

. In this case, rows need

to be copied, and the controller generates the following two

sequences for selecting pixel array rows () and RAM

rows ():

(1)

3) The bottom kernel rows need to be copied to the top part

of the pixel array. This happens when and

. In this case, rows need

to be copied, and the controller generates the following two

sequences for selecting pixel array and RAM rows:

(2)

where is the pixel array size.

4) The kernel rows are all copied to the pixel array. This hap-

pens when and . In this case,

all rows are copied, and the controller generates the

following two sequences for selecting pixel array rows and

RAM rows:

(3)

Besides this, the controller also introduces a left/right shift in the

connections between the RAM output columns and the columns

7Although we are imposing kernels of odd size, so that the central coordinate
of the kernel coincides with the event address, in practice, there is no restriction
on kernel symmetry: the user can always set to zero those kernel values neces-
sary to shape the symmetry as desired.

of the pixel array. This left/right shift is activated for each in-

coming event and is held fixed during the complete sequence

of row copies from RAM to pixel array. The left/right shift

computed by the controller is , where

it is assumed that if the kernel is smaller than the pixel array

(), the RAM columns are filled ini-

tially with kernel values from left to right, leaving the right-most

columns in the RAM empty. The circuit responsible for pro-

ducing this left/right shift is the x-neighborhood selection block.

D. X-Neighborhood Selection Block

The x-neighborhood selection circuit that has been imple-

mented is shown in Fig. 4. Each RAM data column is routed

to the left and to the right 45 over a connection matrix. Each

dot in the connection matrix contains two tristate buffers. They

receive two horizontal input signals, one for gating a left shift

and the other for gating a right shift. Only one row of the con-

nection matrix and for this row only one of the two horizontal

input signals can be active. The other signals are two 45 lines,

which are the RAM outputs shifted to the left or right po-

sitions. The bottom most row in the connection matrix corre-

sponds to , the next one to , the following one

to , and so on. The outputs of the two AND gates are

wired-OR to the corresponding input column of the pixel array.

Two decoders on the left of the connection matrix activate only

one of the possible horizontal left/right gating signals for the

whole connection matrix. This guarantees that only one row of

the connection matrix is active, and for this row only the left or

the right shift AND gates are active.

E. Convolution Pixel

The convolution pixel performs a signed and weighted charge

package integration for each incoming event. The basic oper-

ation principle was illustrated in the inset of Fig. 2, where a

programmable current source is switched during a short-time

pulse onto an integrating capacitor. The value of the current

pulse can be quite small, in the order of nanoamperes or less.

This value depends on the frequency range of incoming events,

on the frequency range of the outgoing events, on the monos-

table pulse width (which is in the order of nanoseconds), and

on kernel size and shape. Note that for larger kernels, the con-

tribution of each pulse has to be reduced if we want to keep

the same output event frequency range. Because the integrating

capacitance has to be kept small (100 fF) because of area re-

quirements, it turns out that the switched currents can become

quite small (nanoamperes or even picoamperes) for some cir-

cumstances. Under these conditions, a current source followed

by a switch (as shown in Fig. 2) would produce a charge packet

dominated by clock feedthrough charge injection [42], and the

resulting charge packet would be practically independent of the

weighted current. To avoid this, current source transistors are

pulsed from their sources, as shown in Fig. 5(a) [38]. The basic

current mirror is formed by transistors and , where cur-

rent is mirrored from to . The source of is pulsed

between and voltage depending on digital signal pulse

and digital word . and act as

switches. has been added for symmetry. Voltage is such

1202 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Fig. 4. X-neighborhood selection circuit diagram for kernel left/right shift.

Fig. 5. (a) Detailed circuit of pulsing current sources for generating precise charge current packets. (b) Equivalent scheme for multibit digitally controlled charge-
packet generation.

that does not drive any current when pulse is low. Transis-

tors – form a source follower buffer from node to .

This way, node presents lower impedance and is more insen-

sitive to the switching at the source of , specially for very

small currents. This circuit is capable of providing pulsed

currents of down to 3 pA, while setting

the bias current of the source follower to 10 nA [43].

In case currents smaller than picoamperes are required, we bi-

ased the sources of and slightly below the power supply

[44]. In Fig. 2(b), current sources are scaled versions of a

global bias current set at the periphery of the chip.

The digital weighting of current is implemented by putting

several circuits of Fig. 5(a) in parallel sharing the integration ca-

pacitor. The number of parallel sections is given by the number

of bits of the programming weight. For each section, the pulse

current () is proportional to a power

of two, depending on the weight bit number. This is shown in

Fig. 5(b). The digital weighting word is available in a pixel

dynamic register. This register value is updated for each event,

and is the corresponding kernel value copied from the kernel

RAM, as was explained in Section III. The circuit of Fig. 5(b)

corresponds to a single sign version of a weight charge package

integration circuit. For the double sign version, everything, ex-

cept the capacitor, has to be symmetrically replicated (NMOS

to PMOS and PMOS to NMOS). There are two voltage com-

parators, one connected to a positive value and the other

to a negative value. The reference voltage is the same

for both comparators and should be .

Both symmetrical half sections have a different “pulse” signal.

Only one of the two is activated depending on the combination

of signs of the incoming event and the sign of the register weight

. Voltages and are global voltages common for all

pixels. This way the output event frequency produced by a pixel

is proportional to the equivalent average input current inte-

grated onto its pixel capacitor

(4)

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1203

Fig. 6. (a) Circuit schematic of the digi-MOS concept. (b) Single sign calibrated circuit for weighted charge package integration and output events generation.

The pixels output event frequency range can be globally ad-

justed by either tuning or global bias current . In prac-

tice, is kept constant and large to maximize voltage excur-

sions. This way impact of comparators offset voltage mismatch

is minimized. Thus, we use to adjust output events frequency

operating ranges.

The binary weighted currents in Fig. 5(b)

may need to be adjusted to quite

small values, down to nanoamperes or even picoamperes. At

such current levels, transistor mismatch is quite important.

The 0.35- m complimentary metal–oxide–semiconductor

(CMOS) technology measurements of NMOS transistor current

mismatch standard deviations for a wide range of

transistor sizes and for several decades of operating currents

have been reported elsewhere [45]. From such measurements,

we can see that current mismatch for 2.5 m 1.5 m

transistors at currents smaller than 10 nA has a standard

deviation of 8.5%. Assuming Gaussian distributions, this

means that the current sources in an array are spread over a

interval of 51%. Consequently, we could

not even guarantee a precision of 1 bit. Furthermore, note

that these considerations do not take into account mismatch

caused by die gradients, which can be quite relevant for

current sources spread over large surfaces. Because we want

to perform weighted charge packet integration with several

bits of resolution, but have to do it with very low currents,

we require the use of some calibration method. We have used

the mini digital-to-analog converter (DAC)-based method,

proposed recently by Serrano et al. [46]. In this method, a

compact metal–oxide–semiconductor (MOS) ladder structure

with selection switches, as shown in Fig. 6(a), called the

“digi-MOS,” is used as a digitally controlled MOS transistor.

This structure can be exploited, as shown in Fig. 6(b) [46], to

calibrate the set of binary weighted pulse currents of Fig. 5(b).

By properly adjusting for each pixel, current in Fig. 5(b)

can result in acceptable interpixel mismatch. The relationship

between required precision after calibration, transistor sizes,

and operating currents for this structure is explained in [46].

An alternative scheme has been reported recently [65].

F. Kernel Static RAM With High-Speed Readout

The kernel RAM is loaded initially at startup, and needs to

hold the kernel weights for the rest of the time. Consequently,

we implemented a static RAM. The speed of this SRAM writing

process is not critical. However, during the incoming event pro-

cessing operation, the slowest step of the convolution processing

is the copy of the kernel lines to the pixel array. Consequently,

it is critical to have a high-speed readout SRAM. Conventional

high-speed SRAMs are based on the use of efficient peripheral

sense amplifiers [47]. However, such techniques are justified

1204 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Fig. 7. High-speed readout SRAM circuit. (a) Global floorplan structure. (b) SRAM cell detail.

for large-size SRAMs. In our particular case, we are using a

quite small 16 16 RAM matrix. Therefore, we will achieve

high-speed readout by implementing a more ad hoc design.

Fig. 7(a) shows a floor plan of the SRAM. Kernel data is

loaded initially through the bottom shift register (data-in) row

after row. The first bits indicate the SRAM row into which

the kernel data is loaded. The rest of the bits are ,

where is the number of array pixel columns8 and is the

number of the bits per weight. The extra bit is the sign bit of

the weight. Signal “state” in Fig. 7(a) indicates whether we are

writing the SRAM through the bottom shift register, or the con-

troller is reading out the SRAM. The circuitry of each SRAM bit

cell is shown in Fig. 7(b). It contains a latch with a strong and a

weak inverter. The weak inverter side is for writing in the data,

while the strong inverter side is for reading it out. Transistor

sizes of data-out side have been optimized for maximum readout

8Remember we are making the size of the RAM equal to the size of the pixel
array.

speed. Depending on the size of the SRAM (and pixel array),

it might be convenient or not to implement a tree of readout

switches and branches, to minimize parasitic output path capac-

itances.

G. Monostable Circuit

The convolution chip processor includes a single monostable

of programmable output pulsewidth, which delivers a global

output pulse to the pixel array for the charge package integra-

tion process. A schematic diagram of the implemented monos-

table is shown in Fig. 8. Depending on the sign of the input

event being processed, the monostable provides the integration

pulse through either the “pulse-pos” or “pulse-neg” lines. Ini-

tially, the trigger signal is low and no output pulse is pro-

duced (Pulse). This makes , closing switches and

, and opening and . This makes capacitor terminal

voltage . If trigger input becomes momentarily high,

and open while and close. Signal Pulse becomes

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1205

Fig. 8. Conceptual block diagram of the programmable width monostable cir-
cuit.

low and one of the output pulse signals is activated. Capac-

itor starts to be charged by programmable current . The

charging continues until capacitor voltage reaches threshold

, and Pulse becomes the high finishing integration pulse. The

total length of the integration pulse is .

H. I-Pots for Programming Global BIAS Currents

The convolution chip processor has a total of 31 global bias

currents. Because the chip reported in this paper is a first pre-

liminary experimental prototype, it is desirable to allow a wide

programming range for all these bias currents while, at the same

time, there is a fine enough tuning capability in case some bi-

ases turn out to be critical. The obvious option would be to pro-

vide one external bias pin for each current, but this complicates

excessively chip packaging. To solve this dilemma, we have de-

veloped the I-Pot cell, which only needs three external pins in-

dependently of the number of bias current sources needed. This

cell is based on the use of the current splitting ladder circuit

of Fig. 9(a) [48], [51]. This circuit provides current sources

where each is the th fraction of the previous one. Factor

is set by transistor size ratios. If , we have a current

decades generator, or generic range selector (for). If

, we have a conventional current DAC. Our I-Pot cell ex-

ploits both modes of current splitting, as shown in Fig. 9(b). A

global reference current is replicated for each I-Pot cell.

This current is fed into a current range selector. Only one of

its output branches is selected by the digital word in shift reg-

ister . This current is then fed into a linear DAC controlled by

the digital word in shift register . The extra bit in register

decides whether the generated bias current is driven to its des-

tination bias point or to an external pin (I-Test) for characteri-

zation. Optionally, register may contain a sign bit that con-

trols whether the output current is fed or not to an extra current

mirror for current sign inversion. Each I-Pot needs to be initially

characterized by an external instrument. The resolution of the

DAC is such that the number of bits is larger than the precision

limit imposed by transistor mismatch. Consequently, the lower

bits just produce mismatch-induced random values. However,

Fig. 9. (a) Ladder structure circuit for providing currents ratioed by factor N .
(b) Conceptual circuit diagram of I-Pot cell.

our goal is just to generate sufficiently dense values randomly

scattered. After characterization of the I-Pot, the digital register

words are ordered so that a monotonically increasing sequence

of bias currents results. As more bits are implemented in the

DAC, the denser this sequence is. An I-Pot specific lookup table

is stored on a computer for each I-Pot. During normal operation,

this computer loads the shift registers of all I-Pots. After experi-

mentation with all bias currents for proper system operation, the

final I-Pots bias words to be loaded into the shift registers can

be stored into a programmable read-only memory (PROM) that

downloads them at startup. Note that these words are chip-spe-

cific and need to be characterized for all I-Pots of each chip.

A similar but simpler I-Pot circuit has been reported recently,

which uses only the linear DAC in Fig. 9 but with a very large

number (24) of bits and ladder branches [49]. This structure

achieves much less precision for low currents, uses more bit

memory, and has larger area. An improved version of the I-Pot

in Fig. 9 has been reported recently [50].

I. AER-Out

The peripheral AER-out block used is the burst-mode module

proposed and reported in full details by Boahen in 1999 [36].

We simply adapted it for handling signed events [52]. This is

a fully asynchronous self-timed block, synthesized by Boahen

using the hardware description language and synthesis method-

ology of Martin for asynchronous circuits [53]. The basic opera-

tion mechanism can be briefly explained with the help of Fig. 10.

There is an array of pixels that generates the events. Each pixel

event output is wired-OR over its row to the row arbiter on the

1206 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Fig. 10. Basic operation diagram of Boahen’s burst-mode AER-out module.

right. Once the row arbiter selects and acknowledges one spe-

cific row, this row writes its active events on column lines.9

Then, the row latch copies the content of the column lines. Once

the asynchronous handshaking between the row arbiter and the

active row finishes, a new row can start to request selection from

the row arbiter. At the same time, the events latched in the top

row latch are arbitrated and directed sequentially to the chip

AER output port, together with the proper handshaking signals.

In the original unsigned circuit by Boahen, the number of

column lines between pixel array and top row latch were one per

pixel column. In the signed version, we are using two per pixel

column, one for each sign. The pixel communication with the

row arbiter and the row arbiter itself remain the same. Regarding

the top arbitration and communication circuitry, everything is

identical to the original Boahen burst-mode version, except that

the sign information (an extra sign bit) is added to the output

event address.

V. EXPERIMENTAL RESULTS

A small-size convolution chip prototype has been fabricated

in a 0.35- m CMOS technology. Because we are already using

techniques for compensating leakage (fA circuits [44]) and cal-

ibrating for mismatch, we do not expect severe problems when

scaling this architecture below 0.35 m. The area of the com-

plete prototype is 3.3 4.2 mm . The purpose of this first pro-

totype is to test the proper operation of all subsystems involved,

verify correct communication among them, and provide a first

9Although one pixel requests access to the row arbiter, once the row arbiter
has finished arbitration and returns the acknowledged signal, more pixels on this
row may become active. All these active pixel states are transferred simultane-
ously to the top for further processing, and the pixels reset for further integration.

chip for testing the viability of the AER technology for real-time

image convolutions. The fabricated convolution chip prototype

contained a pixel array of size 16 16 and a maximum kernel

RAM size of 16 16. Each pixel occupied an area of 100 140

m . As a first prototype, we decided to oversize the resolution

of the programmable kernel to 6 bits (sign bit plus five weight

bits). For future prototypes, we expect that a resolution of 4 bits

(sign bit plus three weight bits) could serve most purposes well

[54]. A microphotograph of the fabricated prototype is shown in

Fig. 11(a). Labels indicate the location of different blocks: the

16 16 pixel array, the 16 16 6 bits programmable kernel

high-speed readout static RAM, the left/right shift x-neighbor-

hood selection block, the digital controller, the row and column

arbiters with their AER outputs, and the programmable I-Pots

for analog current biases. The area breakdown of different ele-

ments is as follows: pixel array 2400 1740 m , kernel RAM

330 1540 m , x-neighborhood 300 1700 m , controller

2200 560 m , I-Pots 900 470 m , AER-out-x 100 750

m , and AER-out-y 800 100 m . The layout of a single

pixel is shown in Fig. 11(b). Pixel pitch is 106 147 m . It

has a left/right symmetry because all circuitry on the left-hand

side is replicated symmetrically on the right, changing NMOS to

PMOS transistors and vice versa. This is because of the double

sign operation. In the central part of the pixel layout, we can see

the circuitry labeled “oscillator” of size 22 53 m , which in-

cludes the integrating capacitor and the two voltage compara-

tors, and the asynchronous digital AER-out circuitry of size

23 41 m . The left/right symmetric regions include two cal-

ibration registers, each of size 36 21 m ; two ladder struc-

tures, each of size 26 32 m ; and two pulsing current mirrors

with its respective selection logic, each of size 28 68 m .

Note that the area used for calibration (ladders and calibration

registers) is almost half of the total pixel area.

AER events can be fed in up to a peak rate of

events per second (eps) by the I/O circuit and queue. However,

this event input rate can be kept only until the queue is full.

Maximum sustained input event rate depends on the number of

kernel lines in the RAM. The more lines in the kernels, the

more clock cycles are needed per input event. Consequently,

for large kernels, input event rate is limited by event processing

time. The measured event processing delay is

ns/event. In any case, since communication is asynchronous

with handshaking, the speed is always limited by the slowest

component. Therefore, for example, if there are five kernel

lines, the delay per event is 140 ns. However, if the convolution

chip is receiving inputs from a retina with maximum event rate

of 200 ns/event, then this is the effective rate of the link. On

the other hand, if the retina sends events at a rate higher than

the convolution chip can handle, then the convolution chip will

limit the rate of the link. In that case, we would have to slow

down the output rate of the retina. Similarly, if a third chip

is receiving the output events of our convolution chip and it

cannot handle its high output rate, then we need to scale down

our chip output event rate by reducing global bias current

(see Fig. 5). In general, in a practical multichip AER system,

the event rate range (max/min) of each link is preset a priori

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1207

Fig. 11. (a) Microphotograph of fabricated convolution chip prototype. (b) Detail of pixel layout.

according to the slowest element in the link and does not need

to be readjusted dynamically.

Experimental measurements and characterizations are pro-

vided next at the pixel level and the system level.

A. Pixel Level Experimental Characterizations

From the pixel operation point of view, the most critical

aspect is the verification of the correct operation of the pro-

grammable charge packet integration mechanism. In Section

IV-E, we introduced the circuits responsible for performing

the weighted (and signed) charge packet integration, on which

the whole convolution processing operation relies. All pixels

produce equal width current pulses, whose current amplitude

is modulated by an event coordinate-dependent convolution

kernel value. The maximum current pulse is set by a global

bias (in Fig. 5). This maximum current pulse amplitude

needs to be adjusted depending on maximum input event rate

and desired output event frequency ranges as well as kernel

size and shape. Note that [see (4)] pixel output event frequency

increases with average pixel capacitor current and this

current scales linearly with input event rate. Also, if kernels

are large, pixels will be activated more frequently and, conse-

quently, the capacitor average input currents will increase as

well. Therefore, if we want to maintain a specific output event

rate, we need to adjust depending on all these factors. In

practice, this may result in current pulses ranging from several

microamperes down to fractions of picoamperes [43]. As an

illustration, Fig. 12(a) shows the charging and discharging

voltage transients at the capacitor of the integrating pixel. All

traces are obtained by applying incoming events to the same

pixel at a constant time rate of 10 s, with pulse width equal

to 3 s. Positive slopes correspond to charge packages with

positive sign, while negative slopes to those with negative sign.

In this particular case, the current pulses were programmed

between 1 nA and 31 pA, with either positive

or negative sign. This is done by adjusting a global bias current

of value 1 nA using one of the I-Pots, and then storing

locally in the pixel a digital value between using

a 6-bit register. Fig. 12(b) shows the resulting slopes of the

traces in Fig. 12(a) as a function of the 6-bit pixel weight word.

Fig. 12(c) and (d) shows the same thing but when keeping a

constant (positive) weight and sweeping global bias current

to change the height of the current pulses . Here, we can see

there is no mismatch impact (because the pixel current DAC is

maintained with a fixed weight).

To illustrate the output spikes produced by a pixel under dif-

ferent situations, Fig. 13 shows measurements obtained from

a pixel excited with different stimuli. Input spikes have con-

stant amplitude of 100 nA, pulse width of 100 ns, and period

10 s. Only the duty cycle and frequency of the sign bit signal

is changed. The top subfigures show pixel capacitor voltage and

the bottom subfigures pixel output signed spikes (the sign is in-

dicated with labels “ ” or “ ” at each spike). In the left-hand

side column, the pixel is receiving more negative than positive

input events, thus producing a net negative output. In the central

column, it is receiving more positive than negative input events,

thus producing only positive output spikes. In the right-hand

side column, a long period of only negative input spikes is fol-

lowed by a long period of only positive output spikes. Note

that, in general, the pixel output frequency is much smaller than

the frequency of the incoming events. This ratio is adjustable

through bias current . In practice, what happens is that a single

1208 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Fig. 12. (a) Capacitor voltage time evolution of the charge packet driven integrator of Figs. 5 and 6. Each trace corresponds to a different weight value programmed
onto the pulsing current source I . There are a total of 65 traces shown, which correspond to pixel weights from �32 to +32. The capacitor is receiving 3 �s
charge pulses every 10 �s. The pulsing current is programmed to be either positive (increasing slopes) or negative (decreasing slopes) from values ranging from
I = 1 nA to I = 1/32 nA, using a 6-bit signed word. (b) Resulting slopes for the traces in (a). (c) Weight is maintained constant (positive) and global bias
current I is swept to change I between 0 and 100 nA. The capacitor is receiving 100-ns pulses every 10 �s. Staircases are measured capacitor voltages, while
continuous lines are computed interpolations. (d) Resulting capacitor slew rate versus I .

pixel receives spikes from many pixel coordinates of the pre-

ceding layer, depending on kernel size. Depending on kernel

size and shape, bias current can be adjusted so that pixel fre-

quencies in subsequent layers are similar.

The main problem when building large arrays of such

pixels is the large mismatch that results between the cur-

rent sources of the pixels, specially when such currents are

generated by transistors well biased into weak inversion. For

instance, if one repeats the measurements of Fig. 12 for all

pixels, a maximum mismatch of 14% is obtained for the

most negative weight. This means that the interval is over

80%, well below 1-bit resolution. One option to overcome such

large mismatch could be to use a tree of current mirrors of large

size to distribute a reference current to all pixels [55], but this

consumes a tremendous amount of area. In our implementation,

we opted to use a calibration technique proposed recently based

on programmable current splitters [46]. This technique uses the

calibration circuit shown in Fig. 6, but replicated for double

sign operation. The calibration process is as follows. First, we

set the pixels weight word to for all 16 16 pixels and

measure the resulting pixel frequencies as function of calibra-

tion word . Fig. 14(a) shows the resulting frequencies for

all pixels as a function of calibration word (see Fig. 6).

The value of global bias current is adjusted with respect

to global bias current so that the minimum frequency

at the left in Fig. 14(a) is equal (or slightly larger)

than the maximum frequency at the right . In this

particular case, we adjusted 160 nA and

71 nA. This way a common frequency can be found for all

pixels, as indicated by the thick horizontal line. The optimum

calibration word for each pixel is then the one that would make

its frequency as close as possible to this common frequency.

The resulting optimum calibration words for each pixel are

then stored and loaded onto the chip at startup. The calibration

process for the opposite sign is performed in a similar manner.

Fig. 14(b) shows the resulting 16 16 pixel frequencies when

setting kernel weight to and sweeping calibration

words . Again global bias current is adjusted

relative to to maximize the calibration range of the

calibration word, while finding a common frequency for all

pixels. The optimum calibration words for each pixel are stored

off chip and loaded at startup. After calibrating the negative

and positive sides, the reference currents are fine tuned to make

the output frequencies of the two horizontal lines in Fig. 14

identical.

Note that this calibration technique [46] only calibrates

at maximum weight. This way a reasonable compromise is

obtained between pixel complexity and calibration capability.

Fig. 15 shows the spread (maximum minus minimum value)

of all 16 16 pixels as function of kernel weight before

calibration (trace with crosses) and after calibration (trace with

circles). After calibration, the worst case error is about 12%

(equivalent to a 2%), which corresponds to a precision of

3 bits.

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1209

Fig. 13. Pixel behavior under different situations. Top row shows pixel capacitor voltage V (t). Bottom row shows pixel output signed spikes (spikes are labelled
“+” for positive sign and “�” for negative sign). Left-hand side column corresponds to a situation of pixel receiving more positive input spikes than negative
ones, thus producing only positive output spikes. Central column illustrates the opposite situation. Right-hand side column shows the situation of a pixel receiving
negative spikes during a long period and producing negative output spikes, followed by a period where it receives only positive spikes and produces positive output
spikes.

Fig. 14. Illustration of calibration process for (a) negative current pulses and (b) positive current pulses. The figures show the resulting pixel frequencies for all
16� 16 pixels, as function of calibration word w , for (a) w = 32 and (b) w = �32. Each trace corresponds to one of the 256 pixels. The meaning of pixel
weight w and pixel calibration word can be seen from Figs. 5 and 6.

B. Computer Interfaces

In order to test the performance of the AER convolution chip

at the system level we developed some custom made computer

interfaces that perform the following functions. The first func-

tion, which is rather simple, is to capture (or grab) the address

events generated by the convolution chip and dump them into

the computer’s memory. Each captured event is assigned a time-

stamp and stored in the computer. The convolution chip output

AER bus is monitored during a time period, after which the se-

quence of captured events is stored on a file in the computer.

This file is then analyzed offline.

The opposite function, providing an AER input stimulus to

the computer, is more sophisticated. For this purpose, we have

developed a special purpose PCI card that uses a Spartan II

200 field-programmable gate array (FPGA). The hardware pro-

grammed into the FPGA is capable of transforming the frame-

based video streams (available in the computer) onto the spike-

based address event representations in real time [56]. This task

can be achieved in real time by exploiting linear feedback shift

register (LFSR) pseudorandom number generation techniques.

This hardware is capable of providing synthetic AER at a max-

imum peak rate of eps (events per second) for images of

size 64 64.

1210 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Fig. 15. Spread of pixel frequencies as a function of kernel weight w, before and after calibration.

Fig. 16. Block diagram of the PCI-AER interface programmed onto FPGA.

The hardware interface (see Fig. 16) includes the Xilinx Logi-

CORE PCI core, a 4-kB RAM for storing the image to be con-

verted to AER, a control unit (CU), a 20-bit LFSR, a delay

line loop (DLL) for internal clock management, and a block for

configuring PCI core and interfacing issues. The image frame

(which can be of up to 64 64 pixels) is transferred from the

computer through its PCI bus and the PCI core to the 4-kB

RAM memory. The 20-bit LFSR is used for the pseudorandom

number generation and is the core of the synthetic AER gen-

eration algorithm [56], which was later shown to obey Poisson

statistics [57]. The 20 bits is a good compromise between hard-

ware complexity and length of random numbers period. The CU,

clocked at 100 MHz, is the operation center. The LFSR works

at a slower speed, using a clock which is generated by the CU

and triggered by the communication with the AER receiver.

Using this interface, we can feed the convolution chip with a

moving or steady image of very well-known characteristics and

analyze the chip response under different convolution kernels

and configuration parameters, as described next.

C. System Level Experimental Results

The first experiment is to illustrate the effects of calibration.

For this we fed the convolution chip with a uniform image and

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1211

Fig. 17. Output of convolution chip for uniform input image and unity kernel. (a) Without calibration. (b) With calibration.

Fig. 18. From a natural image (a) we select a subframe of 16� 16 pixels of high contrast.

Fig. 19. Gabor kernel for vertical edge extraction.

programmed a kernel of size 1 1 with maximum weight. This

makes the convolution chip to provide at the output the same

image that is being received at the input, except for some addi-

tional scaling.10 Fig. 17(a) shows the output of the convolution

chip without calibrating the chip, while Fig. 17(b) shows the

output for the same image and kernel after applying calibration.

Both images reflect the difference between a pixel standard de-

viation of 14.2% (see Fig. 15 for before calibra-

tion) and 1.8% (see Fig. 15 for after calibration).

For the next experiments, we use a subframe of a nat-

ural image with an important contrast. Specifically, from the

10A 1� 1 kernel is a Dirac delta convolution.

256 256 pixels natural image in Fig. 18(a) we extracted the

subframe of size 16 16, shown in Fig. 18(b). We loaded

the chip with a kernel for vertical edge detection (as shown

in Fig. 19) and applied the input image of Fig. 18(b) to our

convolution chip,11 using the interfacing hardware described in

Section V-B. The second and third columns in Fig. 20 show the

ideal output image that results from convolving the image in

Fig. 18(b) with the kernel, as computed by Matlab.12 Although

the input image has only positive pixel values, the output image

11We actually applied a larger size image to eliminate boundary effects of the
convolution operation.

12Using its built-in 2-D convolution operator.

1212 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

Fig. 20. Convolution processing for different contrast level input images.

has both positive and negative pixel values, because an edge

detection kernel has also double sign values. The top row in

Fig. 20 shows separately the pixels with positive output events

and the ones with negative output events. The numbers around

each subframe indicate pixel rows and columns (from 1 to 16).

Now, using the image in Fig. 18(b) to generate a physical stream

of address events with the hardware described in Section V-B,

and feeding it as input AER to our convolution chip, properly

programmed with the edge detection kernel, results in the output

images in Fig. 20 (four right-most columns). These images are

obtained by collecting the convolution chip output AER stream

during a time of 40 ms and representing the number of events

generated by each pixel. Two columns in Fig. 20 correspond to

the case when the chip has been properly calibrated for pixel

mismatch, while two other columns correspond to the case

when no calibration is applied to the chip.

To further illustrate the effect of calibration, we repeated

the same convolution operation while progressively reducing

the contrast of the input image of Fig. 18(b). This is shown in

Fig. 20. The first column shows the input image used, where

the contrast has been reduced from the original 100% level

progressively down to a 10% level. The second and third

columns show the ideal output computed with Matlab, the

fourth and fifth columns correspond to the chip output with

calibration, and the sixth and seventh columns to the chip

output without calibration. As can be seen, there is an important

gain in performance as a consequence of applying calibration.

In order to provide a quantitative measure, Fig. 21 shows the

numerical values of row of the images in Fig. 20. The

numbers on the horizontal axes show the pixel column for this

row. The first column in Fig. 21 represents the pixels event

frequency for the input image (in kilohertz), the second column

the mathematically computed ideal output13 (in hertz), the third

and fourth columns correspond to the measured chip output

frequencies with and without calibration, respectively, (in

hertz), and the last column represents the percent error of both

outputs. Each inset indicates also the numerical average mean

square error over all pixels of all columns for the calibrated

(top) and uncalibrated (bottom) cases. If input event rate is

increased/decreased, output rate scales linearly.

Current consumption of the chip varied between 20 and 50

mA, depending on the kernel size, the event throughput, and the

event output rate. The I-Pots section alone consumed 10 mA

because its value was set fairly high to 100 A. An im-

portant part of the power consumption is caused by the AER

output pads. A summary of chip performance and characteris-

tics is given in Table I.

VI. UP-SCALING OF AER-BASED CONVOLUTION

PROCESSING SYSTEMS

So far we have shown the concept and experimental verifi-

cation of a preliminary programmable kernel AER convolution

chip of a small size. Now, we will discuss and illustrate how we

can scale up this technique to build realistic vision processing

13To map Matlab’s ideal outputs to a frequency value, we mapped the output
range of Matlab’s 2-D output to the experimental 2-D output frequency map,
but only for the 100% contrast stimulus. The same mapping was then used for
the rest of input contrast stimuli experiments.

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1213

Fig. 21. Numerical values for the fifth column of the 16� 16 images in Fig. 20.

Fig. 22. Illustration of a multichip multilayer AER convolution processing sys-
tems to distinguish between handwritten characters “A” and “H.” This system
is loosely inspired in the neocognitron architecture.

systems. Up-scaling means growing the system capabilities in

two separate “directions”: 1) processing larger arrays of pixels

and 2) process both in parallel and sequentially arbitrarily com-

plex hierarchical multilayered cortical-like structures.

A. Up-Scaling to Larger Arrays of Pixels

The chip presented experimentally in this paper is a proof

of concept chip of small size (16 16 pixels). Using the same

pixel, it is feasible to design a larger chip with 64 64 pixels in

the same technology. Such chip would have a size around 8 11

mm . If we want to use such a chip for processing arrays of

pixels of a more realistic present day consumer video, we should

be able to process at least arrays of 256 256 pixels or more.

As discussed in Section III and illustrated in Fig. 3, it is possible

to assemble chips for processing larger arrays of pixels. The in-

trinsic limitation will be the bandwidth of the AER links. For ex-

ample, suppose we have available 64 64 pixel chips, capable

of handling eps, and we tile a 4 4 array of them for pro-

cessing 256 256 pixels, sent by an AER retina. Such a retina

should have its maximum output event rate not larger than

eps. Today’s reported AER retinas include some internal prepro-

cessing to reduce output event flow. For example, Lichtsteiner et

al. [59] have developed a temporal contrast retina of 128 128

pixels to compute motion, whose maximum output event rate

does not increase over eps. An up-scaled 256 256 version

would provide a maximum rate of 4 eps. Costas et al. [62]

report on a spatial contrast retina setup of 32 32 pixels whose

average output signed event rate is in the order of 10 keps. This

would scale up to 160 keps for 256 256 pixels. Even if we use

a 256 256 pixel retina without any preprocessing that would

directly transform sensed pixel intensity into an event output

stream for each pixel, we can adjust the retina so that pixel max-

imum event rate is maintained below 150 Hz. This would result

in a maximum event rate for the complete retina of 9.8 Meps.

Consequently, when scaling up image size, the maximum event

rate of an AER sender should increase (because there are more

pixels). This maximum rate, however, should be kept below the

max rate capability of each convolution chip (as well as interme-

diate splitters). Usually, AER retinas can be adjusted to control

the average pixel output event rate [59], [62]. However, low-

ering pixel event rate implies lowering the response time of any

1214 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

TABLE I
SUMMARY OF CHIP PERFORMANCE AND CHARACTERISTICS

Fig. 23. Kernels used for the different convolutions in Fig. 22. The bar to the right side of each kernel shows the grayscale coding of the kernel value. For each
kernel, “white” is assigned to its maximum value and “black” is assigned to its minimum value.

later processing. Consequently, there will always be a compro-

mise between the array size, the event traffic, and the system

response time.

B. Up-Scaling to Multilayer Cortical-Like Hierarchical

Processing Structures

There is a solid framework of vision processing (soft-

ware) based on local convolution operations, which has been

developed in the late 1960s [3]–[10]. In recent years, this

computational paradigm has been named “convolution neural

networks.” The structure of a convolution neural network is

similar to what is claimed for biological cortical structures

[17]: a reduced number of sequential layers (8–10 in the human

cortex), but each layer may include many different parallel con-

volution filters (of different shapes, scales, angles, etc.). Chips

like the one presented in this paper can be easily assembled into

multilayer structures with multichips per layer, by exploiting

AER splitters and mergers conveniently. To illustrate this, we

will show experimental results, obtained using our 16 16

convolution chip, of a simplified version of the neocognitron

system reported in 1991 by Fukushima et al. [5]. Fukushima’s
1991 neocognitron consists of eight sequential layers, a total

of 441 convolution filters each programmed with a different

kernel, and it operates on an input black and white image of

19 19 pixels. Input images consist of a catalog of handwritten

alphanumeric characters.

We have simplified this neocognitron to a structure of four

sequential layers including 13 different 16 16 pixel convolu-

tions, whose function is simply to distinguish between letters

“A” and “H.” The structure is shown in Fig. 22. It receives an

input visual stimulus (of 16 16 pixels), which can be either

letter “A” or letter “H,” and it can tolerate slight deformations.

The first processing layer performs five convolutions in par-

allel, of kernels (1 to 5). These are shown on the top of

Fig. 23. Kernels have positive and negative values. Therefore,

the convolution outputs would include events with both positive

and negative events. In the system of Fig. 22, convolution chips

negative output events are ignored. Only positive events will be

transmitted. Consequently, each convolution chip will compute

a half-wave rectification, besides the programmed convolution.

Kernel is intended to detect the presence and position of

the upper peak in letter “A.” Kernel detects the presence and

position of a horizontal segment ending on the left and touching

a vertical segment. Kernel does the same, but ending on the

right. Kernel detects presence and position of the bottom end

of a vertical segment, and kernel does the same but for the

top end. Consequently, the first layer of convolutions is intended

to detect a set of five geometrical features, which can be used to

detect and discriminate between letters “A” and “H.”

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1215

Fig. 24. Output frequencies produced by the different convolution stages pixels: On the left, when the input stimulus “A” was presented, and on the right when
letter “H” was presented. For each convolution array, grayscale represents pixel frequency in hertz, as indicated by the scale bar on its right.

The second layer of the convolution processing is intended to

evaluate whether the spatial relative positions of detected fea-

tures in the first layer are meaningful for the character to be de-

tected. For example, for letter “A,” the top peak (detected by

and present at the output) should be in the upper part above

all the other features. Consequently, kernel will produce a

positive contribution in the region below, because this would be

the place in the output , where the center of letter “A” would

be if all its features were detected simultaneously. In a similar

manner, if there is the output at , the center of “A” could be

to the right. Therefore, kernel will add contribution to the

pixels in , which are to the right of those that fired in . The

output at has to be treated more symmetrically than the one

for . Therefore, we do not need to add an extra convolution

chip for this. We can simply flip the left/right (block “L/R” in

Fig. 22) output coordinates at and use the same kernel to

evaluate the correct position of the feature detected by kernel .

The flipped events of and the ones of are sequenced by a

merger block (labeled in Fig. 22) before feeding them to the

convolution chip with kernel . Kernel places events at

if a bottom end of the vertical segment is detected. This means

that the center of letter “A” is somewhere above, either to the

right or to the left. This spatial weighting is performed by kernel

. Kernel operates in a similar manner, but for top ends of

the vertical segments. Letter “A” should produce activity at out-

puts , while letter “H” at . When

the input is the letter “A,” the activity at will be

on different pixels. However, the activity at would

be around the center of the letter “A.” Similarly, if “H” is the

input letter, the activity at would show up around

the center of the letter.

The purpose of the third layer is to add with positive or nega-

tive weight the outputs of the second layer. For letter “A,” out-

puts should contribute positively, while output

should inhibit. Similarly, for letter “H” should inhibit, while

should contribute positively. Consequently, all out-

puts – are split (blocks “Sp” in Fig. 22) into two separate

pathways with two separate four-input merger blocks, one for

detecting letter “A” and the other for letter “H.” Only positive

events come out at outputs – . However, the sign bits are

hardwired at the inputs of the merger blocks, with the sign indi-

cated in Fig. 22. The merger blocks simply sequence the events

coming from their four input channels, and are fed to a convo-

lution chip programmed with a 1 1 kernel. This way signed

events are integrated at each pixel over time to obtain net pixel

activity, which is also rectified.

Finally, the fourth layer consists of one single convolution

chip for each character path, programmed with kernel , which

will detect whether the events coming from the previous layer

are more or less clustered together, rather than spread over the

pixel array. If they are clustered, it means the character has been

detected.

Currently, we do not have available 13 convolution chips

and the large number of splitters/mergers required to assemble

physically the structure of Fig. 22. However, we can stimulate

a single chip with a specific stimulus, record its output event

stream, play back this output, use it as a stimulus for the chip

after programming it with a different kernel, record again its

output, and so on [63]. This way we can obtain the experimental

behavior of the complete structure. The results are shown in

Fig. 24, where each pixel array represents the convolution chip

pixels output frequencies. Fig. 24 shows that when presenting

the input stimulus “A,” there is the output activity at “fA” and

zero activity at “fH,” meaning that letter “A” has been recog-

nized. Similarly, when the input stimulus is “H,” there is zero

output at “fA,” while there is the output activity at “fH.” The

output activity appears at the pixels which are at the location of

the center of the input letter.

C. Discussion

An interesting property of AER cortical structures, like

the one in Fig. 22, is that the processing delay depends on

the number of layers and the number of events that carry

meaningful information. As systems scale up to perform more

1216 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

sophisticated processing, the total number of layers does not

grow much (human cortex has 8–10 layers [17]). What grows

is the number of parallel convolutions per layer [3]–[10], and

this does not slow down the global delay. Also, AER sensors

send first the most relevant events: for example, a motion

retina will send out first the events produced by those pixels

that have sensed a faster transition [59]; a contrast retina will

provide first the events for pixels with highest contrast [62].

Consequently, as the most relevant events appear first, they are

processed by the first layer first, the most relevant features are

detected first, and so on. Therefore, object recognition can be

very fast, by processing only a small percentage of the total

number of events [56], [64]. For the system in Fig. 22, the delay

between pattern presentation and recognition can be as low as14

3 s. Consequently, if we assemble Fukushima’s neocognitron

[5], which has 441 convolutions in eight sequential layers,

the neocognitron delay would be about doubled (because the

number of layers is doubled and the number of events flowing

in each link would be similar as for the system in Fig. 22).

For processing more sophisticated stimuli, larger pixel arrays

are required, but the number of sequential layers will be similar,

as in the case of face recognition tasks [8]–[10]. In such cases,

many more events are required to represent meaningful infor-

mation. For example, a 64 64 pixel face with an 8-bit reso-

lution per pixel can be represented by a 500 kiloevent stream

[56], which would require a transfer time of 50 ms for an AER

channel with a bandwidth of 10 Meps. However, the most rele-

vant features are already available in the first 10% of the events

[56], thus requiring only 5 ms. A contrast representation of the

same face needs only 28% of the events of the original face,

and the first 7.5 kiloevents (75 s) are sufficient for the recog-

nition [56]. Consequently, an eight-layer AER cortical structure

would require less than 8 75 s 600 s for such processing,

independently of the number of convolution operations. Scaling

this to 256 256 pixels would result in delays of about 16 times

slower, in the order of 10 ms. Performing this task with conven-

tional frame-based image convolutions, using, for example, the

Öwall’s special convolution hardware [12], would require 55 ms

per convolution, plus the overhead for communicating images (3

ms per image) and the necessary image additions/subtractions.

If around 500 convolutions are needed for the face recognition

task, this would result in a total delay of around 30 s, when using

one single convolution chip. If using one chip per convolution,

because chips are structured in eight sequential layers, the total

delay would be (55 ms 3 ms) 8 465 ms, ignoring addi-

tions/subtractions.

VII. CONCLUSION

A convolution test chip prototype based on AER has been

presented, fabricated, and tested. The purpose of this first pro-

totype was to test different system components and operation

principles as well as performance. The chip design is based on

digital calibration of analog computing circuits. For this reason,

a small size (3.3 4.2 mm) chip was fabricated in a 0.35- m

CMOS process, for processing images of size 16 16. The chip

can be programmed to perform kernels of arbitrary shape and

of size up to 16 16. Extensive experimental results are pro-

14This was estimated through behavioral simulations of the system in Fig. 22
[58].

vided that demonstrate the correct operation of the chip, and the

potential of AER for performing real-time convolutions. As a

first test prototype, the resulting pixel size of 100 140 m

was conservatively oversized to allow kernel weights of up to

6-bit resolution. Consequently, for this pixel size, and using the

presented circuit techniques, it is feasible to build convolution

chips of 64 64 pixel arrays (and larger), with programmable

convolution kernels of 64 64 or larger, in an area of less than

1 cm . In future prototypes [54], a significant reduction in pixel

area will be expected after reducing kernel weight resolution.

Also, a significant percentage of pixel area will be consumed by

the in-pixel calibration circuitry. Currently, we are investigating

other calibration techniques to further reduce pixel area while

maintaining or improving precision performance [65]. Nonethe-

less, using the present calibration technique and reducing kernel

weight resolution, it should be feasible to fabricate convolution

chips for images of size 128 128 in 0.35- m CMOS. Kernel

can be of large size, equal to image size or larger. Kernel and

image sizes are independent of each other.

The processing power of such AER-based convolution chips

becomes apparent when using them for multilayer cortical-like

processing systems. This is because the processing delay de-

pends on the number of layers but not on the complexity of

each layer. Consequently, sophisticated but fast processing is

possible, as in biological cortical structures, where there is a re-

duced number of layers (8–10).

REFERENCES

[1] S. Grossberg, E. Mingolla, and J. Williamson, “Synthetic aperture radar
processing by a multiple scale neural system for boundary and surface
representation,” Neural Netw., vol. 8, no. 7/8, pp. 1005–1028, 1995.

[2] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, no. 6582, pp. 520–2, Jun. 1996.

[3] K. Fukushima, “Visual feature extraction by a multilayered network of
analog threshold elements,” IEEE Trans. Syst. Sci. Cybern., vol. SSC-5,
no. 4, pp. 322–333, 1969.

[4] K. Fukushima, “Neocognitron: A self-organizing neural-network
model for a mechanism of pattern recognition unaffected by shift in
position,” Biol. Cybern., vol. 36, pp. 193–202, 1980.

[5] K. Fukushima and N. Wake, “Handwritten alphanumeric character
recognition by the neocognitron,” IEEE Trans. Neural Netw., vol. 2,
no. 3, pp. 355–365, May 1991.

[6] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series,” in The Handbook of Brain Science and
Neural Networks, M. Arbib, Ed. Cambridge, MA: MIT Press, 1995,
pp. 255–258.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[8] C. Neubauer, “Evaluation of convolution neural networks for visual
recognition,” IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 685–696,
Jul. 1998.

[9] S. Lawrence, C. L. Giles, A. Tsoi, and A. Back, “Face recognition: A
convolutional neural network approach,” IEEE Trans. Neural Netw.,
vol. 8, no. 1, pp. 98–113, Jan. 1997.

[10] B. Fasel, “Robust face analysis using convolution neural networks,” in
Proc. Int. Conf. Pattern Recognit., Quebec, QC, Canada, Aug. 11–15,
2002, vol. 2, pp. 40–43.

[11] A. Gentile and D. S. Wills, “Portable video supercomputing,” IEEE
Trans. Comput., vol. 53, no. 8, pp. 960–972, Aug. 2004.

[12] V.wall, M. Torkelson, and P. Egelberg, “A custom image convolution
DSP with a sustained calculation capacity of >1 GMAC/s and low I/O
bandwidth,” J. VLSI Signal Process., vol. 23, pp. 355–349, 1999.

[13] H. Kwon, “A low-power image convolution algorithm for variable
voltage processors,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2003, vol. 2, pp. 677–680.

[14] H. H. Cut, A. Gentile, J. C. Eble, M. Lee, O. Vendier, Y. J. Joo, D. S.
Wills, M. Brooke, N. M. Jokerst, and A. S. Brown, “SIMPiL: An OE
integrated SIMD architecture for focal plane processing applications,”
in Proc. 3rd Int. Conf. Massively Parallel Process. Using Opt. Inter-
connects, 1996, pp. 44–52.

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1217

[15] F. Paillet, D. Mercier, and T. M. Bernard, “Making the most of 15k�
silicon area for a digital retina PE,” in Proc. SPIE Adv. Focal Plane Ar-
rays Electron. Cameras II, Zurich, Switzerland, May 1998, vol. 3410,
pp. 158–167.

[16] R. Etienne-Cummings, Z. K. Kalayjian, and D. Cai, “A programmable
focal-plane MIMD image processor chip,” IEEE J. Solid-State Circuits,
vol. 36, no. 1, pp. 64–73, Jan. 2001.

[17] G. M. Shepherd, The Synaptic Organization of the Brain, 3rd ed.
Oxford, U.K.: Oxford Univ. Press, 1990.

[18] M. Sivilotti, “Wiring considerations in analog VLSI systems with ap-
plication to field-programmable networks,” Ph.D. dissertation, Comp.
Sci. Div., California Inst. Technol., Pasadena, CA, 1991.

[19] M. Mahowald, “VLSI analogs of neural visual processing: A synthesis
of form and function,” Ph.D. dissertation, Comp. Sci. Div., California
Inst. Technol., Pasadena, CA, 1992.

[20] M. Mahowald, An Analog VLSI Stereoscopic Vision System. Norwell,
MA: Kluwer, 1994.

[21] A. Mortara and E. A. Vittoz, “A communication architecture tailored
for analog VLSI artificial neural networks: Intrinsic performance and
limitations,” IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 459–466, May
1994.

[22] A. Mortara, E. A. Vittoz, and P. Venier, “A communication scheme for
analog VLSI perceptive systems,” IEEE J. Solid-State Circuits, vol. 30,
no. 6, pp. 660–669, Jun. 1995.

[23] P. Vernier, A. Mortara, X. Arreguit, and E. A. Vittoz, “An integrated
cortical layer for orientation enhancement,” IEEE J. Solid-State Ci-
cuits, vol. 32, no. 2, pp. 177–186, Feb. 1997.

[24] E. Culurciello and A. G. Andreou, “A comparative study of access
topologies for chip-level address-event communication channels,”
IEEE Trans. Neural Netw., vol. 14, no. 5, pp. 1266–1277, Sep.
2003.

[25] T. Y. W. Choi, B. E. Shi, and K. Boahen, “An ON-OFF orientation
selective address event representation image transceiver chip,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 2, pp. 342–353, Feb.
2004.

[26] T. Y. W. Choi, P. A. Merolla, J. V. Arthur, K. A. Boahen, and B. E.
Shi, “Neuromorphic implementation of orientation hypercolummns,”
IEEE Trans. Circ. Syst. I, Reg. Papers, vol. 52, no. 6, pp. 1049–1060,
Jun. 2005.

[27] J. Kramer, R. Sarpeshkar, and C. Koch, “Pulse-based analog velocity
sensors,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 44, no. 2, pp. 86–101, Feb. 1997.

[28] E. Culurciello, R. Etienne-Cummings, and K. Boahen, “A biomorphic
digital image sensor,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp.
281–294, Feb. 2003.

[29] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,
“AER image filtering architecture for vision-processing systems,”
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 9, pp.
1064–1071, Sep. 1999.

[30] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,
“A programmable VLSI filter architecture for application in real-time
vision processing systems,” Int. J. Neural Netw., vol. 10, no. 3, pp.
179–190, Jun. 2000.

[31] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie,
“Silicon auditory processors as computer peripherals,” IEEE Trans.
Neural Netw., vol. 4, no. 3, pp. 523–528, May 1993.

[32] S. Thorpe and J. Gautrais, “Rank order coding,” in Proc. 6th Annu.
Conf. Comput. Neurosci.: Trends Res., 1998, pp. 113–118.

[33] K. Boahen, “Retinomorphic vision systems,” in Proc. 5th Int. Conf.
Microelectron. Neural Netw. Fuzzy Syst., Lausanne, Switzerland, Feb.
1996, pp. 2–14.

[34] W. Maass and C. M. Bishop, Pulsed Neural Networks. Cambridge,
MA: MIT Press, 1999.

[35] K. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 47, no. 5, pp. 416–434, May 2000.

[36] K. Boahen, “A throughput-on-demand address-event transmitter for
neuromorphic chips,” in Proc. 20th Anniversary Conf. Adv. Res. VLSI,
D. S. Wills and S. P. DeWeerth, Eds., 1999, pp. 72–86.

[37] K. Shimonomura and T. Yagi, “A multichip aVLSI system emulating
orientation selectivity of primary visual cortical cells,” IEEE Trans.
Neural Netw., vol. 16, no. 4, pp. 972–979, Jul. 2005.

[38] D. H. Goldberg, G. Cauwenberghs, and A. G. Andreou, “Proba-
bilistic synaptic weighting in a reconfigurable network of VLSI
integrate-and-fire neurons,” Neural Netw., vol. 14, pp. 781–793, 2001.

[39] R. J. Vogelstein, U. Mallik, E. Culurciello, G. Cauwenberghs, and R.
Etienne-Cummings, “Saliency-driven image acuity modulation on a re-
configurable silicon array of spiking neurons,” in Advances in Neural
Information Processing Systems (NIPS’2004). Cambridge, MA: MIT
Press, 2005, vol. 17.

[40] J. P. Lazzaro and J. Wawrzynek, W. J. Dally, J. W. Poulton, and A.
T. Ishii, Eds., “A multi-sender asynchronous extension to the ad-
dress-event protocol,” in Proc. 16th Conf. Adv. Res. VLSI, 1995, pp.
158–169.

[41] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-
1993 and Std 1076a-2000, 2000.

[42] H. K. Yang and E. I. El-Masry, “Clock feedthrough analysis and cancel-
lation in current sample/hold circuits,” Inst. Electr. Eng. Proc. Circuits
Devices Syst., vol. 141, no. 6, pp. 510–516, 1994.

[43] B. Linares-Barranco, T. Serrano-Gotarredona, and R. Serrano-Go-
tarredona, “A new charge-packet driven mismatch-calibrated inte-
grate-and-Fire neuron for processing positive and negative signals in
AER based systems,” in Proc. IEEE 2004 Int. Symp. Circuits Syst.,
2004, vol. 5, pp. 23–26.

[44] B. Linares-Barranco and T. Serrano-Gotarredona, “On the design and
characterization of femtoampere current-mode circuits,” IEEE J. Solid-
State Circuits, vol. 38, no. 8, pp. 1353–1363, Aug. 2003.

[45] T. Serrano-Gotarredona and B. Linares-Barranco, “CMOS mismatch
model valid from weak to strong inversion,” in Proc. Eur. Solid State
Circuits Conf., Sep. 2003, pp. 627–630.

[46] B. Linares-Barranco, T. Serrano-Gotarredona, and R. Serrano-Go-
tarredona, “Compact low-power calibration mini-DACs for neural
massive arrays with programmable weights,” IEEE Trans. Neural
Netw., vol. 14, no. 5, pp. 1207–1216, Sep. 2003.

[47] N. H. E. Weste and K. Eshraghian, “Principles of CMOS VLSI design,”
in A Systems Perspective, 2nd ed. Reading, MA: Addison-Wesley,
1993.

[48] K. Bult and J. G. M. Geelen, “An inherently linear and compact MOST-
only current division technique,” IEEE J. Solid State Circuits, vol. 27,
no. 12, pp. 1730–1735, Dec. 1992.

[49] T. Delbruck and P. Lichtsteiner, “Fully programmable bias current gen-
erator with 24 bit resolution per bias,” in Proc. IEEE Int. Symp. Circuits
Syst., Kos, Greece, May 2006, pp. 2849–2852.

[50] R. Serrano-Gotarredona, L. Camuas-Mesa, T. Serrano-Gotarredona,
J. A. Leero-Bardallo, and B. Linares-Barranco, “The stochastic I-pot:
A circuit block for programming bias currents,” IEEE Trans. Circuits
Syst. II, Brief Papers, vol. 54, no. 9, pp. 760–764, Sep. 2007.

[51] C. C. Enz and E. A. Vittoz, “CMOS low-power analog circuit design,”
in Proc. Int. Symp. Circuits Syst., 1996, Tutorials 1.2, pp. 79–132.

[52] R. Serrano-Gotarredona, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “On-event generators for address event representation transmit-
ters,” in Proc. SPIE Microtechnol. New Millennium, Sevilla, Italy, May
2005, vol. 5839, pp. 148–159.

[53] A. Martin, “Programming in VLSI: From communicating processes to
delay-insensitive circuits,” in Proc. UT Year Program. Inst. Concurrent
Program., Reading, MA, 1990, pp. 1–64.

[54] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez,
and B. Linares-Barranco, “A neuromorphic cortical-layer microchip
for spike-based event processing vision systems,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 53, no. 12, pp. 2548–2566, Dec. 2006.

[55] T. Serrano-Gotarredona and B. Linares-Barranco, “A real-time clus-
tering microchip neural engine,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 4, no. 2, pp. 195–209, Jun. 1996.

[56] A. Linares-Barranco, G. Jimenez-Moreno, B. Linares-Barranco, and
A. Civit-Ballcels, “On algorithmic rate-coded AER generation,” IEEE
Trans. Neural Netw., vol. 17, no. 3, pp. 771–788, May 2006.

[57] A. Linares-Barranco, M. Oster, D. Cascado, G. Jimnez, A. Civit, and B.
Linares-Barranco, “Inter-spike-intervals analysis of AER Poisson like
generator hardware,” Neurocomputing, vol. 70, pp. 2692–2700, May
2007.

[58] J. A. Pérez-Carrasco, T. Serrano-Gotarredona, C. Serrano-Go-
tarredona, B. Acha, and B. Linares-Barranco, “High-speed character
recognition system based on a complex hierarchical AER architec-
ture,” presented at the IEEE Int. Conf. Circuits Syst., Seattle, WA,
May 18–21, 2008.

[59] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128� 128 120 dB 30
mW asynchronous vision sensor that responds to relative intensity
change,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers , San
Francisco, CA, 2006, pp. 508–509.

[60] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip: Part 1,” IEEE Trans. Biomed Eng., vol. 51, no. 4, pp. 657–666,
Apr. 2004.

[61] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip: Part 2,” IEEE Trans. Biomed Eng., vol. 51, no. 4, pp. 667–675,
Apr. 2004.

[62] J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona,
and B. Linares-Barranco, “A spatial contrast retina with on-chip
calibration for neuromorphic spike-based AER vision systems,” IEEE
Trans. Circuts Syst., I, Reg. Papers, vol. 54, no. 7, pp. 1444–1458, Jul.
2007.

1218 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 7, JULY 2008

[63] F. Gmez-Rodrguez et al., “AER tools for communications and de-
bugging,” in Proc. IEEE Int. Symp. Circuts Syst., May 2006, pp.
3253–3256.

[64] S. Thorpe, A. Delorme, and R. V. Rullen, “Spike-based strategies for
rapid processing,” Neural Netw., vol. 14, pp. 715–725, 2001.

[65] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “A calibration technique for very low current and compact tun-
able neuromorphic cells. Application to 5–bit 20 nA DACs,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, 2008, to be published.

Rafael Serrano-Gotarredona received the B.S.
degree in telecommunications engineering and
the Ph.D. degree from the University of Sevilla,
Sevilla, Spain, in 2002 and 2007, respectively, after
completing all his research at the Sevilla Micro-
electronics Institute (IMSE), which is one of the
institutes of the National Microelectronics Center
(CNM) of the Spanish Research Council (CSIC)
of Spain. During his Ph.D. study, he was holding a
scholarship from the Spanish Ministry of Education
and Science.

During June–July 2006, he was a Visiting Scholar at the Department of Elec-
trical and Computer Engineering, Texas A&M University, College Station. He
has also visited the Neuroinformatics Institute at ETHZ, Zurich, Switzerland,
in the context of the European Union funded research project Convolution AER
Vision Architecture for Real-Time (CAVIAR). Currently, he holds a Senior Re-
search position at the R&D Department, NXP, Graz, Austria. His research inter-
ests include analog and mixed-signal very large scale integration (VLSI) circuit
design applied to vision processing systems, high-speed LVDS chip communi-
cations, RF-ID circuits, and circuits for automotive applications.

Teresa Serrano-Gotarredona (M’07) received
the B.S. degree in electronic physics and the Ph.D.
degree in VLSI neural categorizers from the Uni-
versity of Sevilla, Sevilla, Spain, in June 1992 and
December 1996, respectively, after completing all
her research at the Sevilla Microelectronics Institute
(IMSE), which is one of the institutes of the National
Microelectronics Center (CNM) of the Spanish
Research Council (CSIC) of Spain. She received
the M.S. degree in the Department of Electrical
and Computer Engineering of the Johns Hopkins

University, Baltimore, MD, in 1997, where she was sponsored by a Fulbright
Fellowship.

She was on a sabbatical stay at the Electrical Engineering Department, Texas
A&M University, College Station, during Spring 2002. She was an Assistant
Professor at the University of Sevilla from 1998 to 2000. Since June 2000, she
has been a Tenured Scientist at the Sevilla Microelectronics Institute (IMSE),
Sevilla, Spain. She is coauthor of the book Adaptive Resonance Theory Mi-

crochips (Norwell, MA: Kluwer, 1998). Her research interests include analog
circuit design of linear and nonlinear circuits, VLSI neural-based pattern
recognition systems, VLSI implementations of neural computing and sensory
systems, transistor parameters mismatch characterization, address–event-rep-
resentation VLSI, radio-frequency (RF) circuit design, and real-time vision
processing chips.

Dr. Serrano-Gotarredona was corecipient of the 1997 IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper Award for
the paper “A real-time clustering microchip neural engine” and of the IEEE CAS
Darlington Award for the paper “A general translinear principle for subthreshold
MOS transistors.”

Antonio J. Acosta received the Licenciado en Fsica
degree and the Ph.D. degree in electronic physics
from the University of Sevilla, Sevilla, Spain, in
1989 and 1995, respectively.

Currently, he is with the Institute of Micro-
electronics of Sevilla, CNM-CSIC, Sevilla, Spain,
and also with the Department of Electronics and
Electromagnetism, University of Sevilla, Sevilla,
Spain, where he has been an Associate Professor
since 1998. He authored or coauthored more than
70 international scientific publications and has been

involved in different national and European R&D projects. His current re-
search interests are in the areas of complimentary metal–oxide–semiconductor
(CMOS) digital and mixed-signal very large scale integration (VLSI) design,
low-power and low-noise CMOS, description of timing phenomena in VLSI
digital system, and asynchronous and self-timed circuits.

Dr. Acosta was General Chair of the 2002 PATMOS International Workshop.

Clara Serrano-Gotarredona received the B.S.
degree in telecommunications engineering from the
University of Sevilla, Sevilla, Spain, in 2001.

During 2002–2003, she was with the Instituto
de Microelectrnica de Sevilla (IMSE-CNM-CSIC),
Sevilla, Spain, as a Doctoral Student, working on
mixed-signal and digital very large scale integration
(VLSI) circuit design applied to vision processing
systems.

José Antonio Pérez-Carrasco received the degree in
telecommunication engineering from the University
of Sevilla, Sevilla, Spain, in 2004. Currently, he is
working towards the Ph.D. degree at the Instituto de
Microelectrnica de Sevilla, Sevilla, Spain.

His research interests include visual perception,
real-time processing, pattern recognition and very
large scale integration (VLSI) circuit design applied
to vision systems.

Bernabé Linares-Barranco received the B.S.
degree in electronic physics, the M.S. degree in
microelectronics, and the Ph.D. degree in high-fre-
quency OTA-C oscillator design from the University
of Sevilla, Sevilla, Spain, in June 1986, September
1987, and June 1990, respectively, and the Ph.D.
degree in analog neural network design from Texas
A&M University, College Station, in December
1991.

Since September 1991, he has been a Tenured
Scientist at the Sevilla Microelectronics Institute

(IMSE), Sevilla, Spain, which is one of the institutes of the National Micro-
electronics Center (CNM) of the Spanish Research Council (CSIC) of Spain.
In January 2003, he was promoted to Tenured Researcher. From September
1996 to August 1997, he was on sabbatical stay at the Department of Electrical
and Computer Engineering, The Johns Hopkins University, Baltimore, MD,
as a Postdoctoral Fellow. During Spring 2002, he was a Visiting Associate
Professor at the Electrical Engineering Department, Texas A&M University. He
is coauthor of the book Adaptive Resonance Theory Microchips (Norwell, MA:
Kluwer, 1998). He has been involved with circuit design for telecommunication
circuits, very large scale integration (VLSI) emulators of biological neurons,
VLSI neural-based pattern recognition systems, hearing aids, precision circuit
design for instrumentation equipment, bioinspired VLSI vision processing
systems, transistor parameters mismatch characterization, address–event-rep-
resentation VLSI, radio-frequency (RF) circuit design, and real-time vision
processing chips.

Dr. Linares-Barranco was corecipient of the 1997 IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper Award for
the paper “A real-time clustering microchip neural engine” and of the 2000
IEEE CAS Darlington Award for the paper “A general translinear principle for
subthreshold MOS transistors.” He organized the 1994 NIPS Post-Conference
Workshop on Neural Hardware Engineering. From July 1997 to July 1999,
he was an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART II: EXPRESS BRIEFS, and since January 1998, he has been
also an Associate Editor for the IEEE TRANSACTIONS ON NEURAL NETWORKS.
He was Chief Guest Editor of the 2003 IEEE TRANSACTIONS ON NEURAL

NETWORKS Special Issue on Neural Hardware Implementations. He was coor-
dinator of the European Union funded Convolution AER Vision Architecture
for Real-Time (CAVIAR) project.

SERRANO-GOTARREDONA et al.: ON REAL-TIME AER 2-D CONVOLUTIONS HARDWARE 1219

Alejandro Linares-Barranco received the B.S.
degree in computer engineering, the M.S. degree in
industrial computer science, and the Ph.D. degree
in computer science (specializing in computer inter-
faces for bioinspired systems) from the University
of Sevilla, Sevilla, Spain, in 1998, 2002, and 2003,
respectively.

From January 1998 to June 1998, he was Second
Lieutenant in the Spanish Airforce working as
System Administrator and Software Developer.
During 1998, he also worked at the Colors Digital

Communications S.L. Company, Sevilla, Spain. From November 1998 to
February 2000, he was a Member of the Technical Staff at the Sevilla Mi-
croelectronics Institute (IMSE), an institute of the National Microelectronics
Center (CNM), Spanish Research Council (CSIC), Sevilla, Spain. From March
2000 to February 2001, he was a Development Engineer at the Research
and Development Department, SAINCO company, Sevilla, Spain, working
on VHDL-based field-programmable gate array (FPGA) systems for the IN-
SONET European project on power line communications. Since March 2003,
he has been an Assistant Professor of Computer Architecture and Technology
at the University of Sevilla. His research interests include very large scale
integration (VLSI) and FPGA digital design, vision processing systems, bus
emulation, and computer architectures.

Gabriel Jiménez Moreno received the M.S. degree
in physics (electronics) and the Ph.D. from the Uni-
versity of Sevilla, Sevilla, Spain, in 1990 and 1992,
respectively.

After working with Alcatel he was granted a fel-
lowship from the Spanish Science and Technology
Commission (CICYT). Currently, he is the Professor
Titular of Computer Architecture at the University
of Sevilla. From 1993 to 1995, he was Assistant Ed-
itor of the Journal of Computer and Software Engi-

neering at Ablex Publishing Corporation. From 1996
to 1998, he was Vice-Dean of the E.T.S. Ingenieria Informatica, University of
Sevilla. He participated in the creation of the Department of Computer Archi-
tecture (also at University of Sevilla) and since 2004 he has been its Secretary.

Since 2003, he has been a Counselor of the IEEE Student Branch at the Uni-
versity of Sevilla. He is the author of various papers and research reports on
robotics, rehabilitation technology, and computer architecture. He has directed
two national research projects on neuromorphic systems. His research interests
include neuronal networks, vision processing systems, embedded systems, com-
puter interfaces, and computer architectures.

Antón Civit Ballcels received the M.S. degree
in physics (electronics) and the Ph.D. degree in
hierarchical multiprocessor design from the Uni-
versity of Sevilla, Sevilla, Spain, in 1984 and 1987,
respectively.

After working for several months with
Hewlett-Packard he joined the University of
Sevilla. In the late 1980s, he participated in the cre-
ation of two start-up companies related to eLearning
and environment monitoring networks. Since 1990,
he has been the Professor Titular of Computer Ar-

chitecture at the University of Sevilla. Initially, he worked in research projects
related to multiprocessor multiple robot control architectures. He participated
in the creation of the Department of Computer Architecture at the University
of Sevilla where he is currently the Director. He published several papers
and directed four Ph.D. dissertations on these topics. As the Director of the
Robotics and Computer Technology research group he has led projects related
to advanced wheelchair navigation and intelligent environment support for
wheelchair users. These topics have also produced publications and two Ph.D.
dissertation. Since 1992, he has also worked on web and computer accessibility
issues.

Dr. Civit Ballcels is a member of the European Commission eAccessibility
expert group. He has been a member of the COST219bis research action man-
agement committee and, currently, he participates in the COST 219ter (accessi-
bility to next generation networks) management committee. He has participated
in several European Commission evaluation activities in the Telematics Appli-
cations and IST programs. He is participating in several European Union and
national level research projects in the areas of neuromorphic systems, acces-
sible telecoms, and ambient intelligence.

