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Introduction. For any arcwise connected space B with a base point
b,, the sequence of homotopy groups of (B, b,):

are defined. These groups except the first one are abelian and are written
additively, while the fundamental group 7, is in general non-abelian and is
written multiplicatively. Among these groups there are two kinds of important
operations defined topologically. The first one is the operations of m; on =,
with p == 2 (for the definition see §16 of [17]°), i. e. 7, becomes a =~
modules, namely, for w € 7, and a € m,, p == 2, a unique element wea is
determined and

wea, + a;) = wea, + wea,
w,(wra) = (ww,)a, lra = a.
The second one is so-called Whitehead products (for the definition see [24]),
i. e. for @ € 7, B € m, with p, ¢ = 2, a bilinear product [@, B] € 7y q-1 is
defined. Hence these products define homomorphisms from 7, X w, into 7,4 ¢-1,
which will be denoted by W, , or W, (B), where the tensor product is taken

over the integer coefficients.
It is well-known that these operations satisfy the following properties

((24], [16]):
(1) The skew symmetric law :
[a, Bl = (= 1)"[B, al, or
Woda @ B) = (— 1) W, (BB a),
) wela, B] = [wea, wB], or
w W, {a® B8) = W,,(wa) & (wB)),
(8) The Jacobi identity :

(= D" Va, [8, vl + (= 1)** VB, [v, all

1) Numbers in brackets refer to the references at the end of the paper.
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+ (= 1)y, [a, B =0,

where w € 7y, a € 7y, B E Wy, ¥ € Wy Py q, T = 2.

We define operations of 7, on m, & m, by w«(a ® B) = (wa)Q (wB)),
then the property (2) means that W,  preserves operations of my, i.e. W, , is
a 7r;-homomorphism.

The realization problem of Whitehead products is stated as follows. Let
77, be a given multiplicative group and 7, with p =2 be given r,-modules,
and T, q: m, Q7w — Tpiq-1 with p, g = 2 be given m,-homomorphisms which
satisfy the properties corresponding to (1) and (3). The realization of this
system m,, Ty, with n =1, p, g =2 is to construct an arcwise connected
space B with a base point &, satisfying the following conditions :

(i) there exists, for each #» =1, an isomorphism
ho: (B, bo) =1,
(ii) for arbitrary elements w € m,(B, b,), a € 7B, b,) with p =2,
hwea) = hw)-hya),
(iii) for arbitrary elements a € 7B, b,), 8B € w(B, b,) with p, g = 2,

hora-1a, B = Ty (ha) Q h(B)), or
hpiq-10 Wy, «(B) = Tp,qo(hz:@ha)-

At first J. H. C. Whitehead [25] succeeded to construct a C W-complex
which realizes groups =, my,...... s Tpeennss and operations of =, on =, with
p=2. Also, S. T. Hu [13] constructed a space B which realizes this system
such that all T, s are trivial.

Recently P. J. Hilton explained in his paper [12] that all identical relations
between Whitehead products follow from the skew symmetric law and the
Jacobi identity by application of the laws of addition and the distributivily
of the Whitehead product. Therefore, the properties which exist between -
homomorphisms W, , are essentially (1) and (3). But the properties corres-
ponding to (1) and (3) for T, /s are not sufficient conditions in order that
this system is realizable. Indeed we shall need to assume that”

(4) T, la@@a)=0 for p =3 or 7 (@ € m,).

Moreover, we shall need to impose other conditions. For this end we shall
consider the composition operations. The composition operation is a map C, ,:

2) Recently J.F. Adams proved that there is no eléement of Hopf invariant one in man—1(S®)
unless 7 =2,4 or 8(cf.Bull. Amer. Math. Soc. 64(1958), 279-282). Therefore necessary
conditions imposed to 7 p(a®a) are only (4).
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7 om,(S)— m, for each n, == 2 which preserves operations of 7, on 7, and
m,, but in general not homomorphic. The right distributivity holds and these
operations are related to Whitehead products by the following formula (cf. [12]) :

(5) (a+ B)o€ = acf + BoF + [a, Bl-H(E)
+ [a, [a, BIloH(E) + [8, [a, BlloH(&) + -+ ,

where a, B8 € 7, £ € m(S) and Hy: m(S)—m(S*Y), H, H,: w(S)—
(ST, are generalizations of Hopf invariants.

Thus there arises a question that “if T, , and C,, satisfy the conditions
corresponding to (1), (3), (4) and (5), then is the system m,, T, , realizable ?”
To solve the realization problem of Whitehead products seems to be very
difficult.

As the first step to attack the realization problem of Whitehead products
we shall deal with the realizability of a T,, with arbitrary preassigned p
and ¢ (p==¢q) and that of T, , for p < 8.

In §1 we shall summarize the method of S. T. Hu by which realization
problems are reduced to construct a simply connected space with =, as trans-
formation group which realizes mw, and T, (n, , ¢=2). In §§2 and 3 we
shall give some topological and algebraic lemmas which will be used in later
sections. Lemmas 1 and 2 in §2 are generalizations of Lemmas 2 and 3 of
[2] to the case of spaces on which a group operates. Replacing these lemmas
in the construction of fibre space due to Cartan-Serre-G. W. Whitehead ([2],
[22]) by our lemmas, we can give a sufficient condition for the Problem 11
of [15] (see Proposition 2 in §2). In §4 we treat with the realization of only
one T, , with p==q. In this case no condition for T, , is needed. Also we
obtain some results concerning the simultaneous realization of some T, s
with p=¢q. §§5 and 6 are devoted to the realizations of T,, for p =2, 4
and §7 is devoted to the simultaneous realization of T,, and T,; which is
the lowest dimensional case where the Jacobi identity appears. The results
concerning to T4 and Ty ; are stated in §8 and also that of T', , for p =3,
5, 8 are stated in §9.

Except the cases of T, for p==q and T, , for p =6 or 7, our results
are incomplete in the sense that some additional conditions are assumed. And
it is desirable to remove these conditions.

1. The method of S. T. Hu. Let Y be an arcwise connected space on
which a multiplicative group W operates as a transformation group. Such
space will be called a W-space. By an invariant subspace of a W-space X we
mean a subspace X, such that w(X;) C X, for any w € W. Hence X, itself



4 H. MIYAZAKI

will be regarded as a W-space, and if X, consists of only one point, this will
be called a fixed point. If, for any w € W(w==1) and for any x € X,,
wzx == x, then we say that W operates freely on Xj.

If X is a simply connected W-space, n-th homotopy groups 7,(X, x)
relative to evéry point x € X form a simple system of local grouss (for exam-
ples see §23 of [4]). Therefore the unique isomorphism ¢z, x): =.(X, x)
~ (X, x,) is defined. Besides, each w € W induces the isomorphism w,:
X, x)~m,(X, wry). If we define an isomorphism w: 7, (X, xy) = m.(X, x7)
by w = ¢{x,, wxy)ow,, then m (X, ;) becomes a W-modules.

Throughout this paper homotopy groups of a simply connected W-space
are understood as W-modules in this sense.

Let B be an arcwise connected space with a base point b, By B we
denote the universal covering space constructed by usual method (cf. § 23 of

[4]), by Zo denote the point of B represenied by the constant path I-— &, Let
b: B— B bz the projection. It is well known that B is simply connected and
2 induces the isomorphism py : 7r,,(§, Z;)%vrn(B, by) for each = >2. Also

(B, by) operates on B as the group of covering transformations. It is easily
seen that p, is an operator isomorphism, i. e. w{(B, b,)-isomorphism.

Let (X, X,) be a pair of a W-space X and a simply connected invariant
subspace X; © X. Then operations of W on 7,(X, X, ; xo) are similarly de-
fined. In addition, if X is simply connected, then the homomorphism induced
by inclusion jy: m(X, 2p) = 7m,(X, Xy ; x,) and the boundary homomorphism
2: (X, Xo; x) = mui(Xo, xy) are operator homomorphisms.

Let (m, n) be a pair of a group = and an integer n ==1. For n > 1 we
assume the commutativity of 7. We shall denote by P(r, n) the Giever-Hu's
geometric realization ([8], [13]) of Eilenberg-MacLane complex K(m, n) ([6]).

We recall some results on P(mr, n) (cf. [18]). I n>1 and m is a ;-
module, then P(w, 7n) is a #r;-space and the unique O-cell is a fixed point,
and 7, (P(w, n)) =0 for 1 < m ==n and there exists a natural 7-isomorphism
m(Pw, n))=w. For P(m, 1), w(Plw, 1))=<m, and 7, (P(mr, 1)) =0 for
m > 1. We shall identify 7, (P(w, n)) with = under this natural r,-isomor-
phism for » > 1 and also m,(P(m,, 1)) with ..

Let B = {B, p, X, Y, G} be a coordinate bundle in the sense of Steenrod
[17]. We assume the following conditions :

(1) X and Y are arcwise connected,
(2 7(X)=0for i>1, and (YY) =1,

(3) the structural group G is totally disconnected.
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Let b, € B be a point and put x; = p(dy), Yy = p~(xy). By the exactness
of the homotopy sequence of B and the assumption (2), the inclusion map
(Y, o) < (B, by) induces isomorphisms i3 : 7, (Yo, b)) =~ 7, (B, b,) for n>1,
and the projection p: B— X induces the isomorphism p¥ : 7,(B, bp)=~m (X, ).

Let £: Yy— Y be an admissible map and

X: WI(X, ‘ZO) - G

be the homomorphism of the characteristic class X(B) determined by & (for the

definition cf. § 13 of [17]).
Under these assumptions and notations we have following

PROPOSITION 1. For arbitrary elements w € mw (B, b)), a € 7B, b)
with n > 1, we have

ho(wea) = hy(w)h(a),
where
hn = E;’Zai*{l . Wn(B, bo)%W'n(Y, yO)z (n > 1)’
hy =xopt: m(B, b)) — G.

This proposition is essentially proved in Theorem 3 and 4 in [13] In
that proof it is used that Y has a fixed point, but it is easily seen that this
restriction can be removed.

By this proposition, the realization of w;, m,,...... ) Tpseeees and T,’s is

reduced to conmstruct a simply connected 7,-space with m,, 7;, and T, s as
homotopy groups and Whitehead products.

2. Topological lemmas. First we shall prove the following lemmas.

LEMMA 1. Let X be a simply connected W-space, and n be a fixed
integer > 1. Let p: m(X)— G be a given W-homomorphism from m (X) into
a W-module G. Then there exists a W-space Z such that Z contains X as
an invariant subspace and W operates freely on Z — X, and the inclusion
map i: X C Z induces the W-isomorphisms i} : w(X)=m{7) for 1=r<n
and iy is onto and the kernel of % coincides with the kernel of p.

LEMMA 2. Let X be a simply connected W-space. Then, for an integer
n > 1, there exists a W-space Z which contains X as an invariant subspace,
and the inclusion i: X C Z induces the W-isomorphisms i¥: 7w (X)=w(Z)
for 1 < r<mn and w(Z) =0 for r=n.

PROOF OF LEMMA 1. Let I" be the kernel of the given W-homomor-
phism p: 7, (X)— G, and for each element v of T, let f;: E*'—> X be a

fixed map which represents the element v, where E™! and E*' denote an
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(n + 1)-element and its boundary respectively. For any pair (w, ) for w € W,
v € T, we consider the set Euy, = {(z, w, v)|x € E*'}. We introduce a
topology to EX%, such that the map Awy: E@h — E*" defined by Auy,
(x, w, v) =  becomes a homeomorphism. E{;', are mutually disjoint. Define

a map Yy : Etoy = X by Ywrn = wofyohwy.

Let Z be a space obtained from X by attaching each EW}, (w € W,
v € I'), by the map Y . The operation of W on Z is defined as follows:
For any element v € W, we shall define a map v: Z — Z by

v(2) = v(z) if z € X,
‘U(l’, w, 'Y) = (x’ vw, 7) lf (x, w, V) € E?TZ,I'Y)'

It is easily verified that the map v is well-defined and coatinuous and Z becomes
a W-space which contains X as an invariant subspace. The characteristic map

Viwy E?,;’ » —> X represents the element wey of 7,(X) and the set of elements
wey generates I'. Therefore, by Theorem 18 of [23], 7} is onto and the kernel
of 7% = the kernel of p. It is obvious that #f (1 =< » < n) are W-isomorphisms.
Thus Z has the required properties.

PROOF OF LEMMA 2. Applying Lemma 1 with G = {0}, p: m(X)— G,
then we obtain a W-space Z, which contains X as an invariant subspace and
ir m{X)=m{(Z,) for r <n and 7,(Z,) = 0. Next, applying Lemma 1 with
G = {0}, p: m.A2,) — G, we have a W-space Z,., D Z, such that m(Z,,,)
~wu{Z,) for r<n+ 1 and 7,.(Z,.,) = 0. I we continue this process, we
have a sequence of W-space X =2, ., C Z,C Z,.; < ...... such that Z; is an
invariant subspace of Z;,, and &*: = /(Z)=~w(Z,.,) for r <s—1, and 7,
(Z,+1) =0 (s = n — 1). Therefore the limit space Z = lim Z; has the required
properties.

As described in the introduction, these lemmas are generalizations of
Lemma 2, 3 of [2]. Replacing lemmas in the construction of fibre spaces due
to Cartan-Serre-G.W.Whitehead ([2],[22]) by the above lemmas, we can give
the following solution for Problem 11 of [15].

PROPOSITION 2. Let X be an (n — 1)-connected W-space (n =2). If X
has a fixed point, there exist an n-connected W-space X and a fibre map
p: X — X such that p commutes with the operations of W, and the induced
homomorphisms py: w(X') — w(X) are onto W-isomorphisms for i > n.

We shall need the following lemmas in later sections.

LEMMA 3. For any arcwise connected space X with a base point x,
and for any integer n > 1, there exists a w(X, x,)-space E having the fol-
lowing properties :
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(1) #w(E) is trivial for 1 <i < n,
(2) there exists m(X, xp)-isomorphisms h;: w(E) = m(X, x,) (= n)

such that
Rpiq_1° p,q(E) = Wp,qo(hp® ha), (P: q= n).

This lemma is easily obtained from the following lemma and Proposition

LEMMA 4. For any arcwise connected space X with a base point z,
there exists a simply connected w (X, x,)-space B which satisfies the follow-
ing conditions :

(1) there exists a fixed point by € B,

(2) there exist w(X, x)-isomorphisms h,: 7B, by) = mw (X, x,) (n = 2)

such that hp,q_.° p,q(B) = Wp,q(X)o(hp(X)hq) Sor p, ¢ > 1.

PROOF. ILet X be the universal covering space of X and p: X— X be
the projection, and z; be a point of X represented by the constant map
I— x,. Xis a (X, x;)-space and p induces 7 (X, x,)-isomorphisms py :
(X, T) ~ m (X, x,) for n > 1.

For any w € w (X, x,), the covering transformation w: X — X induces
an isomorphism wy: S — S, where S denotes the total singular complex of X.
Thus (X, x,) operates on S.

We shall consider a minimal subcomplex M, of X relative to the base
point z; [5], and we define operations of 7=, (X, x,) on M,. The image sub-
complex M, = wy(M,) is obviously a minimal subcomplex relative to the base
point w(x,). Since X is simply connected, the isomorphism ¢, : M, —> M,
introduced in § 7 of [5] is uniquely determined, i. e. @, is independent upon
the choice of a path joining z; and w(zx;) used in definition of @,,.

We define an isomorphism w: M; - M, by w = @, cw}, where w} =
wy | M,. We shall consider following diagrams :

Pu P
Mw —>MI Mﬁw —_—‘—)ML
} why ol %\ P,
4 @ 1 N
M,, —M, M,
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where vy = vg]M,, and @ is the similar isomorphism as @,. By the unique-
ness of maps @, @, Pu, Puw, commutativities hold in these diagrams, i. e.

@V = VgoP,, and @,, = @,op. Since (vw)y = viow) we have
Do (VW) = @re@oviowh = (@,0V5)o (@, wh).

Thus, under this definition, 7 (X, x,) operaies on M, as a group of isomor-
phisms.

Therefore realization polytopes P(M,) and P(S) are (X, x,)-spaces and
the unique O-cell b, of B = P(M,) is a fixed point. Let i: B — F(S) be the

map induced by the inclusion M, © S and g¢: P(S)—>§ be the projection. It
is well-known that ¢ and ¢ induce isomorphisms Z,: w,(B)=~m(P(S)), g.:
m (P(S)) =~ m, (X) for n > 1. Since ¢q is a 7 (X, z,)-map, g5 is a =(X, z,)
isomorphism. We define A, : 7(B) = 7,(X) (n > 1) by h, = pogxoiy.

Let M?¢C M, be the subcomplex consisting of all collapsed simplexes,
then P(M?) is a contractible invariant subspace. Therefore ji: m.(P(M))—
. (P(M,), P(M?) are = (X, z,)-isomorphisms. On the other hand 7, (P(M?)) is
generated by n-cells corresponding to zn-simplexes of M, with collapsed faces.
Therefore, from the definition of @ it is easily seen that 7, is a 7 (X, x,)
isomorphism, and by the naturality of Whitehead products, the condition (2)
is satisfied. Thus the proof is complete.

3. Algebraic lemmas. Let W be a multiplicative group. and H be a
W-module. If H is a free abelian group and there exists a set B C H such
that the element we<b, for all w € W, b € B, are pairwise distinct and form
a basis for H, then H is said to be W-free. This set B is called a W-basis.

By the same way as the proof of Lemma 6.3 of [7] we have the fol-
lowing

LEMMA 5. If H, is a submodule of W-module H and the factor W-
module H/H, is W-free, then H, is a direct summand of H.

LEMMA 6. Let H be an abelian group and H, be a subgroup of H
such that H/H, is decomposed to a direct sum F + A, where F is a free
group and A is a direct sum of finite cyclic groups. For any abelian group
G, in order that any homomorphism 6 : H, — G is extendable to a homomor-
phism 0% : H— G, it is necessary and sufficient that for any element h € H
and for amy integer m such that mh € H,, the element 6(mh) is divisible
by m.

PROOF. The necessity is obvious, so we shall prove the sufficiency. By
the assumption,
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H/H,=F + > A. (direct sum decomposition),

where A, is a finite cyclic group of order r,(> 1) with a generator a,.
Let H, be a subgroup of H such that H/H, = F. Then, by Lemma 5,
H, is a direct summand of H, hence any homomorphism H; — G is exten-

dable over H. Thus we may assume that F = 0, H/H, = >_ A,.

Let p: H— H/H, bz the projections and for each a, we select an ele-
ment h, € H such that ph, = a,. Since 7uh, € H,, by the assumption for 6,
there exists an element ¢, € G such that 8(r,h,) = r.9,.

Now, any element 2 of H can be written as

ho=hy+ 3 moh,,

where hy € H, and m, are integers which are zero except finite numbers. We
define a map

¢: H~>G
by
6*(h) = 8h) + D" mab,.

First we must show that 8% is a well defined homomorphism. If A has

another representation h = hy + >_ nah,,,, then
— hy = 2 (ny — my)ha-
Hence 0 = p(hy — ho) = 2, (na — ma)pha = 3 (14 — ma)a,, thus we have
No — My = Toly (rs : integers).

Therefore hy — hy = Y 7t h,, and we have

o) — 6(h) = 6 (3 rutuha) = 3 tab(rah,)
= Z taTala = Z (7’10; — ma)g,,.

Thus we have 6(hy) + 2 mags = 6(h)) + >_ naga, which shows that #* is
well-defined. In virtue of the definition of %, it is obvious that #* is a homo-
morphism and an extension of §. Thus the proof is complete.

LEMMA 7. Let H and H, be the same groups as in Lemma 6. If, for
any element h € H and for any interger m such that mh € H,, the element
mh is divisible by m in H,, then H, is a direct summand of H.
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PROOF. By Lemma 6, the identity H, — H; is extendable to a homo-
morphism ¥ : H— H, Therefore we have H = H, + kernel of vr, which
proves the lemma.

In the Lemma 7, the assumptions for H/H, can be removed. Namely we
have the following

LEMMA 8. Let H be any abelian group and H, be any subgroup of H.
If, for any element h € H and for any integer m such that mh € H,, the
element mh is divisible by m in H,, then H, is a direct summand of H.

PROOF. Let F = {f.} be a set of generators of F{, and we consider the
family & of all finite subsets of F. For S € &, let H, denote the subgroup
of H generated by H, and elements of S. Then H,/H, is finitely generated.
Therefore all assumptions in Lemma 7 is satisfied for H, and H,. Hence there
exists a subgroup V, C H such that H;, NV, =0 and H,=H, + V,. Let V
be the smallest subgroup which contains V, for all S € &. Then it is easily
verified that V1 Hy = 0 and H = H, + V. Therefore H, is a direct sum-
mand of H.

LEMMA 9. Let m be an abelian group and w* be a free abelian group
with generators o(a) corresponding to each element a of w. Then the kernel
of the homomorphism 6: w* — 7 defined by #(ocla)) = a is generated by
elements of the form ola + B) — ola) — o(B) for a, B € =.

PROOF. Let I' C #* be a subgroup generated by elements o(a + 8) —
ala) — o(B) (a, B € 7). It is obvious that I’  kernel of 6, and it remains to
show that I" D kernel of 6.

To show it, we shall first prove that > o(a,) — o (Z ai) el (a; € m).

i=1 i=1
For n =1 and n = 2, this fact is true. We assume that our assertion is true
for n — 1. If we put

n N~1

T = a(Zai> — G(Zai> — ola,),

i=1 i=1

then 7 € T' and

n n n-1 n-1 N
2_ola) ~o (Z ai> =2 ola) — o (Z af) — .
i=1 i=1 i=1 i=1
n-1 n-1
Therefore, by the assumption that > o(a;) — °'<Z a1> €T, we know that

i=] i=1
n 7

S ola) — @ (Z a¢> €T

i=1 i=1
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Now, if a = > 7, ala,) (7, : integers) belongs to the kernel of #, then
i=1

n n

>~ ria, = 0. By the above fact, ro{a;) — olria;) €T for each i, hence a — 2

i=1 i=1

o(r,a;) € 1. On the other hand, it is easily seen that

> Z o\naz) —a (z Tzdz) = izz‘io(riat) — o(0)

=1

= 3 otrian) — [0(0) — o(0) + o(0)],

hence > a(r,a;) € T. Therefore a € T
i=1
4. The realization of 7: =, Q m; = 7,4, for 1 < p < gq. In this sec-
tion we prove the following

THEOREM 1. Let w, be any multiplicative group and w, (n = 2) be any
w,-modules. For fixed integers p, q with 1 < p < gq, let T: w, Qmg —> Tprq-y
be an arbitrary given m -homomorphism. Then the system m,, ms,...... y Tpye--

, T is realizable. Namely, there exist a space (B, b,) and isomorphisms

h,: m(B. b,) =~ m,(n = 1) with the following properties :

(1) R (wea) = h(w)ha) for a € m(B, b,) (n=2), w € = (B, b,),

(2) hpra-1° Wy B) = To(hy, @ hy),

(3) if one of integers P, q >1 is different from p and q, then
WoraeB) = 0.

PROOF. We put P, = P(mp, p), Py = P(my, q¢) and let P= P,V P, be
a space obtained from the union P, U P, by identifying O-cells of P, and P,
to a point p,. Since O-cells of P, and P, are fixed points, P is naturally a
7,-space. By a theorem of Whitehead-Chang ([11])

0 fi<porp<i<gorg<i<p+qg—1
o
m(P)=1{"" te=2
™, ifi=gq

m@Qmy ifi=p+qg-—1,

where m(P,) (=m,) for i = p or ¢ is embedded in w(P) by the inclusion
map P, C P. and 7, @ 7y = m(P,) Q@ 7(P,) is embedded in my.q-.(P) by the
Whitehead product. Also these embedding isomorphisms commute with opera-
tions of ar,.
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Let (8”71, s,) be a pair of a (p + ¢ — 1)-sphere S**"* and a point s,

on it. For each pair (w, a) with w € 7, a € Tpig-1, let (Su’s', Swae) be
disjoint copies of (§*?"%, s,) and we attach these spheres to P by identifying
Sw,e Wwith Pp. The space thus obtained will be denoted by Q. As in the
proof of Lemma 1, this space Q may be regarded as a 7,-space. Obviously
(Q has the same homotopy groups as P in dimensions < p + ¢ — 1, and 7, ¢-
Q) =m, K my + Thie1, where mh, -1 is the free abelian group generated by
the elements ¢« represented by Si%’'. And operations of 7, on mjie-1 is
such as v*(t,a) = tow,a-

We define a r,-homomorphism A from 7y, ,-,(Q) onto ,, ., by
A, Q= T,
Me,ay) = weat for a generator tw,am Of Thiq-1.

We apply Lemma 1 with G = 7,,,-.(@Q), p = A, then there exists a w,-space
Q* such that Q¥ contains Q as an invariant subspace, and

i m(Q=~7m(Q*) for r<p+q—1,
and the kernel of 7;.,.1 = the kernel of A. Hence there exists a 7r,-isomomor-
phism Apq-y : Tprq1(Q¥) = 71 such that Ay, 19651 = A.  Since m, & 7,

is embedded in 7y.e-1(Q) by the Whitehead product which is natural, we have
the following commutative diagram :

w
Tp(Q*) & Q%) —7piq-1(Q%)
hzl ® hq \ hmq—l
T

4
Tp ® Mg >Tpig-1

where h;: 7 (Q*)=m, for i = p or q are the inverses of isomorphisms in-
duced by the inciusion maps P, © Q¥*, and W denotes the Whitehead product
in Q¥ Therefore the space Q¥ is a or,-space which realizes w,-modules mp, 7,
Tpiq-1 and 7,-homomorphism 7. Hence, by Lemma 2, there exists a m,-space
Y, which realizes m,, 7y, mpiq-1, T and m(Y,) =0 for i=£p, q, p + g — 1.

From now we proceed in the same way as $6 of [13]. We construct the
product space

Y=Y, x (IIP,),

where P, = P(m;,7) and in the product II P, of P, indices 7 run over integers
i>1,i==p, g, » + ¢ — 1. This space Y is naturally a 7 -space and m(Y)
are m-isomorphic to 7 for i > 1.

Let 7] be the subgroup of 7, consisting of all elements which operate on
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Y as the identity. Let x: 7, > 7 /71 = G be the projection. Let B = (B, P,
X, Y, G) be a fibre bundle such that the base space X is P(m, 1) and the
fibre is Y and the siructure group is G with the discrete topology, and the
characteristic map is x: m(X) =7, > G. Such a bundle certainly exists by
Theorem in §13. 8 of [17]. It is easily seen by Proposition 1 that the total
space B is the required one (cf. [13]).

We next give the following

THEOREM 2. Let m, be a multiplicative group and w(n=2) be -
modules. Let ar\-homomorphisms Tp,: my @ wg — mpeyy with p,q > 1, p+ ¢q
—1=7r and T: mp Q T4y —> Tpyigo-1 with 1 < p, < q, be given. If m,, ...
vy T and Tyq for p+ q — 1 =X r are realizable, ihen w,, m,,...... , and Ty,
for p+qg—1<min (g, r+ 1), p+q— 1==p, and T are simultaneously
realizable in a space B such that all Whitehead products wvanish except
Wooar Wanne and Whg for p+ q — 1 <min (g, 7 + 1), p + q¢ — 1 3= p,.

PROOF. Case (i): 7 < p,. By the assumption there exists an arcwise
connected space A which realizes m,, m,,...... , mrand Ty for p+g—1<r
(p, ¢ >1). By Lemma 2 we can assume that m(A) =0 for z > 7. On the
other hand, by Theorem 1, there exists a simply connected 7r;-space C which
realizes Ty, Moy Tpra-1 and T such that w(C) =0 for 1 <isg=p,, q, ps +
g — 1.

We construct the product space

Y=A4xCxP,),

where A is the universal covering space of A and in the product IT P; the
index 7 runs over integers { > r except Py, ¢o, o + o — 1. Then Y is the
simply connected 7,-space which realizes m,, 7,,...... ,and T, T,, for p+ ¢
— 1 =<7, and the other Whitehead products vanish. Thus by the same process
as the last step in the proof of Theorem 1, we obtain a required space.

Case (ii): po =< 7. Let A be a space which realizes 7 ,...... , 7 and Ty,
for p+q — 1 <7r. We apply Lemma 3 with X = A, n = p,, then we know
that there exists a 7r;-space A, having a fixed point such that =,(A,) = 0 for
i < p, and A, realizes my,...... ,mand Tp, for p+qg—1=7r (p, q = po)
Hence again by Lemma 2 there exists a m,-space A, having a fixed point a,
such that m,(A,) = 0 for i < py and { = s and A, realizes my, m—;, Tp, for
p+qg—1<s (p, g=py), where s = min (go, » + 1),.

We construct the m -space A, V P(m,, q,), where only the fixed point
a, € A, and the fixed point of P(m,, q,) are identified. Hence this is a ;-
space. For this or,-space we can apply the same process used in the first step
in the proof of Theorem 1 and we obtain a #,-space A; such that m(A4,) = 0
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for i <p, and i=s, (i=kqq, P + go — 1) and A; realizes mp,...... s Ty Taos
Tppraom1 and T, Tp, for p+ g —1 < s (p, g = po).
Also, let B be a space which realizes m,...... , Tpg—1, Inofor p+qg—1<

2o, (P, ¢ > 1), and 7(B) =0 for i = p,. We construct ¥ = A, x B X (TIP)),
where the index 7 in the product II P, runs over integers = s, = p,, qo, o +
go — 1. Then in the same way as in (i), we have a required space. Thus the
proof is complete.

By repeated applications of Theorem 2 we directly obtain some results
concerning the simultaneous realization of some 7r,-homomorphisms of type
Tpoe: me Qg —> mpqq with p=¢q. To formulate these we need following
terminologies.

Pairs of integers (p,, g,) and (p,, ¢q;) will be called distinct if any two
of integers py, qu, b1, q1, Do + ¢o — 1, P, + g, — 1 are distinct. Pairs of inte-
gers (s, t,) and (s, £,) such that s < ¢, < ¢, will be called to be separated if
s+t —1<t,.

COROLLARY 1. Let m,(n > 1) be m-modules. Let A = {(p,, q,)} be a
given set of pairs of integers (P, q,) such that 1 < p, < q,. For any pair
(P> q.) € A, let T;: mp, QMg —> Tpua1 be a given w,-homomorphism. If
any two elements of A are distinct, then the system 1, my,...... and {71}
is realizable.

COROLLARY 2. Let m,(n > 1) be m,-modules. Let B = {(s, t;)} be a
given set of pairs of integers (s, t,) such that 1 <s <t <t,...... For any
pair (s, t;) € B, let T;: m Qm, — m,,,,-, be the given m -homomorphism.
If any two elements of B are separated then the system T, Ts,...... and
{ T} is realizable.

COROLLARY 3. Let A, B, T, T; be the same as in Corollaries 1 and

2. If any (s, t,;) and (p;, q.) are distinct, then the system 1, m,...... and
(T}, (T3 is realizable.

5. The realization of 7',: 7=, Qmy—> ;. If a € 7,(S")and B,,8; € 7(B)
and if 1 <»n < 3r — 3, then by a theorem due to G. Whitehead we have

B, + By)ea = Bica + Brea + [B, B.loHla),

where o denotes the composition operation and H(a) is the Hopf invariant
of a (cf. §5 of [20)).

Let € m,(S?) + Z° be the element represented by Hopf fibre map, then
H(n) = 1. Thus we have

3) In the following Z denotes the group of integers, and for an integer m>1, Zm denotes
the cyclic group of the order m.
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la, B] = (a + B)on — asn — Bon,
where a, 8 € m(B).
This formula was also proved by H. Whitney in [26] and he showed that
aon = (— a)on. Since [a, B] is bilinear, aon satisfies the relation
(@ + B+ y)en—(a+ Bon—(B+ v)y
~— (v + a)on + acy + Boy + yon = 0.

From this relation, using acn = (— a)on, we have

(2 a)on = Laon).
Therefore we have

[a, al = 2(a°n).
Also the correspondence a —> aon preserves operations of ..

Now we state the following theorems.

THEOREM 3. Let mw(n > 1) be given w -modules and T,: m, @ mwy — m,
be a given m -homomorphism. We assume that there exists an exact sequence
of m,-modules and  -homomorphisms

O—->F,—>F, —>m—0

such that Fy and F, are w,-free. In order that the system m,, m,,...... and
T, is realizable®, it is necessary and sufficient that there exists a m -map
n: = 73 such that

{ Ta @ B) = nla + B) — nla) — n(B)
7a) = n( — a) for a, B € m,.

THEOREM 3. Let m,(n > 1) be given m,-modules and we assume that
w, operates trivially on mw, and my. Let T,: my & my — m; be a given homo-
morphism. In order that the system ,, my,...... and T, is realizable®, it is
necessary and sufficient that there exists a map n: w, — 7, Such that

{ T{a&®B) =nla + B) — nla) — n(B),
na) = 5(— a) for a, B € m,.

PROOF OF THEOREM 3. The necessity is stated above. To prove the
sufficiency, by Proposition 1 and Theorem 2, it is sufficient to show the exis-

tence of a simply connected 7,-space realizing m,, 7, and T,.
Let B, be a m,-basis for F,, and we put B = {w-b|w € m,, b € B,}.

4) This system is realizable in a space B such that Wy ¢(B)=0 if p+2 or g=+2.
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For each element a € B, let (SZ, s,) be a topological image of the pair
(82, s,) of a 2-sphere $? and its point s,, and we assume that (S;, s,) are
mutually disjoint. Let £,: (82, s,) = (Sa, s,) be fixed homeomorphisms. We
consider a CW-complex

K=\ Si

which is obtained from the union U S; by identifying points s, to a point p,.
ael
For any element w € 7, we define a map w: K*— K? by
wISt; = ,}“u,v-aof‘c;1 (d < B),

then K® is a simply connected =,-space on which 7, operates freely. The
group m,(K?) is a free abelian group generated by elements ¢, represented by
maps f, for @ € B and m, operates on m,(K?) so that we(t,) = ty.a for w € m,.
Therefore m,(K?) is r,-isomorphic to F, under the correspondence ¢, — a
(a € B), and these groups are identified by this 7r,-isomorphism.

We assume the axiom of choice, and may therefore suppose that the
elements of B are well ordered. Then, by Theorem A of [12]

w(K?) = > w(Sa) + > Za, b),

aeB a,b:B
a<h

where 74(S;) is embedded in #,(K*) by the inclusion map S; € K* and hence
is the free group generated by t,on, and Z(a, b) is the free group with the
generator {a, b) = [t,, &)

Since [t4, t;] = 2(¢,0n), the Whitehead product

W, m K*) & mo K?) — wi(K?)

is represented as follows:

z(a, b) a < b,
Wit, & ¢,) = 1 2(b, a) a>b, (a, b € B).
2(‘(107]) a = b,

We define a homomorphism A : 7(K?) — =, by

{ Megon) = 5(¢ a),
Mzla, b)) =Ty (P aR ¢ b) for @, b € B, a <b.

It is easily seen that M is a w;-homomorphism. We notice that since 7
map 7: m, —> m; satisfies n(a) =7(—a) and Wa + B +v) —nla+ B) — 1
B+ 7 — 19y + a) + 9la) + 7(8) + 7(y) = 0, we have Tyla® a)=27%a).
Thus we have the following commutative diagram :
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2

77'2(K2)®77'2(K2) _"71'3(K2)
l PP A
J T,
7 Q) T,

where p: 7y(K?) —> 7, is an onto mi-homomorphism defined by p(s,) = ¢(a).

Now we apply Lemma 1 with X = K?, G = m;, then we have a 7,-space
K? obtained by attaching 3-cells to K* so that 7, operates freely on K*® and
the kernel of 7, coincides the kernel of p and ¢, is onto, where 7,: m(K?)
— m,(K®) is the 7,-homomorphism induced by the inclusion map K? < K°.
Hence there exists a mr-isomorphism A, : m,(K®) = 7, such that h,oi, = p.

Next, we shall show that there exists a m;-homomorphism A* : 7(K®) — m;
such that A¥oi; = A, where i,: 7(K?)—> 7(K®) is the #r,-homomorphism
induced by the inclusion map K* © K®. We set I' = ¢, 7, (K®) and consider
the exact sequence

. . .
i (K?) — i K?) Lo r(KP, K)o my( K®) —2 o K®) — 0.

Since #7'(0) = F,, by the assumption, #;’(0) is 7;-free, hence 9.,7(K*, K?)
(= i7%(0)) is mry-free. Since w(K*, K*)/jmwiK*) =~ 2,m(K?®, K*?), by Lemma 5,
JsmK*) is a direct summand of the 7;-module 7K? K?). On the other hand,
since m, operates freely on K°, my(K®, K?) is w,-free. It is obvious that a
direct summand of a m,-free module is 7,-free. Therefore j;(wy,(K®)) is ay-free.
Since 7(K%)/iymy(K?) =~ jyr(K?®), again by Lemma 5, i7(K?) is a direct
summand of =, (K®).

Therefore to show the existence of A¥, it is sufficient to show the exis-
tence of A : I' > 7, such that A oi, = A. To show this we prove A (kernel
of #;) = 0. To this end we consider a CW-complex K; = V Si. Then (K?)

aemg

is the free group generated by ¢, for o € =, Therefore, by Lemma 9, the
kernel of the homomorphism p,: 7, (K})— 7, defined by py(t«) = a is generated
by the elements of the form ¢, — ¢+ ¢, for a, B, Yy € my, a — B + ¥ = 0.

For each ¢y — tg + ¢y (@ — B + v = 0), we attach a 3-cell E* to K by a
map E* — K3 which represents the element ¢ — ¢ + ¢. Then we have a
CW-complex K® such that 7,(K3) = m,. Define a map ¢,: K* — K; by ¢,]53
= fowo°fz'(a € B). Then ¢, can be extended to a map ¢: K*— Ki. And we
shall consider the following diagram :



18 H. MIYAZAKI

]
V 7y K —3—*73(1(3)
v

s x g Ix

A .
N { y 23,0 4 .
w Kp) ——————— o KY)
where A, is defined in the same way as A, and ¢y and ¢;, are the homomor-
phisms induced by ¢ and the inclusion map K; < Kj respectively. It is easily
verified that commutativities hold in this diagram. Thus, to show that A(7(0))
= 0, it is sufficient to show that Ay(753(0)) = 0.

By Theorem 4 of [24] the kernel of Z;, is generated by elements of the
forms feg and [f, h] where f € w(K”) is an element represented by the
characteristic map of an attaching 3-cell of K® and ¢ € n(S?), h € =(K3).
Therefore it is sufficient to show that Ag((ta — ¢ + t;)on) = 0 and Ay([ta —
+ LY: LS]) = O fOr a, /3; Y 8 € mTe, A — B + Y = O. Since (l'a — l’ﬂ + ‘y)°’7
= 00 + tgon + 4,00 — [tu, tg] + [ta, ty] — [tg, ¢,], this is verified by straight-
forward computations using corresponding properties of #: :— m7; and the
definition of A\,

Thus we have a m,-homomorphism N : 7, (K°) = 7, such that A¥oi; = A,

Again we construct a CW-complex

L=KV S
feng
where Sf is a copy of 3-sphere corresponding to each & € ;. and only one
point of S} is attached to the fixed point p, of K*. Hence L is naturally a
my-space and wL) = w{K®), wy(L) = w(K*) + > Z(§), where Z(£€) is the in-
Eeng
finite cyclic group with the generators 2(£¢) represented by S;. The operations
of 7, on)_ Z(E) T wr(L) is such as w: 2(E) > z(w-§). Hence we can define

teng

an onto 7;-homomorphism g: 7w (L) = =; by
[ BlmdE) = 2*
| s=E)=¢  for £ €

We apply Lemma 1 with X =L, G=m, p=p# and we obtain a simply
connected 7,-space L* which contains L as an invariant subspace and has
following properties :

iy 1 L) = m(L*), 5 (L)~ wL*)

is onto, and the kernel of & = the kernel of x. Therefore there exists a -
isomorphism h;: 7 (L%) = m; such that A;oif = u. By the naturality of Whi-
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tehead product, this simply connected mr;-space L* realizes s, o5, T: Hence
the theorem is proved.

We note that the proof of Theorem 3° is essentially contained in that of
Theorem 3.

Combining Theorem 3 with Theorem 2 we have the following

COROLLARY 4. Let w(n = 2) be 7,-modules. Let A = {(p;, q.)}, B =
(s, )} and C = {(2, r,)} be given sets of pairs of integers such that 2 <
<lqy, 2<s<t <t:<.... , and ri=2, 4<<rn<r;<.... Let T,;:
Tp; & Tq, 7 To+a=1 TI, LT ® Ty, = TWstt,~1, Ty : m ® Ty > Wry+l be wy-homo-
morphisms. If any two elements of A are distinct and any two elements of
B (and C) are separated, and any element of A and any element of B or C
are distinct, and if T: satisfies the condition of Theorem 3, then the system
o, Tayeenre. and (T}, (T}, {Tv} is realizable.

6. The realization of 7',: =, @ 7, — m,. First we formulate necessary
conditions for T,. For a, 8 € 7 {(B) and & € #.(SY),

(a0 + B)ok = ack + B°& + [a, Bl-H(E)

holds. By J. P. Serre [18] and H. Toda [19], »(S*)~Z + Z;, and its gene-
rators are v and @, where » is the element represented by the so-called Hopf
fibre map S" — S* and @ is the suspension E(a,) of the generator a; € m4(S%)
which is defined by Blakers and Massey. Also it is shown that [¢,¢]=2v —a
for the element ¢ € 7,(S') represented by the identity map S*— S Since
H(v) =1, we have

(1) [a, B] = (a + B)ov — qov — Bov for a, B € wy(B).
From [¢, ¢] = 2v — a, by the naturality of Whitehead products and the de-
finition of the composition operation, we have

(ii) la, a] = 2Aa°v) — aca for a € w(B).

The bilinearity of [a, 8] is equivalent to (a + 8 + ¢)ov — (a + B)ov —
(B + v)ov — (v + a)ov + aov + Bov + yov = 0 and this relation, using (ii),
implies

(iii) (— a)or = qov — aca and

(iv) (2 a)ov = 4 acv) — aca.

The correspondence o — aov is not homomorphic, but the correspondence

a — aca is homomorphic, since @ is a suspended element.
We shall prove following

THEOREM 4. Let o, m, be given abelian groups and T,: w, Q mi—
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be a given homomorphism. In order that the system ,, w and T, is reali-
zable®, it is necessary and sufficient that there exist a map v: mw,—>m; and
a homomorphism a: wy—> m; satisfying the following conditions :

1) TaQB) = via+ B) — va) — ¥(B),

2 W~ a) = va) — ala),

3) 12a{a) =0, for a, B € m,.

PROOF. We shall prove the sufficiency. We construct a space K* = VV S

in the same way as in §5. The group =(K*) is a free abelian group and is
generated by generators ¢, represented by the inclusion maps S; < K'. We
define a homomorphism p: 7(K*) — o, by p(¢,) = a. By Lemma 9 the kernel
of p is generated by element of the form ¢, — ¢t + ¢y for a, B, v €7y, a — B
+ 9 =20. For each t; —tg + &, (a — 8 + v = 0), we attach 5-cells to K%, by
a map which represents ¢, — ¢g + ¢,. Then we obtain a CW-complex K°
such that 7, is onto and the kernel of i, = the kernel of p holds, where i,:
(K — 7 (K?) is the homomorphism induced by the inclusion map. Hence
there exists an isomorphism h,: 7(K®) =, such that h,0i, = p. By Theorem
A of [12], the group m(K*) is

77'7(K4) = Z 77'7(52) + Z Z(a’ 18)’

[ 2.0 @, Bers
@<8

where #"(S;) is embedded in 7/(K") by an isomorphism induced by the inclu-
sion map. Hence its generators are v, = ¢,ov of infinite order and a, = woa
of order 12, and Z(a, B) for a < B8 is the infinite cyclic group with the
generator 2a, B) = [ta, t5)-

By (3) we can define a homomorphism A: 7 (K*) — =; by

{ X(Va) = v(a)’ X‘(‘Zw) = a(a)y
Ma, B) =T(a@B) for a < B.

We shall consider the following diagram:

W,
’”'4(K4) ® 77'4(K4) —’777(K4)
(D) PP A
)} T,
@ m—————— vy

5) By Theorem 2, this system is realizable in a space B such that 7=.(B) with i<4 or i>7
are arbitrary given abelian groups, and Wy o(B) =0 for p+qg—1<4 or p+g—1>7. But it
seems that 7;(3) for 4<i<7 are not arbitrary. This situation occurs in the cases of the
realizations of Tp.q for p=3.
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where W, denotes the homomorphism defined by the Whitehead product. By
assumptions (1) and (2), as we remarked in the first of this section, we have
Tla® a) = 2v(a) — ala), hence (D) is commutative.

We consider the exact sequence

i . .
(K, K*) —r i KY) —r o K°) 2 o K°, KY)

and put I' = #,(K*).
Applying Theorem III of [1] with X = K*, n =5, X* = K° we know
that 74(K°, K*) is generated by the subgroup {[w(K*) Q@ m(K°, K*)] and by

elements of the form Beoa for B € wy(K? K*), a € w(E°, E®), where § ando
denote the generalized Whitehead product and the composition respectively
([14]). Therefore, the kernel of i; = S,ms(K°, K*) is generated by elements of
the forms {4, — 65 + ¢y, ts)s (t6 — tg + ¢y)ov, (b — 43 + ¢,)0a for a,B,v,8 € =,
and @ — 8 + v = 0. It is obvious that AE) =0 if &€ is an element of the first
or the third type stated above. Since & = (1, — 65 + t,)ov = 1400 + 4500 + 4yov
— g°@ — [t4, tg] + [tws ty) — 15, tv] and corresponding formula for v(a — B + %)
holds, it is easily verified that M) = 0. Thus A(kernel of ;) = 0. Hence
there exists a homomorphism A" : T -> 7, such that Ao, =A. If A" has an
extension A*: 7, (K®) — 7;, then the remaider of the proof is quite similar to
that of Theorem 3.

Thus it remains only to prove that A" has an extension. In fact we can
prove that I' is a direct summand of =, (K®).

By Lemma 8, if the following condition (A) is satisfied, then T is a
direct summand of 7 (K®):

(A) for any a € m(K®) and any integer m such that ma € I, there
exists ap € T' such that m a = m a,.

For such a and m we can find a finite subcomplex K} C K°® which has
the property that there exists an element a € =,(K}) such that {a) = ¢ and
ma € in(K;), where [: m(K®)— 7w (K*) and i: #w/(K})—> 7{K3) denote the
homomorphisms induced by the inclusion maps. Hence to prove (A4) it is
sufficient to show (A'):

(A") for any finite subcomplex K of K® and for any element a € w(K3})
and any integer m such that m a € im,(K;), there exists an element a, € ¢
m{(K}§) such that m o = m a,.

Now consider any CW-complex L which has the same homotopy type
as K. Let A: K}— L be a homotopy equivalence and x: L — K, be a
homotopy inverse of A, i. e. Aop =1, woA =~ 1. We may assume that A, u
are cellular maps.

We shall consider the following commutative diagram :
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z o
7T7(K(;) 7T7(Kto>) _>7T7(Kg’ KS)
i1 t
7\4’5 My A Hs g Mo
¥ il v
77'7(L4) '777(110) '7"'7(La, L )

where A;, u;(i = 4,5, 6) are homomorphisms induced by A and g respectively.

For a € n(K®%), we put a = M(a). If ma € ir(K}), then jim a) = jors
(m a) = ngoj(m a) = 0. Hence m a € im,(L*). If there exists an a, € i m(L*)
such that m a = m a,, then a, = psay € i m(K®), and since p;oA; = identity,
ma = psorh{m a) = ps(m a) = m a,. Therefore, again by Lemma 8, to show
(A") it is sufficient to prove that for some L of the same homotopy type as
K3, im(L*) is a direct summand of 7, (L®). This is shown as follows.

Since K} is an Ai-polyhedron with » = 3, K} is of the same homotopy
type as L =M,V M,V ...... V M,, where M; are elementary complexes 3],
[10]). But

'”'7(L4) = Z ’"'7(M$) + Z 7r4(Mi)®7r4(M§),

1srsSh 1sr<sst
77'7(L5) = Z 77'7(M?> + Z '77'4(]ug) & 7 (M3),
1srsk 1Sr<ssk

and 7: 7 (L") > m(L") is represented under these direct sum decompositions by
ir : 77.7(M;4) - W7<M?‘)3
Jr X Js 2 (M) Q w M) = w (M) Q w(M?3),

where 1i,, j, are homomorphisms induced by the inclusion maps, and obviously j,
are onto. On the other hand, since H,(K, G) = 0 for ¢ > 5 and any coefficient
group G, H(L,, G) = 0 for i > 5. Hence the types of each M, are 1, 4 or 5
in §3 of [10].

By Theorem 6. 2, and 6. 3 of [10], i {7 (M})) is one of the direct sum-
mands of 7 (M?) for M?% of types 4 or 5. Thus I'" is a direct summand of

m(K®). Hence A" has an extension A*: m(K*) — ;. The proof of Theorem
4 is complete.

7. The realization of 7,: m, Qm, — m; and T;: m, Q@ m;—m,. First we
shall formulate necessary conditions for T, and 75 Let 7 € w(S?) be the
element represented by the Hopf fibre map. As stated in §5

) [a, Bl = (a + B)on — a°n — Bon,
(i) a°n = (— a)on, for a, B € m(B)
holds. For a, B, v € w{B), the Jacobi identity
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(iii) [y, [a, BI] + [a, [B, yI1 +[8, [, all=0

holds. G. Whitehead proved in [21] that the suspension homomorphism E:
m(S?) = 7 (S?) is isomorphic, while E[¢, n] = 0, hence [¢, #] = 0, where ¢ is
a generator of m(S?). Therefore, for a € m(B)

(iv) la, aon] =0
holds. Further we show that the following relation holds:
) [a, [a, 811 = — [a°n, B] for a, B € m(B).

For, if & = B, then both sides are equal to zero. If o =8, we consider
the space STV §; and let o € 7 (ST V S3) = w(S}) + 7{S;) be the generator
of m(87). From the Jacobi identity we have 2[¢, [¢, ¢.]] + [t [t1, 4] = O,
hence 2 [y, [ty @] + 2[es, t,o7] = 0. By Theorem A in [12], w(SiV S5) =
a,(S1) + m,(SD) + 7 (S + m(S)=Z, - Z, - Z+ 7 while the element [¢y, [¢1, ¢2]]
+ [, ¢,01] obviously belongs to the free part, hence [¢y, [¢4, t21] + [, t20] = 0,
which proves (v).

Therefore, in order that T, 7T'; are realizable it is necessary that T,, T,
satisfy the conditions correspond to (i) — (v).

Now we can prove the following

THEOREM 5. Let wy-modules i, s, my,e-.--. and homomorphisms T,:

@ me—> s and Ty: mQ wy — m, be given. We assume® that w, operates

trivially on s, s and m,, and T, is free. In order that the system 7y, ms,...

. and T, T, is realizable”, it is necessary and sufficient that there exists a
map n: w—> sy such that Ty, Ts and n satisfy the following relations :

(1) Ta®B) =nla+ B) — na) — 7(B),

2) nla) = 9(— a),

B) Ts(v@Tla®@B) + Tia@@ T(BRM) + T{BR Ty Q) = 0,

4) T{a@na) =0,

B) T{a® TLa®B) = — T«(B R nla)) for a, B, v € ma.

PROOF. The necessity is stated above, so we shall prove the sufficiency.
Let B be a basis for the free group =, and introduce an ordering “<’’ in

this set B. For each element a € B, let fu: (5% s,) = (Si, s.) be a fixed
homeomorphism. We construct a CW-complex

6) It is desired to remove these assumptions.
7) We remark that this system is realized in a space B such that Wp.q(B) =0 except W,.,(B),
W 5(B).
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K*= VS,

acB

which is obtained from the disjoint union U S2 by identifying points s, to a

aeB

point p,. Then K? is a simply connected space and =7,(K?) is the free group
with the basis {u]|a € B}, where w is the element represented by the map
fo: SLC K2 We can define an isomorphism ks : 7(K?®)==m by hilw) = a.
The homotopy groups 7(K?) and 7 (K®) are computed by Theorem A of
[12] as follows :

wy(K?) = Z 77'3(555) + Z Za, B),

weB @,BeB
a<8
m(K?) =3 w{S) + 2 Gla, B) + -2 Za, B. v),
weB w, BeB @,B,YeB
ao<f B<Y

where Z(a, 8) (a < B) is the free group with the generator 2(a, 8) = [t4 5],
and 7(S.) is embedded in #,(K?) by the inclusion map and so it is the free
group with the generator 405, and Gla, 8) (e < B) is the cyclic group of
order 2 with the generator ¢(a, 8) = [ta, tg]of (§ denotes a generator of =,(S%)
~2Z,), and Za, B, v) (B <) is the free group with the generator 2(a, 8,7Y)

= [Lw: ["5, l’y]]'
By properties (i), (ii), (iv), (v), Whitehead products in K?

W,: Wz(Kz) & m(K?) — Ws(Kz)
Ws: 7 K?) Q my( K*) — 7 (K?)
are represented as follows :
2a, B a < B
Wloa & 65) = { 28, a) if a > B
Atwon) if a =R,
— 28, a, B) if a<PB
Wi(ea & (sgom)) = 1 — 2B, 8 a)if a>B
0 ifa=42
Wilee & 2(8, 7)) = (a, 8, v) for 8 <.
We can define a homomorphism

Ay mo(K?) — g

{ 7‘3(%071) = "7(“),
M(2a, B) = T{a®B) for a < B.
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Then, we have the following commutative diagram :

W,
m(K*) & m K*) _*7|7'3(K2)
(Dl) hZ ® h2 )\43
4 T,
T Qe

Next we construct K° = Kgg\/ Si.  We know by Whitehead-Chang’s
theorem that

(K = mK?) =< m,
mK*) = m(K?) + 73(5\5{, SP) = m(K®) + =
m(K*) = m(K*) + gz m(S§) + (K Q m(egn St)

= WA(K‘A) + Z m(SZ) + 77'2@77';:
Eeng
where 7} is the free group with generators o(£) represented by S, and = (K?)
with ¢ = 2, 3, 4 are embedded in 7,(K®) by the isomorphisms induced by the
inclusion maps and 7(K*) Q) w(\V Si) is embedded in 7, (K?) by the White-
head product.
We define a homomorphism Af: 7(K*) = =, by

A; on my(K®)

A= |
P on uf

where p: =% — o, is given by p{c(é)) = & Then, from (D,) we have the
following commutative diagram :

2

’H'z(Ks) ® Tz(Kg) _)Wa(KS)
(D) ‘ 7 @ he ,! A
l T, |
sy Q) Ty

where W. denotes the Whitehead product in K*. The Whitehead product
Wi w(K*) X ’-’7'3(K3) g 77'4(K3)
is represented in following way under the above direct sum decompositions :

W, on m; & w(K?)

identity on 7, & 7y,

wr =1
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We define a homomorphism

A w(KP) -y

by
£, = { T3<a’ T2(/37 y)) on z(aa ﬁ’ 'Y) (6 < 7)5
! 0 ony 7w(S:) + > Gla, B)
@:-B o, feB
a<p

Then, using the Jacobi identities it is easily verified that in the diagram

W,
A K*) @ mK*) =7 (K?)
(Dy) h: Qg Ay
4 T,
a2 &) gyt

the commutativity Ao Wy = Tyo(h: @ A;) holds good. We also define a homo-
morphism

)\I: 7T4(K3) —> Ty
by

F — { A on 7, (KP),
{ ‘7 lo on (S (£ € my),

M, B, V) =T(aQTLBRXY) B<v, a B, v < B).

Then, from (D,) we have the following commutative diagram :

W3
Wz(Ks) ® 77'3(K3) -_)WA(KS)
D)) ‘ hs @ As AF
i) T, 1
me Ty Ty

Now we apply Lemma 1 with X = K*, p=2\{, then we obtain K‘>D K*
such that the kernel of AF = the kernel of 7; and i, is onto, where 7;: 7(K*)
— 7(K*) is the homomorphism induced by the identity map. Therefore there
exists an isomorphism A, : w(K*') =, such that A;0i, = Af. By the naturality
of Whitehead products and the commutativity of the diagram (D,), we have
the following commutative diagram :
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W,
7T2(K4) ® WZ(K4) ’—’Ws(K“)
|
‘ hs @ hy hs
4 .
T2 QQ >3

where W, denotes the Whitehead product in K*.
We consider the exact sequence:

5 . .
m(KY, K%~ m (K -~ m (K T m(KY, K7).
Since 7 (K*, K*) is free, I' = i, (K*) is one of the direct summands of = ,(K*).

Therefore, if we assume that A¥(kernel of Z,) = 0, then there exists a homo-
morphism

*iow (KD~

such that Aoz, = Af. Therefore, from the commutative diagram (D,) we
have the following commutative diagram

W,
m{ K R m(K*) = (K*)
hz ® h3 ':*
A T,
T3 ® 7)'3—‘—*‘—)’”'4.

Therefore by the same process as in the proof of Theorem 3 we have a
simply connected space which realizes s, 73, 74, T2 T3 Thus the proof of
our theorem is complete.

Now we shall prove that Af(kernel of 7,) =0

By Lemma 4 of [24], the kernel of 7, is generated by subgroups (z7'(0))
X wK?) and (7(0))om(S®) of 7(K*), where & and o mean the Whitehead
product and the composition respectively.

Since #5'(0) = A 7Y(0) and 7(K®) = w(K?) + =, any element T € i7%(0)
may be represented as T=p + ¢ where p € 7 (K?) T w(K?) and o € #f C
7(K*) and Agp + po = 0. Moreover, the element p is represented as

P = Z mi(hv.o"l) + Z ”1[’/,9,, ‘Y,]

where m,; and »; are integers, and a;, 8;, v; € B, B; < v;.
We consider the element ¢ = — > myo(n(a,)) — > n,0(T(B; Q) and

set 7 =p+ 0, 0, =0 —c. Then we have
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=17 1 a and o, € p~0).
Since E: 7,(58*) — 7,(S?) is onto, to show that Af(kernel of 7,) = 0, it is
sufficient to show that
)\'t('r' ®77'2(K3>) =0, 7\:(7’077'4(183)) =0,
A(p7H(0) ® m(K?) = 0, A(p7(0)em(S%)) = 0,

where 7’ is an element of the form won — 4@y or [eg, ;] — tneeyy (B < 7).
And this is proved by straightforward computations. Thus the proof is complete.

8. The realizations of T,: w1 Q7w —> 71, and T o, Q 7y — 715 By
H. Toda [19], the following results has been obtained :

® (S~ 7
and its generators is [ts, 4], Where ¢, is a generators of 74(S®), and 7,(S°) = 0,
(ii) m (S =~ Z,

and its generator is w;ovy, and 7(S7) =0, where », denotes (n — 4)-fold
suspension of the element v, € #,(S*) which represented by the Hopf map.

Therefore, for any CW-complex K such that K" ! consists of only one
O-cell for n =6 or 7, by Theorem 1. 3 of [10], we have

mran—( K", Kn) ~~ (B, Sn) ® Tar (K", Kn)
= 7T2n—2(Sn) ® 7rn+1(Kn+1,~ K’") = O'

Hence 7: myu o K") = my,_1(K™?) is onto. Therefore, by the same way as the
proof of Theorem 3, we have the following

THEOREM 6. Let w4, 7y be ri-modules and Ty: me Q me —> 711 be an
arbitrary w-homomorphism such that Ta @ B) = T{(BRJa)® for a, B € .
Then, the system y, ms, 71 and Ty is realizable.

THEOREM 7. Let m;, my; be wiy-modules and T;: mw; Q mwi —> w3 be an
arbitrary m-homomorphism such that T{a @ «a) = 0¥ for a € mw;. Then the
system 1wy, T, mws and T, is realizable.

9. The realizations of 7,: 7, & 7, = 7. for p =3, 5, 8. For T;:
s & 7y —> s, since [¢, ¢] = 0 (¢ € m,(S%)) it is necessary that T{a@ a) =10
for @ € 7, For the elementary complex S° U e*, where e* attached by a map of
degree 2, i(mry(S%)) is not a direct summand of 74(S* U €*)[9]). Therefore, for a
2-connected CW-complex K, i(sr,(K*®)) is not necessarily a direct summand of
77‘5(K4), but Ws(K4)/i775(K3) c '"'5(K4, KS) = 7T4(K4, Kg) ® 77'5(E4, Ss) =~ ‘77'4(K4, K3)
& Z,.

8) Of course this is a necessary condition,.
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Therefore we can state the following

THEOREM 8. Lei m,, s be finitely generated abelian groups and T,
oy & ms — w5 be a homomorphism such that T{a @ a) =0 and Tfw: & ms)
C 275", Then, the system s, m5, T3 is realizable. ‘

With respect to the realizability of T, since 7(S®) is the group of order
2 generated by [, ¢] for a generator ¢ € 7m(S°?) and 7y(S*) = Z,,, we have the
following

THEOREM 9. Let ms, m, be finitely generated abelian groups and Ty:
s &) w5 — my be a homomorphism such that 2 T{a@a)=0 and TimwsQms)
C 24 4", Then, the system s, m, and Ty is realizable.

H. Toda proved that = (S*)=Z + Z,,, and 7,,(S?) = Z, (see Appendix
p. 66 of [27]). Z and Zy have generators p and a such that [i, 6] = 2p — a.
Therefore we have the following

THEOREM 10. Let my, mys be given finitely generated abelian groups
and Ty: ms & ms — wys be a given homomorphism. If there exist a map p.
oy —> s and a homomorphism a . mws — w5 Such that

1) Tda®PB) = pla + B) — pla) — pB),

2) (= a) = pla) — ala),

(3) 120 ala) = 0,

(4')11) P('ﬂ's) C 27y, ‘1(77'8) < 27y, Jor a, :8 € Ty,

then, the system ms, w5 and T is realizable.

In the proofs of Theorems stated in this section, Lernma 6 is used, but
proofs are similar to that of theorems of preceding sections and so we shall
omit the details.
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