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Abstract: In the recent literature of process monitoring, homogeneously weighted moving average
(HWMA) type control charts have become quite popular. These charts are quite efficient for early
detection of shifts, especially of smaller magnitudes, in process parameters such as location and
dispersion. A recent study pointed out a few concerns related to HWMA charts that mainly relate to
its steady-state performance. It needs to be highlighted that the initial studies on HWMA focused only
on the zero-state performance of the chart relative to other well-known memory charts. This study
reinvestigates the performance of the HWMA chart under zero and steady states at various shifts.
Using the Monte Carlo simulation method, a detailed comparative analysis of the HWMA chart is
carried out relative to the exponentially weighted moving average (EWMA) chart with time-varying
limits. For several values of design parameters, the in-control and out-of-control performance of these
charts is evaluated in terms of the average run length (ARL). It has been observed that the structure of
the HWMA chart has the ability to safeguard the detection ability and the run-length properties under
various delays in process shifts. More specifically, it has been found that HWMA chart is superior to
the EWMA chart for several shift sizes under zero state and is capable of maintaining its dominance
in case the process experiences a delay in shift. However, the steady-state performance depends
on the suitable choice of design parameters. This study provides clear cut-offs where HWMA and
EWMA are superior to one another in terms of efficient monitoring of the process parameters.

Keywords: exponentially weighted moving average chart; homogeneously weighted moving average
chart; steady state; zero state

1. Introduction

Quality is the ability of a product or a service to satisfy the clients’ requirements.
Quality assurance departments of companies monitor their processes to improve the quality
of product or services. Statistical process control (SPC) is a toolkit containing some efficient
tools, among which the control chart is the most widely used [1]. The control chart helps
to investigate the variations in a process, classified as common-cause and special-cause
variations. The presence of common-cause variations alone implies that the processes is in
an in-control (IC) state, while the addition of special causes leads the processes to an out-of-
control (OOC) state [2]. Shewhart, exponentially weighted moving average (EWMA), and
cumulative sum (CUSUM) are the most popular charts in SPC that are used for effective
monitoring of the process parameters.

Roberts [3] introduced an EWMA chart for efficient monitoring of small shifts in the
process parameters. Later, some modifications and advancements were devised to further
improve the structure. A few of these are mentioned here [4–24]; however, they are also
mentioned in various other studies.
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The homogeneously weighted moving average (HWMA) method has gained a lot
of popularity in quality control research in recent years. Abbas [25] proposed an HWMA
chart for efficient monitoring of small and moderate shifts using an optimized weighting
scheme. It was observed that HWMA outperformed the EWMA chart for various amounts
of shifts under zero state. Later, the structure of the HWMA chart was used in many other
studies, such as those mentioned in [26–41], among others.

Recently, Knoth et al. [42] criticized a memory-type structure termed the progressive
mean (PM) control chart by Abbas et al. [43]. In reply to that criticism, Abbas and Riaz [44]
proposed a slight modification in the implementation of the PM control chart to recover its
steady state performance. In their article, Knoth et al. [42] also raised few concerns related
to the steady-state performance of the HWMA control chart. This study reinvestigates the
properties of the HWMA chart under zero and steady states for various shift sizes in the
process mean. A detailed comparative analysis of the HWMA chart is conducted and is
compared with the time varying EWMA chart. The performances of the HWMA chart
under the two states are studied in the form average run-length (ARL), which is the average
number of samples until an OOC signal occurs. It is denoted by ARL0 and ARL1 for the IC
and OOC states, respectively [45].

The remaining article is organized as: Section 2 provides a control charting structure
of the EWMA and HWMA charts. Section 3 provides a performance analysis of the two
charts. Section 4 concludes the study with some useful recommendations.

2. EWMA and HWMA Charts

Assume Y as the process variable following normal distribution with mean µ and
known variance σ2, i.e., Y ∼ N

(
µ, σ2). Let yit be the ith observation at time t taken from

Y with mean yt and variance s2
t , ∀ t = 1, 2, . . . and i = 1, 2, . . . , n. Moreover, we define

µ = µ0 + δ σ√
n , where µ0 is the mean of an IC process and δ is the magnitude of shift in the

process mean (if any) in σ√
n units. Using this information, EWMA and HWMA charts are

described below.

2.1. EWMA Chart

The EWMA chart uses current and lag information in such a way that small and
persistent shifts are accumulated. The EWMA charting statistic is based on weights, such
that its most recent value has a larger weight and the less recent value has smaller weights
are decrease as the observations become less recent. The plotting statistic Zt of the EWMA
chart for monitoring process mean µy is

Zt = λyt + (1− λ)Zt−1 with Z0 = µ0 (1)

where λ is the sensitivity parameter of the EWMA chart, such that 0 < λ ≤ 1, i.e., for
smaller and larger values of λ, the EWMA chart becomes more sensitive to the smaller and
moderately larger shifts, respectively. The starting value of Zt at t = 0 is Z0 = µ0 and the
mean and variance of Zt are given as µ0 and n−1σ2

[
λ

2−λ{1− (1− λ)2t}
]
, respectively. It is

noted that the EWMA statistic Zt given in (1) becomes the classical Shewhart control chart
at λ = 1 [46].

The time-varying control limits of the Zt chart are given as follows:

LCLt = µ0 − Lzσ

√
λ{1−(1−λ)2t}

n(2−λ)

CL = µ0

UCLt = µ0 + Lzσ

√
λ{1−(1−λ)2t}

n(2−λ)

 (2)

where Lz is the control limit coefficient that helps with fixing a pre-specified ARL0.
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2.2. HWMA Chart

The plotting statistic Ht of HWMA chart is defined as follows:

Ht = ωyt + (1−ω)yt−1 with y0 = µ0 (3)

where ω (smoothing/sensitivity parameter with 0 < ω ≤ 1) is the weight assigned to the
current sample, (1−ω) is the weight homogeneously assigned to all past samples, and

yt−1 is the mean of previous t− 1 means, defined as: yt−1 =
∑t−1

k=1 yk
t−1 .

The expression given in (3) can be written as follows:

Ht = ωyt + (1−ω)
∑t−1

k=1 yk
t−1

Ht = ωyt + (1−ω)
[

yt−1
t−1 +

yt−2
t−1 + · · ·+ y1

t−1

] (4)

with mean and variance given as follows:

E(Ht) = µ0

V(Ht) = ω2σ2

n (if t = 1)

= σ2

n

(
ω2 + (1−ω)2

(t−1)

)
(if t > 1)

The control limits of Ht chart are given as follows:

LCLt =

 µ0 − LHσ
√

ω2

n i f t = 1

µ0 − LHσ

√
ω2

n + (1−ω)2

n(t−1) i f t > 1

CL = µ0

UCLt =

 µ0 + LHσ
√

ω2

n i f t = 1

µ0 + LHσ

√
ω2

n + (1−ω)2

n(t−1) i f t > 1


(5)

where LH is the control charting constant that fixes a pre-specified ARL0.
In the initial study on the HWMA chart, Abbas [25] focused on the zero state perfor-

mance of the chart relative to other well-known memory EWMA control charts. A recent
study by Knoth et al. [42] raised issues related to several memory-type control charts, e.g.,
the triple EWMA control chart by Alevizakos et al. [47] and the double progressive mean
control charts by Alevizakos and Koukouvinos [48]. They also pointed out some concerns
related to the HWMA chart that are mainly related to its steady state performance. The
major concern states, “In steady-state HWMA always loses its performance and becomes
impractical”. This concern is indeed not always true, and hence needs a further investiga-
tion. The two charts under discussion indeed have their own efficiency zones that need
to be identified carefully, which is the main motivation of the current study. This study
reinvestigates the performance of the HWMA chart under the zero and steady states and
identifies the dominating zones for the HWMA chart over the EWMA chart specially in
terms of steady state ARL.

3. Performance Evaluation

This section highlights the biased comparison of HWMA with the EWMA control
chart by Knoth et al. [42]. For the said purpose, we considered several choices of delays
in the shifts (τ) ranging between 0−∞ at various shifts (δ) in the process parameters.
Here, τ represents the number of IC samples before a shift has occurred in the process
mean, i.e., τ = 0 refers to a zero-state shift. It is to be noted here [42] restricted their
comparison between HWMA and EWMA charts to τ ∈ (0 , 500). By doing so, they
concluded that the steady-state performance of HWMA chart is inferior to EWMA for
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smaller values of λ. In fact, the comparison of HWMA and EWMA in Section 3.2 of
Knoth et al. [42] was tilted towards proving the deceitful inferiority of the HWMA control
chart. For example, they started by comparing HWMA0.1 (HWMA control chart with
λ = 0.) with EWMA0.05 (EWMA control chart with λ = 0.05) for the zone of smaller
shifts, just for the sake of establishing the superiority of EWMA in that particular zone.
Then, for the zone of moderate shifts, they compared HWMA0.1 with EWMA0.1. Finally,
for the zone of large shifts, where HWMA0.1 performed better than both EWMA0.05 and
EWMA0.1, they gave the argument that HWMA should be compared with the Shewhart
control chart for this zone. The sole justification for all of this seemed to deprive HWMA
structure from its natural ability to outperform EWMA for some specific zones of shifts.
Among the weighted moving average control charts, we believe that there is no single
structure that can outperform all of the structures for all of the shift zones. Every control
chart has its own superiority zone(s) and the same holds true for the HWMA chart.

To be fair, with both the EWMA and HWMA control charts, they should be com-
pared with same values of smoothing parameters λ, i.e., where both charts are giving λ
weight to the current sample and the remaining 1− λ weight is distributed to all of the
previous samples. Here, EWMA and HWMA are different in how they distribute this
(1− λ) to previous samples. Having said this, we have calculated conditional expected
delay (CED) [49] for zero and steady states at varying τ for different combinations of
λ and δ. In doing so, we designed a Monte Carlo simulation study with 105 iterations
in R software, which is briefly described in Figure 1. We fixed ARL0 = 500 and de-
rived the control limits coefficients LZ and LH given in (2) and (5) of the EWMA and
HWMA charts, respectively (cf. Table 1). For the said ARL0, we calculated CED (Dτ) for
τ = 0, 1, 2, . . . for the HWMA and EWMA charts, by considering δ = 0.125, 0.250, 0.375,
0.50, 0.75, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00, and 6.00 and λ (or ω denoted by Abbas 2018) =
0.03, 0.05, 0.10, 0.25, and 0.50. The resulting values of Dτ were plotted against each value
of τ in the form of CED curves at different values of λ and δ. Some selective graphical
displays are provided in the form of figures (cf. Figures 2–11).Processes 2022, 10, x FOR PEER REVIEW 5 of 15 

 

 

 
Figure 1. A procedural flow chart of the simulation study. 

Figure 1. A procedural flow chart of the simulation study.
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Table 1. LZ and LH of EWMA and HWMA charts.

λ or ω LZ LH

0.03 2.483 2.272

0.05 2.639 2.608

0.10 2.824 2.938

0.25 3.001 3.075
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For a small value of λ, i.e., 0.03, it can be seen from Figures 2 and 3 that the ARL of the
HWMA0.03 chart takes some time to reach its steady state. These figures clearly indicate
that before reaching its steady state, the CED curve of HWMA0.03 surpasses the respective
EWMA0.03 curve, and then remains superior for the remaining region of τ. This is true for
all δ ∈ (0.125 , 6). In most cases, this steady state was reached after τ = 500, which has not
been covered in most of the recent studies on HWMA, resulting in a misleading conclusion
that EWMA is better than HWMA in terms of steady state ARL values.

• HWMA0.1 chart is better than EWMA0.1 for δ > 2, whereas for δ ≤ 2 EWMA0.1 is
proven to be superior.

• HWMA0.25 chart is better than EWMA0.25 for δ > 2, whereas for δ ≤ 2 EWMA0.25 is
proven to be superior.

• HWMA0.5 chart is better than EWMA0.5 for δ > 3, whereas for δ ≤ 3 EWMA0.5 is
proven to be superior.

Another important point relates to the weighting scheme associated with the HWMA
statistic given in Equation (4). It is true that for a specific t, the weights given to each of the
previous samples are equal. However, in the future with increasing values of t, the weights
decrease as the observation becomes older. Mathematically, the weight given to a specific
(say jth) sample in the calculation of any future (say tth) plotting statistic is denoted by f j(t),
and it is derived as follows:

Ht = ωyt + (1−ω)

[
yt−1
t− 1

+
yt−2
t− 1

+ · · ·+
yj

t− 1
+ . . . +

y1
t− 1

]

Ht = ωyt +
1−ω

t− 1
yt−1 +

1−ω

t− 1
yt−2 + · · ·+

1−ω

t− 1
yj + . . . +

1−ω

t− 1
y1

Ht = ωyt +
1−ω

t− 1
yt−1 +

1−ω

t− 1
yt−2 + · · ·+ f j(t)yj + . . . +

1−ω

t− 1
y1

where f j(t) =
(

1−ω
t−1

)
, and it can clearly be seen that f j(t) is inversely proportional to t, e.g.,

with HWMA0.1 at t = 21, the first observation is has a weight of 1−0.1
21−1 = 0.045, while at

t = 26, the same first observation weighs 0.036, and at t = 31 it weighs 0.03.
To explain this point further, the weighting curves of some selective sample numbers

in the HWMA statistic are given in Figure 12.
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performances, respectively; (e,f) the 50th value under zero state and steady state performances, respectively.
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Figure 12a contains the weight given to first sample in the calculation of the HWMA
statistic (Ht) ∀ t = 2, 3, . . . , 25. It can be seen further into the future, the weight given to
the first sample decreases. Moreover, the weight decreases quickly and is closer to zero for
larger values of λ. This decreasing pattern does not stop at t = 25, which can be confirmed
from Figure 12b, which contains the weight given to first sample in the calculation of the
HWMA statistic (Ht) ∀ t = 102, 103, . . . , 200. Similar weighting curves were made for the
20th sample in Figure 12c,d and 50th sample in Figure 12e,f, also proving that the weights
decreased as the observation aged.

4. Summary and Conclusions

The HWMA control charting approach is used for efficient monitoring of small shifts
in process parameter(s). Recently, Knoth et al. [42] highlighted a few issues regarding the
HWMA chart by saying “HWMA chart loses its performance as compared to EWMA chart
in steady-state”. In order to address these concerns, this study revisits the performance of
the HWMA chart under zero and steady states for various shifts and smoothing parameters.
A comprehensive comparative analysis of the run-length profiles is carried out among the
two charts for several values of the design parameters. The results revealed that the HWMA
chart is superior to the EWMA chart under a zero state for several regions of shifts, and is
capable of retaining its superiority over EWMA under various delays in process shifts. More
specifically, the steady-state performance of every moving average control chart depends
on the choice of the design parameter. This study has identified the dominance cut-offs
for HWMA and EWMA. We noticed that both EWMA and HWMA have their respective
superiority regions depending on the choices of λ, δ, and τ. Moreover, the current study
is limited to comparing the performance of EWMA and HWMA in terms of ARL values
when the process experiences a shift, i.e., a sudden step-change in the process parameter(s).
A similar comparison needs to be done when the process parameter(s) experiences a drift
or a short momentary shift.
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