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Abstract. In this paper we establish four necessary conditions for recognizing visibility 
graphs of simple polygons and conjecture that these conditions are sufficient. We present 
an O (n2)-time algorithm for testing the first and second necessary conditions and leave it 
open whether the third and fourth necessary conditions can be tested in polynomial time. 
We also show that visibility graphs of simple polygons do not possess the characteristics of 
a few special classes of graphs. 

1. Introduction 

Let P = (Pl, P2 . . . . .  Pn) be a simple polygon. We say that a line segment lies inside 
P if it does not intersect the exterior of  P. Two points are said to be visible if the line 
segment joining them lies inside P. Note that if the line segment touches the boundary 
of P,  they are still considered visible in P.  An undirected graph G = (V, E) is called 
the visibility graph of P if the vertices V = (vl, v2 . . . . .  on) correspond to the vertices 
of  P and an edge occurs in E between two vertices vi, vj in V if and only if Pi and pj 
are visible in P.  

* Part of this work was done when the author visited the Johns Hopkins University and was supported by 
NSF Grant DCR83-51468 and a grant from IBM. 

Historical note: A n  earlier version of this paper appeared as [12] where we introduced the three necessary 
conditions for recognizing visibility graphs of simple polygons. Everett [8] gave a counterexample to our con- 
jecture for sufficiency of these conditions in her Ph.D. thesis, 1990. Her counterexample essentially suggested 
strengthening the third necessary condition. She also suggested the stronger version of the third necessary 
condition, which has been proved by Srinivasaraghavan and Mukhopadhyay [21 ]. However, the counterexam- 
pie given by Abello et al. [4] shows that even with the stronger version of the third necessary condition, the 
three necessary conditions are not sufficient. In this version we identify another necessary condition which 
also circumvents this counterexample. 
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The visibility graph is a fundamental combinatorial structure in computational ge- 
ometry, that is used in computing shortest paths amidst polygonal obstacles in the plane 
[16] and in decomposing two-dimensional shapes into clusters [19]. The problems of 
computing, recognizing, and characterizing visibility graphs of simple polygons have 
fascinated many researchers in computational geometry. Researchers have also consid- 
ered the complexity of solving standard graph-theoretic problems for visibility graphs. 
Hershberger [15] proposed an O(E)-time algorithm for computing the visibility graph. 
Avis and Rappaport [5] proposed a polynomial-time algorithm for finding the largest 
clique in visibility graphs. The minimum dominating set problem in visibility graphs 
(known as the art gallery problem) is known to be NP-hard [ 17]. The maximum indepen- 
dent set problem in visibility graphs (known as the hidden set problem) is also known 
to be NP-hard [20]. However, there are polynomial-time algorithms for this problem for 
visibility graphs of special classes of polygons [ 13]. 

Given an undirected graph with a Hamiltonian cycle, the problem of recognizing 
visibility graphs is to test whether there exists a simple polygon such that: 

1. The Hamiltonian cycle of the graph forms the boundary of a simple polygon. 
2~ Two vertices of the simple polygon are visible if and only if they correspond to 

adjacent vertices in the graph. 

Based on the earlier version of this paper [ 12], Everett and Corneil [9] have proposed 
an algorithm for recognizing visibility graphs of spiral polygons. Since then, several 
results on characterization, recognition, and reconstruction of visibility graphs have 
appeared in the literature. For details, see [18]. However, the problem of recognizing 
visibility graphs in general is still an open problem. 

In this paper we propose four necessary conditions for visibility graphs and prove 
that these conditions are sufficient to determine the convex and reflex vertices of simple 
polygons. We conjecture that these four necessary conditions are sufficient to recognize 
visibility graphs of simple polygons. We present an O(n2)-time algorithm for testing 
Necessary Conditions 1 and 2 and leave it open whether Necessary Conditions 3 and 4 
can be tested in polynomial time by exploiting polygonal geometry. Finally, we show 
that visibility graphs of simple polygons do not possess the characteristics of perfect 
graphs, circle graphs, or chordal graphs. 

2. Necessary Conditions 

We assume that the vertices of the given visibility graph (denoted by VG) are numbered 
from 1 to n and the given Hamiltonian cycle is 1, 2 . . . . .  n in counterclockwise order. A 
cycle ii, i2 . . . . .  ik in VG is said to be ordered ifi~, i2, . . . ,  ik preserve their order in the 
Hamiltonian cycle. The Hamiltonian cycle is the longest ordered cycle in VG. 

Necessary Condition 1. In a visibility graph every ordered cycle ofk > 4 vertices has 
at least k - 3 diagonals. 

Proof. Assume on the contrary that there exists a simple polygon P which contains an 
ordered cycle ofk vertices with k - 4 diagonals or less. As the ordered cycle ofk vertices 
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Fig. 1. The cycle (a, b, c, d) is an unordered cycle in the polygon. 
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corresponds to a subpolygon P'  and k - 3 diagonals are necessary to triangulate P' ,  P '  
must contain at least an ordered cycle a, b, c, d without any diagonal. So, the diagonals 
(a, c) and (b, d) must intersect the exterior of the polygon. Since both diagonals intersect 
the exterior of the polygon, a, b, c, d is an unordered cycle in the polygon, as shown in 
Fig. 1, which contradicts the assumption that a, b, c, d is ordered. [] 

For any two vertices i and j in VG,  the vertices from i to j ,  including i and j ,  in 
clockwise and counterclockwise (i.e., Hamiltonian) order are referred to as the upper 
and lower chain of (i, j ) ,  respectively. A pair of vertices (i, j )  is said to be a visible 
(or invisible) pair if i and j are adjacent (resp. not adjacent) in VG.  Without loss of 
generality, we assume i is always less than j for an invisible pair (i, j ) .  A vertex a is said 
to be a blocking vertex for an invisible pair (i, j )  if no two vertices k of chain(i, a - 1) 
and m ofchain(a + 1, j )  are adjacent in VG.  Vertex a is called a blocking vertex because 
a can be used to block the line of sight between i and j in the polygon. In Fig. 2, 6 is the 
blocking vertex for the invisible pair (1,5) whereas the graphs in Fig. 3 is not a visibility 
graph of a simple polygon because the invisible pair (3, 6) does not have any blocking 
vertex. Intuitively, it is easy to see that reflex vertices in the polygon are blocking vertices 
and they introduce pockets in the polygonal boundary with no two pockets visible from 
each other as shown in Fig. 4. It has been observed by Everett [8] that all blocking 
vertices may not be reflex vertices in the polygon and therefore, the notion of blocking 
vertices is purely graph-theoretic. 

6 5 

2 3 

Fig. 2. Vertex 6 is the blocking vertex for the invisible pair (1, 5). 
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Fig. 3. 

6 5 

2 3 

The invisible pair (3, 6) does not have any blocking vertex. 

Necessary Condition 2. Every invisible pair (i, j )  in a visibility graph has at least 
one blocking vertex. 

Proof. Assume on the contrary that there exists a visibility graph of a simple polygon 
which does not have any blocking vertex for an invisible pair (i, j ) .  Since there is no 
blocking vertex for the invisible pair (i, j )  in the visibility graph, it implies that the 
Euclidean shortest path between i and j in the polygon does not pass through any vertex 
of the polygon. So, the line segment joining i and j lies totally inside the polygon and, 
therefore, (i, j )  is a visible pair in the visibility graph which is a contradiction. [] 

An invisible pair can have more than one blocking vertex in either chain; critical anal- 
ysis shows that such invisible pairs are redundant constraints. In the following lemmas 
we show that it is sufficient to consider blocking vertices for those invisible pairs which 
have at most one blocking vertex in each of its lower and upper chains. 

Lemma 1. If  a and b are blocking vertices in the lower chain for the invisible pair 
(i, j ) ,  where i < a < b < j ,  then a and b are blocking vertices for the invisible pairs 
(i, b) and (a, j ) ,  respectively. 

Proof. Since no two vertices between the chains (i, a - 1) and (a + 1, j )  are visible 
to one another, a is a blocking vertex for the invisible pair (i, b). Symmetrically, b is a 
blocking vertex for invisible pair (i, a). [] 

Fig. 4. No two pockets are visible from each other. 
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L e m m a  2. I f  a and b are blocking vertices in the lower chain for  invisible pairs (i, b) 
and (a, j ) ,  respectively, where i < a < b < j ,  then a and b are blocking vertices f o r  

the invisible pair (i, j ) .  

Proof. Since a is a blocking vertex for the invisible pair (i, b), for i < k < a - 1 and 
a + 1 < m < b, (k, m) is an invisible pair. Again, since b is a blocking vertex for the 
invisible pair (a, j ) ,  for a < p < b - 1 and b + 1 < q < j ,  (p,  q) is an invisible pair. 
To prove a and b are blocking vertices for the invisible pair (i, j ) ,  it will suffice to show 
that there is no visible pair (k, q) such that i < k < a - 1 and b + 1 < q < j .  

Assume on the contrary that (k, q) is a visible pair in V G  such that, for k < m < a 
and b < p < q, (m, p)  is an invisible pair. Let C be the smallest ordered cycle containing 
k, a,  b, and q. Since C is the smallest ordered cycle, there is no diagonal in C between any 
two vertices of the chain (k, a),  between any two vertices of  the chain (a, b), and between 
any two vertices of the chain (b, q). Since a is a blocking vertex, there is no diagonal in 
C between the vertices of chains (k, a) and (a, b). Again, since b is a blocking vertex, 
there is no diagonal in C between the vertices of the chains (a, b) and (b, q). Moreover, 
there is no diagonal between the vertices of  the chains (k, a)  and (b, q) because visible 
pair (k, q) is chosen accordingly. Since there is no diagonal in C, Necessary Condition 
1 is contradicted and, therefore, (k, q) is an invisible pair in VG.  So both a and b are 
blocking vertices for the invisible pair (i, j ) .  [] 

The above lemmas correspond to the fact that some of the blocking vertices in lower 
or upper chains of  an invisible pair form a chain of  reflex vertices in the polygon as 
shown in Fig. 5. From now on, we only consider invisible pairs that have at most one 
blocking vertex in each of its lower and upper chains; call such invisible pairs minimal. 
An assignment is a mapping from vertices to minimal invisible pairs such that 

(i) a vertex assigned to any minimal invisible pair must be its blocking vertex, 
(ii) every minimal invisible pair is assigned to some blocking vertex, and 

(iii) i fa  is assigned to a minimal invisible pair (i, j )  where a ~ lower chain(i, j ) ,  then 

I a .-'~'? ~ c 

Fig. 5. Blocking vertices form a chain of reflex vertices in a polygon. 
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Fig. 6. 
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Vertex 2 cannot block the visibility of separable invisible pairs (I, 6) and (3, 6) simultaneously. 

a is also assigned to every minimal invisible pair (k, m) where k e chain(i, a - 1) 
and m c chain(a + 1, j ) .  

Two invisible pairs (i, j )  and (k, l) are said to be separable with respect to a vertex a 
if k and I are encountered before i and j when the Hamiltonian cycle is traversed from 
a and a is the blocking vertex for both (i, j )  and (k, l). Though it is necessary to have 
a blocking vertex for each invisible pair, the same blocking vertex cannot block two 
separable invisible pairs simultaneously. For example, 2 in Fig. 6 is the only blocking 
vertex for both invisible pairs (1, 6) and (3, 6) but 2 cannot block the visibility of both 
(1, 6) and (3, 6) as they are separable with respect to 2. This suggests the third necessary 
condition. 

Necessary Condit ion  3 [ 12]. Two separable invisible pairs in a visibility graph must 
have distinct blocking vertices. 

Proof. Let a be the sole blocking vertex for two separable invisible pairs (i, j )  and (k, l) 
where a lies in the lower chain of (i, k) (Fig. 7). Since only a can block the visibility 
between i and j as well as between k and l, a must be a reflex vertex in the polygon 

7 
I I I ! 

/ 

Fig. 7. Two separable invisible pairs (i, j)  and (k, l) of a blocking vertex a. 
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Fig. 8. This graph was proposed by Everett as a counterexample to our conjecture for sufficiency. 
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and lie above both (i, j )  and (k, l). Since the interior of the two regions in the polygon 
bounded by the ordered cycles i, a, j . . . . .  i and a, k . . . . .  1, a are disjoint, a cannot lie 
above (i, j )  as well as above (k, l) in the polygon. Therefore a cannot block the visibility 
between i and j as well as between k and I. Hence, no two separable invisible pairs in a 
visibility graph can have the same blocking vertex. [] 

In our earlier version of this paper [ 12], it was conjectured that these three necessary 
conditions are sufficient for a graph to be a visibility graph of a simple po.lygon. Consider 
the graph in Fig. 8. The graph satisfies the three necessary conditions but it is not a vis- 
ibility graph since blocking vertices 2 and 4 cannot simultaneously block the visibility 
between invisible pairs (1, 8), (3, 8), and (5, 8). This counterexample to our conjecture 
was proposed by Everett [8]. She also proposed the following stronger version of Nec- 
essary Condition 3, which has been proved by Srinivasaraghavan and Mukhopadhyay 
[21]. 

Necessary Condit ion 3 [8]. There is an assignment o f  vertices to all minimal invisible 
pairs in a visibility graph such that no blocking vertex a is assigned to two or more 
minimal invisible pairs that are separable with respect to a. 

Another counterexample (Fig. 9) to our conjecture of sufficiency in [ 12] was proposed 
by Abello et al. [4]. In fact this counterexample shows that the three necessary conditions 
are not sufficient even after strengthening Necessary Condition 3 as suggested by Everett. 
We now analyze why the graph in Fig. 9 is a counterexample. It can be seen that the 
graph satisfies Necessary Conditions 1 and 2. Moreover, there is a unique assignment of 
blocking vertices to all minimal invisible pairs. The blocking vertex 1 is assigned to (2, 9) 
and (2, 10), the blocking vertex 2 is assigned to (1, 3) and (1, 4), the blocking vertex 
5 is assigned to (1,6), (2, 6), (3, 6), (4, 6), (4, 7), and (4, 8), and the blocking vertex 8 
is assigned to (1, 7), (2, 7), (5, 9), (6, 9), (7, 9), and (7, 10). Observe that no blocking 
vertex is assigned to two or more of its separable invisible pairs. Therefore, this graph 
also satisfies even the stronger version of Necessary Condition 3. However, observe now 
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Fig. 9. This graph was proposed by Abello et al. as a counterexample to our conjecture for sufficiency. 

that the graph is not a visibility graph. Note that the blocking vertices 1, 2, 5, 8 are reflex 
vertices in the subpolygon (1, 2, 4, 5, 8, 9, 1) because 1, 2, 5, 8 are assigned to minimal 
invisible pairs (2, 9), (1, 4), (4, 8), (5, 9), respectively. This implies that there are four 
reflex vertices in a polygon of six vertices, which is not possible. This suggests the fourth 
necessary condition, 

Necessary Condition 4. For any assignment of blocking vertices to all minimal invis- 
ible pairs in a visibility graph, the total number of vertices of  any ordered cycle C, which 
are assigned to the minimal invisible pairs between the vertices of C, is at most ]C [ - 3. 

Proof Assume on the contrary that, for a given graph, there is an assignment and an 
ordered cycle C, such that the assignment maps ICI - 2 or more vertices of C to all 
minimal invisible pairs between the vertices of C. Let P '  be the subpolygon of a simple 
polygon whose edges on the boundary correspond to the edges of C. Since each of these 
blocking vertices is assigned to some minimal invisible pair between the vertices of C, it 
is a reflex vertex in P' .  So, the sum of internal angles of P '  is more than ( ICI  - 2 ) 1 8 0  ~ 
which contradicts the fact that the sum of internal angles of any simple polygon of ICI 
vertices is (ICI - 2)180 ~ [] 

So far we have shown that any visibility graph of a simple polygon must satisfy 
the four necessary conditions. Moreover, we have shown in Lemmas 1 and 2 that it is 
sufficient to consider only minimal invisible pairs. If a minimal invisible pair (i, j )  has 
only one blocking vertex a, then a is a reflex vertex in the polygon because only a can 
block the line of sight between i and j in the polygon. If a minimal invisible pair (i, j )  
has two blocking vertices a and b in opposite chains of (i, j ) ,  then at least one of a and 
b must be a reflex vertex in the polygon as follows. 

Let an invisible pair (i, j )  have exactly two blocking vertices a and b in the lower and 
upper chains of (i, j ) ,  respectively (Fig. 10). Since i, a, j ,  and b form an ordered cycle 
and (i, j )  is an invisible pair, (a, b) must be a visible pair in VG by Necessary Condition 
1. Let V1 = chain(b + 1 . . . . .  i), V2 = chain(i . . . . .  a - 1), V3 = chain(a + 1 , . . . ,  j ) ,  
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Fig. 10. Cross-visibility exists across (a, b) between the vertices of Vi and V3. 
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and V4 = chain(j . . . . .  b - 1). If  there is a visible pair between V1 and V3 or V2 and V4, 
we say that there exists cross-visibility across (a, b). If  no cross-visibility exists across 
(a, b), then the graph can be partitioned into two "independent" subgraphs induced 
by vertices i . . . . .  a,  b . . . . .  i and a . . . . .  j . . . . .  b, a. Note that every visible pair in VG 
belongs to either of  the subgraphs. So, a or b or both can be reflex vertices in the polygon 
to block the visibility between the vertices Vlt./ V2 or V3 U V4. If  cross-visibility exists 
across (a, b), then both a and b must be reflex vertices in the polygon and we prove it in 
the following theorem. 

Theorem 1. Let a minimal invisible pair (i, j )  have exactly two blocking vertices a 
and b in the lower and upper chains of (i, j) ,  respectively. If cross-visibility exists across 
(a, b), then both a and b are reflex vertices in the polygon. 

Proof. Without loss of  generality, we assume that cross-visibility exists across (a, b) 
between the vertices of  Vl and V3. Let (k, l) be a visible pair in VG where k ~ V), 
l ~ V3, k < i, and l > a such that, for i > m > k and a < p < l, (m, p)  is an invisible 
pair in VG (Fig. 10). Let C be the smallest ordered cycle containing k, i, a ,  and l. Since 
C is the smallest ordered cycle, there is no diagonal in C between any two vertices of  
the chain (k, i) and between any two vertices of  the chain (a + 1, l). Moreover, there 
is no diagonal between the vertices of  the chain (k, i) and the chain (a + 1, l) because 
visible pair (k, l) is chosen accordingly. Therefore, a is an endpoint of  every diagonal 
in C. As C must contain ICI - 3 diagonals, for all c ~ C, (a, c) is a visible pair and, 
therefore, (a, l) is a visible pair in C. Since C is the smallest ordered cycle, vertices a 
and I are adjacent in C. Now, no vertex m for i > m > k in C is a blocking vertex for 
the invisible pair (i, l) because (i, b) is a visible pair in VG. Therefore, only a can block 
the line of  sight between i and I. Similarly, there exists an invisible pair in VG for which 
b is the sole blocking vertex. Thus, although a or b can block the line of  sight between 
i and j ,  both a and b must be reflex vertices in the polygon. [] 
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3. An Algorithm for Testing Necessary Conditions 

Assume that the vertices of the given graph are numbered from 1 to n according to 
their order in the Hamiltonian cycle, and their connectivity information is stored in 
an adjacency matrix. To test Necessary Condition 1, we have to check the number of 
diagonals in every ordered cycle. As the size of an ordered cycle varies from 4 to n, 
there are an exponential number of ordered cycles in a visibility graph and, therefore, 
the time complexity of the algorithm of the brute-force algorithm grows exponentially. 
In [12] it was left open whether Necessary Condition 1 can be tested in polynomial time 
by exploiting the polygonal geometry. It has been shown by Everett [8] that Necessary 
Condition 1 can be tested in O (n 3) time. Here we show that Necessary Conditions 1 and 
2 can be tested in O(n 2) time. 

If we consider all possible assignments of blocking vertices to minimal invisible pairs 
in the visibility graph, the brute-force algorithm for testing Necessary Conditions 3 and 
4 runs in exponential time, Note that given an assignment, Necessary Conditions 3 and 
4 can be tested in O (n 2) time. It will be interesting to see whether Necessary Conditions 
3 and 4 can be tested in polynomial time by exploiting the polygonal geometry. 

Consider any three vertices i, j ,  and k in Hamiltonian order. Vertices j and k are said 
to be consecutive visible vertices of i if (i, j )  and (i, k) are visible pairs and (i, l) is an 
invisible pair for all 1 E chain(j + l, k - 1), Intuitively, j and k are two consecutive 
vertices on the boundary of the fan with i as the fan vertex. In order to test Necessary 
Condition 1, it is enough to check, for all i, whether every such pair of vertices j and k 
is connected by an edge in VG, as shown in the following lemmas. 

Lemma 3. If the given graph V G satisfies Necessary Condition 1, then,for every vertex 
i of VG, any two consecutive visible vertices ofi  are connected by an edge in VG. 

Proof. Assume on the contrary that V G satisfies Necessary Condition 1 but there exist 
three vertices i, j ,  and k in Hamiltonian order such that (i, j )  and (i, k) are visible pairs 
and (j, k) is an invisible pair. Let C be the smallest ordered cycle containing k, i, j 
and vertices of chain(j, k). Since (j, k) is an invisible pair by assumption and C is the 
smallest ordered cycle, there is no diagonal between vertices of chain(j, k) occurring in 
C and ICI > 4. Moreover, no vertex ofchain(j + 1, k - 1) is visible from i because j 
and k are two consecutive visible vertices of i. Hence C is an ordered cycle without any 
diagonal, contradicting the fact that VG satisfies Necessary Condition 1. [] 

Lemma 4. If the given graph" V G does not satisfy Necessary Condition 1 but satisfies 
the condition that, for every vertex i of V G, any two consecutive visible vertices of i are 
connected by an edge in V G, then V G does not satisfy Necessary Condition 2. 

Proof. Since VG does not satisfy Necessary Condition 1, there exists an ordered cycle 
C of size k which has less than k - 3 diagonals. It implies that there exists another 
ordered cycle C' within C, where IC'l >_ 4, such that C' does not have any diagonal. We 
show that there exists an invisible pair between two vertices of C' without any blocking 
vertex. 
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i 

Jl  

Fig. 11. The path (ira+l, Jl, J2 . . . . .  jp, ira-I) and the counterclockwise boundary of C' from im+l to im+l 
are interleaving. 

Let C' = (il, i2 . . . . .  is). Consider any vertex im E C'. Since any two consecutive vis- 
ible vertices of ira are connected by an edge, there is an ordered cycle ira, ira+l, ji,  j2 . . . . .  
jp, im-i such that every vertex of this cycle is connected by an edge to im (Fig. 11). Since 
C' is an ordered cycle without any diagonal and (ira, j l) ,  (ira, j2) . . . . .  (ira, jp) are visible 
pairs, j l ,  j2 . . . . .  jp are not vertices of C'. Observe that the path 
(ira+l, Jl ,  j2 . . . . .  jp, ira-l) and the counterclockwise boundary of C' from ira+l tO ira+l 
are interleaving. So, no vertex of chain(ira+ 1, ira- 1 ) is a blocking vertex for the invisible 
pair (ira+l, ira-j). It implies that im is the only vertex that can block the visibility between 
ira+l and im-l. Since each vertex of C' is the only vertex that can block the visibility 
between its two adjacent vertices on C', to prove the lemma it suffices to show that there 
exists a vertex in C' such that it cannot block the visibility between its two adjacent 
vertices on C'. 

Let (ira, jm) be the visible pair such that im+l and Jm are consecutive visible vertices 
of ira, where jm ~ chain(ira+l, ira-l) (Fig. 12). If ira ~ chain(ira+l, ira+E), then ira+l 
cannot block the invisible pair (ira, ira+2 ). So, we assume that jm does not belong to 
chain(ira+l, ira+2) and it belongs to chain(it, it+l) for some t. Again, let (i,n+l, Jra+l) 
be the visible pair such that ira+2 and jm+l are consecutive visible vertices of irn+l. So, 
jm+l must belong to chain(ira+E, jra) because (ira+l, jra) is a visible pair. Further, jra+l 
does not belong to chain(ira+E, ira+3) because then ira+2 cannot block the invisible pair 
(ira+l, ira+3). So jra+l must belong to chain(ira+3, jra). This argument can be repeated to 
claim that jra+l (l _> 1) must lie on chain(ira+l+2, jm+l-l ). Observe that by this repetition 
we arrive at a vertex ira+l+l such that jm+/+l lies in chain(ira+l+2 , jra+l). Hence ira+l+2 
cannot block the visibility between ira+t+l and ira+l+3. [] 

The above lemmas suggest that, for testing Necessary Condition 1, it is enough to 
check whether any two consecutive visible vertices of every vertex are connected by 
an edge in VG. The time required to check the visible vertices of a fixed vertex i is 
proportional to the number of visible vertices of i. So the time required to check for all 
vertices is proportional to the total number of visible pairs in VG, which is O(n2). 
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im 1 ~ Jm 

i m + l ~ ~  i t  

Fig. 12. Vertices im+l and jm are consecutive visible vertices of ira. 

By the definition of a blocking vertex, Necessary Condition 2 can be tested by checking 
for every invisible pair (i, j )  that there exists a vertex a in the lower (or upper) chain 
of (i, j )  such that no two vertices between chain(i,  a - 1) (resp. chain(a + 1, i))  and 
chain(a + 1, j )  (resp. chain( j ,  a - 1)) are adjacent in V G .  Since the number of invisible 
pairs in V G  is O(n2), this naive method takes O(n 4) time. In the following we show 
that Necessary Condition 2 can be tested in O(n 2) time. 

Instead of finding a blocking vertex for every invisible pair, our procedure for every 
vertex i of V G  locates those invisible pairs that can be blocked by i. If there exists an 
invisible pair that cannot be blocked by any vertex, then V G  does not satisfy Necessary 
Condition 2. 

We now state the procedure for locating those invisible pairs that can be blocked 
by i. Observe that if i is a blocking vertex for both invisible pairs (j, q) and (j, q') 
where q' ~ chain(q,  j ) ,  then i is a blocking vertex for all invisible pairs (j,  l) where 
l ~ chain(q,  q') .  This observation suggests that if (i + 1, k) is the visible pair such that 
no vertex o fcha in (k  + 1, i - 1) is adjacent to i + 1 in V G ,  then i is a blocking vertex for 
all invisible pairs (i + 1, l) where I ~ chain(k + 1, i - 1) (Fig. 13). Note that ifk = i - 1, 
then i is not a blocking vertex for any invisible pair in V G. Also note that if i is a blocking 
vertex for any invisible pair in V G, then one of the vertices of such an invisible pair must 
belong to chain(k + 1, i - 1). So, a variable range is maintained which is initialized by 
k. Similarly, let (i + 2, k) be the visible pair such that no vertex of chain(k,  i - 1) is 
adjacent to i + 2 in V G .  Ifk belongs of  chain (range, i - 1), assign k to range. So, i is a 
blocking vertex for all invisible pairs (i + 2, l) where l ~ chain(range + 1, i - 1). Thus 
by traversing the Hamiltonian cycle in counterclockwise order from i + 1 to i - 3, all 
invisible pairs can be located such that i is one of their blocking vertices. Note that after 
some iterations if range becomes i - 1, then i cannot block any more invisible pairs. 

For locating invisible pairs where j is one of their vertices and i is their blocking 
vertex, the visible pair (j, k) is located such that no vertex of chain(k,  i - 1) is adjacent 
to j in V G .  To locate such a visible pair (j, k) in O(1) time, a circular list is maintained 
for each vertex j of V G .  The  circular list for j consists of all pairs (j, j + 1), (j, j + 
2) . . . . .  (j,  j - 1) and each pair has a pointer indicating its next clockwise visible pair in 
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Fig. 13. No vertex of chain(k + l,i - 1) is adjacent to i + 1 in VG. 
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the list. In Fig. 14, (5, 7) is the next clockwise visible pair of the invisible pair (5, 1) in 
the circular list for vertex 5. Moreover, to locate any pair in the list in O(1) time, there 
is a pointer in each location of the adjacency matrix to its corresponding pair in the list. 
Since the number of such pairs (j, k) located by the algorithm can be O (n 2) in the worst 
case, the total time required to locate all of them is O(n2). 

I f / i s  found to be a blocking vertex for an invisible pair (j,  q) and (j, q) already has 
a blocking vertex a such that both a and i belong to the upper or lower chain of (j, q), 
then (j, q) is not a minimal invisible pair. Therefore (j, q) is deleted in O(1) time from 
circular lists of j and q and the pair is not considered subsequently by the procedure. 
Since the procedure locates at most two blocking vertices for any minimal invisible 
pair and at most three blocking vertices for other invisible pairs, the time required is 
proportional to the number of invisible pairs, which is O(n2). Since circular lists for 
all vertices can be initialized in O(n 2) time and subsequent operations require O (n 2) 
time, the overall time required to test Necessary Condition 2 is O(n2). We summarize 
the result in the following theorem. 

Theorem 2. Given a graph o f  n vertices, Necessary Conditions 1 and 2 can be tested 
in O(n 2) time. 

7 6 

3 4 

Fig. 14. The circular list for vertex 5. 
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4. Characterization Problem 

Previous discussions show that visibility graphs of simple polygon have natural struc- 
tures and characterizing these structures may turn out to be useful in designing efficient 
algorithms for geometric problems. From Necessary Condition 1, it seems that visibility 
graphs of simple polygons may fall into one of the known special classes of graphs, e.g., 
perfect graphs, circle graphs, or chordal graphs, but we have found counterexamples in 
all cases even for special classes of polygons. For an excellent survey of special classes 
of graphs, refer to [14]. 

An undirected graph G is called a perfect graph [14] if X(A) = w(A) for every 
induced subgraph A of G (including G itself). Here w(G) denotes the maximum cardi- 
nality clique of G and X(G) is the chromatic number of G. Vertices 2, 8, 4, 10, and 6 in 
the visibility graph of a simple polygon in Fig. 15 form an odd cycle without a diagonal 
and, therefore, the chromatic number is not equal to the maximum cardinality clique. 
Even in the case of a convex fan, the visibility graph is not a perfect graph. Vertices 2, 6, 
5, 4, and 8 form an odd cycle without a diagonal in the visibility graph of a convex fan 
in Fig. 16. 

An undirected graph G is called a circle graph [10] if there exists a set of chords C on 
a circle and one-to-one correspondence between vertices of G and chords of C such that 
two distinct vertices are adjacent in G if an only if their corresponding chords intersect. 
A graph G is not a circle graph if G contains a wheel (Fig. 17) as its subgraph [6]. In 
Fig. 16, vertex 1 and the cycle 2, 6, 5, 4, and 8 have formed a wheel. This counterexample 
also shows that visibility graphs do not belong to the union of perfect graphs and circle 
graphs. 

An undirected graph G is called a chordal graph [11] if every cycle with four or 
more vertices has a diagonal. Since chordal graphs are perfect graphs, visibility graphs 
of simple polygons are not chordal graphs. Even in the case of a staircase polygon, the 
visibility graph is not a chordal graph. In Fig. 18, vertices 16, 10, 12, and 6 form a cycle 
without a diagonal. 

10 

2 31 

8 

Fig. 15. Vertices 2, 8, 4, 10, and 6 form an odd cycle without a diagonal. 
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Fig. 16. 
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4 

Vertices 2, 6, 5, 4, and 8 form an odd cycle without a diagonal. 

5 

2 

Fig. 17. Vertices 1, 2, 3, 4, 5, and 6 form a wheel. 
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Fig, 18. Vertices 16, 10, 12, and 6 form a cycle without a diagonal. 
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The counterexamples demonstrate that visibility graphs of simple polygons are not 
highly structured graphs but the possibility of characterizing visibility graphs in terms of 
any known class of graphs cannot be totally ruled out. So far, visibility graphs of special 
classes of polygons such as spiral polygons [9], staircase polygons [1], and convex 
fans [2], [7] have been characterized. However, we feel that visibility graphs of simple 
polygons in general form a new class of graphs. 

5. Concluding Remarks  

We hav e established four necessary conditions for recognizing visibility graphs of simple 
polygons and have identified which vertices must be reflex and which vertices might be  
reflex in the polygon. To show that these four conditions are sufficient, we have to 
establish that whenever a given graph satisfies the four conditions, there exists a polygon 
which satisfies the visibility constraints of the given graph. 

Suppose we want to reconstruct the polygon from the graph in Fig. 19. The invisible 
pairs are (1, 6), (1, 9), (1, 10), (2, 5), (2, 6), (2, 7), (2, 10), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), 
(3, 10), (3, 11), (4, 6), (4,7), (4, 10), (5, 13), (6, 12), (6, 13), (6, 14), (7, 13), (8, 13), (9, 12), 
(9, 13), (9, 14), (10, 12), (10, 13), (10, 14), (11, 13), (11, 14). The blocking vertices are 
4, 5, 11, and 12 and they are visible to one another. Now we place each blocking vertex 
at the comer of a square and draw lines through them as shown in Fig. 20. Observe that 
lines drawn through blocking vertices divide the plane into regions. The next vertex i 
added to the configuration is placed in a region which satisfies the visibility constraints 
of i. Thus, at each iteration, we add a vertex i to the configuration and draw lines from i 
through the appropriate blocking vertices. However, at some iteration, we may not find 
any region which satisfies the visibility constraints of i. For example, it can be seen that 

14 

12 11 

4 5 

9 

r 8 

7 

Fig. 19. A given graph. 
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13 

1 

4 5 

Fig. 20. Constructing a simple polygon from the graph. 

vertex 8 cannot be added to the configuration since there is no region which satisfies the 
visibility constraints o f  vertex 8. In such a situation we have to rearrange the positions 
of existing vertices so that an appropriate region is created for i. Though it seems that 
such a rearrangement can always be found whenever the four necessary conditions are 
satisfied, it is not entirely clear from a topological point of view how to settle this issue. 
So, we conclude with the conjecture that the four necessary conditions are sufficient to 
recognize visibility graphs of simple polygons. 

As pointed out in the Introduction, several results on the problem of recognizing 
visibility graphs of various classes of graphs have appeared in the literature. Recently, 
Abello and Kumar [3] have independently suggested four new necessary conditions 
for recognizing visibility graphs of simple polygons, in addition to the three necessary 
conditions proposed in the first version of this paper [ 12]. It can be easily seen that the first 
necessary condition of Abello and Kumar, which they call locally inseparable, follows 
from Necessary Condition 3 and the definition of the assignment of blocking vertices. In 
the following we show that the second, third, and fourth necessary conditions proposed 
by Abello and Kumar, which correspond to the properties of the Euclidean shortest path 
between any two vertices in a polygon, follow from Necessary Condition 4. 

Let ESP(il,  ij) = (il, i2 . . . . .  ij) denote the Euclidean shortest path from a vertex il 
to another vertex ij of a polygon. It is known that ESP(ij,  il) = (ij, i j- i  . . . . .  ij), i.e., 
two paths are identical. So, any assignment of blocking vertices to minimal invisible 
pairs must ensure that this property of the Euclidean shortest path between any two 
vertices in the corresponding polygon is preserved. Abello and Kumar have suggested 
this property, which they call path-symmetric, as the second necessary condition. We 
show that the second necessary condition of Abello and Kumar follows from Necessary 
Condition 4. 

Assume on the contrary that there exists an assignment of blocking vertices which 
satisfies Necessary Condition 4 but does not satisfy the second necessary condition of 
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el  Cp+ 1 ~1 
b t 

Fig. 21. Two paths between vertices il and ij. 

Abello and Kumar for paths between two vertices il and ij (Fig. 21). Let (il, i2 . . . . .  i k, 
bl, b2 . . . . .  bs, ik+l . . . . .  ij) be the path in the graph from il to ij such that every vertex 
(except il and i j)  in the path is the blocking vertex assigned to the minimal invisible pair 
formed by its adjacent two vertices on the path. Analogously, let (ij . . . . .  ik+l, Cl, C2 . . . . .  
Cl, ik . . . . .  il) be the path in the graph from ij to ii such that every vertex except ij and 
il in the path is the blocking vertex assigned to the minimal invisible pair formed by its 
adjacent two vertices on the path. Since these two paths are not identical by assumption, 
there exists two subpaths (ik, bl, b2 . . . . .  bs, ik+l) and (ik+l, cl, C2 . . . . .  Ct, ik) which 
form a cycle C in the graph and all vertices in C are distinct. If C is an ordered cycle, 
then all vertices except ik and ik+l are reflex in the corresponding subpolygon, which 
contradicts the assumption that the assignment of blocking vertices has satisfied Neces- 
sary Condition 4. So, we assume that C is an ufiordered cycle. Let P '  be the crossing 
subpolygon corresponding to C. Let z be the first intersection point encountered while 
traversing P '  from ik. Let (Cp, cp+l) and (bt-l, bt) be the visible pairs such that their 
corresponding edges in P' have intersected at z (Fig. 21). So, there exists another ordered 
cycle C' consisting of ik, bl, b2 . . . . .  bt, dl, d2 . . . . .  Cp+l . . . . .  Cl, ik such that every ver- 
tex of C' except i k and bt is a blocking vertex assigned to the minimal invisible pair 
formed by its adjacent vertices on C'. Since all vertices except ik and bt are reflex in 
the corresponding subpolygon of C', the assignment of blocking vertices cannot satisfy 
Necessary Condition 4, which is a contradiction. 

We now show that the third necessary condition of Abello and Kumar also follows 
form Necessary Condition 4. It is known that if ESP(i, k) passes through vertex j and 
ESP(j ,  l) passes through vertex k, then ESP(i, l) passes through both j and k. So, any 
assignment of blocking vertices to minimal invisible pairs must ensure that this property 
of the Euclidean shortest path between any two vertices in the corresponding polygon 
is preserved. Abello and Kumar have suggested this property, which they call the first 
path-consistent assignment, as the third necessary condition. Assume on the contrary that 
there exists an assignment of blocking vertices which satisfies Necessary Condition 4 
but does not satisfy the third necessary condition of Abello and Kumar. Using analogous 
arguments to those mentioned above, it can be shown that there exists an ordered cycle 
C formed by the two subpaths between j and k such that all vertices of C except j and 
k are assigned to minimal invisible pairs between the vertices of C, which contradicts 
that the assignment of blocking vertices has satisfied Necessary Condition 4. 
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We now show that the fourth necessary condition of Abello and Kumar also fol- 
lows from Necessary Condition 4. Assume that ESP(i, j )  passes through a vertex a. If 
a ~ lower chain(i, j ) ,  then, for any two vertices k and I where k ~ chain(i, a - 1) and l 
chain(a + 1, j ) ,  ESP(k, l) also passes through a. Analogously, i fa  ~ upperchain(i, j ) ,  
then, for any two vertices k and I where k ~ chain(a + 1, i) and l ~ chain(j, a - 1), 
ESP(k, l) also passes through a. This is a known property of the Euclidean shortest path. 
So, any assignment of blocking vertices to minimal invisible pairs must ensure that this 
property of the Euclidean shortest path between any two vertices in the corresponding 
polygon is preserved. Abello and Kumar suggest this property, which they call the second 
path-consistent assignment, as the fourth necessary condition. Assume on the contrary 
that there exists an assignment of blocking vertices which satisfies Necessary Condition 4 
but does not satisfy the fourth necessary condition of Abello and Kumar. Using analogous 
arguments to those mentioned above, it can be shown that there exists an ordered cycle 
C formed by the paths from k to l, from I to a, and from a to k such that all vertices of C 
except k and I are assigned to minimal invisible pairs between the vertices of C, which 
contradicts that the assignment of blocking vertices has satisfied Necessary Condition 4, 

The above discussion shows that if any graph satisfies our four necessary conditions, 
then it also satisfies all necessary conditions suggested by Abello and Kumar. Since the 
Euclidean shortest path between any two points in a simple polygon is unique and this 
property can be proved from the fact that the sum Of the internal angles of a simple poly- 
gon of n vertices is (n - 2) 180 ~ it is natural that the second, third, and fourth necessary 
conditions of Abello and Kumar, which correspond to the uniqueness property of the 
Euclidean shortest path, follow from Necessary Condition 4. 

In the same paper, Abello and Kumar have introduced a class of graphs called quasi- 
persistent graphs and have shown that visibility graphs of simple polygons are contained 
in this class. They have pointed out (see Theorem 2 in [3]) that the class of quasi-persistent 
graphs is equivalent to the class of graphs satisfying Necessary Conditions 1 and 2. So 
Lemmas 3 and 4 give an alternate proof of the equivalence between quasi-persistent 
graphs and graphs satisfying Necessary Conditions 1 and 2. Moreover, our algorithm 
for testing Necessary Conditions 1 and 2 can be viewed as an algorithm for recognizing 
quasi-persistent graphs. In addition, the claim made by Abello et al. [1] that our four 
necessary conditions are not sufficient is not correct. 

Acknowledgments 

The author would like to thank the anonymous referees for their valuable suggestions 
and assistance. The author gratefully acknowledges the helpful comments and sugges- 
tions of Joseph O'Rourke, Subhash Suri, Sanjeev Saluja, Xavier Furtado, and Jaikumar 
Radhakrishnan in the production of this paper. 

References 

1. J. Abello, O. Egecioglu, and K. Kumar, Visibility graphs of staircase polygons and the weak Bruhat order, 
I: from visibility graphs to maximal chains, Discrete & Computational Geometry, 14(3) (1995), 331-358. 



162 S.K. Ghosh 

2. J. Abello, O. Egecioglu, and K. Kumar, Visibility graphs of staircase polygons and the weak Bruhat order, 
II: from maximal chains to polygons, preprint. 

3. J. Abello and K. Kumar, Visibility graphs and oriented metroids, Proceeding of Graph Drawing, Lecture 
Notes in Computer Science, Vol. 894, Springer-Verlag, Berlin, pp. 147-158, 1995. 

4. J. Abello, H. Lin, and S. Pisupati, On visibility graphs of simple polygons, Congressus Numeratium, 90 
(1992), 119-128. 

5. D. Avis and D. Rappaport, Computing the largest empty convex subset of a set of points, Proceedings of 
the First ACM Symposium on Computational Geometry, pp. 161-167, 1985. 

6. M. A. Buckinghan, Circle graphs, Ph.D. Dissertation, Report No. NSO-21, Courant Institute of Mathe- 
matical Sciences, New York, 1980. 

7. H. EIGindy, Hieraichical decomposition of polygons with applications, Ph.D. Dissertation, McGill Uni- 
versity, Montreal, 1985. 

8. H. Everett, Visibility graph recognition, Ph.D. Dissertation, University of Toronto, Toronto, January 1990. 
9. H. Everett and D. Corneil, Recognizing visibility graphs of spiral polygons, Journal of Algorithms, 11 

(1990), 1-26. 
10. C. P. Gabor, W. Hsu, and K. J. Supowit, Recognizing circle graphs in polynomial time, Proceedings of the 

26th IEEE Annual Symposium on Foundation of Computer Science, pp. 106-116, 1985. 
11. E Gravil, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and max- 

imum independent set of a chordal graph, SIAM Journal on Computing, 1 (1972), 180-187. 
12. S. K. Ghosh, On recognizing and characterizing visibility graphs of simple polygons, Report JHU/EECS- 

86/14, The Johns Hopkins University, Baltimore, 1986. Also in Proceedings of the Scandinavian Workshop 
on Algorithm Theory, Lecture Notes in Computer Science, Vol. 318, Springer-Veflag, Berlin, pp. 96--104, 
1988. 

13. S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. Veni Madhavan, Characterizing and recognizing 
weak visibility polygons, Computational Geometry: Theory and Applications, 3 (1993), 213-233. 

14. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980. 
15. J. Hershberger, An optimal visibility graph algorithm for triangulated simple polygon, Algorithmica, 4 

(1989), 141-155. 
16. T. Lazano-Perez and M. A. Wesley, An algorithm for planning collision free paths among polygonal 

obstacles, Communications of the ACM, 22 (! 979), 560-570. 
17. J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, Oxford, 1987. 
18. J. O'Rourke, Computational geometry column 18, SIGACTNews, 24 (1993), 20-25. 
19. L.G. Shapiro and R. M. Haralick, Decomposition of two-dimensional shape by graph-theoretic clustering, 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 (1979), 10-19. 
20. T. Shermer, Hiding people in polygons, Computing, 42 (1989), 109-132. 
21. G. Srinivasaraghavan and A. Mukhopadhyay, A new necessary condition for the vertex visibility graphs 

of simple polygons, Discrete & Computational Geometry, 12 (1994), 65-82. 

Received October 10, 1994, and in revised form June 11, 1996. 


