On Reconfigurable On-chip Data Caches

Fredrik Dahlgren and Per Stenstrom
Department of Computer Engineering, Lund University
P.O. Box 118, S-221 00 Lund, Sweden

Abstract

Cache memory has shown to be the most important tech-
nique to bridge the gap between the processor speed and
the memory access time. The advent of high-speed RISC
and superscalar processors, however, calls for small on-chip
data caches. Due to physical limitations, these should be
simply designed and yet yield good performance.

In this paper, we present new cache architectures that ad-
dress the problems of conflict misses and non-optimal line
sizes in the context of direct-mapped caches. Our cache
architectures can be reconfigured by software in a way that
matches the reference pattern for array data structures. We
show that the implementation cost of the reconfiguration
capability is neglectable. We also show simulation results
that demonstrate significant performance improvements for
both methods.

1 Introduction

Historically, there has becn a discrepancy between the speed
of the CPU and the memory system. With the advent of high-
speed microprocessors, it has been increasingly important to
address anumber of issues in the design of high-performance
memory systems.

Cache memories are used to increase the speed of the mem-
ory system, and by introducing on-chip caches, it was possi-
ble to achicve a best case performance much higher than ever
before. But due to physical limitations, on-chip caches are
very small, and their average performance are thus clearly
limited. An carly evaluation of on-chip caches can be found
in [HS84].

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish,requires a fee and/or specific permission.

© 1991 ACM 0-89791-460-0/91/0011/0189 $1.50

189

A distinction is often made between instruction caches, only
containing instructions, and data caches only containing
data, see e.g. [Smi82]. It is shown possible to achieve
good performance for instruction caches, either by addi-
tional hardware, see e.g. [FP89], or by an optimizing com-
piler allocating the code in a fashion suitable for the cache
mapping in order to reduce the number of conflict misses,
see e.g. [HC89] and [SGS85].

Small data caches, on the other hand, are still suffering from
ahigh miss ratio. Because of the implementation complexity
and latency of a highly associative cache, it would be prefer-
able to use a direct-mapped cache, if sufficient methods to
improve the performance of such are proven applicable, see
e.g. [Smi82].

In this paper, we present two new cache architectures that
both can be reconfigured in a way that matches the reference
pattern of array data structures.

The first cache architecture addresses the problem of conflict
misses in direct-mapped caches. We propose an enhanced
cache architecture, the virtual cache unit technique, which
gives an opportunity to significantly reduce the mapping
conflicts in a direct mapped on-chip data cache to an in-
significant hardware cost.

The second cache architecture addresses the problem of non-
optimal line (block) size for a given data structure (sec ¢.g.
Smith [Smi87]). We show that the optimal line size depends
heavily on the workload and data allocation. The cache
architecture can associate different line sizes to different
data structures on a per-page basis.

Although the methods can be used orthogonally, the com-
mon properties they have are that they are examples of recon-
figurable caches, they can be implemented to a neglectable
hardware cost, and most importantly, they provide signifi-
cant performance improvements. This paper covers all these
aspects according to the following outline: The methods are
presented in section 2. Section 3 explores the implemen-
tation of both techniques. Simulation results that confirm

the performance improvements are shown in section 4. In
section 5, finally, we discuss the results obtained.

2 Methods to reduce data cache misses

Misses in a cache, on an item previously referenced, can be
divided into three groups due to what caused them [HP90].
Compulsory misses are due to the first access to a line, which
is not in the cache. These misses are also called cold start
misses or first reference misses. Conflict misses are caused
by the mapping-effect, e.g. in a direct-mapped cache where
two items mapped to the same set never can exist in the
cache at the same time. Capacity misses, oOr size misses,
are caused by the fact that the cache is not infinitely large.
Large line size means a high degree of prefetching into the
cache due to the principle of reference locality, but this also
means a high degree of conflict misses.

In the rest of this chapter, we attack the problems of conflict
misses and the impact of the line size on the hit ratio. In
scction 2.1, a method to reduce the number of conflict misses
in direct mapped data caches are presented. The method is
called the virtual cache unit technique. In section 2.2, the
principles of a variable line size cache is presented.

2.1 The virtual cache unit technique

One of the main reasons for the low hit-ratio in small direct
mapped data caches are due to mapping conflicts between
data in loops with many iterations. If two items, mapped to
the same sct, arc referenced within a loop, there will always
be a miss on both of them in every iteration of the loop.
This is referred to as bumps. In [BS88], Breternitz and Shen
discuss this problem as an extension to their contributions.

It is desirable to map data arrays in such a fashion, that the
references 1o clements in different arrays accessed within an
iteration of a loop are never mapped onto the same set in the
dircct mapped cache. This is trivial if the indexing pattern
arc ¢xactly the same for the arrays, but problems occur if the
indexing pattern between different arrays accessed within a
loop are not the same. In this case, it is preferable to make
sure that these arrays are never mapped onto the same set.

We also have a problem with non-array elements, if the
loop traverse a long array. The problem is that if the arrays
are larger than the cache, the indexing through the loop will
affectevery set in the cache at least once, and thus bumps will
occur between the vectors and the non-vectorized variables.
Herc, it is preferable to make sure that the arrays are never
mapped onto the same set as the non-array elements.

190

In order to reach an acceptable hit ratio for a direct mapped
data cache when iterating in a loop, the two problems men-
tioned above must be taken care of.

An enhanced cache architecture is proposed, which gives
rise to a solution to these problems. The technique is chosen
to be called the virtual cache unit technique, because the
cache organization is regarded differently for different data.
A part of the memory area is divided into a number of
memory subareas, see figure 1. In the following, the chosen
part of the memory area begins at address 0, which is by no
mean a requirement for this method.

The cache is regarded as consisting of an equal number
of units, cache units, all having the same size. A cache
unit works like a direct-mapped cache for its corresponding
memory subarea. A large array allocated in this subarea
can never be mapped into a set outside its cache unit, see
figure 2. For the memory area outside the special subareas,
the cache is regarded as one normal direct-mapped cache,
and the different cache units are not visual. This is why the
method is referred to as the virtual cache unit technique.

If the data of a program is allocated in the main area, i.e.
outside the special subareas, the behavior of the cache is
exactly as normal. The problem of bumps between an array
and non-array elements can now be solved in a way accord-
ing to figure 3. In this example we assume 2 cache units,
and the arrays are allocated into the first subarea, while the
non-array variables are allocated into the other, If the index-
ing pattern for the two arrays are the same, they are offset
in a way that no bumps between them can occur. As can be
seen from figure 3, no bumps occur between the non-array
variables and any other element.

Direct Mapped Data Cache

Figure 3: Using the enhanced cache architecture to avoid
bumps

If the loops access two arrays, but there is no obvious con-
nection between the indexing pattern for these arrays, they
can be isolated from each other in different cache units, see
figure 4. Bumps between the arrays can be avoided.

By allowing fine-granularity for the decomposition into
cache units, the compiler has the possibility to decide where
in the cache different data should reside, and there are no
problems with array variab._.s.

Address Area

2USnb-areas

A
2.1

S-U
i 2 Blocksina
Sub-area

Figure 1: The dividing of the memory area into the special sub-areas

Direct Mapped Data Cache

T

Vi v2

Figure 4: Using the enhanced cache architecture to avoid
bumps between two non-predictably indexed arrays

In contrast to pure compiler methods, the virtual cache unit
lechnique requires additional hardware, whichis why we are
talking about an enhanced cache architecture. The principles
for the addrcss-mapping, and thus the additional hardware
required, arc followed below.

The offsct address field is not concerned, which is why the
rest of this section only deals with linc-addresses and the
tag-field and set-field of the address.

Assumptions:

o 24 blocks in the address space
o 28 sets in the direct-mapped cache
« 25 blocks in the address space for the special subareas

o 2U cache units in the direct-mapped cache

The number of bits in the line address is thus A bits (bits
1 to A, where bit 1 is the least significant bit), distributed
into B bits in the set-field and A-B bits in the tag-field. The
address is within a special sub-area, if the bits S+ to A are
all zero, sce figurc 1. In that case, the situation becomes the
{following:

Since the bits 1...5 — U selects a certain line within a
subarea, see figure 1, bits S-U+! to S determines which
cache unit to be used. The 27 sets in the cache are divided
into 2V equal-sized groups, which gives us that each of these
groups contains 28U sets. Bits 1 to B-U determine which
set within the group should be pointed out, and the new set-
field for the direct-mapped cache becomes the concatenation
of the bit-fields 1...B ~Uand S — U +1...S. The bits
B — U +1... B must be included in the tag-field, as well
as thebits S — U + 1...5. Our new tag-field becames
B —U +1...A. Thisis illustrated by figure 5 below. Both
the C-field and the B-field contain U bits. The tag-field in
the direct-mapped cache becomes U bits wider.

In section 3, we will show «n implementation of this map-
ping strategy. In particular, we will demonstrate that the
implementation cost is neglectable as compared to the cost
of a direct-mapped cache. In section 5, we’ll confirm that
significant performance improvements can be obtained. We
now pay our attention to variable-sized line caches.

Bits: |A..S+1{S..8-U+1 {S-U..B+1 {B..B-U+1 iB-U..1

Alias: Ti C T2 B S
Normal bit-fields: Tag= T1 C T2
Set= B S

Modified Cache: Tl1=0=> Tag= T1 CT2 B
Set= CS
T1720=> Tag= T1LCT2B

Set= B S

Figure 5: The address fields of a cache line

Cache blocks

Memory blocks

0 -_T

[]
1
Cache-unit A
1
C
| 2.1
C
2
c
Cache-unit 2 +1
2
C+1
| 2 -1

Neo of blocks in 3 cache-unit :

No of blocks in 2 sub-arca :

Sub-area

Sub-area
2

sesausen
'

Figure 2: Cache unit mapping to the sub-areas

2.2 Variable line (block) size

Onec of the most important parameters of a cache organiza-
tion is the line size [Smi87]. It has been observed that, for
a given cache size, the optimal line size depends heavily on
the workload and data allocation, which will be described in
the result section. Intuitively. one realize that if a number of
arrays are traversed in index order, and no bumping occur
between the arrays, a high degree of prefetching is desir-
able. This means that the hit-ratio is increased with larger
ling sizes up to the point where the number of different lines
referred to exceeds the number of lines in the cache. In
such a case, we want a large line size. On the other hand,
in a multiprocessor application with a high degree of par-
allelism, the performance degradation duc to false sharing
increases with larger line sizes, and it is definitely desirable
with a small line size. This was observed by Eggers and
Katz [EK89].

Assume the following case as an example. In figure 6 below,
we have two programs for a multiprocessor, P1 and P2. In
P1 the processors are updating elements in a shared array,
and the clements are written more than once, while P2 is
traversing arrays which are local to the processors using
them. In P1, with a small lin: size (almost no falsc sharing)
we reach a high hit-ratio because the elements in the array
arc accessed more than once, but after point A the degree of
false sharing increases. In P2, we don’thave the problem of

192

false sharing, so larger line sizes means a higher degree of
prefetching, and therefor higher hit-ratio. After the point B,
the number of lines becomes so small that mapping conflicts
between different data variables increases dramatically.

Hit ratio

P1

Line size

Figure 6: An example of the hit-ratio as a function of the
line size for two different programs.

We propose a cache architecture with a variable line size.
By using knowledge about program behavior, the optimal
line size can be chosen, which give rises to significant per-
formance improvements.

The smallest line possible is called a basic line, and the other
line sizes possible are multiples of the size of this basic line.
The basic cache architecture is similar to a normal direct-
mapped cache with the basic line size. When a cache-miss
occurs, more than one line might be read into the cache.

For example, if two basic lines are read into the cache each
time a cache miss occurs, the behavior is the same as a
direct mapped cache with a line size of twice the basic
line. The only difference is that the two new cache lines
are always consecutive beginning with the one on which the
miss occurred. The case when the interesting part of the line
is the latter of the new cache lines never occurs.

3 Hardware implementations

In this section, we will show an implementation of the virtual
cache unit architecture, and the variable line size cache. In
particular, we will demonstrate that the implementation cost
is neglectable as compared to the cost of conventional direct-
mapped caches. In section 5, we’ll confirm that significant
performance improvements can be obtained.

3.1 The virtual cache unit technique

Figure 5 shows the principles of the technique. The tags
in the ncw cache will be U bits wider, and the T1-field will
deierming the set, but the rest is exactly the same as a normal
dircct-mapped cache. The determination of the set is done
with a multiplexor, and the control signal of this is the test
T1 = 0. Figurc 7 shows the hardware needed, and the extra
hardware besides the longer tags is a multiplexor.

A 2-way multiplexor of U bits can be implemented densely
in CMOS by 2U N-transistors and 2U P-transistors forming
2U pass transistors [PE88]. Since U = log,(number of
cache units) the cost of the multiplexor is neglectable for
any reasonable size of the cache. For instance, 4 cache units
viclds a multiplexor containing 8 transistors for the pass
transistor array.

The bitoverhead in the tag store is also neglectable as shown
in table 1. Here we assume A = 32 address bits, a direct-
mapped cache of 22 bytes, and various number of cache
units 2Y. The overhead is given by U/(A — B). The
bit overhead is acceptable as long as the number of cache
units is in thc order of 10. However, the overhead grows
logarithmically to the number of cache units.

It is very important that the extra hardware does not in-
troduce performance degradation for every access, since
the comparisons are always made. For physical addressed
caches, this can be done without any performance loss at all.
This is done by letting the sei-determination paths through
the multiplexor work in parallel with the address transla-
tion from virtual to physical addresses, see figure 8, If the
;age-size is not smaller than No of sets x Line size, i.e. not
smaller than the dircct mapped cache, the address fields B
and S in figurc 5 are not included in the address translation.
The ficld T1 in the virteal address (T1y) determines if the

193

No of cache units | Size of the cache | Overhead
2 1 Kbyte 4.54%

2 16 Kbyte 5.55%

4 1 Kbyte 9.09%

4 16 Kbyte 11.11%

8 1 Kbyte 13.64%

8 16 Kbyte 16.67%

Table 1: The bit overhead in the tag store.

virtual cache units are to be used, or if the cache is addressed
as normal. In the case of using cache units, the field C in the
virtual address (Cy) determines which cache unit to use.

V = Virtual address
P = Physical address

Tiy €y T2y By Tiy Cy B, Sy
S T
Address
Translation @
R
Ti, Cp T2, L1
L SET
TAG

Figure 8: Parallelization of the set-determination and the
address translation.

If the virtual cache unit technique is used for an n-way
associative cache, the set-determination can work in parallel
if nx Page size > No of sets x Line size. For the processors
486 [Int90a] and i860 [Int90b], which both have a page
size of 4Kbyte, this means that our enhanced cache do not
have any performance degradation due to extra hardware for
direct mapped on-chip data caches not larger than 4Kbyte,
and for 2-set associative caches not larger than 8Kbyte.

3.2 The variable line size cache

An implementation is shown in figure 9. The address trans-
lation and direct-mapped cache are exactly as normal. The
replacement controller will be slightly modified compared
to normal. There are two new modules, the line size table,
LST, and the address incrementer, Al. The LST contains the
number of basic lines that should be fetched in the case of a
cache miss. The LST could consist of just one entry which
leads to the same number of basic lines for the whole pro-
gram (except when explicitly changed within the program),
or consist of a number of entries giving rise to different line
sizes for different parts of the virtual address space.

The LST works in parallel with the address translation on
every access, and the entry read (the number of basic lines)
are sent to the AL The physical address are sent to the Al
where it is stored in a register. A cache hit/miss signal is

Extra Hardware

T1

Data Blocks

Ordinary Direct-mapped Cache

Tag Store

T1ICT2B

Data Selection

Data Hit ?

Figure 7: The new cache-configuration for the virtual cache-unit technique.

sent to the replacement controller. In the case of a miss,
the replacement controller receives information from the Al
about which line that shall be read into the cache, one basic
line at a time. The Al begins with the basic line on which
the miss occurred, and then continues with the rest (in the
case of an entry > 1 from the LST). The processor stall do
not have to be larger due to a large number of basic lines
compared to a single one, because the data accessed may
be forwarded directly after the first basic line is arrived, and
the rest of the basic lines are transferred in parallel with the
Processor execution.

If a new cache miss occurs before the line transfer of the
previous miss is completed, the basic lines left from the
previous miss is preempted, and the basic lines of the new
miss is served. This reduces the processor stall due to data
cache misscs, and the prefetching according to the previous
miss seems not that crucial since a completely new data ad-
dress was accessed by the processor. The average number of
processor aceesses (instructions + data) between Lwo cache
misses can be estimated as Foris T where faara
is the fraction of accesses that is to data and figq, iS the
hit-ratio in the on-chip data cache. If we have fgqa = %
and hgq:, = 0.9 this average is 30 references.

'The LST is memory mapped, and the entries can be read or
written with normal LOADs and STOREs. Since an entry
contains the line size of a certain region of the virtual address
space, this region can be changed too. If no entry is found,
the default is one basic line. On the other hand is it possible
for onc entry to point out the whole address spacc.

194

4 Methodology

Our descriptions of different methods to increase the hit
ratio of a direct-mapped data cache, is supported by sim-
ulation results. The simulation environment is described,
after which the workload used and measurement results are
presented and analyzed.

4.1 Experimental setup

The simulation is based ¢1 a program driven simulator
[Dah91]. In a program-driven simulator, the processing
elements are executing real code, and thereby can run ap- -
plications, [Fer78]. The simulator used is a RISC-processor
simulator with synchronization primitives and executing
MC68000 arithmetical operations. The time-slots, i.e. time-
granularity, of the simulator is the time between two con-
secutive memory-references from a processor.

4.2 Workload

Our study concentrates on loops with a large number of
iterations, even though some of the methods presented are
applicable on other parts of programs too. Typical target
applications are numerical algorithms where a large part
of the time is spent in numerical loops, and consisting of
scveral array and maltrix traversals.

Line size table (LST) No. of
basic lines
ﬁg‘:;‘:;nwr = Address
Physil Eal Hit ? l ’
. addreks .
Virtual Address Direct- Replacement Repl
address Translation mapped controller contro}
cache Repl
control
Data

Figure 9: The new cache-control-configuration for the variable line size cache.

One of the most well-established benchmark for numerical
loops are the Livermore Loop suite, [McM84], We chose
loops with different characteristics. Several loops were al-
most the same regarded from the data access point of view,
and the loops chosen for analysis became no. 1, 6, 7, and
10. Thesc loops were coded directly in assembly language.

Another suitable application for these methods is a matrix
multiplication program,referred to as matmul. This is matrix
:nultiplication C' — A x B, where A, B C are matrices of
size 14 x 14,

5 Simulation results

5.1 The virtual cache unit technique

The simulation results are shown in the following tables.
First we analyzed the data cache hit ratio for the chosen
loops at different cache sizes (different line sizes and number
of lines), lable 2 to 4. The different compiler methods to
increase cache performance were used and is compared with
the (almost) worst case. The memory allocation of the non-
array variablcs were done in a way that there are no conflicts
between their mapping, i.e. there are no bumps between
them. For the normal technique, we make a distinction
between a “bad” mapping between arrays, i.e. there might
cxist bumping betwceen arrays even if they have exactly the
<ame indexing pattern, and a “good” mapping between them,
i.c. this kind of bumping is avoided if possible. These cases
a-¢ called worst and best cases for the array mapping without
using the virtual cache unit technique. The virtual cache unit
technique uscs an organization with 2 cache units.

Table 2. Loop 1 contains both non-array variables and ar-
rays. The arrays arc indexed in the same way (incremented
cvery new iteration). When using the virtual cache unit tech-
nique, the non-array variables are allocated in one cache unit,
and the arrays in the other. Now we reach the best results
possible with the given line size. These figures show that we
rcach much better results even with a smaller cache using

195

| Loop 6 B
Technique Configuration: Sets / Line size
16/8 64/8 | 16/16 | 64/16
Normal 0.837 | 0.906 | 0.897 | 0.946
Cache units | 0.866 | 0.928 | 0.960 | 0.962

Table 3: Hit ratio for Livermore loop no. 6, a comparison
between a normal direct-mapped cache and the virtual cache
unit technique for different cache sizes.

the new architecture and the virtual cache unit technique for
loop 1. The size of the cache is the product of the number
of sets and the line size.

Table 3. Loop 6 contains references to two arrays, which
are indexed in a non-predictable way. The arrays referenced
are not traversed in the same way so normally no optimiza-
tion can be done. By using the cache unit technique, and
allocating the arrays in different cache units, we can guar-
antee that no bumps occur between the two non-predictable
arrays. Wereceived a clear increase in the hit-ratio for every
cache size simulated.

Loop 7. Loop7 contains both non-array variables and arrays.
The arrays have the same indexing pattern, i.e. it is a trivial
task making sure that they are never mapped onto the same
set in the cache. If the non-array variables are kept in
registers, the virtual cache unit technique doesn’t have any
effect on the hit-ratio. In this case, it is chosen not to use
this technique. It is important to notice that it will work
exactly the same as a normal direct-mapped cache without
any losses in efficiency.

Table 4. Loop 10 containg both non-array variables, arrays,
and a matrix. The matrix s referenced as it was different
arrays (all the rows are referenced to, with the same column
index, in the same iteration). All arrays are indexed in
the same way. The number of arrays (including the different

| Loop 1 |

Technique | Case Configuration: Sets / Line size
8/8 16/8 | 64/8 | 8/16 | 16/16 | 64/16
Normal worst - 0.269 | 0.282 - 0.286 | 0.566
Normal best - 0.533 | 0.590 - 0.638 | 0.923
Cache units 0.892 | 0.892 [0.892 | 0.946 | 0.946 | 0.946

Table 2: Hit ratio for Livermore loop no. 1, a comparison between a normal direct-mapped cache and the virtual cache unit

technique for different cache sizes.

[Loop 10 |
Technique Case Configuration: Sets / Line size
32/8 64/8 | 32/16 | 64/16
Normal worst | 0.434 | 0434 | 0434 | 0.504
Normal best | 0.812 | 0.893 | 0.945 | 0.959
Cache units 0.920 | 0920 | 0.969 | 0.969

Table 4: Hit ratio for Livermore loop no. 10, a comparison
between a normal direct-mapped cache and the virtual cache
unit technique for different cache sizes.

rows of the matrix) is rather large, and is chosen to be treated
as if the number of address registers are not sufficient. This
means that some of the array addresses is read in a way that
they can be regarded as non-array accesses. When using the
cache unit technique, the non-array variables are allocated
into one cache unit, and the arrays into the other. With
the cache unit technique it is possible to receive an almost
optimal hit-ratio (for a given line size) even withrather small
caches.

i

o

Performance model for the variable line
size cache

In order to better understand the experimental results con-
cerning the variable line size cache, a simple performance
model for uniprocessors is presented.

The average access time, Tqccess, can be calculated accord-
ing to cquation 1. h.; and h; are hitratios for the first level
and sccond level caches respectively, € is the access time
for a cache hit in the first level cache, ¢, the time it takes
a miss in the first level cache te be handled by the second
level cache, and finally ¢, cmory 1S the average time it takes
the rest of the memory system to handle a miss in the second
level cache.

tuccess - tcl + (1 - hcl) X [t62+(1 - th) X tmemory (1)

Since we arc interested in an on-chip data cache, only the
first level cache is of interest. Since we do not want to model

196

different second level caches in order to find out different
values on h., the environment around the processor chip
can be regarded as one memory system with the average
time £,,;55 to handle a first level cache miss, see equation 2.

taccess = te1 + (1 - hcl) X tmi.s.s (2)
We define the slowdown factor for an access to be the average

access time relative the access time for the first level cache,
see equation 3.

1
Slowdown = 2528°%

()

el
When performing the experiments, we looked at the slow-
down factors for different line sizes and different caches
sizes when running different programs. When we evaluate
the results obtained, we compare the slowdown for a certain
line size with the slowdown when having the optimal line
size for the same program and cache size. We define the
losses according to equation 4, which indicate how much
slower the program cxecules just because of a non-optimal
line size.

Slowdowny;,esize

LosseSiinesize = 1 —
Slowdown,piimal

)

5.3 Results for the variable line size cache

We conducted the experiments with basically three different
programs, the Livermore loops 1 and 10, and the matrix
multiplication program (matmul). For loop 1, we made a
distinction between when the non-array variables were con-
tained in registers (loop1) and when they were not contained
in registers (loopl-noreg). Figure 10 shows the slowdown
factors obtained from the experiments according to equation
3 above. In these experimeirs, we had a constant cache size
of 256 words, and the cache was direct-mapped. %,,i,5 iS
chosen to be 3 in these calculations.

It is obvious that different programs have diffcrent optimal
line sizes. Significant average performance improvements
can be received, if it is able to optimize the line size for a
certain program.

Slowdown
Slowdown

2.30 ~+— loopl-noreg
2.20 o

2.10

2.00 \\ : 4

1.90 .

1.80 ~f \ ,"'

170 . \ ',"'

1.60 \ "\‘ - \ \ I
NN ;

1.50 Ny \ 7 —

1.40 - P

130 \"‘-\\- v Wt

1.20
110 e~

Line size
1.00 2.00 3.00 4.00 5.00

Figure 10: The slowdown for different line sizes and differ-
ent programs according to equation 3.

Program Line size
2 4 8 16 32
loop 1 98.5% | 46.2% | 19.9% 6.7% 0
loop 1 (noreg) | 37.7% | 13.4% 0.2% 0| 9.0%
loop 10 50.2% | 16.7% 0| 642% | 91.1%
matmul 1.6% 0 1.1% 4.3% 7.2%

Table 5: Losscs for different line sizes relative the line size
with optimal efficicncy according to equation 4.

Table 5 shows the losses in performance compared to the
optimal case {or different line sizes. A distinct 0 indicates the
optimal line size, and thus has no performance loss. Observe
that for these examples, the smatlest maximum performance
loss for the columns is 19.9% (line size 8 words), which is
high cnough to be taken serious.

6 Discussion and conclusion

We have presented two methods to improve the performance
of on-chip data caches. In both methods, it is possible to
change the behavior of the cache in a dynamic manner,
which is why we call our concept of implementing caches
as rcconfigurable.

First, we presented a technique to reduce the number of
conflict misses in dircct-mapped on-chip data caches. The
technique called the virtual cache-unit technique makes it
possible to bound long consecutive parts of the memory
onto only a specific part of the direct-mapped cache. This is

done by allocating the data to certain virtnal addresses. For
all data allocated outside the virtual address region of the
cache-units, the cache will act exactly as a normal direct-
mapped cache, i.e. this technique is optional. Even if the
technique seems to offer greater performance improvements
for direct-mapped caches, it is usable for set-associative
caches as well.

We also proposed an implementation of this technique,
where we showed that the additional hardware needed is
neglectable. For reasonably large page sizes, the implemen-
tation does not degrade the performance, since the additional
hardware work in parallel with the address translation,

Simulations showed that for applications that make heavy
use of several arrays (i.e. as for Livermore loops), simple
memory allocation techniques in conjunction with the vir-
tual cache unitarchitecture demonstrates significant hit-ratio
improvements. We therefore believe that this technique is
a viable alternative for achieving a high hit-ratio for direct-
mapped caches without introducing associativity. Although
software methods could be used to alleviate the same kind
of problems, they are limited in the general case.

Second, we presented a variable line (block) size cache. The
line size is to be changed explicitly by instructions by writes
to aline size table,1LST, which is memory mapped. The LST
contains line sizes for different parts of the virtual memory
space. The regions can be chosen, as well as the line size of
that region. The smallest line size possible is called a basic
line, and possible line sizes are multiples of that size. We
propose an implementation with no performance losses in
speed, compared to a normal architecture with the line size
of one basic line. The hardware costs seem small.

We reported simulation results that demonstrated the va-
riety in optimal line sizes for different applications. For
the benchmarks we investigated, the best line size choice
resulted in at least 19% of losses for one of the applications.

The proposed methods are different techniques for how to
implement a data cache architecture, which can increase the
performance in a dynamical fashion. They may be used to-
gether or separately, but are both examples of reconfigurable
cache architectures.

Acknowledgements

The authors are indebted to Anders Ardo for his valuable
discussions. This work was supported by the Swedish Na-
tional Board for Technical Development (STU) under con-
tract number 85-3899 and 87-2427.

References

[BS88]

[Dah91]

[EK89]

[Fer78]

[FP89]

{HCB9]

M. Bretemitz and J.P. Shen. Organization of Array Data for
Concurrent Memory Access. Technical report, Department of
Electrical and Computer Engineering, Camegie Mellon Univer-
sity, September 1988. Report No. CMUCAD-88-39.

F. Dahlgren. A Program-driven Simulation Model of an MIMD
Multiprocessor. In Proceedings of the 24th Annual Simulation
Symposium, pages 40—49, 1991.

S.J. Eggers and R H. Katz. The Effect of Sharing on the Cache
and Bus Performance of Parallel Programs. In Proc of ASPLOS-
I, pages 257-270, 1989.

D. Ferrari. Computer Systems Performance Evaluation.
Prentice-Hall, 1978.

MX. Farrens and AR. Pleszkun. Improving Performance of
Small On-Chip Instruction Caches. In Proc of 16’th Int Sympo-
sium on Compulter Architecture, pages 234-241, 1989.

W.W. Hwu and PP. Chang. Achieving High Instruction Cache
Performance with an Optimizing Compiler. In Proc of 16°th In-
ternational Symposium on Computer Architecture, pages 242~
251, 1989.

198

[HP90]

[HS84]

{In190a]

[Int90b]
[McM84]

[PE88]

[SG85]

[Smi82]

[Smi87]

J.L. Hennessy and D.A. Pauterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, 1990.

M.D. Hill and A.J. Smith. Experimental Evaluation of On-Chip
MicroprocessorCache Memories. In Proc of 11'thInternational
Symposium on Computer Architecture, pages 158-166,1984.

Intel. 486 Microprocessor Hardware Reference Manual. 1990.
Intel. i860 Microprocessor Hardware Reference Manual. 1990.

EH. McMahon. LLNL Fortran Kemels: MFlops. Technical
report, Lawrence Livermore Laboratories, March 1984.

D.A. Pucknell and K. Eshraghian. Basic VLSI Design. Prentice-
Hall, 1988.

J.E. Smith and J.R. Goodman. Instruction Cache Replacement
Policies and Organizations. IEEE Transactions on Computers,
C-34(3):234-241, March 1985.

AJ. Smith. Cache Memories.
14(3):473-530, September 1982,

A.J.Smith. Line (Block) Size Choice for CPU Cache Memories.
IEEE Trans on Computers, C-36(9):1063-1075,1987.

ACM Computing Surveys,

