
On Reconfigurable On-chip Data Caches

Fredrik Dahlgren and Per Stenstrom

Department of Computer Engineering, Lund University

P.O. Box 118, S-22100 Lund, Sweden

Abstract

Cache memory has shown to be the most important tech-

nique to bridge the gap between the processor speed and

the memory access time. The advent of high-speed RISC

and superscalar processors, however, calls for small on-chip

data caches. Due to physical limitations, these should be

simply designed and yet yield good performance.

In this paper, we present new cache architectures that ad-

dress the problems of conflict misses and non-optimal line

sizes in the context of direct-mapped caches. Our cache

architectures can be reconfigured by software in a way that

matches the reference pattern for array data structures. We

show that the implementation cost of the reconfiguration

capability is neglectable. We also show simulation results

!M demons tratc sign i fican t performance improvements for

both methods.

1 Introduction

Historically, there has been a discrepartcy between the speed

of the CPU and the memory system. With the advent of high-

spced microprocessors, it has been increasingly important to

address a number of issues in the design of high-performance

memory systems.

Cache memories are used to increase the speed of the mem-

ory syslcm, and by introducing on-chip caches, it was possi-

ble to achicvc a best case performance much higher than ever

before. But due to physical limitations, on-chip caches are

very small, and their average performance are thus clearly

1imitcd. An cad y evaluation of on-chip caches can be found

in [HS84].

Permission to copy without fee all or part of IKE material is granted prO-

vided thst the copies are not made or rfiatribrrtod for direct conmxwial
advantage the ACM copyright notice and the title of lhe pubticr tion and
its date appear, and notice is given that copying ia by Pemlission of the
,%seciation for Computirrg Machinery. To copy otherwise, or to

reprrbfiih,requires a fee and/or specific permission.

C) 1991 ACM 0-89791-460-0/91/0011/0189 $1.50

A distinction is often made between instruction caches, only

containing instructions, and data caches only containing

data, see e.g. [Smi82]. It is shown possible to achieve

good performance for irwtruction caches, either by addi-

tional hardware, see e.g. [FP89], or by an optimizing com-

piler allocating the code in a fashion suitable for the cache

mapping in order to reduce the number of conflict misses,

see e.g. [HC89] and [SG85].

Small data caches, on the other hand, are still suffering from

a high miss ratio. Because of the implementation complexity

and latency of a highly associative cache, it would be prefer-

able to use a direct-mapped cache, if sufficient methods to

improve the performance of such are proven applicable, see

e.g. [Smi82].

In this paper, we present two new cache architectures that

both can be reconfigured in a way that matches the reference

pattern of array data structures.

The first cache architecture addresses the problem of conflict

misses in direct-mapped caches. We propose an enhanced

cache architecture, the virttial cache unit technique, which

gives an opportunity to significantly reduce the mapping

conflicts in a direct mapped on-chip data cache to an in-

significant hardware cost.

The second cache architecture addresses the problem of non-

optimal line (block) size for a given data structure (see e.g.

Smith [Smi87]). We show that the optimal line size depends

heavily on the workload and data allocation. The cache

architecture can associate different line sizes to different

data structures on a per-page basis.

Although the methods can be used orthogonally, the com-

mon properties they have are that they are examples of reeon-

tigurable caches, they can be implemented to a neglectable

hardware cost, and most importantly, they provide signifi-
cant performance improvements. This paper covers all these

aspects according to the following outline The methods are

presented in section 2. Section 3 explores the implemen-

tation of both techniques. Simulation results that confirm

189



the performance improvements tie shown in section 4. In

section 5, finally, we discuss the results obtained.

2 Methods to reduce data cache misses

Misses in a cache, on an item previously referenced, can be

divided into three groups due to what caused them [HP90].

Compulsory misses are due to the first access to a line, which

is not in the cache. These misses are also called cold start

misses orjirst reference misses. Conflict misses are caused

by the mapping-effect, e.g. in a direct-mapped cache where

two items mapped to the same set never can exist in the

cache at the same time. Capacity misses, or size misses,

are caused by the fact that the cache is not infinitely large.

Large line size means a high degree of prefetching into the

cache due to the principle of reference locality, but this also

means a high degree of conflict misses.

In the rest of this chapter, we attack the problems of conflict

misses and the impact of the line size on the hit ratio. In

section 2.1, a method to reduce the number of conflict misses

in direct mapped data caches are presented. The method is

called the virtual cache unit technique. In section 2.2, the

principles of a variable line size cache is presented.

2.1 The virtual cache unit technique

Onc of the main reasons for the low hit-ratio in small direct

mapped data caches are due to mapping conflicts between

data in loops with many iterations. If two items, mapped to

the same set, arc referenced within a loop, there will always

bc a miss on both of them in every iteration of the loop.

This is rcfcrrcd to as bumps. In [BS88], Breternitz and Shen

discuss this problem as an extension to their contributions.

It is desirable to map data arrays in such a fashion, that the

references to elements in different arrays accessed within an

iLeration of a loop are never mapped onto the same set in the

direct mapped cache. This is trivial if the indexing pattern

arc cxactl y thc same for the arrays, but problems occur if the

indexing pattern between different arrays accessed within a
loop arc not the same. In this case, it is preferable to make

sure that these arrays are never mapped onto the same set.

We also have a problem with non-array elements, if the

I( )op traverse a long array. The problcm is that if the arrays

are larger than the cache, the indexing through the loop will

affect every set in the cache at least once, and thus bumps will

occur between the vectors and the non-vectorized variables.

Here, it is preferable to make sure that the arrays are never

mapped onto the same set as the non-array elements.

In order to reach an acceptable hit ratio for a direct mapped

data cache when iterating in a loop, the two problems men-

tioned above must be taken care of.

An enhanced cache architecture is proposed, which gives

rise to a solution to these problems. The technique is chosen

to be called the virtual cache unit technique, bezause the

cache organization is regarded differently for different data.

A part of the memory area is divided into a number of

memory subareas, see figure 1. In the following, the chosen

part of the memory area begins at address O, which is by no

mean a requirement for this method.

The cache is regarded as consisting of an equal number

of units, cache units, all having the same size. A cache

unit works like a direct-mapped cache for its corresponding

memory subarea. A large array allocated in this subarea

can never be mapped into a set outside its cache unit, see

figure 2. For the memory area outside the special subareas,

the cache is regarded as one normal direct-mapped cache,

and the different cache units are not visual. ‘I%is is why the

method is referred to as the virtual cache unit technique.

If the data of a program is allocated in the main area, i.e.

outside the special subareas, the behavior of the cache is

exactly as normal. The problem of bumps between an array

and non-array elements can now be solved in a way accord-

ing to figure 3. In this example we assume 2 cache units,

and the arrays are allocated into the first subarea, while the

non-array variables are allocated into the other. If the index-

ing pattern for the two arrays are the same, they are offset

in a way that no bumps between them can occur. As can be

seen from figure 3, no bumps occur between the non-array
variables and any other element.

Direct Mapped Dab Cache

D c A B 1
VI

V2

t ...............----- *
.........-.......... *
.........---------- .
...............------ *
.................... .
....................-—

. ........................

Figure 3: Using the enhanced cache architecture to avoid
bumps

If the loops access two rmays, but there is no obvious con-

nection between the indexing pattern for these arrays, they

can be isolated from each other in different cache units, see

figure 4. Bumps between the arrays can be avoided.

By allowing fine-granularity for the decomposition into

cache units, the compiler has the possibility to decide where

in the cache different data should reside, and there are no

problems with array variab..’s.

190



AddressArea

2“Sub-aress

[ !: l:DI’2:N

2s

2!1

Figure 1: The dividing of the memory area into the special sub-areas

Direct Mapped Data Cache

I
I .....................- .............------- &

VI -.-.------”-”””””:. -: --------””-”-”-”:..
-

. .. . .. . .. . . .. .. . . + V2... . .. . . . .. . . . .. .

Figure 4: Using the enhanced cache architecture to avoid

bumps between two non-predictably indexed arrays

In contrast to pure compiler methods, the virtual cache unit

technique requires additional hardware, which is why we are

talking about an enhanced cache architecture. The principles

for the address-mapping, and thus the additional hardware

required, arc followed below.

The offset address field is not concerned, which is why the

rest of this scxlion only deals with line-addresses and the

(ag-tield and set-field of the address.

Assumptions:

. 2A blocks in the address space

● 2D sets in the direct-mapped cache

c 2s blocks in the address space for the special subareas

● 2U cache units in the direct-mapped cache

The number of bits in the line address is thus A bits (bits

1 to A, where bit 1 is the least significant bit), distributed
into B bits in the set-field and A-B bits in the tag-field. The

address is within a special sub-area, if the bits S+1 to A are

all zero, scc tigurc 1. In that case, the situation becomes the

following:

Since the bits 1.. . S – U selects a certain line within a

subarea, see figure 1, bits S-U+ I to S determines which

cache unit to be used. The 2B sets in the cache are divided

into 2U equal-sized groups, which gives us that each of these

groups contains 2B-U sets. Bits 1 to B-U determine which

set within the group should be pointed out, and the new set-

field for the direct-mapped cache becomes the concatenation

of the bit-fields 1.. .B– Uand S–U+l. .. Thebitsts

B – U + 1 . . . B must be included in the tag-field, as well

asthebits S-U+l . . . S. Our new tag-field becames

B – U -t 1 . . . A. This is illustrated by figure 5 below. Both

the C-field and the B-field contain U bits. The tag-field in

the direct-mapped cache becomes U bits wider.

In section 3, we will show fl implementation of this map-

ping strategy. In particular, we will demonstrate that the

implementation cost is neglectable as compared to the cost

of a direct-mapped cache. In section 5, we’ll confirm that

significant performance improvements can be obtained. We

now pay our attention to variable-sized line caches.

Bits: A ... S+1j S ... S-U+l ; S-U ... B+l j B ... B-U+l j B-U ...1

AUaa:~Tl~C~T2 ~B~S

Normal hit-fields : Tag. Tlc T2

Set= BS

Moditicd Cache : T1=O=> Tag. T1CT2B

Set= CS

Tl~.0=> Tag= T1CT2B

Set= BS

Figure 5: The address fields of a cache line

191



Cache blocks Memwy blinks

Cacba-unit

1

Cache-unit

- ,—( —1

o

1

2C-1

c
2

2C+1

2

c+I
2 -1

2 -1
,

1,1;

Figure 2: Cache unit mapping to the sub-areas

2.2 Variable line (block) size

Onc of the most important parameters of a cache organiza-

tion is the line size [Smi87]. It has been observed that, for

a given cache size, the optimal line size depends heavily on

the workload and data allocation, which will be described in

the result section. Intuitively. one realize that if a number of

arrays are traversed in index order, and no bumping occur

between the arrays, a high degree of prefetching is desir-
able. This m~s that the hit-ratio is increased with larger

line sizes up to the point where the number of different lines

rcfcrrcd to cxcecds the number of lines in the cache. In

such a case, we want a large Iinc size. On the other hand,
in a multiprocessor application with a high degree of par-

allelism, the performance degradation due to false sharing

increases with larger line sizes, and it is definitely desirable

with a small line size. This was observed by Eggers and
Katz [EK89].

Assume the following case as an example. In figure 6 below,

wc have two programs for a multiprocessor, PI and P2. In

P1 the processors are updating elements in a shared array,

and the elements are written more than once, while P2 is

traversing arrays which are local to the processors using

them. In PI, with a small lin,~ size (almost no false sharing)

we reach a high hit-ratio because the elements in the array

arc accessed more than once, but after point A the degree of

Mse sharing increases. In P2, we don ‘t have the problem of

Sub-area

1

sub-mea

2

false sharing, so larger line sizes means a higher degree of

prefetching, and therefor higher hit-ratio. After the point B,

the number of lines becomes so small that mapping conflicts

between different data variables increases dramatically.

Hit ratio

I
‘A B

PI

Line size

Figure 6: An example of the hit-ratio as a function of the

line size for two different programs.

We propose a cache archit,xture with a variable line size.

By using knowledge about program behavior, the optimal

line size can be chosen, which give rises to significant per-

formance improvements.

The smallest line possible is called a basic line, and the other

line sizes possible are multiples of the size of this basic line.

The basic cache architecture is similar to a normal direct-

mappcd cache with the basic line size. When a cache-miss

occurs, more than one line might be read into the cache.

192



For example, if two basic lines are read into the cache each

time a cache miss occurs, the behavior is the same as a

direct mapped cache with a line size of twice the basic

line. The only difference is that the two new cache lines

are always consecutive beginning with the one on which the

miss occurred. The case when the interesting part of the line

is the latter of the new cache lines never occurs.

3 Hardware implementations

In this section, we will show an implementation of the virtual

cache unit architecture, and the variable line size cache. In

particular, we will demonstrate that the implementation cost

is ncgleetable as compared to the cost of conventional direct-

mappcd caches. In section 5, we’ll confirm that significant

‘ performance improvements can be obtained.

3.1 The virtual cache unit technique

Figure 5 shows the principles of the technique. The tags

in the ncw cache will be U bits wider, and the T1-field will

dctcrminc the set, but the rest is exactly the same as a normal

direct-mapped cache. The determination of the set is done

with a multiplexer, and the control signal of this is the test

Tl = O. Figure 7 shows the hardware needed, and the extra

hardware besides the longer tags is a multiplcxor.

A 2-way multiplexer of U bits can be implemented densely

in CMOS by 2U N-transistors and 2U P-transistors forming

2U pass transistors [PE88]. Since U = logz( number of

cache units) Lhc cost of the multiplexer is negleetable for

any reasonable size of the cache. For instance, 4 cache units

yiclcis a multiplcxor containing 8 transistors for the pass

transistor array.

The bit overhead in the tag store is also neglectable as shown

in table 1. Here we assume A = 32 address bits, a direct-

mappcd cache of 2D bytes, and various number of cache

units 2U. The overhead is given by U/(A – l?). The

bit overhead is acceptable as long as the number of cache

units is in the order of 10. However, the overhead grows

logarithmically to the number of cache units.

1( is very important that the extra hardware does not in-

lroducc performance degradation for every access, since

lhc comparisons are always made. For physical addressed

caches, this can be done without any performance loss at all.

This is done by letting the set-determination paths through

the multiplexer work in parallel with the address transla-
tion from virtual to physical addresses, see figure 8. If the

;,:]gc-size is not smaller than No of sets x Line size, i.e. not

smaller than the direct mapped cache, the address fields B

2UN1S in tigurc 5 arc not included in the address translation.
The FIcld T 1 in the virtual address (Tll~) determines if the

No of cache units

2
2
4
4
8
8 T

Size of the cache Overhead

1 Kbyte 4.54%
16 Kbyte 5.55%

1 Kbyte 9.09%
16 Kbyte 11.11%

1 Kbyte 13.64%
16 Kbyte 16.67%

Table 1: The bit overhead in the tag store.

virtual cache units are to be used, or if the cache is addressed

as normal. In the case of using cache units, the field C in the

virtual address (Cv) determines which cache unit to use.

V = Virtual address
P = Physical address

TIV Cv T2V 13v T1“ Cv Bv Sv

c)Address
Transition

TIP Cp T2P
I -I,

SET

TAG

Figure 8: Parallelization of the set-determination and the

address translation.

If the virtual cache unit technique is used for an n-way

associative cache, the set-determination can work in parallel

if n x Page size > No of sets x Line size. For the processors

i486 [Int90a] and i860 [Int90b], which both have a page

size of 4Kbyte, this means that our enhanced cache do not

have any performance degradation due to extra hardware for

direct mapped on-chip data caches not larger than 4Kbyte,

and for 2-set associative caches not larger than 8Kbyte.

3.2 The variable line size cache

An implementation is shown in figure 9. The address trans-

lation and direct-mapped cache are exactly as normal. The

replacement controller will be slightly modified compared

to normal. There are two new modules, the line size table,

LST, and the address incremenfer, AI. The LST contains the

number of basic lines that should be fetched in the case of a

cache miss. The LST could consist of just one entry which

leads to the same number of basic lines for the whole pro-

gram (except when explicitly changed within the program),

or consist of a number of entries giving rise to different line

sizes for different parts of the virtual address space.

The LST works in parallel with the address translation on

every access, and the entry read (the number of basic lines)

are sent to the AI. The physical address are sent to the AI

where it is stored in a register. A cache hit/miss signal is

193



Extra Hardware Ordinary Dkrect-mapped Cache

T1

B

c

s

Offset

T1CT2B

\
Tag S1:ore

+ t

Data Hit ?

Figure 7: The new cache-configuration for the virtual cache-unit teehnique.

sent to the replacement controller. In the case of a miss,

the replacement controller receives information from the AI

about which line that shall be read into the cache, one basic

line at a time. The AI begins with the basic line on which

the miss occurred, and then continues with the rest (in the

case of an entry > 1 from the L.ST). The processor stall do

not have to be larger due to a large number of basic lines

compared to a single one, because the data accessed may

be forwarded directly after the first basic line is arrived, and

the rest of the basic lines are transferred in parallel with the

processor execution.

If a new cache miss occurs before the line transfer of the
previous miss is completed, the basic lines left from the

previous miss is preempted, and the basic lines of the new

miss is served. This reduces the processor stall due to data

cache misses, and the prefetching according to the previous

miss seems not that cruciat since a completely new data ad-

dress was accessed by the processor. The average number of
processor accesses (instructions + ttata) between KVOcache

misses can bc estimated as & x ~
I–ll,f”,. ~

where fdata

is the fraction of acccsscs that is to data and hdutais lhe

hit-mtio in the on-chip data cache. If we have ~~a~a = ~

and h~a~a = 0.9 this average is 30 references.

‘1hc LST is memory mapped, and the entries can be read or

written with normal LOADs and STORES. Since an entry

contains the line size of a certain region of the virtual address

space, this region can bc changed too. If no entry is found,

lhc default is one basic line. CM the other hand is it possible

for one enlry to point out the whole address space.

4

our

Methodology

descriptions of different methods to increase the hit

ratio of a direct-mapped data cache, is supported by sim-

ulation results. The simulation environment is described,

after which the workload used and measurement results are

presented and analyzed.

4.1 Experimental setup

The simulation is based t’ I a program driven simulator

[Dah91]. In a program-driven simulator, the processing

elements are executing real code, and thereby can run ap- -

placations, [Fer78]. The simulator used is a RISC-processor

simulator with synchronization primitives and executing

MC68000 arithmetical operations. The time-slots, i.e. time-

granulzwity, of the simulator is the time between two con-
secutive memory-references from a processor.

4.2 Workload

Our study concentrates on loops with a large number of
iterations, even though some of the methods presented are

applicable on other parts of programs too. Typical target

applications are numerical algorithms where a large part

of the time is spent in numerical loops, and consisting of

several array and matrix traversals.

194



Line size table (MT) No. of
basic lines

m Address
Incremented

— Address
—

Physi X41
addre ;s Hit ?

Virturd Address Direct- * Replacement
b - — Repl

address Trmslation mapped ● = ,controller cOntrOI
cache Repl A

conlrol

t

Figure 9: The new cache-control-configuration for the variable line size cache.

One of the most well-established benchmark for numerical

loops are the Livermore Loop suite, [McM84]. We chose

loops with different characteristics. Several loops were al-

most the same regarded from the data access point of view,

and the loops chosen for analysis became no. 1, 6, 7, and

10. These loops were coded directly in assembly language.

Another suitable application for these methods is a matrix

multiplication program, referred to as matmul. This is matrix

:nultiplication C +- A x B, where A, B C are matrices of

size 14 x 14.

5 Simulation results

5.1 The virtual cache unit technique

The simulation results are shown in the following tables.

First wc analyzed the data cache hit ratio for the chosen

loops at different cache sizes (different line sizes and number

of lines), lablc 2 to 4. The different compiler methods to

incrcasc cache performance were used and is compared with

the (almost) worst case. The memory allocation of the non-

array v’ariablcs were done in a way that there are no conflicts

bclwcen their mapping, i.e. there are no bumps between

thcm. For the normal technique, we make a distinction

bctwccn a “bad” mapping between arrays, i.e. there might

exist bumping between arrays even if they have exactly the

:wnc indexing pattern, and a “good” mapping between them,

i.e. this kind of bumping is avoided if possible. These cases

::.”ccalled worst and best cases for the array mapping without

using the virtual cache unit technique. The virtual cache unit

tcchniquc uscs an organization with 2 cache units.

Table 2. Loop 1 contains both non-array variables and ar-

rays. The arrays arc indexed in the same way (incremented

every ncw iteration). When using the virtual cache unit tech-
nique, the non-array variables are allocated in one cache unit,

and the arrays in the other. Now we reach the best results

possible with the given line size. These figures show that we
rcxlch much better results even with a smaller cache using

LOOP6 I

~
I 1 1 1 [ 1

Table 3: Hit ratio for Livermore loop no. 6, a comparison

between a normal direct-mapped cache and the virtual cache

unit technique for different cache sizes.

the new architecture and the virtual cache unit technique for

loop 1. The size of the cache is the product of the number

of sets and the line size.

Table 3. Loop 6 contains references to two arrays, which

are indexed in a non-predictable way. The arrays referenced

are nor traversed in the same way so normally no optimiza-

tion can be done. By using the cache unit technique, and

allocating the arrays in different cache units, we can gttar-

antee that no bumps occur between the two non-predictable

arrays. We received a clear increase in the hit-ratio for every

cache size simulated.

Loop 7. Loop 7 contains both non-array variables and arrays.

The arrays have the same indexing pattern, i.e. it is a trivial

task making sure that they are never mapped onto the same

set in the cache. If the non-array variables are kept in

registers, the virtual cache unit technique doesn’t have any

effect on the hit-ratio. In this case, it is chosen not to use

this technique. It is important to notice that it will work

exactly the same as a normal direct-mapped cache without

any losses in efficiency.

Table 4. Loop 10 contains both non-array variables, arrays,

and a matrix. The matrix it referenced as it was different

arrays (all the rows are referenced to, with the same column

index, in the same iteration). All arrays are indexed in

the same way. The number of arrays (including the different

195



Loop 1

Technique Case Configuration: Sets / Line size
8/8 16/8 64/8 8/16 16/16 64/16

Normal worst - 0.269 0.282 - 0.286 0.566

Normat best - 0.533 0.590 - 0.638 0.923

Cache units 0.892 0.892 0.892 0.946 0.946 0.946

Table 2: Hit ratio for Livermore loop no. 1, a comparison between a normal direct-mapped cache and the virtual cache unit

technique for different cache sizes.

Loop 10

~

different second level caches in order to find out different

values on hc2, the environment around the processor chip

can be regarded as one memory system with the average

time tm~., to handle a first level cache miss, see equation 2.

taccess = tcl + (1 – hcl) x tm~~~ (2)

Table 4: Hit ratio for Livermore loop no. 10, a comparison

between a normal direct-mapped cache and the virtual cache

unit technique for different cache sizes.

rows of the matrix) is rather large, and is chosen to be treated

as if Ihc number of address registers are not sufficient. This

means that some of the array addresses is read in a way that

they can be regarded as non-array accesses. When using the

cache unit technique, the non-array variables are allocated

into one cache unit, and the arrays into the other. Whh

the cache unit technique it is possible to receive an almost

optimal hit-ratio (for a given line size) even with rather small

caches.

5.2 Performance model for the variable line

size cache

In order to better understand the experimental results con-

cerning the variable line size cache, a simple performance

model for uniprocessors is presented.

The average access time, t....,,,can be calculated accord-

ing to equation 1. h.1 and lLCZare hit ratios for the first level
and sccon(t lCVC1caches rcspcctivcly, t~l is the access lime

for a cache hit in the first level cache, t.zthe time it takes

a miss in the first level cache to be handled by the second

level cache, and finally fmemory is the a=w time it ~kes

the rest of the memory system to handle amiss in the second

Ievcl cache.

t<,,,,.,. = t.l+(l —)~cl)x [tcz+(l —ltcz) x=] (1)

Since we arc interested in al. on-chip data cache, only the

first lCVCIcache is o[intercst. Since wc do not want to model

We define theslowdownfactor for an access to be the average

access time relative the access time for the first level cache,

see equation 3.

t
Slowdown = ~ (3)

c

When performing the experiments, we looked at the slow-

down factors for different line sizes and different caches

sizes when running different programs. When we evaluate

the results obtained, we compare the slowdown for a certain

line size with the slowdown when having the optimal line

size for the same program and cache size. We define the

losses according to equation 4, which indicale how much

slower the program executes just because of a non-optimal

line size.

Lossesli~,$~,e = 1 –
Slowdownl~~e.~,.

SlowdownOPtim.l
(4)

5.3 Results for the variable line size cache

We conducted the experiments with basically three different

programs, the Livermore loops 1 and 10, and the matrix

multiplication program (matmul). For loop 1, we made a

distinction between when the non-array variables were con-

tained in registers (loop 1) and when they were not contained

in registers (loopl -noreg). Figure 10 shows the slowdown

factors obtained from the experiments according to equation

3 above. In these experimews, we had a constant cache size

of 256 words, and the cache was direct-mapped. tmi$~is

chosen to be 3 in these calculations.

It is obvious that different programs have different optimal

line sizes. Significant aver~ge performance improvements

can bc rcccivcd, if it is able to optimize the line size for a

certain program.

196



Slowdown
Slowdown

I I I I I loopl.....................
2.30 loop l.noreg,, . . . . . . . . . . . . . . -.

2.20
,., Iooplo

---------- .
,., M’atmul

k ,,
2.10

,,,’
2.00

\
~

1.90 ,’

;’
1.80

‘.
\ ,.’

1.70 \ “... ;
‘,,

1.60
:

\ ,. \
\ ‘.. ,;’

1.50

1.40

1.30

1.20

1.10 \

1.00 2.00 3.CO 4JM 5.00

Figure IO: Theslowdown fordifferent linesizes

ent programs according to equation 3.

Lme size

and differ-

1 Promam I Line size I

2 4 8 16 32

loop 1 98.5% 46.29?0 19.9% 6.7% o
loop 1 (no rcg) 37.7% 13.4% 0.2% o 9.0%

loorr 10 50.2% 16.7% o 64.2% 91.1%

I
L

i ! I I I

matmul 1.6% 01 1.1% 4.3% 7.2~o I
I 1 1 , 1 1 I

Table5: Losscsfor different linesizes relative theline size

with optimal cfticicncy according to equation 4.

Table 5 shows the losses inpcrformance compared to the

optimal cascfordifferent linesizes. Adistinct Oindicates the

optimal line size, and thus has no performance loss. Observe

that for these examples, the smallest maximum performance

loss for the columns is 19.9% (line size 8 words), which is

high enough to be taken serious.

6 Discussion and conclusion

We have presented two methods to improve the performance

of on-chip data caches. In both methods, it is possible to

change the behavior of the cache in a dynamic manner,

which is why we call our concept of implementing caches

as rcconfigurable.

First, wc prcscntcd a technique to reduce the number of

con[lict misses in direct-mapped on-chip data caches. The

technique called the virtual cache-unit technique makes it

possible to bound long consecutive parts of the memory

onto only a spccitic part of the direct-mapped cache. This is

done by allocating the data to certain virtual addresses. For

all data allocated outside the virtual address region of the

cache-units, the cache will act exactly as a normal direct-

mapped cache, i.e. this technique is optional. Even if the

technique seems to offer greater performance improvements

for direct-mapped caches, it is usable for set-associative

caches as well.

We also proposed an implementation of this technique,

where we showed that the additional hardware needed is

neglectable. For reasonably large page sizes, the implemen-

tation does not degrade the performance, since the additional

hardware work in parallel with the address translation.

Simulations showed that for applications that make heavy

use of several arrays (i.e. as for Livermore loops), simple

memory allocation techniques in conjunction with the vir-

tual cache unit architecture demonstrates significant hit-ratio

improvements. We therefore believe that this technique is

a viable alternative for achieving a high hit-ratio for direct-

mappcd caches without introducing associativity. Although

software methods could be used to alleviate the same kind

of problems, they are limited in the general case.

Second, we presented a variable line (block) size cache. The

line size is to be changed explicitly by instructions by writes

to a line size table, LST, which is memory mapped. The LST

contains line sizes for different parts of the virtual memory

space. The regions can be chosen, as well as the line size of

that region. The smallest line size possible is called a basic

line, and possible line sizes are multiples of that size. We

propose an implementation with no performance losses in

speed, compared to a normal architecture with the line size

of one basic line. The hard~’~arc costs seem small.

We reported simulation results that demonstrated the va-

riety in optimal line sizes for different applications. For

the benchmarks we investigated, the best line size choice

resulted in at least 1970 of losses for one of the applications.

The proposed methods are different techniques for how to

implement a data cache architecture, which can increase the

performance in a dynamical fashion. They maybe used to-

gether or separately, but are both examples of reconfigurable

cache architectures.

Acknowledgements

The authors are indebted t~ Anders Ardo for his valuable

discussions. This work was supported by the Swedish Na-

tional Board for Technical Development (STU) under con-

tract number 85-3899 and 87-2427.

197



References

[Dah91]

[EK89]

[Fer78]

[FP89]

[HC89]

M. Bretemitz and J.P. Shen. Organization of Array Data for

Concurrent Memory Access. Technical report, Department of

Electrical and Computer Engineering, Carnegie Mellon Univer-

sity, September 1988. Report No. CMUCAD-88-39.

F. Dahlgren. A Program-driven Simulation Mudel of an MIMD

Multiprocessor. In Proceedings of rhe 24th Annual Simulation

Symposium, pages 40-49,1991.

SJ. Eggers and R.H. Katz. The Effect of Sharing on the Cache

and Bus Performance of Parallel Programs. In Proc ofASPL,OS-

11[, pages 257–270, 1989.

D. Ferrari. Computer Systems Performance Evaluation,

Prentice-Hall, 1978.

M.K. Farrens and A.R. Pleszkun. Improving Performance of

Small on-chip Instruction Caches. In Proc of Ifi’zh In? Sympo-

sium on Computer Architecture, pages 234-241,1989.

W.W. Hwu and P.P. Cbang. Achieving High Instnrction Cache

Performance with an Optimizing Compiler. In Proc of 16’th In-

ternational Symposium on Computer Architecture, pages 242-

251.1989.

[HP90]

[HS84]

[Int90al

[Int90b]

[McM84]

pE88]

[SG85]

[Smi82]

[Smi87]

J.L. Hemressy and D.A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan KaufmannPublishers, 1990.

M.D. Hfl and A.J. Smith. Experimental Evaluation of On-Chip

MicroprocessorCache Memories. In Proc of 11 ‘[h [nternationol

Symposium on Computer Architecture, pages 158–166, 1984.

Intel. i486MicroprocessorHardwareReference Manual. 1990.

Intel. i860 MicroprocessorHardware Reference Manual. 1990.

F.H. McMahon. LLNL Fortran Kernels: MFlops. Technical

repofi. ~wmnce Liverrnore Laboratories, March 1984.

D.A. Pucknell and K. Eshraghian. Basic VLSI Design. Prentice-

Hafl, 1988.

J.E. Smith and J.R. Goodman. Instruction Cache Replacement

Policies and Organizations. IEEE Transactions on Computers,

C-34(3)234-241, March 1985.

AJ. Smith. Cache Memories. ACM Computing Surveys,

14(3):473–530, September 1982.

A. J. Smith. Lhte (Block) Size Choice for CPU Cache Memories.

IEEE Trans on Computers, C-36(9) :1063-1O75, 1987.

198


