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A b s t r a c t .  We study the problem of drawing a graph in the plane so 

that the vertices of the graph are rectangles that are aligned with the 

axes, and the edges of the graph are horizontal or vertical lines-of-sight. 

Such a drawing is useful, for example, when the vertices of the graph 

contain information that we wish displayed on the drawing; it is natural 

to write this information inside the rectangle corresponding to the vertex. 

We call a graph that can be drawn in this fashion a rectangle-visibility 
graph, or RVG. Our goal is to find classes of graphs that are RVGs. 

We obtain several results: 

1. For 1 < k < 4, k-trees are RVGs. 

2. Any graph that can be decomposed into two caterpillar forests is an 

RVG. 

3. Any graph whose vertices of degree four or more form a distance-two 

independent set is an RVG. 

4. Any graph with maximum degree four is an RVG. 

Our proofs are constructive and yield linear-time layout algorithms. 

1 I n t r o d u c t i o n  

In this paper  we consider the problem of drawing a graph in the plane so tha t  

the vertices of the graph are drawn as rectangles and the edges are horizontal  

or vertical line segments. We are in par t icular  interested in drawings where each 

of  the line segments can be thickened to have positive width,  and none of  these 

thickened segments (which we call bands of visibility) intersects the interior of 

any of the rectangles, a l though the bands m a y  themselves cross or intersect. 

We call a graph a rectangle-visibility graph (or RVG for short)  if it has such a 

drawing; we call the drawing itself the layout of the graph.  

We s tudy  three variat ions on this idea. In the first, we require t ha t  the 

graph  be drawn so tha t  every pair of rectangles with a possible band  of  visibility 

between them represents a pair  of vertices joined by an edge in the graph, and 

fur thermore  tha t  no two rectangles have sides contained in the same (horizontal  

or vertical) line; we call such graphs noncollinear RVGs. In the second, we still 
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require that  every possible visibility band represents an edge, but we allow two 

rectangles to have collinear edges; we call such graphs collinear RVGs. In the 

third, we do not require that  every possible visibility band represents an edge; 

we call such graphs weak RVGs. Collinearities in drawings of weak RVGs can be 

eliminated by perturbation. 

The results that  we establish in this paper are that  certain classes of graphs 

are RVGs (of the different types described above). We will establish that:  

1. For k = 1 or 2, partial k-trees are noncollinear RVGs. 

2. For 1 < k < 4, k-trees are noncollinear RVGs (and thus partial 3-trees and 

partial 4-trees are weak RVGs). 

3. All graphs that  can be decomposed into two forests of caterpillars are non- 

collinear RVGs. 

4. All graphs whose high-degree vertices form a distance-two independent set 

are weak RVGs. 

5. All graphs whose high-degree vertices form a distance-three independent set 

are collinear RVGs. 

6. All graphs whose high-degree vertices form a distance-four independent set 

(with a slight extra condition) are noncollinear RVGs. 

7. All graphs whose maximum vertex degree is three are noncollinear RVGs. 

8. All graphs whose maximum vertex degree is four are weak RVGs. 

A caterpillar is a tree containing a path with the property that  every vertex is 

at distance at most one from the path. A high-degree vertex is a vertex of degree 

four or more. 

The problem that  we are studying has application to a type of VLSI design 

known as two-layer routing. In two-layer routing, one embeds processing com- 

ponents and their connections (sometimes called wires) in two layers of silicon 

(or other VLSI material). The components are embedded in both layers. The 

wires are also embedded in both layers, but one layer holds only horizontal con- 

nections, and the other holds only vertical ones. If a connection must be made 

between two components that  are not cohorizontal or eovertical, then new com- 

ponents (called vias) are added to connect horizontal and vertical wires together, 

resulting in bent wires that  alternate between the layers. However, vias are large 

compared to wires and their use should be minimized. In this setting, asking if a 

graph is a rectangle-visibility graph is the same as asking if a set of components 

can be embedded so that there is a two-layer routing of their connections that  

uses no vias. Our requirement that  visibility bands have positive width is moti- 

vated by the physical constraint that  wires must have some minimum width. A 

similar problem arises in printed-circuit board design, as printed-circuit boards 

naturally have two sides, and connecting wires from one side to the other (the 

equivalent of making vias) is relatively expensive [6]. 

The motivational two-layer problem discussed above abstracts away one fea- 

ture of most two-layer routing problems: the processing components are often of 

a specific size. In other words, not only is a graph representing the components 

and their connections given, but each vertex of the graph also has a specified 
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width and height. We turn our attention to this consideration only briefly in 

this paper; we show that  any graph with linear arboricity two (which includes 

graphs with maximum degree three), no mat ter  what widths and heights are 

specified for the vertices, can be laid out as a rectangle-visibility graph where 

each rectangle is of the specified size. 

Rectangle-visibility layouts of graphs are also of use in other areas of graph 

drawing. One common graph drawing problem is labelling: writing information 

about the vertices and edges of a graph on the drawing, without having labels 

intersect or overwrite either other labels or graph components. A common solu- 

tion to the vertex-labelling problem is to draw each vertex as a region (such as 

a relatively large circle) inside of which the information is written. Rectangle- 

visibility layouts are particularly suited to this approach. Furthermore, if we 

have a graph for which we can construct a layout with specified rectangle size, 

as discussed above, we can dimension the rectangle to fit exactly around the 

information that  we wish to write inside it. Rectangle-visibility layouts are also 

advantageous when we wish to edge-label a graph; all edges and vertex sides in 

such a layout are horizontal or vertical (as opposed to layouts where edges can 

have any slope or curve), so there is no complicated geometry involved in placing 

an edge label. 

One final advantage of rectangle-visibility layouts is in the nature of its edge 

crossings. Any edge crossing is between a horizontal edge and a vertical edge, 

and therefore perpendicular; such crossings make it easier for the eye to follow 

an edge without being distracted by crossing edges. Furthermore, if we have a 

collinear or noncollinear RVG, then we can eliminate crossings altogether, by not 

drawing the edges. For drawings intended to be read by people, this approach is 

only feasible for small graphs, or graphs with relatively short edges. 

In the remainder of this paper, we establish our results described above. In 

Section 2, we review what is known about RVGs and related graphs, and give 

formal definitions necessary for the problems we consider and the techniques 

that  we use. In Section 3, we establish results about which k-trees and partial 

k-trees are RVGs. In Section 4, we show that  graphs that  can be decomposed 

into two caterpillar forests are noncollinear RVGs; this class includes graphs with 

linear arboricity two, or with maximum degree three. In that  section, we also 

discuss a few extensions of the caterpillar forest result. In Section 5, we present 

two geometric lemmas that  state that  graphs that  have been decomposed in a 

certain way are rectangle-visibility graphs. In Section 6, we use the lemmas of 

Section 5 to show that  graphs whose high-degree vertices are "far enough apart" 

are RVGs. In Section 7, we show that  maximum-degree four graphs are weak 

RVGs; the main argument is an extension of one of the lemmas of Section 5. 

Finally, in Section 8, we draw our conclusion and discuss future directions for 

this work. 

In this extended abstract, we omit the proofs of several of our results without 

notice; these proofs appear in the full version of our work [2, 10]. 
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2 Background and Definitions 

2.1 Bar -v i s ib i l i ty  g raphs  

The study we pursue on rectilinear drawings of graphs in the plane began with 

Luccio, Mazzone, and Wong [9] and Duchet et al. [5] in their studies of hori- 

zontal lines in the plane and vertical visibilities between them. Following the 

terminology of Tamassia and Tollis [12]~ we call a graph G a bar-visibility graph 

or BVG if its vertices can be represented by closed horizontal line segments in 

the plane, pairwise disjoint except possibly for overlapping endpoints, in such a 

way that  two vertices u and w are adjacent if and only if each of the correspond- 

ing segments is vertically visible from the other. The vertices u and w are called 

vertically visible if there is a non-degenerate rectangular region Bu,~ (the band 

of visibility for u and w) with two opposite sides that  are subsets of each of these 

segments, and B~,~ intersects no other segment. A set of segments realizing a 

BVG is called a layout of the BVG. 

Note that  this definition does require non-degenerate visibility bands, and 

it does not require noncollinearity of segments. Bar-visibility graphs are easily 

seen to be planar; in addition they have been characterized by Wismath [13], and 

independently by Tamassia and Tollis [12], as those planar graphs that  can be 

drawn in the plane with all cut-vertices on a single face. The question of whether 

a graph has a bar-visibility layout can be decided in linear time []2]. Figure 1 

shows a bar-visibility layout of the 4-cycle and a bar-visibility layout of a forest 

containing two trees. If each bar in a bar-visibility layout is widened vertically 

to become a rectangle, we obtain a rectangle-visibility layout, but more can be 

achieved if both vertical and horizontal visibility is employed, as explained below. 

(b) 

] , 5 ] 

k_. 4 I 

Fig. 1. A collinear bar-visibility layout 

of C4, and a bar-visibility layout of a 

forest. 

Fig. 2. A rectangle-visibility layout of 

K5,5 + e. 

2.2 Rectangle-visibility graphs 

Consider a collection Tr of rectangles in the plane, where each rectangle has 

its sides parallel to the axes, and rectangles may share boundary points but not 
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interior points. In this situation, we will call two rectangles u and v visible if there 

is a band of visibility Bu,v between them: B~,~ is a rectangular region with two 

opposite sides that  are subsets of u and v, and such that  B~,v intersects no other 

rectangle of 7~. The visibility graph of 7~ is the graph of the visibility relation 

on the elements of 7~. We call a graph G a rectangle-visibility graph or RVG 

if it is the visibility graph of some collection 7~ of rectangles; in this situation, 

7~ is called a layout of G. The edges of a rectangle-visibility graph G can be 

partitioned into the two sets representing horizontal and vertical visibility; each 

of these two edge sets forms a BVG. Thus G, as a union of two planar graphs, is 

said to have thickness-two. Much less is known about thickness-two graphs than 

about planar ones, although their recognition is known to be NP-complete, 

Wismath [14] has shown that  every planar graph has a rectangle-visibility 

layout. Hutchinson, Shermer, and Vince [8] show that a rectangle-visibility graph 

with n vertices has at most 6 n -  20 edges, in contrast with thickness-two graphs, 

which may have at. most 6n - 12 edges; in both cases these bounds are attain- 

able. Dean and Hutchinson [4] show that  I(5,5 is not a rectangle-visibility graph 

though [(5,5 plus any edge is; see Figure 2. Thus rectangle-visibility graphs are 

not closed under the formation of subgraphs. 

Each of the classes of BVGs and RVGs has two important subclasses: graphs 

with noncollinear layouts and those with strong layouts, as defined below. 

2.3 Co l l inea r  a n d  n o n c o l l i n e a r  l ayou t s  

A bar-visibility layout is called noncollinear if no two line segments have collinear 

endpoints; a rectangle-visibility layout is noncollinear if no two rectangles have 

collinear sides. The 4-cycle (see Figure la) does not have a noncollinear bar- 

visibility layout; Figure 3 shows a (collinear) rectangle-visbility layout of K4,4 

minus an edge; by a result in [3] it has no noncollinear layout, but a noncollinear 

layout of/{4,4 minus two edges is shown in Figure 10. 

I 1 i i  

2 4 6 8 1 5 ~ ~ ~ 4 6 

Fig. 3. A colfinear (and strong) layout 

of h'4,4 - e. 
Fig. 4. I(4,4 minus two edges decom- 
posed into two caterpillars. 
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2.4 S t r o n g  a n d  weak  l ayou t s  

G is a strong bar-visibility graph if its vertices can be represented by disjoint 
closed horizontal line segments in the plane in such a way that  two vertices u 

and w are adjacent if and only if each of the corresponding segments is vertically 

visible from the other, with visibility permitted along degenerate rectangles, i.e., 

along lines. Similarly, G is a strong rectangle-visibility graph if its vertices can be 

represented by disjoint closed rectangles in the plane, with sides parallel to the 

axes, in such a way that  two vertices u and w are adjacent if and only if each of 

the corresponding rectangles is vertically or horizontally visible from the other, 

again with visibility permitted along lines. 

It is easy to see that  noncollinear bar-visibility graphs are a subclass of strong 

bar-visibility graphs, which are in turn a subclass of bar-visibility graphs; analo- 

gous inclusions hold in the case of rectangle-visibility graphs. Tamassia and Tollis 

[12] show that  this subclass ordering for bar-visibility graphs is strict. In [3] Dean 

and Hutchinson conjecture that  the analogous subclass ordering for rectangle- 

visibility graphs is also strict, and they show that  noncollinear rectangle-visibility 

graphs form a strict subclass of strong rectangle-visibility graphs. Figure 3 shows 

a strong layout of a graph that  has no noncollinear layout. 

Another class of BVGs and RVGs that  can be considered is weak BVGs and 

RVGs. A graph is a weak BVG (respectively, weak RVG) if it is a subgraph 

of some BVG (respectively, RVG). This usage of weak and strong, which is not 

antonymous, was introduced by Tamassia and Tollis [12]. In [5] it is shown that  

every planar graph is a weak BVG, hence the containment from BVG to weak 

BVG is strict. This containment is also strict for RVGs, for example, from the 

fact that  K~,5 is not an I~VG but the addition of an edge creates an RVG (see 

Figure 2). 

2.5 D e c o m p o s i t i o n  in to  t r ees ,  ca te rp i l l a r s ,  a n d  p a t h s  

Earlier we noted that  the edges of an RVG can be partitioned to form two 

BVGs. More generally, we will say that  graph G can be decomposed into graphs 

G1, G2, . . .  G~ if all of G, G1, G~, . . .  Gk have the same vertex set and the edge 

set of G is exactly the union of the edge sets of G1, G2, . . .G~ (which must be 

disjoint). This can be viewed as coloring the edges of G with k different colors 

so that  one color class forms G1, one forms G~, etc. We will use the concepts of 

decomposition and edge-coloring interchangably; we may, for instance, once we 

have completed an edge-two-coloring of a graph, say that. we have decomposed 

that  graph into two subgraphs. Figure 4 shows a decomposition of K4,4 minus 

two edges into two caterpillars. 

When we two-color, we will call the color classes red and blue (and say that  

red and blue are opposite colors). We will call a cycle monochromatic if all 

edges of the cycle are the same color. We will call a vertex monochromatic if all 

incident edges are the same color; vertices of degree zero are considered trivially 

mono chromatic. 
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Recall tha t  a caterpillar is defined as a tree containing a simple pa th  P(a, b) 
such that  every vertex not on P(a, b) is distance one from P(a, b). A vertex 

on P(a, b) will be called a path vertex, and one not on P(a, b) will be called 

a foot vertex. Similarly, we will call an edge that  connects a path  vertex to a 

foot vertex a leg, and one connecting two path  vertices a path edge. Figures 

5a and 5b show tIees that ,  respectively, are and are not caterpillars. A linear 
forest (respectively, a caterpillar forest) is a forest, each of whose components 

is a simple path  (respectively, a caterpillar). The arboricity (respectively, linear 
arboricity, caterpillar arboricity) of a graph G is the min imum k such that  G 

can be decomposed into G1, G2,... ,  Gk, where each Gi is a forest (respectively, 

a linear forest, a caterpillar forest). Thus Figure 4 shows that  /(4,4 minus two 

edges has caterpillar arboricity two. Clearly a linear forest is a caterpillar forest, 

and we show that  a graph with caterpillar arboricity at most  two is an RVG. 

See Figure 10 for a layout of the graph of Figure 4. 

(~) ~ (b) (~) (b) 

Fig. 5. (a) A graph that is a caterpillar, 

an interval graph, a 1-tree, and a non- 

collinear BVG. (b) A graph that is nei- 

ther a caterpillar nor an interval graph, 

but is a 1-tree and a noncollinear BVG. 

Fig. 6. A 2-tree and its bar-visibility 

layout. 

We use G \ E(H) to denote the graph G with the edges of subgraph H 

removed, and G \ v to mean the graph G with the vertex v removed. 

It is known [7] tha t  graphs with m ax i m um degree three have linear ar- 

boricity two. We present a new proof of this result that  leads to a simple, 

easily-implementable algorithm for finding this decomposition. Then we find a 

rectangle-visibility layout for these graphs with a property of particular interest 

to practitioners of graph drawing: a rectangle layout can be constructed where 

the dimensions of the rectangle corresponding to each vertex is prespecified. For 

example, this allows each rectangle to be sized to fit exactly around text or 

information to be inscribed. 

3 k - T r e e s  a n d  P a r t i a l  k - T r e e s  

A k-tree is either a k-vertex complete graph, or a graph formed from another 

k-tree T by finding a k-vertex clique K of T and adding a new vertex that  is 

adjacent to every vertex in K (and no others). Thus, trees are the same as 1-trees, 
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and every maximal  outerplanar graph is a 2-tree; a 2-tree is shown in Figure 6. 

A partial k-tree is a subgraph of a k-tree. For example, partial  1-trees are the 

same as forests, and every series-parallel graph is a partial  2-tree. (There are 

at least two nonequivalent definitions of series-parallel graphs in the literature; 

one of these is equivalent to partial  2-trees and the other is a subclass of partial  

2-trees.) A partial  2-tree is shown in Figure 7a; this graph is not a collinear BVG 

but it is a noncollinear RVG. 

The following two theorems can be easily derived from the result of [9]. 

T h e o r e m  1. Every 1-tree and 2-tree is a noncollinear bar-visibility graph. 

T h e o r e m  2. Every partial 1-tree (forest) is a noncollinear bar-visibility graph. 

As every BVG is an RVG, the two previous theorems hold for RVGs as 

well. In fact, we can extend both of them for RVGs, showing that. every k-tree 

(1 < k < 4) is a noncollinear RVG, as is every partial  k-tree (k = 1 or 2). 

T h e o r e m 3 .  For 1 < k <_ 4, every k-tree is a noncollinear rectangle-visibility 

graph. 

The range of k in this theorem cannot be increased, as there are 5-trees 

containing K5,13, which has thickness three. 

E ]  

Fig. 7. A partial 2-tree and its rectan- 

gle-visibility layout. 

(c) (a) 

Fig. 8. The construction of the l~yout 

of Figure 7. 

T h e o r e m  4. Every partial 2-tree is a noncollinear rectangle-visibility graph. 

Proof. Let G be a partial  2-tree, and H be the 2-tree that  it is a subgraph of. 

We proceed by induction on the number of vertices of H.  

Let a rectangle R in a layout be called N-visible if it can see "to infinity" in a 

northward direction. We call the unbounded band of visibility from R northward 

a band of N-visibility, and use E-visible and band of E-visibility for the eastward 

direction. 
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In laying out G, we maintain the invariant that  there are no collinearities, 

each rectangle is both N-visible and E-visible, and if two vertices form a clique of 

the underlying 2-tree, then the band of N-visibility for one intersects the band of 

E-visibility for the other. The basis, when H has two vertices, is easily handled. 

In the general case, let v be a vertex that  we can remove from H to get 

another 2-tree. The graph G ~ that  is formed by removing v from G is a partial 

2-tree, and we inductively construct a layout of G' that  satisfies the invariant. 

Consider reintroducing v to re-form G. If v is not a vertex of G, then we do 

nothing. Otherwise, the vertex v is connected to two vertices w and x in H. By 

the invariant, one of the rectangles corresponding to these vertices, wlog R(x ) ,  

has a band of N-visiJ~ility that  intersects the band of E-visibility of the other 

(R (w) ) .  We let the i/Itersections of these bands be called W X .  

Each of the edges vw and vx  may be present or absent in G; we need to show 

that  we can place/~(v) so that  the correct ones of these edges are present and 

our invariant is maintained. We examine four cases, omitting the analysis. 

Case i:  The edges vw and vx  are both present in G. Let R(v)  be placed 

inside the bottom-left  quarter of W X  so as not to introduce any collinearities; 

see the placement of rectangle 4 (or rectangle 5) in Figure 8c for an example. 

Case 2: The edge vw is present in G, but vx  is not. Let T be the line one unit 

above the top of the rectangle with the highest top in the layout. We place R(v) 

so that  its bot tom is contained in T, it is one unit high, and it is contained in 

the left half of the band of N-visibility from/~(w); see the placement of rectangle 

6 in Figure 8d for an example. 

Case 3: The edge vx  is present in G, but vw is not. This case is symmetric 

to Case 2. 

Case 4: Neither vw nor vx  is present in G. Let T be a line above the top 

rectangle as in Case 2, and L be a similar line one unit to the left of the leftmost 

rectangle. We let R(v)  be a unit square whose bot tom is contained in T and 

whose right side is contained in L. 

In all cases, we have shown how to embed _R(v), and the theorem follows by 

induction. [] 

We note here that  Biedl [1] has concurrently and independently proven that  

all series-paralM graphs are RVGs; depending on her definition of series-parallel, 

her result is either subsumed by or equivalent to our theorem. 

Figure 7b shows the construction of the last proof applied to the graph of 

Figure 7a. This result cannot be extended to partial 3-trees, as K3,5 is a partial 

3-tree but is not a noncollinear RVG [4]. Theorem 3 implies that  partial 3-trees 

are weak RVGs; the question of whether or not they are collinear RVGs is still 

open. 

4 C a t e r p i l l a r  F o r e s t s  

Recall that  a graph G is called an interval graph if each vertex can be represented 

by an interval on the real line so that  two vertices of G are adjacent if and 
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only if the corresponding intervals have nonempty intersection; we call such a 

representation an interval layout of G. For any interval graph, the intervals in 

the layout can be chosen so that  no two share an endpoint. Figure 9 shows an 

interval layout of the caterpillar shown in Figure 5a. 

~ ln  ~ . '1  

Fig. 9. An interval layout of the graph 

of Figure 5a. 

Fig. 10. A rectangle-visibility layout of 

the graph of Figure 4. 

If each horizontal segment (bar) of a bar-visibility layout of a graph G is 

vertically projected to an interval on the x-axis, the resulting interval graph 

is a supergraph of G. Similarly, a rectangle-visibility layout can be projected 

both vertically and horizontally to obtain two interval graphs, supergraphs of 

the vertical and horizontal BVGs. The idea of the rectangle-visibility layout 

constructions in this section is to reverse this process, starting with two interval 

graphs that  are exactly the horizontal and vertical BVGs, and combining their 

interval layouts to obtain a rectangle-visibility layout. 

T h e o r e m  5 ( T h e  C a t e r p i l l a r  T h e o r e m ) .  Every graph with caterpillar arbor- 

[city two is a noncollinear RVG. 

Proof. We give only the construction. 

An arbitrary caterpillar C contains a path P(x0, x~) = x0, X l , . . . ,  xk of path 

vertices; to lay out C, we lay P(xo, x~) out on an axis with xi represented 

by the interval (2i,2i + 3), i = 0, 1 , . . . , k .  We then lay out the set of foot 

vertices adjacent to each path vertex xi as consecutive disjoint subintervals of 

(2i + 1, 2 i+  2); see Figure 9. A caterpillar forest can then be laid out by putting 

the interval layouts for the caterpillar forest's components one after another. 

Suppose that  G can be decomposed into caterpillar forests F1 and F2. Lay out 

F1 and F2 as interval graphs on the x-axis and y-axis, respectively, as described 

above. For each vertex v of G, let R(v) be the rectangle that  is the cartesian 

product of the two intervals (one on the x-axis and one on the y-axis) that  

correspond to v in the layouts of Fi and F2. This gives a layout of G; see Figure 

10 for an example. [:] 

In subsequent work, Shermer [11] has shown that  determining if a graph 

has caterpillar arbor[city two is NP-complete, and we suspect that  the other 
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decomposition problems are also NP-complete. However, it is still possible that  

some natural, easily-recognizable graph classes are subclasses of caterpillar ar- 

boricity two. The graphs with maximum degree three form one such class; any 

such graph has linear arboricity two [7]. In the full paper, we present a new, 

algorithmically-useful proof of this fact. This establishes the following theorem: 

T h e o r e m 6 .  Every maximum-degree 3 graph is a noncollinear RVG. 

Consider the interval layout that we have specified for a path. By making the 

overlap of consecutive intervals small enough, we can contract and expand the 

center portion of any interval (moving the rest of the layout) until that  interval 

has a desired length. Applying this to all intervals, we see that  we can lay out 

a path as an interval graph where each vertex of the path has the length of its 

interval prespecified. 

We can obviously extend this idea to linear forests. This implies that  we can 

also prespecify the interval sizes for the two linear forest layouts used in the 

layout construction algorithm (the proof of Theorem 5) for graphs with linear 

arboricity two. We can use this, for instance, to create a layout of all unit squares, 

or to size each rectangle to fit exactly around text or graphics that  we wish to 

inscribe in it. 

5 T e c h n i c a l  E x t e n s i o n s  o f  t h e  C a t e r p i l l a r  T h e o r e m  

In this section, we present two technical lemmas that are extensions of the Cater- 

pillar Theorem (Theorem 5). These lemmas will be used in the proof of the re- 

sults in the next section, and contain the essential geometry for those results; 

the proofs in the next section are mainly graph-theoretic. 

L e m m a  7. Let G be a graph such that it can be decomposed (edge-colored) into 

two graphs whose connected components are either caterpillars or cycles, and 

furthermore, no two cycles of different colors have more than one vertex in com- 

mon. The graph G is a weak RVG, and a weak layout of G can be constructed 

in linear time. 

Pro@ We proceed somewhat as in the proof of the Caterpillar Theorem, laying 

out each colored subgraph as intervals on a line, and taking the cartesian product 

for each vertex. Caterpillars are laid out on the line as before, and cycles are 

first laid out so that  all vertices of the cycle have exactly the same interval (and 

this interval overlaps no other intervals). Figure l l a  shows a five-cycle and its 

interval layout. 

Before actually taking the cartesian products to form rectangles, we adjust 

the intervals for the vertices of each cycle. Consider a cycle laid out as intervals 

on the horizontal line. If we were to take the cartesian products for the vertices 

in this cycle, there would be exactly one with the highest top edge. In Figure 

l lb ,  example cartesian products are shown; the vertex e has the highest top 
edge. 
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Fig. 11. Laying out a cycle. 

We leave the interval for this top vertex ~ as it is, but lay out the rest of the 

cycle as a path (legless caterpillar) that  starts after t does, and ends before t 

does; an example is shown on the bot tom of Figure 11c. This effectively replaces 

the cycle in the horizontal layout by a cycle with all of the chords to one of its 

vertices. Unfortunately, we are not yet finished. These new chords may duplicate 

edges found in the vertical layout, so we will remove these edges from that  layout. 

The details of this adjustment are omitted here. 

Having applied this construction to each cycle, we can now take the cartesian 

products of the two intervals for each vertex. The proof that  we now have a weak 

layout is straightforward and omitted. [] 

Let v be a path  vertex on a caterpillar, and V ~ be the adjacent foot vertices. 

We can enlarge the caterpillar by adding to it a linear forest induced by the 

vertices of V ~, and repeating this for each path vertex v in the caterpillar. We 

call a graph formed in this manner  a caterpillar with .footpaths. A caterpillar with 

footpaths is shown in Figure 12. We allow the linear forests that  we add to have 

no edges; i.e. a caterpillar is considered to be a caterpillar with footpaths.  Each 

path  induced by the vertices adjacent to a path  vertex v is called a footpath, and 

is said to have apex v. In Figure 12, bcdc is a footpath with apex a. 

- - Z  _ _ - -  v v v 

Fig. 12. A caterpillar with footpaths 

and its interval layout 

Fig. 13. A 2-hilly graph. 
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Suppose that  we have a graph G whose edges have been colored so that  each 

color class forms connected components that  are caterpillars with footpaths. In 

this situation, we will call a footpath of one color safe if all of its vertices lie 

in one connected component C of the other color, and furthermore the apex 

of the footpath is not in C. This condition ensures that  the cartesian product 

construction keeps the rectangles corresponding to the vertices of the footpath 

together, all on one side of the rectangle corresponding to the apex. A caterpillar 

with safe footpaths is then a caterpillar with footpaths where each footpath is 

safe. 

L e m m a S .  Let G be a graph that can be decomposed into two graphs whose 

connected components are either caterpillars with safe footpaths or triangles. 

The graph G is a noncollinear RVG, and a noncollinear layout of G can be 

constructed in linear time. 

6 k - H i l l y  g r a p h s  

Recall that  we call a vertex with degree four or more a high-degree vertex; we 

correspondingly call a vertex with degree three or less a low-degree vertex. We 

call a graph k-hilly if the high-degree vertices form a distance-k independent 

set; i.e. there is no path of length k or less starting at a high-degree vertex and 

ending at another one. A 4-hilly graph is shown in Figure 13; the high-degree 

vertices are shown as white squares (a convention that  we will follow throughout 

the section on k-hilly graphs). We will also use a slightly more restrictive version 

of k-hilly; we call a graph k-hilly* if it contains no path of length k or less that  

starts and ends at high-degree vertices. This differs from k-hilly in that  it also 

forbids cycles of length k or less that  contain a high-degree vertex. 

T h e o r e m  9. Every 2-hilly graph G is a weak RVG, and a weak layout of G can 

be constructed in linear time. 

Proof. The following algorithm constructs a layout of G as a weak RVG. The 

bulk of the algorithm two-colors the edges of G so as to be able to apply Lemma 

7. The main idea is in Steps 1, 7, 8, and 13: we remove the high-degree vertices, 

color the remaining graph so that  each color class is a linear forest and each 

vertex that used to be adjacent to a high-degree vertex is monochromatic, and 

then reintroduce the high-degree vertices, coloring their edges opposite the color 

of their monochromatic low-degree end. If this scheme worked perfectly, each 

color class would then be a collection of paths (through low-degree vertices) and 

stars (one centered at each high-degree vertex). However, the coloring is not quite 

possible as s ta ted-but  it can be done if cycles are allowed in each color class. 

The remainder of the steps are for winnowing out and dealing with the cases 

where cycles are necessary. Some details are omitted in this extended abstract. 
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Step 1. Remove high-degree vertices. Construct a graph G ~ from G by removing 

all high-degree vertices and the edges incident on them. We will use the term 

reduced vertex to refer to a vertex that  is present in both G and G t but  has 

smaller degree in G ~ than it did in G. A reduced vertex has degree at most two 

in G ~. 

Step 2. Remove cycles of reduced vertices. Remove all cycles of reduced vertices 

from G t, Note that  such a cycle necessarily forms a connected component of G t. 

Step 3. Remove near-cycles of reduced vertices. If there are any cycles in G ~ 

that  consist of exactly one non-reduced vertex a and several reduced vertices, 

remove all the elements of these cycles except the vertices a from G t. 

Step 4. Contract paths of reduced vertices. Contract all of the edges of any path 

of reduced vertices in G ~. The vertex that  such a path contracts to will also be 

called a reduced vertex. This procedure does not create any doubled edges, as 

the situations leading to doubled edges were removed in Step 3. 

At this point, there are no two adjacent reduced vertices in G ~. 

Step 5. Contract unbridged reduced vertices. Let v be a reduced vertex with 

two neighbors c and d. We will call v bridged if cd is an edge of G', and unbridged 

otherwise. 

Repeat the following procedure until no unbridged reduced vertices remain 

in G~: First, find an unbridged reduced vertex v with neighbors c and d. Then, 

contract the edge vc (i.e., remove vc, vd, and d, and replace with the edge cd). 

Step 5. Set aside O-components. We will call a connected component of G' a 

O-component if it is a four-cycle vcwd with chord cd and reduced vertices v and 

w. We let G2 be the subgraph of G ~ that consists of all of the O-components, 

and G1 be the remaining components of G ~. 

Now, each pair of degree-2 reduced vertices in G1 has distance at least three. 

Step 7. Color G1 as two linear forests. 

Step 8. Adjust coloring to make reduced vertices monochromatic. We want a 

coloring of G1 where each reduced vertex is incident on edges of only one color. If 

a reduced vertex has degree zero or one, then it is monochromatic in any coloring 

of the edges; thus we are concerned only with degree-two reduced vertices. 

Find a bichromatic reduced vertex v in G ~. By Step 5, v, along with its two 

adjacent vertices c and d, forms a triangle. If c has degree three, then let b be 

its third neighbor; similarly, if d has degree three, let e be d's third neighbor. 

The situation is shown in Figure 14a. Neither b nor e can be a degree-2 reduced 

vertex, as noted in Step 6. 

In the coloring of G1, the triangle cdv has two edges of one color, and one 

of the other color. Wlog we may assume that  the edges cv and cd have the 

same color, and that  color is red, and that  dv is blue. If bc is present, it must 
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v ~ c - -  --b z , ~ b - -  

d e d c 
(~) (b) 

d e 
(c) 

Fig. 14. Making a reduced vertex monochromatic. 

be blue, and de, if present, may  be either color. This coloring is also shown in 

Figure 14a. It  now must  be the case that  either the recoloring of Figure 14b or 

Figure 14c leaves the coloring as a decomposition into two linear forests, with 

v monochromatic .  Note tha t  the only edges not incident on v that  change color 

are cd and possibly cb. Neither of these edges is incident on a degree-2 reduced 

vertex, and thus we have not changed any reduced vertex from monochromatic  

to bichromatic. 

We have reduced the number of bichromatic reduced vertices in G1 by one, 

and may  apply induction to find a coloring with all reduced vertices monochro- 

matic. 

Step 9. Decontract unbridged reduced vertices. 

Step 10. Decontract paths of reduced vertices. After this step, each component  

of G2 is a O-graph: a pair of vertices with three disjoint paths between them. 

Also, all degree-two vertices of these theta-graphs are reduced vertices. 

Step 11. Reintroduce cycles and near-cycles of reduced vertices. After this step, 

each color class of the coloring has components that  are either paths or cy- 

cles. Furthermore, each reduced vertex tha t  we have reintroduced in this step is 

monochromatic,  so all reduced vertices of G1 are still monochromatic.  

Step 12. Color the O-components. Let one color class be a cycle and the other 

a path; the reduced vertices whose edges are colored in this step are monochro- 

matic. 

We now have G ~ (the full G ~ constructed in Step 1) edge-colored so that  each 

reduced vertex is monochromatic,  and each color class has components that  are 

either paths or cycles. 

Step 13. Reintroduce high-degree vertices. Put back all vertices and edges re- 

moved in Step 1. Each edge being replaced in this step is given color opposite to 

the color of the reduced vertex that  is its endpoint. This creates a red star and 

a blue star for each high-degree vertex reintroduced; these stars do not connect 

to any other components of their color. We now have G colored so that  each 

color class has components that  are either paths, cycles, or stars. No two cycles 

of opposite colors intersect, as such an intersection must  take place at a vertex 

of degree at least four, and no cycle goes through a high-degree vertex. 
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Step 14. Lay out as rectangles. 
[] 

T h e o r e m  10. Every 3-hilly graph G is a collinear RVG, and a eollinear layout 

of G can be constructed in linear time. 

The proof of this theorem proceeds as in the proof of Theorem 9, preceding 

Step 14 with some extra graph manipulation so as to produce a collinear RVG 

rather than a weak one. This is done by adjusting the two-coloring to satisfy the 

hypothesis of Lemma 8; we omit the details. The following theorem is proved 

similarly; the cases where collinearity is used in Theorem 10 cannot occur in a 

4-hilly* graph. 

T h e o r e m  11. Every 4-hilly* graph is a noncollinear RVG, and a noncollinear 

layout of G can be constructed in linear time. 

Note that  the technique used in above three theorems can be pushed even 

farther, to show that  RVGs include graphs consisting of a few small clusters of 

high-degree vertices in a sea of low-degree vertices: 

T h e o r e m  12. Let G be a graph, and H be the graph induced on the high-degree 

vertices of G. If  H is maximum-degree three, and G \ E(H)  is 2-hilly, 3-hilly, 

or 4-hilly*, then G is a weak RVG, a collinear RVG, or a noneollinear RVG, 

respectively. Furthermore, a layout of such a graph can be constructed in linear 

time. 

We can also show that  the results of this section cannot be strengthened to 

include 1-hilly graphs; there is a 1-hilly graph that  is not a weak RVG. 

7 M a x i m u m  D e g r e e  F o u r  

In this section, we show that  every maximum-degree 4 graph is a weak I~VG. 

As with the k-hilly proofs, there are two distinct components to the proof: one 

graph-theoretic, and the other geometric. Here, however, because the graph- 

theoretic part is less detailed, we present that  part before establishing the nec- 

essary geometric result. 

T h e o r e m  l3 .  Every maximum-degree 4 graph G is a weak RVG, and a weak 

layout of G can be computed in linear time. 

Proof. Start by augmenting the graph G with extra edges and vertices so that  it 

becomes a 4-regular graph G ~. Next, find an Euler circuit in G'; this is possible, 

as every vertex of G t has even degree. Alternately color the edges of the circuit 

red and blue. The Euler circuit will pass through each vertex twice, so each 

vertex will be incident on two red edges and two blue edges. This means that 

each color class is a 2-factor, or, more simply, a collection of cycles. 
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We prove below (as Theorem 14) that  any such graph (one that can be de- 

composed into two collections of cycles) is a weak RVG, with layout taking linear 

time. Lay out G' as a weak RVG, and then remove any rectangles corresponding 

to vertices of G' that  are not vertices of G. The extra edges of G' and the possible 

extra visibilities introduced when removing rectangles are inconsequential under 

the definition of weak RVGs, so the resulting layout is a weak layout of G. [] 

T h e o r e m 1 4 .  Let G be a graph that can be decomposed (edge-colored) into two 

graphs whose connected components are either caterpillars or cycles. The graph 

G is a weak RVG~ and a weak layout of G can be computed in linear time. 

Proof. This is Lemma 7 with the restriction that two cycles intersect in at most 

one vertex removed. That  restriction was to make the rightmost or topmost 

rectangle in a cycle well-defined. Removing it means that  we will have to arrange 

things so that  we can safely choose such a rightmost or topmost rectangle. 

We assume that  the given graph G is connected. Let us label the connected 

components of the blue subgraph C1, C2,. . . ,  Ck (C stands for column) and of 

the red subgraph R1, R 2 , . . . ,  Rz (R stands for row). Unlike in previous proofs, 

we will be careful about which order the rows and columns are placed in. 

Whenever we lay out a row, we place it immediately below all rows that  have 

already been laid out, and above all rows yet to be laid out. Similarly, we lay 

out columns to the left of all columns already laid out. The only real difficulty 

is getting started; i.e. choosing the rightmost column and topmost row, and 

showing how to lay out these components. We analyze several cases. 

Case 1. There is a component (wlog a column) Ci that  is a caterpillar. We let 

this column be the rightmost, and choose any row Rj that  intersects Ci as the 

topmost row (such a row exists by connectivity of G). Lay out Ci as usual, 

and if /i~j is a caterpillar, lay it out as usual also. If Rj is a cycle, then it 

has a rightmost vertex v (i.e. one whose hori ,ontal interval's right endpoint is 

rightmost) in Rj N Ci, and we can lay it out as we did in Lemma 7, adjusting 

Ci if necessary. 

All further cases assume that  all components are cycles. 

Case 2. There are two components Ci and Rj whose intersection contains ex- 

actly one vertex v. Let this row and column be the topmost and rightmost. Let 

the rectangle for v be the entire intersection of the horizontal and vertical in- 

tervals for G and Rj. Both Ci \ v and Rj \ v are paths and can be laid out as 

such inside their respective intervals; no visiblities are duplicated and therefore 

no adjustments need to be made. 

Case 3. There are two components Ci and /i~j whose intersection contains at 

least two vertices v and w, and furthermore, v and w are adjacent in one of 

these components (wlog in Ci). First, let v be placed so that its vertical interval 

is the vertical interval for Rj, and its horizontal interval is a small interval at 

the right end of the interval for C~. We lay out Rj \ v as a path as usual. 
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Let I be the horizontal interval for C~ with the interval for v removed. We 

lay out Ci \ v as a path  in 1, with w on the left. The visibility between v and 

w will be horizontal. We must also adjust the layout depending on whether the 

other vertex u adjacent to v in Ci is in Ci ~/~j :  if it is, the interval for u should 

be contained in I (so that  v sees u horizontally), and if not, this interval should 

extend slightly to the right of I so tha t  u sees v vertically. 

Case 4. No other case above holds. Choose a component (wlog a row Rb) whose 

removal will not disconnect the graph. The row/gb will be the bottom row and 

will be processed last. Let z be a vertex of Rb, and Ci the column containing z. 

Let y be a vertex a~djacent to z in the cycle Ci, and Rj be the row containing z. 

The rows Rj and Rb are not the same, or else we would be in Case 3. 

The components Ci and Rj will be the rightmost and topmost ,  and we choose 

v = y and w = z and lay out Ci and Rj as in Case 3, where the the path  Ci \ v 
stays strictly within the interval I .  An example of this construction is shown in 

Figure 15. We have now laid out these components, but have not yet established 

the visibility between v and u, or between v and w = z. We will adjust v and lay 

out ~ at the end of the entire construction so as to establish these visibilities. 
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Fig. 15. Case 4 in the proof of Theorem 14. 

In any case, we have laid out a topmost  and rightmost component.  The rest is 

straightforward: 

Until all components have been laid out (except Rb if we were in Case 4), 

choose a component that  is not laid out and that  intersects a component  that  

has already been laid out. (Such a component  always exists, by connectivity of 

G or of G \ Rb.) Lay out this newly chosen component  as follows: 

Wlog, the component  is a row Rj. If Rj is a caterpillar, lay it out as usual. 

Otherwise, let Ci be the rightmost column tha t  has nonempty intersection with 
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Rj ,  and v be the rightmost vertex of this column in their intersection. Let v have 

the vertical interval corresponding to the entire interval for/~j,  and lay out the 

path Rj  \ v inside the interval for v. We may have duplicated visibilities already 

present in C~; if this is the case then we remove them as in Lemma 7 or by a 

special-case adjustment, as shown in Figure 16. 
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Fig. 16. The general step in Theorem 14. 

This ends the general step. If we were in case 4, we have to lay out Rb and 

adjust the layout to get visibilities between the original v and u and between 

the original v and w; the details of this are omitted. [] 

8 Conclusion 

We have shown that several classes of graphs are RVGs, including 4-trees, cater- 

pillar arboricity two, maximum degree 4, and 2-hilly. We examined several sub- 

classes of these classes, and established that some of them are collinear or non- 

collinear RVGs. In each ease we have linear layout algorithms. Of particular 

interest is the class of graphs with maximum degree 3, which can be laid out 

with all rectangle sizes prespecified. 

This abstract summarizes two manuscripts [2, 10]. In subsequent work, Sher- 

mer [11] has shown that recognizing RVGs is NP-complete, as is the problem of 

recognizing graphs with caterpillar arboricity two. 
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The question of where maximum-degree 4 and maximum-degree 5 graphs 

truly fall is still unsettled. It may  be the case that  maximum-degree 4 graphs are 

collinear or even noncollinear RVGs. On the other hand, Dean and Hutchinson 

[4] have shown that  K5,5 is not a collinear RVG, but it is a weak RVG (K5,5 plus 

any edge is a collinear RVG). So maximum-degree 5 graphs either include some 

graphs that  are not RVGs of any sort, or they are a subclass of weak RVGs. 

Another question that  is open is whether or not every graph with arboricity 

two is an RVG of some sort. As every forest (graph with arboricity one) is a 

BVG, one might suspect that  this could be true. 

In closing, we would like to acknowledge Peter Eades for suggesting some of 

the motivational  ideas, Diane Souvaine and Alan Taylor for helpful discussions, 

and Stan Wagon for assisting with the figures. 
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