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On Rectilinear Link Distance 

Mark de Berg* 

Abstract 

Given a simple polygon P without holes all of whose edges are axis-parallel, 

a rectilinear path in P is a path that consists of axis-parallel segments only 

and does not cross any edge of P. The length of such a path is defined as the 
number of segments it consists of and the rectilinear link distance between 

two points in P is defined as the length of the shortest path connecting the 
two points. 

We devise a data structure usiag O(nlogn) storage such that given any 
two query points 8 and t in P, we can efficiently compute a shortest path from 

8 to t. For the case where both query points are vertices of P the query time 

is 0(1 + I), where 1 is the length of a shortest path. If the query points are 

arbitrary points inside P then the query time becomes o (log n + I). The path 

that is found is not only optimal in the rectilinear link metric, it is shown to 

be optimal in the LI-metric as well. 

As a second problem we compute the diameter of a rectilinear polygon P. 

The diameter of P is the maximum distance between any two points in P. It 

is shown that the exact diameter can be computed in time O( n log n) and an 
approximation with an error of at most three in O( n) time. 

1 Introduction 

In a simple polygon P the link distance between two points is defined as the minimum 

number of line segments inside P needed to connect the two points, not crossing 

any edge of the polygon ([17]). The introduction of this metric is motivated by the 

fact that often, e.g. in motion planning or broadcasting problems, it is relatively 

expensive to take a turn. Recently problems concerning link distance have gained a 

lot of attention. The problems of finding furthest neighbours for points in P and of 

computing the diameter of P have been studied by Suri ([17)) and Ke ([8)). Lenhart 

et al. ([10)) were the first to study the link centre problem: compute the set of 

points in P whose link distance to their furthest neighbour is minimal. They gave 

an O(n2) algorithm. The problem of computing the link centre in time O(nlogn), 

*Department of Computer Science, University of Utrecht, P.O. Box 80.089, 3508 TB Utrecht, 
The Netherlands. Supported by the Dutch Organisation for Scientific Research (N.W.O.). 
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as posed in [13], has been solved independently by Djidjev, Lingas and Sack ([5]) 

and Ke ([8]). 

In this paper the axis-parallel version of link distance is studied in which paths 

consist of axis-parallel line segments, a realistic restriction in some motion planning 

problems. Such paths have already been studied, e.g. in [4, 9, 14, 15], where shortest 
rectilinear paths in the LI-metric are sought. Instead, we are interested in shortest 

rectilinear paths in the link distance metric. We will restrict ourselves in this paper 
to paths inside rectilinear polygons (i.e., polygons having all edges axis-parallel) 

without holes. (See Sack ([15]) for a general study of rectilinear polygons.) 

Definition 1 Let P be a simple rectilinear polygon. A (rectilinear) path 7r (in P) 

is an ordered set {It, 12, ••• , Id } of axis-parallel line segments (inside P) such that 

the beginpoint of every Ii (1 < i ~ d) coincides with the endpoint of li-l and no Ii 

(1 ~ i ~ d) crosses an edge of P. The length of the path, denoted as length(7r), is 

the number of segments it consists of. 

If {II, 12 , ••• , Id } is the ordered set of segments of a path 7r, then we write 7r = 
It 12 •• ·Id• 

Definition 2 Let sand t be two points in a simple rectilinear polygon P. The 

rectilinear link distance between sand t, denoted d(s, t), is defined as: d(s, t) = 
min{/ength(7r)I7r is a path in P connecting sand t}. 

Two problems concerning rectilinear link distance in simple rectilinear polygons 

(without holes) are studied: the Query Problem and the Diameter Problem. The 
Query Problem asks to store a polygon P such that, given two query points s and t 

in P (the source and the target), a shortest path between s and t can be computed 

efficiently. The Diameter Problem asks to compute the diameter of P, defined as 

Dia(P) = max{d(s, t)ls, t E Pl. 

The sequel of this paper is organised as follows. 

In section 2 Chazelle's polygon cutting theorem ([2]) is adapted to rectilinear 

polygons. Let P be a rectilinear polygon on n vertices VI,···, V n , each assigned 

a real positive weight C(Vi), without holes. It is shown that P can be cut with a 
segment lying totally inside P into two subpolygons both of total weight :::; ~C(P), 
where C(P) is the total weight of P. Moreover, the cut segment can be found 
in linear time. Both the Query Problem and the Diameter Problem are solved 

by a divide-and-conquer approach making use of this Rectilinear Polygon Cutting 

Theorem. 

In section 3 the Query Problem is considered. A structure is devised that uses 

O( n log n) storage in which a shortest path between two query points can be found 

in time O(log n + I), where 1 is the length of a shortest path. If the query points 

are vertices of the polygon then a shortest path can be found in time 0(1 + 1). It 
is shown that the path that is found by our algorithm is not only optimal in the 

rectilinear link metric, but also in the LI-metric. 
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In section 4 it is shown how the diameter of a rectilinear polygon can be computed 

in time O( n log n) with a divide-and-conquer algorithm. Furthermore we give a 

simple recursive algorithm that computes an approximation D of the diameter with 

ID - Dia(P)1 ::; 3 in linear time. 

Finally, in section 5, we briefly summarize our results and indicate directions for 
further research. 

2 The Rectilinear Polygon Cutting Theorem 

In this section a rectilinear version of Chazelle's Polygon Cutting Theorem ([2]) is 

presented. Chazelle's result can be stated as follows: 

Theorem 1 ([2]) Let P be a simple polygon on n vertices, each assigned a weight 

E {O, 1}, and let C (P) be the total weight of the vertices. Then a diagonal between 

two vertices of P and lying totally inside P exists that cuts P into two polygons of 

weight::; jC(P). This diagonal can be computed in time O(n), assuming a sorted 

list along some axis of the vertices is given. 

In this theorem it is assumed that the weights of the vertices incident upon the 

diagonal are set to zero in the resulting polygons; otherwise 2 should be added to 

the term jC(P). 

To prove his theorem, Chazelle first determines a vertical segment that cuts P 

into two polygons of weight ::; ~C(P) and then finds the desired diagonal. It would 

seem that, using the method to find the vertical segment, we can always find a 

vertical segment in our rectilinear polygon that cuts P into two polygons of weight 

::; jC(P). In finding the vertical segment, however, Chazelle assumes that no two 

vertices lie on the same vertical line. We cannot make this assumption without loss 

of generality, since we are dealing with rectilinear polygons and we have to extend 

the proof to cases where there are more vertices lying on the same vertical line. 

Before we state our theorem we introduce some notation. In the remainder of 

this section, the vertices VI, ••• , vn of a rectilinear polygon P are always numbered 

in counterclockwise order with VI being the lowest of all leftmost vertices; c( Vi) will 
be the real positive weight of vertex Vi and C(P) = Ei=1 C(Vi) is the weight of P. 
An axis-parallel segment is called a cut segment (of P) if it connects two edges of P 

and lies entirely inside P. 

Theorem 2 Let P be a rectilinear polygon having n vertices without holes. Then a 

cut segment exists that cuts P into two polygons having weight::; ~C(P)I. Moreover, 

this segment can be chosen such that it is incident upon at least one vertex. 

Proof: Following Chazelle's proof, we move a vertical cut segment through the 

polygon, hoping that one moment it will meet the requirements. Because we must 

1 As Chazelle, we assume that of the vertices incident upon the cut segments get weight zero; if 

not 2max{c(vi)ll ~ i ~ n} should be added to the term iC(P). 
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( i) ( i i ) ( iii) 
s' 

s sIt 

Figure 1: The three cases to consider when moving 8. 

also consider more vertices lying on the same vertical line (as we already noted, this 

degeneracy must explicitly be dealt with since the edges of the polygon as well as 

the cut segment are axis-parallel) this will not always be the case, but if not then 

we can show that a horizontal cut segment exists with the desired property. 

A cut segment s connecting edges ViVi+1 and VjVj+1 (j > i) cuts P into two 

polygons P; and P; (the parts of Plying resp. to the left and to the right of the 

segment 8 directed from ViVi+1 to VjVj+1), having weights C(P;) ~ c( Vi+1)+' • • +c( Vj) 

and C(pn < C(P) - C(P;). Here inequality holds when 8 is incident upon one 

or more of the vertices Vi, Vi+l, Vj or Vj+l whose weight(s) is (are) then set to zero. 

We start with s = VIVm and thus C(P;) = 0 and C(P;) = C(P) - c(vt} - C(V2), 

and begin moving ~ to the right. We continue moving s in a way to be described 

below. When we reach a dead end then C(P;) = O. Along the way C(P;) decreases 

monotonously, hopefully by not too great amounts so that it will attain a value 

~ ~C(P). Since we will make sure that always C(P;) ~ ~C(P), we are done when 

C(P;) < ~C(P). 
There are three cases to consider when moving s (see Figure 1). We can always 

assume that C(P;) > ~C(P) and thus C(pn < ~C(P), otherwise we would already 
have stopped. 

In case (i) we have the following possibilitit::s: Let 8' be the cut segment that is 
incident upon Vi and 8" the cut segment just after passing Vi (refer to Figure 1 (i)). 

H C(p.~,) > ~C(p) we just continue moving 8 to the right, if ~C(p) ~ C(p;,,) ~ 
~C(P), then clearly 8" cuts P as desired and if C(P;,,) < ~C(P) then 8' meets the 

requirements: C(p.~) = C(pn < ~C(P) and C(P;,) = C(P;,,) < ~C(P). (This 

assumes that c( Vi) is set to zero in p.~ and, since Vi vanishes in p.~, c( Vi+1) is set to 

zero in P;'.) 
The second case is in fact the reverse of the third, so we will concentrate on the 

third case. Here there are two possibilities to consider (refer to Figure 1 (iii)). H 

there is a C(P~) ~ ~C(P), then either 8j, the segment that cuts off p.~, cuts P 
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in the desired way or (when C(P:.) > ¥C(P» we can proceed into P: .. If there , ... , 
is no such P:., then there is no vertical cut segment meeting the requirements. In , 
this case, however, there is a horizontal cut segment that cuts P as desired: since 

C(P~) < lC(P) for all 1 ~ j ~ m, there is an i such that 0 < E~ ... 1 C(P~) -

Ei=i+l C(P~) < ~C(P). From this it follows that the horizontal segment s· that 

cuts P into two polygons Pi., containing P:
1

, ••• ,P~ plus the part of Pi above s·, 
and P:., containing P~+l' ... ' P:

m 
plus the part of Pi below s·, has the desired 

property: 

i 

C(P;.) < E C(P~) + C(pn 
i=1 

< lC(p) + E C(P~) + C(P;) 
i=i+l 

< lC(p) + C(P) - C(P;.) + C(pn ==> 

C(P;.) < ~C(P) + ~C(P;) 

< ~C(P) 

and 
m 

C(P:.) < E C(P:.) + C(P;) , 
i=i+l 

i 

< EC(p.~) + C(p.l) 
i=1 

< ~C(P) 

We can conclude that we will always find a cut segment that cuts P into two poly

gons of weight ~ ~C(P). 

It remains to show that the segments can be chosen to be incident upon at least 
one vertex. The segments added to handle holes clearly satisfy this condition, so we 
are left with the cut segment of a hole-free polygon. Suppose tha.t we have found 
a cut segment s that is not incident upon a vertex and assume w.l.o.g. that s is 
vertical. Now move s to the right until it hits a vertex. If this vertex is an endpoint 

of one of the segments that are connected by 8, then we are ready. Othenriee we 
are more or less in the situation of Figure 1 (iii) and, if moving 8 to the left doesn't 

help either, we can show in the same way that a horizontal cut segment exists. This 
segment 8· is incident upon a vertex (see Figure 1 (iii». Details are left to the 
reader. [] 

Remark 1: Observe that this theorem can easily be extended to handle to polygons 
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Figure 2: A polygon that cannot be cut such that the weight of the two resulting 

polygons is < ~C(P). Take C(PI ) = C(P2 ) = C(P3 ) = C(P4 ) = ~C(P). 

containing holes. If P contains k holes then we can find I < k + 1 cut segments 

that cut P into two subpolygons of weight :5 ~C(P), as follows: We first remove the 
holes by adding vertical edges from the rightmost topmost vertex of every hole to 

the opposite edge and duplicating these edges as to obtain a polygon without holes. 

This can be done in O( n log n) time by a simple sweep line algorithm. Then we can 

apply the above procedure to find one cut segment. The other cut segments are 

the extra edges of whose duplicates only one is traversed when walking around one 

of the resulting polygons. Note that each of these extra cut segments destroys one 

hole, so the total number of remaining holes in the two new polygons is k + 1 - I. 

Remark 2: The bound of ~C(P) in the above theorem is sharp. Figure 2 shows a 
polygon that cannot be cut any better. If, however, in the situations of Figure l(ii) 

and (iii) we always have m = 2, then a bound of jC(P) can be obtained. 

From Theorem 2 it follows that in order to compute a cut segment as desired, it 

suffices to look at the vertex-edge visible pairs of the polygon (a vertex-edge visible 

pair is a vertex and an edge that can be connected by an axis-parallel line segment 

that lies entirely inside the polygon, i.e., a cut segment). The next lemma shows 
that these pairs (whose total number is O(n), even in a non-rectilinear polygon, see 
[19]) can be computed in linear time if the polygon does not contain holes. 

Lemma 1 All vertex-edge visible pairs of a simple rectilinear polygon P on n ver

tices without holes can be computed in time O( n). 

Proof: The computation of the pairs will consist of three steps. 

First P is partitioned into a number of histograms. A histogram, sometimes 

called a Manhattan polygon, is a rectilinear polygon H that has one distinguished 

edge, the base of H, whose length is equal to the sum of the lengths of all other 
edges parallel to this base. In [12] it is shown that every rectilinear polygon without 

holes can be partitioned into a number of histograms HI, ... ,Hm in time O( n) such 
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Figure 3: The partitioning of a rectilinear polygon into histograms. The non-bold 
segments are entrances. 

that the total number of vertices of these histograms is O(n). This is done by 

choosing an arbitrary edge e and computing the maximal histogram H lying within 
P with e as base. The set of edges that partition P, HIST(P, e), is recursively 

defined as follows: H H = P then HIST(P, e) = 0. Otherwise let H, PI, ... , He 
be the set of polygons into which P is partitioned by H and let ei be the segment 
where H touches Pi (we call this segment the entrance between H and Pi), then 

HIST(P, e) = Ul~i~A:( {ei}UHIST(Pi, ei)). In Figure 3 an example of a partitioning 
IS given. 

When we have partitioned P into histograms HI, ... , Hm as described above the 

vertex-edge visible pairs in each Hi are determined. The vertices that see the base 

of Hi are exactly the reflex vertices of Hi. The other visible pairs, that can be 

connected by a segment parallel to the base, can be computed as follows. Assume 
w.l.o.g. that the base is horizontal. Now start at the left endpoint of the base 
and walk upwardly along the boundary of Hi, i.e., continue walking as long as the 
edges are directed upward or to the right. Meanwhile push the encountered vertices 

on a stack. Then start walking again, this time as long as the edges are directed 

downward or to the left. At every encountered vertex Vi, we pop all vertices from the 

stack that have y-coordinate greater than the y-coordinate of Vi. All these vertices 

see Vi-I Vi (except if they are the left endpoint of a rightward directed edge; this, 

however, can easily be tested) and Vi sees vi-I Vi' where Vi is the vertex popped last. 
Then start walking up again, pushing the encountered vertices on the stack, etc. It 
is not hard to prove that this way the correct pairs are found in time O(~vertices of 
Hi). Notice that vertices that see some edge are found ordered along this edge. 

Now that we have computed the visible pairs in every Hi, we only have to find the 

right visible edges for vertices for which we have computed that they see an edge that 

is an entrance. Since we have for each entrance ei,i between histograms Hi and Hi 

for both histograms a sorted list of the vertices that see ei,i' these edges can easily 

be found by walking simultaneously along both lists; the edge of Hi visible from 

some vertex VA: in Hi is namely equal to VIVI+1 (or VI-l VI, depending on whether the 
list is ordered clockwise or counterclockwise), where VI is the vertex in the list of Hi 
that has been encountered just before VA: was encountered. Note that the situation 
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that the newly found edge is also an entrance can only occur once for every vertex, 

so this does not impose any significant problems. Computing the edges visible from 

the vertices that see an entrance thus takes O( n) time in total. 

We see that that every step of the algorithm takes only linear time, which proves 

the lemma. D 

Theorem 3 Let P be a simple rectilinear polygon on n vertices without holes. Then 

a cut segment that cuts P into two polygons having weight ~ ~C(P) can be computed 

in time O(n). 

Proof: From the above lemma it follows that the O( n) segments that are sufficient 

to consider can be computed in linear time. Furthermore a segment can be tested 

in constant time after O(n) preprocessing (see [2]). The time bound follows. D 

3 The Query Problem 

The problem that we will consider is stated as follows: Store a simple rectilinear 

polygon P on n vertices (without holes) in a data structure such that, given two 

query points s and t in P (the source and the target), a rectilinear link distance 

shortest path between s and t can be computed efficiently. First both source and 

target are assumed to be vertices of the polygon. Then the solution is extended to 
handle arbitrary points inside the polygon as query points. Finally we show that the 

path that is computed by our algorithm not only has a minimal number of segments, 

but that it is optimal in the LI-metric as well. 

3.1 Vertices as query points 

Because we do not want to use quadratic storage, we cannot store for each vertex 

information about the direction in which to leave to every other vertex. Therefore 
we take another approach. Let e be a segment that cuts P into two subpolygons PI 

and P2 • For all source-destination pairs with the source lying in another subpolygon 
than the target, the path must cross e and thus the direction in which to leave is 

towards e. For all other pairs we have reduced the problem to finding a shortest 

path in a subpolygon of P that can be treated in the same way. The Rectilinear 

Polygon Cutting Theorem of the previous section guarantees us (assign each vertex 

weight 1) that e can be chosen such that this resulting polygon has ~ ~n + 2 vertices, 

n being the number of vertices of P. Thus P is stored in a binary tree T that can 

recursively be described as follows: If P is a rectangle then T is a leaf. Otherwise, 

let e be a segment that cuts P into two polygons PI and P2 both having ~ ~n + 2 
vertices. Now T consists of one subtree representing PI and one subtree representing 
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P 2 • Thus each node 6 in T represents a subpolygon P 6 of P and P 6 is cut into P'.on(6) 

and P r•on(6) by a segment e6. Since e6 cuts P6 in a balanced way, the depth of the 

tree is O(log n). The search path in T of a vertex v naturally follows those nodes 

6 where v E P 6. Thus it goes to the left at nodes 6 such that v E P'.on(6) and to 

the right if v E Pr•on(6). The path ends when a leaf is reached or when v is incident 

upon e6. 

Given a source s and a destination t, we proceed as follows. Let I. and It be 
the leaves (or nodes) where the search paths to s resp. tend. H both paths end 

in the same leaf or in the same node then a shortest path from s to t is trivial to 

compute. Otherwise let 6* be the node where the paths split, i.e., the lowest node 

6 such that both s and t are in P6 • Observe that in fact 6* is the lowest common 

ancestor of I. and It. Now we know that any path from s to t must cross e6 •• Hence, 

we store at every node 6 of T for every vertex of P6 information about a shortest 

path to e6. Before we give a lemma that enables us to compute a shortest path 

from s to t from shortest paths from s and t to e6., we need some notation. For a 

cut segment e and a vertex v of P, let e(v, d) be the part of e that can be reached 
from v with a path 7r of length d such that the last segment of 7r is perpendicular to 

e. Furthermore let the (rectilinear link) distance from a vertex v to a segment e be 

defined as d(v,e) = min{d(v,q)lq E e}, the distance from v to (one of) the closest 

point(s) on e. Now the lemma that we need can be stated. 

Lemma 2 Let e cut P into two subpolygons such that sand t lie in different sub

polygons and let d(s, e) = d. and d(t, e) = dt. Then we have 

d(s,t) = d.+dt+~ 

where ~ = 0 if e(s, d.) n e(t,dt) = 0 A 

{ 

-1 if e(s, d.) n e(t, dt) =F 0 

( e(s, d. + 1) n e(t, dt) =F 0 V e(s, d.) n e(t, dt + 1) =F 0 ) 

+ 1 otherwise 

Proof: H e(s, d.) n e(t,dt) =F 0, then paths from s and t of lengths d. and dt 
respectively exist that reach e at the same place. Thus the two segments incident 
upon e now form one segment and the resulting path has length d. + dt -1. Clearly a 
path that is shorter cannot exist; it would contradict either d(s, e) = d. or d(t, e) = 
dt· 

H e(s, d.)ne(t, dt) = 0, but e(s, d.+1)ne(t, dt) =F 0 (or e(s, d.)ne(t, dt+1) =F 0), 

then we can take paths of lengths d. + 1 and dt (or d. and dt + 1) that meet on e 

resulting in a path of length (d. + 1) + dt - 1 = d. + dt. Again it is easily seen that 

no shorter path can exist under the given conditions. 

Finally, if neither of the conditions for ~ = + 1 and ~ = 0 is true, then we can 
always take paths of lengths d. and dt and join them by a segment on e, thus giving 
a path of length d. + dt + 1. Since the conditions for ~ = +1 and ~ = 0 are not 
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e 

Figure 4: el is the part of e that can be reached when H is entered at point 1, e2 is 

the part that can be reached when H is entered a point 2. ei is w-oriented. 

only sufficient, but also necessary, a shorter path cannot exist. o 

So what we now want is to compute the part of a cut segment reachable by a 

shortest (or almost shortest) path from a vertex in one of the subpolygons, i.e., we 

want to compute the reachable part of an edge of the subpolygon. We are thus left 

with the following problem. Given a polygon P and an edge e of P, compute e(v, dv ) 

and e( v, dv + 1) (where dv = d( v, e)) for every vertex v of P. To this end we prove 

that for any vertex v at distance dv > 2 from e a vertex Vnezt at distance dv - 1 

from e (and at distance 2 or 1 from v) exists such that any point on e( v, dv ) can be 

(optimally) reached via Vnezt. 

Lemma 3 Let v be a vertex of P with d(v, e) = dv > 2. Then a vertex Vnezt of P 

exists such that d(vnezt' e) = dvnezt = dv -l and e(vnezt,dvnezt) = e(v,dv ). Moreover, 

every point on e( v, dv ) can be reached from v by a path 7r = It 12 ... Idv with Vnezt E 12• 

Proof: Again we will use the partitioning of P into histograms (with e as start

ing edge) as described in the proof of Lemma 1. Recall that H was the maximal 

histogram lying within P with e as base and that PI' ... ' Pic were the induced sub
polygons. The edges ei where Pi touched H were called entrances and they were 

the starting edges for the partitioning of the Pi'S into histograms. Observe that 

d(v,e) = 1 for v E H and d(v,e) = d(v,ei) + 1 for v E Pi (and v rt H). 

Let v E Pi with dv > 2 and consider a path from v to e. This path must cross 

ei. Note that it is always profitable to cross ei as close (in the ordinary, Euclidean, 

sense) to e as possible. The part of e that can be reached is namely equal to the 

segment running from ei to the edge of H visible from the point on ei where His 

entered and, since H is a histogram with base e, these segments grow as this point 

comes closer to e (refer to Figure 4). Therefore we define an entrance ei = ww' to 

histogram H with base e to be w-oriented if w is closer to ethan w'. If w' is closer 

then ei is w'-oriented. 

10 



u 
----~~-----------------u' 

11 z 
w 

v ..... --.... 

w' z' 

Figure 5: Illustration of the proof of Lemma 3. 

Let {HI! ... , Hm} be the set of histograms that results from the partitioning 
scheme described above. (With a slight abuse of notation, we will still use H to 
denote the unique histogram with e as base, when convenient.) Suppose v E Hi 

where v is not incident upon the (w-oriented) base ei = ww' of Hi. Let ei be 

the entrance to histogram Hj with base ej = uu' and suppose w.l.o.g. that ej is 

horizontal with U z < W z ~ u~ (refer to Figure 5). By definition of orientation we 

should, if ej is u-oriented, cross ej as close to u as possible. Hence the path from v 

should go through w and w is a choice for Vnezt that satifies the demands. On the 

other hand, if ej is u'-oriented then z (where zz' is the edge of Hj that is visible 
from v inside HiuHj , see Figure 5) is a choice for Vnezt meeting the requirements. 0 

The lemma above readily gives us a way to compute e( v, du ) for all vertices v of P 

in an efficient way. First the vertex-edge visible pairs that we need are determined. 

These are vertex-edge visible pairs inside some Hi U H j for vertices of Hi, with Hi 

and Hj as in the proof of the lemma. Using the same approach as for determining all 

vertex-edge visible pairs in P (see the proof of Lemma 1) this can be done in O( n ) 

time. (In fact the pairs we need were found as intermediate results in the algorithm 

given there.) Once this has been done we proceed as follows. For vertices v with 
du = 1 (thus v E H), we trivially have e(v,du ) = e(v,l) = [vy : vy ] (or [vz : vz ] if e 
is horizontal). For vertices v E Hi at distance 2 from e, e(v,2) can easily be found 
using the edge of H that is visible from v inside Hi U H. e ( v, 2) is then equal to 
the segment from the entrance between Hi and H to the edge of H visible from v. 

For vertices at distance > 2 we can apply the lemma above. Since the orientation 

of the entrances can easily be determined during the process in constant time per 

entrance and the visible edges that are needed are precomputed, the vertex Vnezt 

can be found in 0(1) time per vertex. Thus the segments e(v,du ) for all vertices 

can be computed in linear time in total. 
Once this has been done, the computation of e( v, du + 1) (which is useless if 
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e( v, dv + 1) ~ e( v, dv ), as is clear from Lemma 2) is not hard, as the following lemma 

shows. 

Lemma 4 For every vertex v of P with dv ~ 2, either there exists a vertex Vne~t2 

such that e(v,dv + 1) = e(vne~t2,dvnest2) or e(v,dv + 1) ~ e(v,dv). 

Proof: By definition, e( v, d) is the part of e that can be reached with a path 

7r = 1112 ••• Id such that Id is perpendicular to e. Hence the difference between the 
lengths of two paths to e that leave a vertex v in the same direction, i.e. both 

having a horizontal first segment or both having a vertical first segment, will always 

be even. Because for a vertex v E Hi the first segment of a shortest path to e leaves 

in the direction of the base ei of Hi, the first segment of any path of length dv + 1 

must be parallel to ei. We let this first segment be the largest segment inside Hi -directed as u'u, where ei = uu' is u-oriented. This way we might be able to reach 

a larger part of e. H this first segment has length zero, then e(v,dv + 1) ~ e(v,dv ). 

Otherwise let ww' be the edge of Hj where the first segment ends. Then, assum

ing w is closer to ei than w', w is clearly a vertex such that e(v, dv +1) = e(w, dw ). D 

Using vertex-edge visible pairs, these vertices Vne~t2 (as well as e( v, 2) for vertices 

v with dv = 1) can be computed in linear time. (H e(v,dv + 1) ~ e(v,dv ), we let 

Vne~t2 = v. The reader easily verifies that this does not influence the correctness of 

the algorithm.) Now we are ready to complete the description of our data structure 

for the Query Problem inside a polygon. We have: 

• A binary tree T representing P as follows: H P is a rectangle then T is a leaf. 

Otherwise, let eroot(T) be a segment cutting P into two subpolygons PI and P2 , 

both having ~ ~n+2 vertices. Now T consists of two subtrees, representing PI 

and P2 respectively. At every node a E T we store for every vertex v of P6 (the 

subpolygon represented by a) a record containing the following information: 

dv = d(v,e6), e6(v,dv ) and e6(v,dv + 1) as well as pointers to (the records 

stored at a for) Vne~t and Vne~t2 (assuming dv > 2). 

• For every vertex Vi E P there is a pointer PT Ri to the node or leaf ai E T 
where the search path to Vi ends and an array ANCi. ANCi[lev] points to the 
record that is stored for Vi at the ancestor of ai at levellev. 

A shortest path from s = Vi to t = Vj is now found as follows: 

1. Follow PT Ri and PT Rj to obtain ai and aj. H ai = aj, then a shortest path 

from Vi to Vj is trivial to compute. Otherwise compute a*, the lowest common 

ancestor of ai and a j. 

2. Follow ANCi[lev(a*)] to obtain dv; = d(vi,e6*), e6*(vi,dv;) and e6*(vi,dv; + 1). 
Do the same for Vj. Compute ~ according to Lemma 2 and decide whether 

the next vertex on the path from Vi (Vj) to e6* is (Vi)ne~t or (Vi)ne~t2 ((Vj)next 
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or (V;)next2)' From this vertex on, follow Vnext pointers towards e60 until a 

vertex at distance 2 from e60 is reached. (The details for the case dv; :5 2 are 

straightforward. ) 

3. Glue the paths together. 

This leads to: 

Lemma:; A data structure exists in which the rectilinear link distance between two 

query vertices of a rectilinear polygon P on n vertices can be computed in time 0(1) 

and a shortest path in time 0(1 + I), where I is the length of the path. The structure 

uses O( n log n) storage and can be built in time O( n log n). 

Proof: The correctness of the algorithm follows immediatly from Lemma's 2, 3 

and 4. (See section 3.3 for more details about the glueing operation.) 

The query time is clear if 6*, the lowest common ancestor of 6i and 6; can be 

computed in constant time. After O(n) preprocessing, this is indeed possible ([7]). 

(Note that every time a Vnext pointer is followed, we find a segment of the path.) 

We will now prove the building time, from which the bound on the storage 
readily follows. Consider the following recursive building algorithm. Compute a 

cut segment e = eroot(T) of P that cuts P into PI and P2, with IPII, IP2 1 ~ ~n + 2. 

According to Theorem 3 this takes O(n) time. Then compute e(vi' dv;), e(vi, dv; + 1) 

and the vertices (Vi)next and (Vi)next2 for every vertex Vi of PI and P2• As was shown 

above, this can also be done in linear time. Store this information and store a 

pointer to it in ANCi[/evcurr], where levcurr denotes the level of T we are currently 
considering. 

Next, build the two subtrees corresponding to PI and P2 • Now T(n), the building 

time so far, is equal to T(IPII) + T(IP2 1) + O(n) and, having IPII, IP2 1 < ~n + 2, this 
is O(n log n). The nodes 6i where the search paths to Vi ends and thus the pointers 

PT ~ are easily computed during the building process. As we already noted, the 

additional information that is needed for the lowest common ancestor algorithm 

takes only linear time to compute. 0 

Remark: The O(l)-algorithm of [7] for finding lowest common ancestors runs on 

a random access machine ([1]). On a pointer machine ([16, 18]) finding lowest 
common ancestors requires O(log log n) time per query (see [7]). This bound has 
been achieved ([11]) and, hence, our algorithm for computing shortest paths runs in 

time O(log log n + I) on a pointer machine. (Notice that the arrays ANCi that are 
used have length O(log n) and can thus be replaced by search trees with O(log log n) 

search time.) 

3.2 Arbitrary points as query points 

In this section it is shown how the data structure devised for handling vertices as 

query points, as described above, can also be used to solve the general problem where 
the query points are not confined to the vertices of P, but are arbitrary points in P. 
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Consider the subdivision of P induced by the cut segments once more. First it 

has to be determined which regions (rectangles) contain the two query points, that 

is, the leaves "Y. and"Yt where the paths to s and t end. Using the optimal point 

location method of Edelsbrunner et al. ([6]), this can be done in time O(log n) 
with a structure that uses O( n) storage. Observe that, since we can compute the 

vertex-edge visisble pairs in linear time, we can turn P into a monotone subdivision 

in linear time and, hence, the point location structure can be built in linear time. 
Again a shortest path is trivial to compute if the two query points s and t are in 

the same rectangle. If they are not, then the path between s and t again crosses e6., 

with 8* the lowest common ancestor of "Y. and "Yt. It is even true that the three key 

lemmas to solve the problem, Lemma 2, 3 and 4, are still valid. The vertices Vnezt 

and Vnext2 of Lemmas 3 and 4 respectively, that can be precomputed if the query 

points are vertices, now have to be determined as a part of the query. Thus we need 

a data structure to solve the following problem: given an axis-parallel query ray r 
starting at an arbitrary point q in some rectilinear polygon, compute the first edge 

that is hit by r. This polygon is Hi U Hj , according to the proofs of the considered 

lemmas, with q E Hi, q ¢ Hj and Hj adjacent to Hi and closer to e (see Figure 5). 

Note that Hi and Hj as well as the direction of r can again be determined using 

point location techniques. Thus at every node in T, we need such a ray-shooting 

structure for every histogram Hi. Now the required edge can be determined with 

two ray-shooting queries: first a query in Hi, then - if the first edge hit is Hi'S base 

- a query from the intersection point of rwith the base in the same direction in Hj. 

We could use the structure devised by Chazelle and Guibas ([3]) for the ray-shooting 

problem, but this would be a rather brute approach to our much more restricted 

problem. Moreover, the preprocessing of their structure is O( n log n) which would 
result in a preprocessing time of O( n log2 n) for our total structure. Fortunately we 

can obtain a solution to our problem that requires only linear preprocessing. 

Let H be a histogram with horizontal base b. A query with a vertical ray is easily 

solved by a binary search on the x-coordinates of the vertices of H. Queries with a 

horizontal ray are solved using a locus approach: from every reflex vertex of H we 

add a horizontal edge to the edge that is (horizontally) visible from this vertex. Note 

that these extra edges can be computed in linear time by Lemma 1. Now the answer 
to a query with a horizontal ray are contant in each resulting region (depending on 
whether the ray is directed to the right or to the left, of course). Observe that the 
subdivision is monotone and, hence, the region which contains the starting point of 

the query ray can be determined in O(1og n) time with a structure using O( n) space 

and preprocessing ([6]). Thus the extra storage and preprocessing that is needed 

at some node 8 is O(IP61), since E IHil = O(IP6 1) for the partitioning of P6 into 

histograms Hi as used. Because the query time of our ray-shooting structure is 

O(log n), the total query time becomes O(log n + I). We conclude: 

Lemma 6 A data structure exists in which the rectilinear link distance between two 

query points in a rectilinear polygon can be computed in time O(log n) and a shortest 
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path between the two points in time O(1og n + I), where I is the length of the path. 

The structure uses O( n log n) storage and can be built in time O( n log n). 

3.3 Obtaining L1-optimal paths 

We will now investigate the relation between the rectilinear link distance metric 

and the L1-metric. In the L1-metric, the length of a line segment pq is equal to 

Ip,x - q,xl + Ipy- qyl· The length of a path 11" in the L1-metric, denoted as lengthL1 (11"), 
is naturally defined as the sum of the lengths of the segments 11" consists of. Hence, 

the length of a rectilinear path in the L1-metric is equal to its Euclidean length. We 

will show that the paths computed by the query algorithm of the previous section 

are not only optimal in the rectilinear link distance metric, but also in the L1-metric, 

provided that the glueing operation is performed correctly. Notice that optimality 

in one of the metrics does not automatically imply optimality in the other metric 

and that the fact that between any two points in a polygon there is a path that is 

optimal in both metrics is no longer true if we allow the polygon to have holes. 

To obtain Ll-optimal paths we have to perform the glueing operation in a special 

way. Let e be the cut segment through which the path between the two query points s 

and t should pass. (If there is no such segment, i.e., s and t are in the same rectangle, 

then a rectilinear link optimal path is evidently Ll-optimal.) Assume that d( s, e) 
and d(t, e) are both ~ 2. (The case where one or both of these distances are < 2 is 

left as an exercise to the reader.) If the paths from s and t to e are denoted by 11". and 

1I"t respectively, we have the following information available for the glueing operation: 

a vertex v. of P on the one but last segment of 11"., a subsegment e(s) = [b. : e.] of 

e reachable by 11". and a point Vt and a segment e(t) = [bt : et] defined analogously. 
Assume w.l.o.g. that e is vertical and that e. ~ et. The paths are now glued together 

as follows: If e(s) n e(t) = 0 then let 11". reach e at b., let 1I"t reach e at et and add 

the segment on e from b. to et to the path (Figure 6(i)). If e(s) n e(t) #- 0 then 

connect 11". and 1I"t at point max(b., bt) on e if both paths 'come from below', i.e., 

(v.)y ~ b. and (Vt)y ~ bt (Figure 6(ii)) and connect the paths at point min( et, e.) 
otherwise (Figure 6(iii)). To prove that our algorithm with this glueing operation 

yields a path that is optimal in the Ll metric, we use the following: 

Lemma 7 Let 11" and 11"' be two paths from x to y that intersect only in x and y. 

Suppose 11" contains no two consecutive convex vertices (not counting x and y), where 

a vertex of 11" is convex if its interior angle in R, the region enclosed by 11" and 11"', is 

convex. Then lengthL1 (1I") ~ lengthL1 (1I"'). 

The proof of this lemma is straightforward and therefore omitted. 

Lemma 8 The query algorithm given in the previous section with the glueing oper

ation as described above yields a path that is not only optimal in the rectilinear link 

distance metric, but also in the Ll metric. 
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( iii) 

Figure 6: The three different cases for the glueing operation. 

Proof: Let 7r be the path found by the algorithm and let 7r' be an Ll-optimal path. 
Let x and y be two consecutive intersection points between 7r and 7r' and denote the 
portions of 7r and 7r' between x and y by p resp. p'. We will show that p contains no 

two consecutive convex vertices (in R, the region enclosed by p and p'). By Lemma 

7, this will prove the lemma. 

Let x, rl ... rk, y and x, r~ ... rf, y be the enumeration of the vertices on p and 

p'respectively. Suppose for a contradiction that p contains two consecutive convex 

vertices ri, ri+!o Recall that every segment of a path to the cut segment e crosses 

an entrance (except the last segment, which is involved in the glueing operation). 

Let riri+! cross the w-oriented entrance ww', then it follows from the construction 
of 7r that riri+! crosses ww' as close to w as possible, i.e. there must be an edge of 

P on the same side of riri+! as w. Since ri+-;r"i+2 is directed as ~ (because ww' is 
w-oriented) and ri+l is convex (by assumption), this edge lies in R. This contradicts 

the fact that p and p' are valid non-intersecting paths in P. (Here we use the fact 

that P is hole-free.) See Figure 7. 

For the segments involved in the glueing operation, a similar argument can be 

given. (Note that the extra segment added in Figure 6 is always incident upon 

exactly one convex vertex.) 0 

Summarizing the results of this section, we have: 

Theorem 4 A data structure exists in which the rectilinear link distance between 

two query points in a rectilinear polygon can be computed in time O(log n). A path 

between the two points that is optimal in both the rectilinear link metric and the L1-

metric can be found in time O(1og n + I), where I is the (rectilinear link) length of 

the path. The structure uses O( n log n) storage and can be built in time O( n log n). 
If the query points are vertices of the polygon then the query times become O( 1) and 

0(1 + I) respectively. 
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Figure 7: p cannot contain two convex vertices. 

4 The Diameter Problem 

As a second problem concerning rectilinear link distance in rectilinear polygons, we 

treat the diameter problem. Thus we want to compute the diameter of a rectilinear 

polygon P on n vertices, without holes, in the rectilinear link distance metric. This 

is denoted Dia( P) and is defined as Dia( P) = maxi d(p, q) Ip, q E P}. It is readily 

seen that there will always be a pair of vertices at this maximal distance. It is 

even true that there will always be a pair of convex vertices at distance Dia(P), so 

that we can restrict ourselves to the convex vertices of P. (This is also true in the 

'ordinary' link distance metric, see [10].) 

4.1 Computing the exact diameter 

The exact diameter of a rectilinear polygon P is computed with the divide-and

conquer algorithm given below: 

1. H P is a rectangle, then Dia(P) = 2, otherwise go to step 2. 

2. Compute a cut segment e of P that cuts P into two subpolygons PI and P2, 

such that IPII, IP2 1 :::; ~n + 2. 

3. Compute Dia(Pt) and Dia(P2 ) recursively. 

4. Compute M = max{d(v, w)lv E PI, wE P2 }. 

5. Let Dia(P) := max(Dia(PI),Dia(P2 ),M). 

The correctness of this algorithm is obvious. By the Rectilinear Polygon Cutting 

Theorem, step 2 can be performed in O(n) time. Now if T(n) is the time that is 

spent for the total algorithm and f( n) the time for step 4, then for T( n) the following 

recurrence holds: 

T(n) = T(m) + T(n - m) + f(n) + O(n), 
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In the remainder of this section it is shown how M = max{ d( v, w) Iv E PI, w E P2 } 

can be computed in linear time, leading according to (1) to an overall running time 

of O(nlogn). 

Let P be a rectilinear polygon on n vertices and let e cut P into two subpolygons 

PI and P2 and let dl = max{d(v,e)lv E Pd and d2 = max{d(w,e)lw E P2 }. 

Furthermore define Pl = {u is a vertex of Pild(u, e) = d} (i = 1,2) to be subset of 
vertices of Pi at distance d from e. From Lemma 2 it immediatly follows that M = 

dl + d2 + A, with A E {+1, 0, -1}. E.g., when there are vertices v E pt1, W E pt2 

with (e(v,d,,)Ue(v,d,,+l» n e(w,dw) = 0 and e(v,d,,) n (e(w, dw)Ue(w, dw+1» = 

0, then d( v, w) = d" + dw + 1 = dl + d2 + 1 and M = dl + d2 + 1 if and only if there 

is such a pair. To be more precise, we have: 

Lemma 9 M = dl + d2 + A 

where A = 

+ 1 if there is a pair v E pt1, W E pt2 such that: 

(e(v,d,,)Ue(v,d,,+l» n e(w,dw) =0 1\ 

e(v,d,,) n (e(w,dw) U e(w,dw + 1» = 0 
-1 if for all pairs v E 111

, wE 112 : 
e(v,d,,) n e(w,dw) =I- 0 and 

for all pairs v E pf1, wE 112
-

1 
: 

(e(v,d,,)Ue(v,d,,+l» n e(w,dw) =1-0 V 

e(v,d,,) n (e(w,dw) U e(w,dw + 1» =I- 0 and 
for all pairs v E pf1- l

, W E pt2 : 
(e(v,d,,) U e(v,d" + 1» n e(w,dw) -:F 0 V 

e(v,d,,) n (e(w,dw) U e(w,dw + 1» =I- 0 
o otherwise 

Note that all segments needed for the evaluation of A can be computed in linear 

time according to the previous section. Before we describe how the conditions that 

determine the value of A can be evaluated efficiently, it is convenient to introduce 

some more notation. Suppose e(u, du) = [Xl: X2] and e(u, du)Ue(u, du+1) = [Yl : Y2]. 

If du > 1 (we omit the details for the case u E H as they are straightforward) then 
paths from u to e of length du as well as paths of length du + 1 must enter H, the 

maximal histogram inside PI (or P2 , depending on where u lies), through the same 

entrance and, hence, we either have Xl = Yl < X2 ::; Y2, or X2 = Y2 > Xl ~ Yl· 

Therefore we split the set of (convex) vertices of PI and of P2 into subsets V and 

V and subsets W and W respectively, according to the distinguished cases. Thus 

u E V iff u is a vertex of PI such that Xl = Yl < X2 < Y2 and u E V iff u is a 

vertex of PI such that X2 = Y2 > Xl ~ Yl; the vertices of P2 are similarly split into 
W and W. In other words, u E V U W iff a path from u enters H in an upward 
(or rightward, if the base of H is horizontal) direction. Now for a vertex u of P, we 

define Ul, U2 and U3 to be such that: 
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Figure 8: a, b E V, c,d E V, p,q E Wand r,s E W. 

If u E V U W then e(u, du) = [Ut : U2] and e(u, du) U e(u, du + 1) = [Ut : U3]. 

If u E vu W then e(u,du) = [U2: Ut] and e(u,du) U e(u,du + 1) = [U3: Ut]. 

See figure 8 for an illustration of these definitions. Below we show how the conditions 

of the lemma can be evaluated for the cases v E V, W E W and v E V, W E W, 
i.e., we show how to compute Mv,w = max{d(v,w)\v E v,w E W} and My,w = 

max{d(v,w)\v E V,W E W}. The computation of My,w and My,w is done in a 

similar way. After having computed these values it remains to observe that M = 

max(My,w, My,w, My,w, My,w)· 
We start with the case where v E V, w E W. The conditions for the various 

values of ~ can now be expressed as follows (Vd and W d denote the subset of points 

of V and W respectively that are at distance d from e): 

+1 if there is a pair v E Vd1 , W E Wd2 such that: Vt > W3 V V3 < Wt 

-1 if for all pairs v E Vdl, W E W d2: VI ~ W2 /\ V2 ~ WI and 

Ll = for all pairs v E Vd1
, W E Wd2 -1: VI ~ W3 /\ V3 ~ WI and 

for all pairs v E Vd1 -1 ,w E W d
2: VI < W3 /\ V3 ~ WI 

o otherwise 

The evaluation of the conditions for ~ = -1 is easy now. For the first condition, for 

example, we just have to compute MI = max{ VI\V E Vdl }, M2 = min {w2lw E Wd2
}, 

M3 = min{v2\v E Vdl} and M4 = max{wt\w E W d2}. Now the condition is equal 

to M t ~ M2 /\ M3 ~ M4 • The two other conditions for Ll = -1 can be tested 

in the same way and, since the condition for Ll = + 1 could as well be stated as: 

"NOT( for all pairs v E Vd1 , wE W d
2: Vt < W3 /\ V3 ~ Wt)", also this condition 

can be tested in a simple way. Thus the evaluation of the conditions for Ll for the 

case v E V, w E W can be done in O( n) time. 

Now consider the case v E V, wE W. This time the conditions of the lemma can be 
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expressed as: 

+1 if there is a pair v E V d1 , wE W d2 such that: 

VI > WI V (V2 < W3 A V3 < W2) 

-1 if for all pairs v E V d1 , W E W d2 : 

VI $; WI A V2;:::: W2 and 

~ = for all pairs v E V d1 , W E W d2- I : 

VI $; WI A (V2;:::: W3 V V3;:::: W2) and 

for all pairs V E Vd1 - 1 , W E Wd
2 : 

VI $; WI A (V2;:::: W3 V V3;:::: W2) 

o otherwise 

The first condition for ~ = -1 can be checked in the same way as above in linear 

time. The two other conditions for ~ = -1 and the one for ~ = +1 are again 
similar, so we will restrict ourselves to the evaluation of the condition for .6 = +1. 
This condition is equal to "(there is a pair V E Vd1,w E Wd2 : VI > WI) or (there 

is a pair V E V d1 , W E W
d
2 : V2 < W3 A V3 < W2)". The first part is again easy to 

check, so it remains to evaluate the second part: 

Now associate with each V E V d1 a point v· = (V2' V3) in the plane and similarly 

with each W E Wd
2 a point w· = (W3,W2). Call the resulting planar point sets v· 

and W·. Then, according to (2), we have to look for the existence of a pair v·, w· 

such that v· is dominated by w·. Using a scanline approach, this is easily tested: 

move the scanline from left to right over the plane and keep track of the lowest point 

in v· encountered so far; if a point in W· is encountered that lies above this point 

then we have found a dominance pair. H the points in v· and W· are sorted on 

their first coordinates then this takes linear time. 

So we need a sorted list of the V2 and W3 values. Suppose that the cut segment 

e is vertical. Observe (see Figure 4) that the V2 and W3 values, which are endpoints 

of e(v,dv ) and e(w,dw + 1), always coincide with the y-coordinate of some vertex 
of P. Moreover this vertex can be determined during the computation of e(v, dv ) 

and e( w, dw + 1). After presorting the vertices of the polygon once, we can maintain 
a sorted list of the vertices during the recursive calls without significant overhead. 

This way it is possible to obtain a sorted list of the V2 and W3 values in linear time. 

Details are left to the reader. 

Following the above approach leads to f(n) = O(n) in (1), giving the following 

result: 

Theorem 5 The rectilinear link diameter of a rectilinear polygon on n vertices with

out holes can be computed in O( n log n) time. 
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4.2 Computing an approximation of the diameter 

Sometimes it may be sufficient to have a close approximation of the diameter instead 

of the exact diameter. Below it is shown that if we are willing to accept a small loss in 

accuracy a considerable gain in efficiency can be made: a simple recursive algorithm 

is given that computes an approximation D of the diameter, with ID-Dia(P)1 ~ 3, 
in linear time. To this end we introduce an approximate distance function d': 

d'(x,y) = min{length('1r)I'1r = h·· ·ldl connects x and y, h and ldl are vertical} 

Note that 

d(x,y) ~ d'(x,y) ~ d(x,y) + 2 and 
d(x, e) < d'(x, e) ~ d(x, e) + 1 for a horizontal cut segment e 

if no two horizontal edges on the same line are at distance 1 from each other. This 
degeneracy can be avoided by a minor transformation of the polygon, which moves 

the troublesome edges slightly. H we have for each edge a sorted list of the visible 

vertices available (which can be obtained in linear time by Lemma 1), this transfor

mation can be performed in linear time. 

Procedure MAXDIST takes as input a polygon P, a horizontal edge e of P whose 
two endpoints are convex vertices of P and a sub segment s of e. It computes an 

approximation D of Dia(P). MAXDIST works as follows. Imagine moving e into 

P until it hits a vertex. Now e cuts off a rectangle from P. Call the remaining 
polygon(s) P' (and P") and the edge(s) that touches the rectangle e' (e"); see the 

figures in the detailed description given below. Obviously, either there are two points 

x, yEP' at distance Dia(P) from each other, or one of the points lies on e. To be 

able to handle the latter case, we let MAXDIST compute, besides D, the value 

M = max{d'(x,s)lx E P}, where d'(x,s) = min{d'(x,y)ly E s}. The reason for 

the the introduction of s is clear from, e.g., case (iii): to be able to compute the 

maximum distance to e, we need the maximum distance to a subsegment of e', not 
to e' itself. The algorithm distinguishes five cases according to the type of the first 
vertex encountered when e is moved upward. Note that the transformation of the 

polygon as described above ensures that no two cases occur simultaneously. In the 

algorithm, s' (s") denotes the (orthogonal) projection of s onto e' (e"). 

procedure MAX D I ST( P: polygon , e:edge of P, s:subsegment of e, var M, D:integer); 

case (i) ife=s 

then M := 1 ; D := 3 

else M := 3 ; D := 3; 
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case (ii) 

pI 

e
l 

e 

case (iii) 

pI 

e l 

e 

e 

case (iv) 

pI 

e l 

ell 

pit 

case (v) 

pI pit 

e I e It 

e 

end MAXDISTj 

MAXDIST(P' e' s' M' D') , " , , 
M '-M" .- , 
D:= max(D',M)j 

if s' n e' = 0 

then MAXDIST(P',e',e',M',D') j M:= M' + 2 
else MAXDIST(P',e',s'ne',M',D') j M:= M'j 

D:= max(D',M)j 

MAXDIST(P' e' s' M' D')' , " , , 
MAXDIST(P" e" e" M" D")' , , , , , 
M:= max(M',M" + 2)j 

D '- max(D' D" M M' + M" - 2)' .- '" , 

if s' n e' = 0 
then MAXDIST(P',e',e',M',D') j Ml := M' + 2 

else MAXDIST(P',e',s' n e',M',D') j Ml := M'j 
if s" n e" = 0 

then MAXDIST(P",e",e",M",D") j M2 := M" + 2 

else MAXDIST(P", e", s" n e", M", D") j M2 := M"j 

M:= max(MbM2)j 

D '- max(D' D" M M' + M" - 1)' .- '" , 

Theorem 6 An approximation D of the rectilinear link diameter of a rectilinear 

polygon on n vertices without holes, where ID - Dia(P)1 ~ 3, can be computed in 

O(n) time. 

Proof: Procedure MAXDIST given above clearly works in linear time if we can 

decide in constant time which of the five cases occurs and determine the edges that 

playa role in that case. Using the sorted list of visible vertices for the two edges 

that are adjacent to e, which can be obtained for every edge in linear time as a 

preprocessing step (Lemma 1), this can indeed be done in constant time. 
We will prove the correctness of the algorithm by induction on n, the number 

of vertices of P. (Observe that n is even and ~ 4.) n = 4 (case (i)) is clearly 
handled correctly so suppose n > 4. The crucial observation here is that although 

an approximation of the diameter is computed, the value of M will be exact. This 
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ensures that there will be no accumulation of errors in the recursive procedure. If 

we also keep in mind that M is the maximum approximate distance from any point 

in P to s, i.e., we only consider paths that leave s vertically, then it is easy to prove 

that the algorithm handles the four possible cases for n > 4 (note that these are 

indeed all possible cases, since the two endpoints of e are convex vertices) correctly. 

case (ii): This a special case of (iv) (namely with p II = 0). 

case (iii): If s' n e' = 0 then any path from a point in P' must make two more turns 

after crossing e' to reach s since the last segment of the path must be vertical, so 

M ~ M' + 2. On the other hand, any path that reaches e' can be extended to reach 

s with two extra links, so M :5 M' + 2. Hence, M = M' + 2. 

Now suppose s' n e' =F 0 and consider a shortest path 1C' = It ... 1m from x E P' 

to s with 11 and 1m vertical. Obviously if 1m crosses s' n e' then the length of the 

subpath 1C" to s' is equal to the length of 1C'. If not (1m has its upper endpoint on 

or below s') we can - without changing the length of 1C' - move 1m such that the 

line containing 1m crosses s' n e' and then move Im-I upward until 1m crosses s' n e'. 

Hence d' ( x, s') :5 d' ( x, s). d' ( x, s') ~ d' (x, s) follows directly from the fact that the 

last segment of any path to s' should be vertical and can be extended to reach s. 

Thus M = max{d'(x,s)lx E P} = max{d'(x,s')lx E P'} = M'. 
To prove that D is a correct approximation of Dia(P), we note that by induction 

ID' - max{d(x, y)lx, y E P'}I :5 3. Furthermore 1M - max{d(x, y)lx E e, y E P'}I :5 
2, since we have: 

M - max{d'(x,s)lx E P'} 
< max{d'(x,y)lx E P',y E s} 

< max{d'(x,y)lx E P',y E e} 
< max{d(x,y)lx E P',y E e} + 2 and 

M - max{d'(x,s)lx E P'} 

> max{d(x,s)lx E P'} 
> max{d(x,y)lx E P',y E e}-l. 

Consequently, I max(D',M)-max{d(x,y)lx,y E P}I = I max(D', M)-Dia(P)1 :5 3. 

case (iv): We only prove that D is an approximation of the diameter with an error 

of at most 3. The proof that M is computed correctly uses the same arguments as 

in case (iii). Again by induction we have ID' - max{d(x, y)lx, y E P'}I :5 3 and 

ID" - max{d(x,y)lx,y E PII}I :5 3. 1M - max{d(x,y)lx E P,y E e}1 :5 2 is proved 

as in (iii), so it remains to prove that 

I(M' + Mil - 2) - maxi d(x, y)lx E P', y E PII} I :5 3. 

This follows from 

max{d(x, y)lx E P', y E PII} = maxi d(x, e')lx E P'} + maxi d(e', y)ly E PII} +.6, 
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and the fact that 

~ E {-1,0,+1}, 
max{d(x,e')lx E P'} ~ max{d(x,s')lx E P'} -1 > M' - 3, 

max{d(x, e')lx E P'} ::::; max{d'(x, e')lx E P'} ::::; M', 
max{d(e',y)ly E PII} = max{d(ell,Y)IY E PII} > Mil -1 and 
max{d(e',y)ly E PII}::::; Mil. 

We can conclude that D is indeed an approximation of the diameter with an error 

of at most three. 

case (v): This is an easy generalization of case (iii). o 

5 Concluding Remarks 

In this paper we have studied the concept of rectilinear link distance in a simple 

rectilinear polygon without holes. Two problems concerning this new notion were 

treated. Firstly, a data structure was devised with which a shortest path between 

two query points could be computed in time O(log n + I) (I being the length of the 

path). It uses O(nlog n) storage. If both query points are vertices of the polygon 

then a shortest path can even be found in time 0(1 + I). The paths found by the 
query algorithm were also proved to be optimal in the L1-metric. Secondly, it was 
shown tha.t the diameter of a rectilinear polygon in the link distance metric can be 
computed in time O( n log n) and approximated (with an error of at most three) in 

linear time. 

The solutions to both problems make use of a rectilinear version of Chazelle's 

polygon cutting theorem, which is also presented in this paper. It states that any 

simple rectilinear polygon without holes (or having 1 holes) can be cut into two 
subpolygons by a (or::::; 1 + 1) segment(s) such that the weights of the resulting 
polygons are ::::; ~ of the weight of the original polygon, which is optimal. Here the 
weight of a polygon is the sum of the weights of its vertices. To find this cut segment 
takes only linear time (or O( n log n) in case there are holes). 

Some open problems concerning rectilinear link distance remain. First of all, 

the results of this paper are not (proved to be) optimal and might be improved. 

Furthermore the computation of the rectilinear link centre of a polygon is of interest. 

An interesting thing to note here is that the rectilinear link centre, opposed to the 
'ordinary' link centre (see [10)), is not necessarily connected. (A counterexample 
is left to the interested rea.der.) Finally, all problems could also be studied in the 
(much more difficult) case of polygons containing holes or in the three or multi 
dimensional case. 
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