

On rectilinear link distance

Citation for published version (APA):
Berg, de, M. T. (1989). On rectilinear link distance. (Universiteit Utrecht. UU-CS, Department of Computer
Science; Vol. 8913). Utrecht University.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/36d949c4-9045-4374-8593-6cb828125d8f

On Rectilinear Link Distance

Mark de Berg

RUU-CS-89-13

May 1989

RiJksuniversiteit Utrecht

Vakgroep informatica

Padualaan 14 3584 CH Utrecht
Cent.. aches: Post,," 80.089, 3508 TB Utrecht

TeJefoon 030-531454

The Netherlands

On Rectilinear Link Distance

Mark de Berg

RUU-CS-89-13

May 1989

Rijksuniversiteit Utrecht

Vakgroep informatica

Padualaan 14 3584 CH Utrecht
Corr. adrea: POitbus 80.089, 3508 TB Utrecht

Telefoon 030-531454

The Netherlands

On Rectilinear Link Distance

Mark de Berg

Technical Report RUU-CS-89-13
Ma.y 1989

Department of Computer Science
University of Utrecht

P.O.Box 80.089
3508 TB Utrecht

the Netherlands

On Rectilinear Link Distance

Mark de Berg*

Abstract

Given a simple polygon P without holes all of whose edges are axis-parallel,

a rectilinear path in P is a path that consists of axis-parallel segments only

and does not cross any edge of P. The length of such a path is defined as the
number of segments it consists of and the rectilinear link distance between

two points in P is defined as the length of the shortest path connecting the
two points.

We devise a data structure usiag O(nlogn) storage such that given any
two query points 8 and t in P, we can efficiently compute a shortest path from

8 to t. For the case where both query points are vertices of P the query time

is 0(1 + I), where 1 is the length of a shortest path. If the query points are

arbitrary points inside P then the query time becomes o (log n + I). The path

that is found is not only optimal in the rectilinear link metric, it is shown to

be optimal in the LI-metric as well.

As a second problem we compute the diameter of a rectilinear polygon P.

The diameter of P is the maximum distance between any two points in P. It

is shown that the exact diameter can be computed in time O(n log n) and an
approximation with an error of at most three in O(n) time.

1 Introduction

In a simple polygon P the link distance between two points is defined as the minimum

number of line segments inside P needed to connect the two points, not crossing

any edge of the polygon ([17]). The introduction of this metric is motivated by the

fact that often, e.g. in motion planning or broadcasting problems, it is relatively

expensive to take a turn. Recently problems concerning link distance have gained a

lot of attention. The problems of finding furthest neighbours for points in P and of

computing the diameter of P have been studied by Suri ([17)) and Ke ([8)). Lenhart

et al. ([10)) were the first to study the link centre problem: compute the set of

points in P whose link distance to their furthest neighbour is minimal. They gave

an O(n2) algorithm. The problem of computing the link centre in time O(nlogn),

*Department of Computer Science, University of Utrecht, P.O. Box 80.089, 3508 TB Utrecht,
The Netherlands. Supported by the Dutch Organisation for Scientific Research (N.W.O.).

1

as posed in [13], has been solved independently by Djidjev, Lingas and Sack ([5])

and Ke ([8]).

In this paper the axis-parallel version of link distance is studied in which paths

consist of axis-parallel line segments, a realistic restriction in some motion planning

problems. Such paths have already been studied, e.g. in [4, 9, 14, 15], where shortest
rectilinear paths in the LI-metric are sought. Instead, we are interested in shortest

rectilinear paths in the link distance metric. We will restrict ourselves in this paper
to paths inside rectilinear polygons (i.e., polygons having all edges axis-parallel)

without holes. (See Sack ([15]) for a general study of rectilinear polygons.)

Definition 1 Let P be a simple rectilinear polygon. A (rectilinear) path 7r (in P)

is an ordered set {It, 12, ••• , Id } of axis-parallel line segments (inside P) such that

the beginpoint of every Ii (1 < i ~ d) coincides with the endpoint of li-l and no Ii

(1 ~ i ~ d) crosses an edge of P. The length of the path, denoted as length(7r), is

the number of segments it consists of.

If {II, 12 , ••• , Id } is the ordered set of segments of a path 7r, then we write 7r =
It 12 •• ·Id•

Definition 2 Let sand t be two points in a simple rectilinear polygon P. The

rectilinear link distance between sand t, denoted d(s, t), is defined as: d(s, t) =
min{/ength(7r)I7r is a path in P connecting sand t}.

Two problems concerning rectilinear link distance in simple rectilinear polygons

(without holes) are studied: the Query Problem and the Diameter Problem. The
Query Problem asks to store a polygon P such that, given two query points s and t

in P (the source and the target), a shortest path between s and t can be computed

efficiently. The Diameter Problem asks to compute the diameter of P, defined as

Dia(P) = max{d(s, t)ls, t E Pl.

The sequel of this paper is organised as follows.

In section 2 Chazelle's polygon cutting theorem ([2]) is adapted to rectilinear

polygons. Let P be a rectilinear polygon on n vertices VI,···, V n , each assigned

a real positive weight C(Vi), without holes. It is shown that P can be cut with a
segment lying totally inside P into two subpolygons both of total weight :::; ~C(P),
where C(P) is the total weight of P. Moreover, the cut segment can be found
in linear time. Both the Query Problem and the Diameter Problem are solved

by a divide-and-conquer approach making use of this Rectilinear Polygon Cutting

Theorem.

In section 3 the Query Problem is considered. A structure is devised that uses

O(n log n) storage in which a shortest path between two query points can be found

in time O(log n + I), where 1 is the length of a shortest path. If the query points

are vertices of the polygon then a shortest path can be found in time 0(1 + 1). It
is shown that the path that is found by our algorithm is not only optimal in the

rectilinear link metric, but also in the LI-metric.

2

In section 4 it is shown how the diameter of a rectilinear polygon can be computed

in time O(n log n) with a divide-and-conquer algorithm. Furthermore we give a

simple recursive algorithm that computes an approximation D of the diameter with

ID - Dia(P)1 ::; 3 in linear time.

Finally, in section 5, we briefly summarize our results and indicate directions for
further research.

2 The Rectilinear Polygon Cutting Theorem

In this section a rectilinear version of Chazelle's Polygon Cutting Theorem ([2]) is

presented. Chazelle's result can be stated as follows:

Theorem 1 ([2]) Let P be a simple polygon on n vertices, each assigned a weight

E {O, 1}, and let C (P) be the total weight of the vertices. Then a diagonal between

two vertices of P and lying totally inside P exists that cuts P into two polygons of

weight::; jC(P). This diagonal can be computed in time O(n), assuming a sorted

list along some axis of the vertices is given.

In this theorem it is assumed that the weights of the vertices incident upon the

diagonal are set to zero in the resulting polygons; otherwise 2 should be added to

the term jC(P).

To prove his theorem, Chazelle first determines a vertical segment that cuts P

into two polygons of weight ::; ~C(P) and then finds the desired diagonal. It would

seem that, using the method to find the vertical segment, we can always find a

vertical segment in our rectilinear polygon that cuts P into two polygons of weight

::; jC(P). In finding the vertical segment, however, Chazelle assumes that no two

vertices lie on the same vertical line. We cannot make this assumption without loss

of generality, since we are dealing with rectilinear polygons and we have to extend

the proof to cases where there are more vertices lying on the same vertical line.

Before we state our theorem we introduce some notation. In the remainder of

this section, the vertices VI, ••• , vn of a rectilinear polygon P are always numbered

in counterclockwise order with VI being the lowest of all leftmost vertices; c(Vi) will
be the real positive weight of vertex Vi and C(P) = Ei=1 C(Vi) is the weight of P.
An axis-parallel segment is called a cut segment (of P) if it connects two edges of P

and lies entirely inside P.

Theorem 2 Let P be a rectilinear polygon having n vertices without holes. Then a

cut segment exists that cuts P into two polygons having weight::; ~C(P)I. Moreover,

this segment can be chosen such that it is incident upon at least one vertex.

Proof: Following Chazelle's proof, we move a vertical cut segment through the

polygon, hoping that one moment it will meet the requirements. Because we must

1 As Chazelle, we assume that of the vertices incident upon the cut segments get weight zero; if

not 2max{c(vi)ll ~ i ~ n} should be added to the term iC(P).

3

(i) (i i) (iii)
s'

s sIt

Figure 1: The three cases to consider when moving 8.

also consider more vertices lying on the same vertical line (as we already noted, this

degeneracy must explicitly be dealt with since the edges of the polygon as well as

the cut segment are axis-parallel) this will not always be the case, but if not then

we can show that a horizontal cut segment exists with the desired property.

A cut segment s connecting edges ViVi+1 and VjVj+1 (j > i) cuts P into two

polygons P; and P; (the parts of Plying resp. to the left and to the right of the

segment 8 directed from ViVi+1 to VjVj+1), having weights C(P;) ~ c(Vi+1)+' • • +c(Vj)

and C(pn < C(P) - C(P;). Here inequality holds when 8 is incident upon one

or more of the vertices Vi, Vi+l, Vj or Vj+l whose weight(s) is (are) then set to zero.

We start with s = VIVm and thus C(P;) = 0 and C(P;) = C(P) - c(vt} - C(V2),

and begin moving ~ to the right. We continue moving s in a way to be described

below. When we reach a dead end then C(P;) = O. Along the way C(P;) decreases

monotonously, hopefully by not too great amounts so that it will attain a value

~ ~C(P). Since we will make sure that always C(P;) ~ ~C(P), we are done when

C(P;) < ~C(P).
There are three cases to consider when moving s (see Figure 1). We can always

assume that C(P;) > ~C(P) and thus C(pn < ~C(P), otherwise we would already
have stopped.

In case (i) we have the following possibilitit::s: Let 8' be the cut segment that is
incident upon Vi and 8" the cut segment just after passing Vi (refer to Figure 1 (i)).

H C(p.~,) > ~C(p) we just continue moving 8 to the right, if ~C(p) ~ C(p;,,) ~
~C(P), then clearly 8" cuts P as desired and if C(P;,,) < ~C(P) then 8' meets the

requirements: C(p.~) = C(pn < ~C(P) and C(P;,) = C(P;,,) < ~C(P). (This

assumes that c(Vi) is set to zero in p.~ and, since Vi vanishes in p.~, c(Vi+1) is set to

zero in P;'.)
The second case is in fact the reverse of the third, so we will concentrate on the

third case. Here there are two possibilities to consider (refer to Figure 1 (iii)). H

there is a C(P~) ~ ~C(P), then either 8j, the segment that cuts off p.~, cuts P

4

in the desired way or (when C(P:.) > ¥C(P» we can proceed into P: .. If there , ... ,
is no such P:., then there is no vertical cut segment meeting the requirements. In ,
this case, however, there is a horizontal cut segment that cuts P as desired: since

C(P~) < lC(P) for all 1 ~ j ~ m, there is an i such that 0 < E~ ... 1 C(P~) -

Ei=i+l C(P~) < ~C(P). From this it follows that the horizontal segment s· that

cuts P into two polygons Pi., containing P:
1

, ••• ,P~ plus the part of Pi above s·,
and P:., containing P~+l' ... ' P:

m
plus the part of Pi below s·, has the desired

property:

i

C(P;.) < E C(P~) + C(pn
i=1

< lC(p) + E C(P~) + C(P;)
i=i+l

< lC(p) + C(P) - C(P;.) + C(pn ==>

C(P;.) < ~C(P) + ~C(P;)

< ~C(P)

and
m

C(P:.) < E C(P:.) + C(P;) ,
i=i+l

i

< EC(p.~) + C(p.l)
i=1

< ~C(P)

We can conclude that we will always find a cut segment that cuts P into two poly

gons of weight ~ ~C(P).

It remains to show that the segments can be chosen to be incident upon at least
one vertex. The segments added to handle holes clearly satisfy this condition, so we
are left with the cut segment of a hole-free polygon. Suppose tha.t we have found
a cut segment s that is not incident upon a vertex and assume w.l.o.g. that s is
vertical. Now move s to the right until it hits a vertex. If this vertex is an endpoint

of one of the segments that are connected by 8, then we are ready. Othenriee we
are more or less in the situation of Figure 1 (iii) and, if moving 8 to the left doesn't

help either, we can show in the same way that a horizontal cut segment exists. This
segment 8· is incident upon a vertex (see Figure 1 (iii». Details are left to the
reader. []

Remark 1: Observe that this theorem can easily be extended to handle to polygons

5

Figure 2: A polygon that cannot be cut such that the weight of the two resulting

polygons is < ~C(P). Take C(PI) = C(P2) = C(P3) = C(P4) = ~C(P).

containing holes. If P contains k holes then we can find I < k + 1 cut segments

that cut P into two subpolygons of weight :5 ~C(P), as follows: We first remove the
holes by adding vertical edges from the rightmost topmost vertex of every hole to

the opposite edge and duplicating these edges as to obtain a polygon without holes.

This can be done in O(n log n) time by a simple sweep line algorithm. Then we can

apply the above procedure to find one cut segment. The other cut segments are

the extra edges of whose duplicates only one is traversed when walking around one

of the resulting polygons. Note that each of these extra cut segments destroys one

hole, so the total number of remaining holes in the two new polygons is k + 1 - I.

Remark 2: The bound of ~C(P) in the above theorem is sharp. Figure 2 shows a
polygon that cannot be cut any better. If, however, in the situations of Figure l(ii)

and (iii) we always have m = 2, then a bound of jC(P) can be obtained.

From Theorem 2 it follows that in order to compute a cut segment as desired, it

suffices to look at the vertex-edge visible pairs of the polygon (a vertex-edge visible

pair is a vertex and an edge that can be connected by an axis-parallel line segment

that lies entirely inside the polygon, i.e., a cut segment). The next lemma shows
that these pairs (whose total number is O(n), even in a non-rectilinear polygon, see
[19]) can be computed in linear time if the polygon does not contain holes.

Lemma 1 All vertex-edge visible pairs of a simple rectilinear polygon P on n ver

tices without holes can be computed in time O(n).

Proof: The computation of the pairs will consist of three steps.

First P is partitioned into a number of histograms. A histogram, sometimes

called a Manhattan polygon, is a rectilinear polygon H that has one distinguished

edge, the base of H, whose length is equal to the sum of the lengths of all other
edges parallel to this base. In [12] it is shown that every rectilinear polygon without

holes can be partitioned into a number of histograms HI, ... ,Hm in time O(n) such

6

Figure 3: The partitioning of a rectilinear polygon into histograms. The non-bold
segments are entrances.

that the total number of vertices of these histograms is O(n). This is done by

choosing an arbitrary edge e and computing the maximal histogram H lying within
P with e as base. The set of edges that partition P, HIST(P, e), is recursively

defined as follows: H H = P then HIST(P, e) = 0. Otherwise let H, PI, ... , He
be the set of polygons into which P is partitioned by H and let ei be the segment
where H touches Pi (we call this segment the entrance between H and Pi), then

HIST(P, e) = Ul~i~A:({ei}UHIST(Pi, ei)). In Figure 3 an example of a partitioning
IS given.

When we have partitioned P into histograms HI, ... , Hm as described above the

vertex-edge visible pairs in each Hi are determined. The vertices that see the base

of Hi are exactly the reflex vertices of Hi. The other visible pairs, that can be

connected by a segment parallel to the base, can be computed as follows. Assume
w.l.o.g. that the base is horizontal. Now start at the left endpoint of the base
and walk upwardly along the boundary of Hi, i.e., continue walking as long as the
edges are directed upward or to the right. Meanwhile push the encountered vertices

on a stack. Then start walking again, this time as long as the edges are directed

downward or to the left. At every encountered vertex Vi, we pop all vertices from the

stack that have y-coordinate greater than the y-coordinate of Vi. All these vertices

see Vi-I Vi (except if they are the left endpoint of a rightward directed edge; this,

however, can easily be tested) and Vi sees vi-I Vi' where Vi is the vertex popped last.
Then start walking up again, pushing the encountered vertices on the stack, etc. It
is not hard to prove that this way the correct pairs are found in time O(~vertices of
Hi). Notice that vertices that see some edge are found ordered along this edge.

Now that we have computed the visible pairs in every Hi, we only have to find the

right visible edges for vertices for which we have computed that they see an edge that

is an entrance. Since we have for each entrance ei,i between histograms Hi and Hi

for both histograms a sorted list of the vertices that see ei,i' these edges can easily

be found by walking simultaneously along both lists; the edge of Hi visible from

some vertex VA: in Hi is namely equal to VIVI+1 (or VI-l VI, depending on whether the
list is ordered clockwise or counterclockwise), where VI is the vertex in the list of Hi
that has been encountered just before VA: was encountered. Note that the situation

7

that the newly found edge is also an entrance can only occur once for every vertex,

so this does not impose any significant problems. Computing the edges visible from

the vertices that see an entrance thus takes O(n) time in total.

We see that that every step of the algorithm takes only linear time, which proves

the lemma. D

Theorem 3 Let P be a simple rectilinear polygon on n vertices without holes. Then

a cut segment that cuts P into two polygons having weight ~ ~C(P) can be computed

in time O(n).

Proof: From the above lemma it follows that the O(n) segments that are sufficient

to consider can be computed in linear time. Furthermore a segment can be tested

in constant time after O(n) preprocessing (see [2]). The time bound follows. D

3 The Query Problem

The problem that we will consider is stated as follows: Store a simple rectilinear

polygon P on n vertices (without holes) in a data structure such that, given two

query points s and t in P (the source and the target), a rectilinear link distance

shortest path between s and t can be computed efficiently. First both source and

target are assumed to be vertices of the polygon. Then the solution is extended to
handle arbitrary points inside the polygon as query points. Finally we show that the

path that is computed by our algorithm not only has a minimal number of segments,

but that it is optimal in the LI-metric as well.

3.1 Vertices as query points

Because we do not want to use quadratic storage, we cannot store for each vertex

information about the direction in which to leave to every other vertex. Therefore
we take another approach. Let e be a segment that cuts P into two subpolygons PI

and P2 • For all source-destination pairs with the source lying in another subpolygon
than the target, the path must cross e and thus the direction in which to leave is

towards e. For all other pairs we have reduced the problem to finding a shortest

path in a subpolygon of P that can be treated in the same way. The Rectilinear

Polygon Cutting Theorem of the previous section guarantees us (assign each vertex

weight 1) that e can be chosen such that this resulting polygon has ~ ~n + 2 vertices,

n being the number of vertices of P. Thus P is stored in a binary tree T that can

recursively be described as follows: If P is a rectangle then T is a leaf. Otherwise,

let e be a segment that cuts P into two polygons PI and P2 both having ~ ~n + 2
vertices. Now T consists of one subtree representing PI and one subtree representing

8

P 2 • Thus each node 6 in T represents a subpolygon P 6 of P and P 6 is cut into P'.on(6)

and P r•on(6) by a segment e6. Since e6 cuts P6 in a balanced way, the depth of the

tree is O(log n). The search path in T of a vertex v naturally follows those nodes

6 where v E P 6. Thus it goes to the left at nodes 6 such that v E P'.on(6) and to

the right if v E Pr•on(6). The path ends when a leaf is reached or when v is incident

upon e6.

Given a source s and a destination t, we proceed as follows. Let I. and It be
the leaves (or nodes) where the search paths to s resp. tend. H both paths end

in the same leaf or in the same node then a shortest path from s to t is trivial to

compute. Otherwise let 6* be the node where the paths split, i.e., the lowest node

6 such that both s and t are in P6 • Observe that in fact 6* is the lowest common

ancestor of I. and It. Now we know that any path from s to t must cross e6 •• Hence,

we store at every node 6 of T for every vertex of P6 information about a shortest

path to e6. Before we give a lemma that enables us to compute a shortest path

from s to t from shortest paths from s and t to e6., we need some notation. For a

cut segment e and a vertex v of P, let e(v, d) be the part of e that can be reached
from v with a path 7r of length d such that the last segment of 7r is perpendicular to

e. Furthermore let the (rectilinear link) distance from a vertex v to a segment e be

defined as d(v,e) = min{d(v,q)lq E e}, the distance from v to (one of) the closest

point(s) on e. Now the lemma that we need can be stated.

Lemma 2 Let e cut P into two subpolygons such that sand t lie in different sub

polygons and let d(s, e) = d. and d(t, e) = dt. Then we have

d(s,t) = d.+dt+~

where ~ = 0 if e(s, d.) n e(t,dt) = 0 A

{

-1 if e(s, d.) n e(t, dt) =F 0

(e(s, d. + 1) n e(t, dt) =F 0 V e(s, d.) n e(t, dt + 1) =F 0)

+ 1 otherwise

Proof: H e(s, d.) n e(t,dt) =F 0, then paths from s and t of lengths d. and dt
respectively exist that reach e at the same place. Thus the two segments incident
upon e now form one segment and the resulting path has length d. + dt -1. Clearly a
path that is shorter cannot exist; it would contradict either d(s, e) = d. or d(t, e) =
dt·

H e(s, d.)ne(t, dt) = 0, but e(s, d.+1)ne(t, dt) =F 0 (or e(s, d.)ne(t, dt+1) =F 0),

then we can take paths of lengths d. + 1 and dt (or d. and dt + 1) that meet on e

resulting in a path of length (d. + 1) + dt - 1 = d. + dt. Again it is easily seen that

no shorter path can exist under the given conditions.

Finally, if neither of the conditions for ~ = + 1 and ~ = 0 is true, then we can
always take paths of lengths d. and dt and join them by a segment on e, thus giving
a path of length d. + dt + 1. Since the conditions for ~ = +1 and ~ = 0 are not

9

e

Figure 4: el is the part of e that can be reached when H is entered at point 1, e2 is

the part that can be reached when H is entered a point 2. ei is w-oriented.

only sufficient, but also necessary, a shorter path cannot exist. o

So what we now want is to compute the part of a cut segment reachable by a

shortest (or almost shortest) path from a vertex in one of the subpolygons, i.e., we

want to compute the reachable part of an edge of the subpolygon. We are thus left

with the following problem. Given a polygon P and an edge e of P, compute e(v, dv)

and e(v, dv + 1) (where dv = d(v, e)) for every vertex v of P. To this end we prove

that for any vertex v at distance dv > 2 from e a vertex Vnezt at distance dv - 1

from e (and at distance 2 or 1 from v) exists such that any point on e(v, dv) can be

(optimally) reached via Vnezt.

Lemma 3 Let v be a vertex of P with d(v, e) = dv > 2. Then a vertex Vnezt of P

exists such that d(vnezt' e) = dvnezt = dv -l and e(vnezt,dvnezt) = e(v,dv). Moreover,

every point on e(v, dv) can be reached from v by a path 7r = It 12 ... Idv with Vnezt E 12•

Proof: Again we will use the partitioning of P into histograms (with e as start

ing edge) as described in the proof of Lemma 1. Recall that H was the maximal

histogram lying within P with e as base and that PI' ... ' Pic were the induced sub
polygons. The edges ei where Pi touched H were called entrances and they were

the starting edges for the partitioning of the Pi'S into histograms. Observe that

d(v,e) = 1 for v E H and d(v,e) = d(v,ei) + 1 for v E Pi (and v rt H).

Let v E Pi with dv > 2 and consider a path from v to e. This path must cross

ei. Note that it is always profitable to cross ei as close (in the ordinary, Euclidean,

sense) to e as possible. The part of e that can be reached is namely equal to the

segment running from ei to the edge of H visible from the point on ei where His

entered and, since H is a histogram with base e, these segments grow as this point

comes closer to e (refer to Figure 4). Therefore we define an entrance ei = ww' to

histogram H with base e to be w-oriented if w is closer to ethan w'. If w' is closer

then ei is w'-oriented.

10

u
----~~-----------------u'

11 z
w

v --....

w' z'

Figure 5: Illustration of the proof of Lemma 3.

Let {HI! ... , Hm} be the set of histograms that results from the partitioning
scheme described above. (With a slight abuse of notation, we will still use H to
denote the unique histogram with e as base, when convenient.) Suppose v E Hi

where v is not incident upon the (w-oriented) base ei = ww' of Hi. Let ei be

the entrance to histogram Hj with base ej = uu' and suppose w.l.o.g. that ej is

horizontal with U z < W z ~ u~ (refer to Figure 5). By definition of orientation we

should, if ej is u-oriented, cross ej as close to u as possible. Hence the path from v

should go through w and w is a choice for Vnezt that satifies the demands. On the

other hand, if ej is u'-oriented then z (where zz' is the edge of Hj that is visible
from v inside HiuHj , see Figure 5) is a choice for Vnezt meeting the requirements. 0

The lemma above readily gives us a way to compute e(v, du) for all vertices v of P

in an efficient way. First the vertex-edge visible pairs that we need are determined.

These are vertex-edge visible pairs inside some Hi U H j for vertices of Hi, with Hi

and Hj as in the proof of the lemma. Using the same approach as for determining all

vertex-edge visible pairs in P (see the proof of Lemma 1) this can be done in O(n)

time. (In fact the pairs we need were found as intermediate results in the algorithm

given there.) Once this has been done we proceed as follows. For vertices v with
du = 1 (thus v E H), we trivially have e(v,du) = e(v,l) = [vy : vy] (or [vz : vz] if e
is horizontal). For vertices v E Hi at distance 2 from e, e(v,2) can easily be found
using the edge of H that is visible from v inside Hi U H. e (v, 2) is then equal to
the segment from the entrance between Hi and H to the edge of H visible from v.

For vertices at distance > 2 we can apply the lemma above. Since the orientation

of the entrances can easily be determined during the process in constant time per

entrance and the visible edges that are needed are precomputed, the vertex Vnezt

can be found in 0(1) time per vertex. Thus the segments e(v,du) for all vertices

can be computed in linear time in total.
Once this has been done, the computation of e(v, du + 1) (which is useless if

11

e(v, dv + 1) ~ e(v, dv), as is clear from Lemma 2) is not hard, as the following lemma

shows.

Lemma 4 For every vertex v of P with dv ~ 2, either there exists a vertex Vne~t2

such that e(v,dv + 1) = e(vne~t2,dvnest2) or e(v,dv + 1) ~ e(v,dv).

Proof: By definition, e(v, d) is the part of e that can be reached with a path

7r = 1112 ••• Id such that Id is perpendicular to e. Hence the difference between the
lengths of two paths to e that leave a vertex v in the same direction, i.e. both

having a horizontal first segment or both having a vertical first segment, will always

be even. Because for a vertex v E Hi the first segment of a shortest path to e leaves

in the direction of the base ei of Hi, the first segment of any path of length dv + 1

must be parallel to ei. We let this first segment be the largest segment inside Hi -directed as u'u, where ei = uu' is u-oriented. This way we might be able to reach

a larger part of e. H this first segment has length zero, then e(v,dv + 1) ~ e(v,dv).

Otherwise let ww' be the edge of Hj where the first segment ends. Then, assum

ing w is closer to ei than w', w is clearly a vertex such that e(v, dv +1) = e(w, dw). D

Using vertex-edge visible pairs, these vertices Vne~t2 (as well as e(v, 2) for vertices

v with dv = 1) can be computed in linear time. (H e(v,dv + 1) ~ e(v,dv), we let

Vne~t2 = v. The reader easily verifies that this does not influence the correctness of

the algorithm.) Now we are ready to complete the description of our data structure

for the Query Problem inside a polygon. We have:

• A binary tree T representing P as follows: H P is a rectangle then T is a leaf.

Otherwise, let eroot(T) be a segment cutting P into two subpolygons PI and P2 ,

both having ~ ~n+2 vertices. Now T consists of two subtrees, representing PI

and P2 respectively. At every node a E T we store for every vertex v of P6 (the

subpolygon represented by a) a record containing the following information:

dv = d(v,e6), e6(v,dv) and e6(v,dv + 1) as well as pointers to (the records

stored at a for) Vne~t and Vne~t2 (assuming dv > 2).

• For every vertex Vi E P there is a pointer PT Ri to the node or leaf ai E T
where the search path to Vi ends and an array ANCi. ANCi[lev] points to the
record that is stored for Vi at the ancestor of ai at levellev.

A shortest path from s = Vi to t = Vj is now found as follows:

1. Follow PT Ri and PT Rj to obtain ai and aj. H ai = aj, then a shortest path

from Vi to Vj is trivial to compute. Otherwise compute a*, the lowest common

ancestor of ai and a j.

2. Follow ANCi[lev(a*)] to obtain dv; = d(vi,e6*), e6*(vi,dv;) and e6*(vi,dv; + 1).
Do the same for Vj. Compute ~ according to Lemma 2 and decide whether

the next vertex on the path from Vi (Vj) to e6* is (Vi)ne~t or (Vi)ne~t2 ((Vj)next

12

or (V;)next2)' From this vertex on, follow Vnext pointers towards e60 until a

vertex at distance 2 from e60 is reached. (The details for the case dv; :5 2 are

straightforward.)

3. Glue the paths together.

This leads to:

Lemma:; A data structure exists in which the rectilinear link distance between two

query vertices of a rectilinear polygon P on n vertices can be computed in time 0(1)

and a shortest path in time 0(1 + I), where I is the length of the path. The structure

uses O(n log n) storage and can be built in time O(n log n).

Proof: The correctness of the algorithm follows immediatly from Lemma's 2, 3

and 4. (See section 3.3 for more details about the glueing operation.)

The query time is clear if 6*, the lowest common ancestor of 6i and 6; can be

computed in constant time. After O(n) preprocessing, this is indeed possible ([7]).

(Note that every time a Vnext pointer is followed, we find a segment of the path.)

We will now prove the building time, from which the bound on the storage
readily follows. Consider the following recursive building algorithm. Compute a

cut segment e = eroot(T) of P that cuts P into PI and P2, with IPII, IP2 1 ~ ~n + 2.

According to Theorem 3 this takes O(n) time. Then compute e(vi' dv;), e(vi, dv; + 1)

and the vertices (Vi)next and (Vi)next2 for every vertex Vi of PI and P2• As was shown

above, this can also be done in linear time. Store this information and store a

pointer to it in ANCi[/evcurr], where levcurr denotes the level of T we are currently
considering.

Next, build the two subtrees corresponding to PI and P2 • Now T(n), the building

time so far, is equal to T(IPII) + T(IP2 1) + O(n) and, having IPII, IP2 1 < ~n + 2, this
is O(n log n). The nodes 6i where the search paths to Vi ends and thus the pointers

PT ~ are easily computed during the building process. As we already noted, the

additional information that is needed for the lowest common ancestor algorithm

takes only linear time to compute. 0

Remark: The O(l)-algorithm of [7] for finding lowest common ancestors runs on

a random access machine ([1]). On a pointer machine ([16, 18]) finding lowest
common ancestors requires O(log log n) time per query (see [7]). This bound has
been achieved ([11]) and, hence, our algorithm for computing shortest paths runs in

time O(log log n + I) on a pointer machine. (Notice that the arrays ANCi that are
used have length O(log n) and can thus be replaced by search trees with O(log log n)

search time.)

3.2 Arbitrary points as query points

In this section it is shown how the data structure devised for handling vertices as

query points, as described above, can also be used to solve the general problem where
the query points are not confined to the vertices of P, but are arbitrary points in P.

13

Consider the subdivision of P induced by the cut segments once more. First it

has to be determined which regions (rectangles) contain the two query points, that

is, the leaves "Y. and"Yt where the paths to s and t end. Using the optimal point

location method of Edelsbrunner et al. ([6]), this can be done in time O(log n)
with a structure that uses O(n) storage. Observe that, since we can compute the

vertex-edge visisble pairs in linear time, we can turn P into a monotone subdivision

in linear time and, hence, the point location structure can be built in linear time.
Again a shortest path is trivial to compute if the two query points s and t are in

the same rectangle. If they are not, then the path between s and t again crosses e6.,

with 8* the lowest common ancestor of "Y. and "Yt. It is even true that the three key

lemmas to solve the problem, Lemma 2, 3 and 4, are still valid. The vertices Vnezt

and Vnext2 of Lemmas 3 and 4 respectively, that can be precomputed if the query

points are vertices, now have to be determined as a part of the query. Thus we need

a data structure to solve the following problem: given an axis-parallel query ray r
starting at an arbitrary point q in some rectilinear polygon, compute the first edge

that is hit by r. This polygon is Hi U Hj , according to the proofs of the considered

lemmas, with q E Hi, q ¢ Hj and Hj adjacent to Hi and closer to e (see Figure 5).

Note that Hi and Hj as well as the direction of r can again be determined using

point location techniques. Thus at every node in T, we need such a ray-shooting

structure for every histogram Hi. Now the required edge can be determined with

two ray-shooting queries: first a query in Hi, then - if the first edge hit is Hi'S base

- a query from the intersection point of rwith the base in the same direction in Hj.

We could use the structure devised by Chazelle and Guibas ([3]) for the ray-shooting

problem, but this would be a rather brute approach to our much more restricted

problem. Moreover, the preprocessing of their structure is O(n log n) which would
result in a preprocessing time of O(n log2 n) for our total structure. Fortunately we

can obtain a solution to our problem that requires only linear preprocessing.

Let H be a histogram with horizontal base b. A query with a vertical ray is easily

solved by a binary search on the x-coordinates of the vertices of H. Queries with a

horizontal ray are solved using a locus approach: from every reflex vertex of H we

add a horizontal edge to the edge that is (horizontally) visible from this vertex. Note

that these extra edges can be computed in linear time by Lemma 1. Now the answer
to a query with a horizontal ray are contant in each resulting region (depending on
whether the ray is directed to the right or to the left, of course). Observe that the
subdivision is monotone and, hence, the region which contains the starting point of

the query ray can be determined in O(1og n) time with a structure using O(n) space

and preprocessing ([6]). Thus the extra storage and preprocessing that is needed

at some node 8 is O(IP61), since E IHil = O(IP6 1) for the partitioning of P6 into

histograms Hi as used. Because the query time of our ray-shooting structure is

O(log n), the total query time becomes O(log n + I). We conclude:

Lemma 6 A data structure exists in which the rectilinear link distance between two

query points in a rectilinear polygon can be computed in time O(log n) and a shortest

14

path between the two points in time O(1og n + I), where I is the length of the path.

The structure uses O(n log n) storage and can be built in time O(n log n).

3.3 Obtaining L1-optimal paths

We will now investigate the relation between the rectilinear link distance metric

and the L1-metric. In the L1-metric, the length of a line segment pq is equal to

Ip,x - q,xl + Ipy- qyl· The length of a path 11" in the L1-metric, denoted as lengthL1 (11"),
is naturally defined as the sum of the lengths of the segments 11" consists of. Hence,

the length of a rectilinear path in the L1-metric is equal to its Euclidean length. We

will show that the paths computed by the query algorithm of the previous section

are not only optimal in the rectilinear link distance metric, but also in the L1-metric,

provided that the glueing operation is performed correctly. Notice that optimality

in one of the metrics does not automatically imply optimality in the other metric

and that the fact that between any two points in a polygon there is a path that is

optimal in both metrics is no longer true if we allow the polygon to have holes.

To obtain Ll-optimal paths we have to perform the glueing operation in a special

way. Let e be the cut segment through which the path between the two query points s

and t should pass. (If there is no such segment, i.e., s and t are in the same rectangle,

then a rectilinear link optimal path is evidently Ll-optimal.) Assume that d(s, e)
and d(t, e) are both ~ 2. (The case where one or both of these distances are < 2 is

left as an exercise to the reader.) If the paths from s and t to e are denoted by 11". and

1I"t respectively, we have the following information available for the glueing operation:

a vertex v. of P on the one but last segment of 11"., a subsegment e(s) = [b. : e.] of

e reachable by 11". and a point Vt and a segment e(t) = [bt : et] defined analogously.
Assume w.l.o.g. that e is vertical and that e. ~ et. The paths are now glued together

as follows: If e(s) n e(t) = 0 then let 11". reach e at b., let 1I"t reach e at et and add

the segment on e from b. to et to the path (Figure 6(i)). If e(s) n e(t) #- 0 then

connect 11". and 1I"t at point max(b., bt) on e if both paths 'come from below', i.e.,

(v.)y ~ b. and (Vt)y ~ bt (Figure 6(ii)) and connect the paths at point min(et, e.)
otherwise (Figure 6(iii)). To prove that our algorithm with this glueing operation

yields a path that is optimal in the Ll metric, we use the following:

Lemma 7 Let 11" and 11"' be two paths from x to y that intersect only in x and y.

Suppose 11" contains no two consecutive convex vertices (not counting x and y), where

a vertex of 11" is convex if its interior angle in R, the region enclosed by 11" and 11"', is

convex. Then lengthL1 (1I") ~ lengthL1 (1I"').

The proof of this lemma is straightforward and therefore omitted.

Lemma 8 The query algorithm given in the previous section with the glueing oper

ation as described above yields a path that is not only optimal in the rectilinear link

distance metric, but also in the Ll metric.

15

(iii)

Figure 6: The three different cases for the glueing operation.

Proof: Let 7r be the path found by the algorithm and let 7r' be an Ll-optimal path.
Let x and y be two consecutive intersection points between 7r and 7r' and denote the
portions of 7r and 7r' between x and y by p resp. p'. We will show that p contains no

two consecutive convex vertices (in R, the region enclosed by p and p'). By Lemma

7, this will prove the lemma.

Let x, rl ... rk, y and x, r~ ... rf, y be the enumeration of the vertices on p and

p'respectively. Suppose for a contradiction that p contains two consecutive convex

vertices ri, ri+!o Recall that every segment of a path to the cut segment e crosses

an entrance (except the last segment, which is involved in the glueing operation).

Let riri+! cross the w-oriented entrance ww', then it follows from the construction
of 7r that riri+! crosses ww' as close to w as possible, i.e. there must be an edge of

P on the same side of riri+! as w. Since ri+-;r"i+2 is directed as ~ (because ww' is
w-oriented) and ri+l is convex (by assumption), this edge lies in R. This contradicts

the fact that p and p' are valid non-intersecting paths in P. (Here we use the fact

that P is hole-free.) See Figure 7.

For the segments involved in the glueing operation, a similar argument can be

given. (Note that the extra segment added in Figure 6 is always incident upon

exactly one convex vertex.) 0

Summarizing the results of this section, we have:

Theorem 4 A data structure exists in which the rectilinear link distance between

two query points in a rectilinear polygon can be computed in time O(log n). A path

between the two points that is optimal in both the rectilinear link metric and the L1-

metric can be found in time O(1og n + I), where I is the (rectilinear link) length of

the path. The structure uses O(n log n) storage and can be built in time O(n log n).
If the query points are vertices of the polygon then the query times become O(1) and

0(1 + I) respectively.

16

y

---... ri+l

...... ~_-f---W'

1·····_···· edge of P

n x __ -

Figure 7: p cannot contain two convex vertices.

4 The Diameter Problem

As a second problem concerning rectilinear link distance in rectilinear polygons, we

treat the diameter problem. Thus we want to compute the diameter of a rectilinear

polygon P on n vertices, without holes, in the rectilinear link distance metric. This

is denoted Dia(P) and is defined as Dia(P) = maxi d(p, q) Ip, q E P}. It is readily

seen that there will always be a pair of vertices at this maximal distance. It is

even true that there will always be a pair of convex vertices at distance Dia(P), so

that we can restrict ourselves to the convex vertices of P. (This is also true in the

'ordinary' link distance metric, see [10].)

4.1 Computing the exact diameter

The exact diameter of a rectilinear polygon P is computed with the divide-and

conquer algorithm given below:

1. H P is a rectangle, then Dia(P) = 2, otherwise go to step 2.

2. Compute a cut segment e of P that cuts P into two subpolygons PI and P2,

such that IPII, IP2 1 :::; ~n + 2.

3. Compute Dia(Pt) and Dia(P2) recursively.

4. Compute M = max{d(v, w)lv E PI, wE P2 }.

5. Let Dia(P) := max(Dia(PI),Dia(P2),M).

The correctness of this algorithm is obvious. By the Rectilinear Polygon Cutting

Theorem, step 2 can be performed in O(n) time. Now if T(n) is the time that is

spent for the total algorithm and f(n) the time for step 4, then for T(n) the following

recurrence holds:

T(n) = T(m) + T(n - m) + f(n) + O(n),

17

1 3
-n - 2 < m < -n + 2 (1)
4 --4

In the remainder of this section it is shown how M = max{ d(v, w) Iv E PI, w E P2 }

can be computed in linear time, leading according to (1) to an overall running time

of O(nlogn).

Let P be a rectilinear polygon on n vertices and let e cut P into two subpolygons

PI and P2 and let dl = max{d(v,e)lv E Pd and d2 = max{d(w,e)lw E P2 }.

Furthermore define Pl = {u is a vertex of Pild(u, e) = d} (i = 1,2) to be subset of
vertices of Pi at distance d from e. From Lemma 2 it immediatly follows that M =

dl + d2 + A, with A E {+1, 0, -1}. E.g., when there are vertices v E pt1, W E pt2

with (e(v,d,,)Ue(v,d,,+l» n e(w,dw) = 0 and e(v,d,,) n (e(w, dw)Ue(w, dw+1» =

0, then d(v, w) = d" + dw + 1 = dl + d2 + 1 and M = dl + d2 + 1 if and only if there

is such a pair. To be more precise, we have:

Lemma 9 M = dl + d2 + A

where A =

+ 1 if there is a pair v E pt1, W E pt2 such that:

(e(v,d,,)Ue(v,d,,+l» n e(w,dw) =0 1\

e(v,d,,) n (e(w,dw) U e(w,dw + 1» = 0
-1 if for all pairs v E 111

, wE 112 :
e(v,d,,) n e(w,dw) =I- 0 and

for all pairs v E pf1, wE 112
-

1
:

(e(v,d,,)Ue(v,d,,+l» n e(w,dw) =1-0 V

e(v,d,,) n (e(w,dw) U e(w,dw + 1» =I- 0 and
for all pairs v E pf1- l

, W E pt2 :
(e(v,d,,) U e(v,d" + 1» n e(w,dw) -:F 0 V

e(v,d,,) n (e(w,dw) U e(w,dw + 1» =I- 0
o otherwise

Note that all segments needed for the evaluation of A can be computed in linear

time according to the previous section. Before we describe how the conditions that

determine the value of A can be evaluated efficiently, it is convenient to introduce

some more notation. Suppose e(u, du) = [Xl: X2] and e(u, du)Ue(u, du+1) = [Yl : Y2].

If du > 1 (we omit the details for the case u E H as they are straightforward) then
paths from u to e of length du as well as paths of length du + 1 must enter H, the

maximal histogram inside PI (or P2 , depending on where u lies), through the same

entrance and, hence, we either have Xl = Yl < X2 ::; Y2, or X2 = Y2 > Xl ~ Yl·

Therefore we split the set of (convex) vertices of PI and of P2 into subsets V and

V and subsets W and W respectively, according to the distinguished cases. Thus

u E V iff u is a vertex of PI such that Xl = Yl < X2 < Y2 and u E V iff u is a

vertex of PI such that X2 = Y2 > Xl ~ Yl; the vertices of P2 are similarly split into
W and W. In other words, u E V U W iff a path from u enters H in an upward
(or rightward, if the base of H is horizontal) direction. Now for a vertex u of P, we

define Ul, U2 and U3 to be such that:

18

a b
e P r q

C3 ql= S2=S3

PI al=c 2 P 2

f-.1. q2= S I

r 1 a2

a3 = C I q3
S

C d

Figure 8: a, b E V, c,d E V, p,q E Wand r,s E W.

If u E V U W then e(u, du) = [Ut : U2] and e(u, du) U e(u, du + 1) = [Ut : U3].

If u E vu W then e(u,du) = [U2: Ut] and e(u,du) U e(u,du + 1) = [U3: Ut].

See figure 8 for an illustration of these definitions. Below we show how the conditions

of the lemma can be evaluated for the cases v E V, W E W and v E V, W E W,
i.e., we show how to compute Mv,w = max{d(v,w)\v E v,w E W} and My,w =

max{d(v,w)\v E V,W E W}. The computation of My,w and My,w is done in a

similar way. After having computed these values it remains to observe that M =

max(My,w, My,w, My,w, My,w)·
We start with the case where v E V, w E W. The conditions for the various

values of ~ can now be expressed as follows (Vd and W d denote the subset of points

of V and W respectively that are at distance d from e):

+1 if there is a pair v E Vd1 , W E Wd2 such that: Vt > W3 V V3 < Wt

-1 if for all pairs v E Vdl, W E W d2: VI ~ W2 /\ V2 ~ WI and

Ll = for all pairs v E Vd1
, W E Wd2 -1: VI ~ W3 /\ V3 ~ WI and

for all pairs v E Vd1 -1 ,w E W d
2: VI < W3 /\ V3 ~ WI

o otherwise

The evaluation of the conditions for ~ = -1 is easy now. For the first condition, for

example, we just have to compute MI = max{ VI\V E Vdl }, M2 = min {w2lw E Wd2
},

M3 = min{v2\v E Vdl} and M4 = max{wt\w E W d2}. Now the condition is equal

to M t ~ M2 /\ M3 ~ M4 • The two other conditions for Ll = -1 can be tested

in the same way and, since the condition for Ll = + 1 could as well be stated as:

"NOT(for all pairs v E Vd1 , wE W d
2: Vt < W3 /\ V3 ~ Wt)", also this condition

can be tested in a simple way. Thus the evaluation of the conditions for Ll for the

case v E V, w E W can be done in O(n) time.

Now consider the case v E V, wE W. This time the conditions of the lemma can be

19

expressed as:

+1 if there is a pair v E V d1 , wE W d2 such that:

VI > WI V (V2 < W3 A V3 < W2)

-1 if for all pairs v E V d1 , W E W d2 :

VI $; WI A V2;:::: W2 and

~ = for all pairs v E V d1 , W E W d2- I :

VI $; WI A (V2;:::: W3 V V3;:::: W2) and

for all pairs V E Vd1 - 1 , W E Wd
2 :

VI $; WI A (V2;:::: W3 V V3;:::: W2)

o otherwise

The first condition for ~ = -1 can be checked in the same way as above in linear

time. The two other conditions for ~ = -1 and the one for ~ = +1 are again
similar, so we will restrict ourselves to the evaluation of the condition for .6 = +1.
This condition is equal to "(there is a pair V E Vd1,w E Wd2 : VI > WI) or (there

is a pair V E V d1 , W E W
d
2 : V2 < W3 A V3 < W2)". The first part is again easy to

check, so it remains to evaluate the second part:

Now associate with each V E V d1 a point v· = (V2' V3) in the plane and similarly

with each W E Wd
2 a point w· = (W3,W2). Call the resulting planar point sets v·

and W·. Then, according to (2), we have to look for the existence of a pair v·, w·

such that v· is dominated by w·. Using a scanline approach, this is easily tested:

move the scanline from left to right over the plane and keep track of the lowest point

in v· encountered so far; if a point in W· is encountered that lies above this point

then we have found a dominance pair. H the points in v· and W· are sorted on

their first coordinates then this takes linear time.

So we need a sorted list of the V2 and W3 values. Suppose that the cut segment

e is vertical. Observe (see Figure 4) that the V2 and W3 values, which are endpoints

of e(v,dv) and e(w,dw + 1), always coincide with the y-coordinate of some vertex
of P. Moreover this vertex can be determined during the computation of e(v, dv)

and e(w, dw + 1). After presorting the vertices of the polygon once, we can maintain
a sorted list of the vertices during the recursive calls without significant overhead.

This way it is possible to obtain a sorted list of the V2 and W3 values in linear time.

Details are left to the reader.

Following the above approach leads to f(n) = O(n) in (1), giving the following

result:

Theorem 5 The rectilinear link diameter of a rectilinear polygon on n vertices with

out holes can be computed in O(n log n) time.

20

4.2 Computing an approximation of the diameter

Sometimes it may be sufficient to have a close approximation of the diameter instead

of the exact diameter. Below it is shown that if we are willing to accept a small loss in

accuracy a considerable gain in efficiency can be made: a simple recursive algorithm

is given that computes an approximation D of the diameter, with ID-Dia(P)1 ~ 3,
in linear time. To this end we introduce an approximate distance function d':

d'(x,y) = min{length('1r)I'1r = h·· ·ldl connects x and y, h and ldl are vertical}

Note that

d(x,y) ~ d'(x,y) ~ d(x,y) + 2 and
d(x, e) < d'(x, e) ~ d(x, e) + 1 for a horizontal cut segment e

if no two horizontal edges on the same line are at distance 1 from each other. This
degeneracy can be avoided by a minor transformation of the polygon, which moves

the troublesome edges slightly. H we have for each edge a sorted list of the visible

vertices available (which can be obtained in linear time by Lemma 1), this transfor

mation can be performed in linear time.

Procedure MAXDIST takes as input a polygon P, a horizontal edge e of P whose
two endpoints are convex vertices of P and a sub segment s of e. It computes an

approximation D of Dia(P). MAXDIST works as follows. Imagine moving e into

P until it hits a vertex. Now e cuts off a rectangle from P. Call the remaining
polygon(s) P' (and P") and the edge(s) that touches the rectangle e' (e"); see the

figures in the detailed description given below. Obviously, either there are two points

x, yEP' at distance Dia(P) from each other, or one of the points lies on e. To be

able to handle the latter case, we let MAXDIST compute, besides D, the value

M = max{d'(x,s)lx E P}, where d'(x,s) = min{d'(x,y)ly E s}. The reason for

the the introduction of s is clear from, e.g., case (iii): to be able to compute the

maximum distance to e, we need the maximum distance to a subsegment of e', not
to e' itself. The algorithm distinguishes five cases according to the type of the first
vertex encountered when e is moved upward. Note that the transformation of the

polygon as described above ensures that no two cases occur simultaneously. In the

algorithm, s' (s") denotes the (orthogonal) projection of s onto e' (e").

procedure MAX D I ST(P: polygon , e:edge of P, s:subsegment of e, var M, D:integer);

case (i) ife=s

then M := 1 ; D := 3

else M := 3 ; D := 3;

21

case (ii)

pI

e
l

e

case (iii)

pI

e l

e

e

case (iv)

pI

e l

ell

pit

case (v)

pI pit

e I e It

e

end MAXDISTj

MAXDIST(P' e' s' M' D') , " , ,
M '-M" .- ,
D:= max(D',M)j

if s' n e' = 0

then MAXDIST(P',e',e',M',D') j M:= M' + 2
else MAXDIST(P',e',s'ne',M',D') j M:= M'j

D:= max(D',M)j

MAXDIST(P' e' s' M' D')' , " , ,
MAXDIST(P" e" e" M" D")' , , , , ,
M:= max(M',M" + 2)j

D '- max(D' D" M M' + M" - 2)' .- '" ,

if s' n e' = 0
then MAXDIST(P',e',e',M',D') j Ml := M' + 2

else MAXDIST(P',e',s' n e',M',D') j Ml := M'j
if s" n e" = 0

then MAXDIST(P",e",e",M",D") j M2 := M" + 2

else MAXDIST(P", e", s" n e", M", D") j M2 := M"j

M:= max(MbM2)j

D '- max(D' D" M M' + M" - 1)' .- '" ,

Theorem 6 An approximation D of the rectilinear link diameter of a rectilinear

polygon on n vertices without holes, where ID - Dia(P)1 ~ 3, can be computed in

O(n) time.

Proof: Procedure MAXDIST given above clearly works in linear time if we can

decide in constant time which of the five cases occurs and determine the edges that

playa role in that case. Using the sorted list of visible vertices for the two edges

that are adjacent to e, which can be obtained for every edge in linear time as a

preprocessing step (Lemma 1), this can indeed be done in constant time.
We will prove the correctness of the algorithm by induction on n, the number

of vertices of P. (Observe that n is even and ~ 4.) n = 4 (case (i)) is clearly
handled correctly so suppose n > 4. The crucial observation here is that although

an approximation of the diameter is computed, the value of M will be exact. This

22

ensures that there will be no accumulation of errors in the recursive procedure. If

we also keep in mind that M is the maximum approximate distance from any point

in P to s, i.e., we only consider paths that leave s vertically, then it is easy to prove

that the algorithm handles the four possible cases for n > 4 (note that these are

indeed all possible cases, since the two endpoints of e are convex vertices) correctly.

case (ii): This a special case of (iv) (namely with p II = 0).

case (iii): If s' n e' = 0 then any path from a point in P' must make two more turns

after crossing e' to reach s since the last segment of the path must be vertical, so

M ~ M' + 2. On the other hand, any path that reaches e' can be extended to reach

s with two extra links, so M :5 M' + 2. Hence, M = M' + 2.

Now suppose s' n e' =F 0 and consider a shortest path 1C' = It ... 1m from x E P'

to s with 11 and 1m vertical. Obviously if 1m crosses s' n e' then the length of the

subpath 1C" to s' is equal to the length of 1C'. If not (1m has its upper endpoint on

or below s') we can - without changing the length of 1C' - move 1m such that the

line containing 1m crosses s' n e' and then move Im-I upward until 1m crosses s' n e'.

Hence d' (x, s') :5 d' (x, s). d' (x, s') ~ d' (x, s) follows directly from the fact that the

last segment of any path to s' should be vertical and can be extended to reach s.

Thus M = max{d'(x,s)lx E P} = max{d'(x,s')lx E P'} = M'.
To prove that D is a correct approximation of Dia(P), we note that by induction

ID' - max{d(x, y)lx, y E P'}I :5 3. Furthermore 1M - max{d(x, y)lx E e, y E P'}I :5
2, since we have:

M - max{d'(x,s)lx E P'}
< max{d'(x,y)lx E P',y E s}

< max{d'(x,y)lx E P',y E e}
< max{d(x,y)lx E P',y E e} + 2 and

M - max{d'(x,s)lx E P'}

> max{d(x,s)lx E P'}
> max{d(x,y)lx E P',y E e}-l.

Consequently, I max(D',M)-max{d(x,y)lx,y E P}I = I max(D', M)-Dia(P)1 :5 3.

case (iv): We only prove that D is an approximation of the diameter with an error

of at most 3. The proof that M is computed correctly uses the same arguments as

in case (iii). Again by induction we have ID' - max{d(x, y)lx, y E P'}I :5 3 and

ID" - max{d(x,y)lx,y E PII}I :5 3. 1M - max{d(x,y)lx E P,y E e}1 :5 2 is proved

as in (iii), so it remains to prove that

I(M' + Mil - 2) - maxi d(x, y)lx E P', y E PII} I :5 3.

This follows from

max{d(x, y)lx E P', y E PII} = maxi d(x, e')lx E P'} + maxi d(e', y)ly E PII} +.6,

23

and the fact that

~ E {-1,0,+1},
max{d(x,e')lx E P'} ~ max{d(x,s')lx E P'} -1 > M' - 3,

max{d(x, e')lx E P'} ::::; max{d'(x, e')lx E P'} ::::; M',
max{d(e',y)ly E PII} = max{d(ell,Y)IY E PII} > Mil -1 and
max{d(e',y)ly E PII}::::; Mil.

We can conclude that D is indeed an approximation of the diameter with an error

of at most three.

case (v): This is an easy generalization of case (iii). o

5 Concluding Remarks

In this paper we have studied the concept of rectilinear link distance in a simple

rectilinear polygon without holes. Two problems concerning this new notion were

treated. Firstly, a data structure was devised with which a shortest path between

two query points could be computed in time O(log n + I) (I being the length of the

path). It uses O(nlog n) storage. If both query points are vertices of the polygon

then a shortest path can even be found in time 0(1 + I). The paths found by the
query algorithm were also proved to be optimal in the L1-metric. Secondly, it was
shown tha.t the diameter of a rectilinear polygon in the link distance metric can be
computed in time O(n log n) and approximated (with an error of at most three) in

linear time.

The solutions to both problems make use of a rectilinear version of Chazelle's

polygon cutting theorem, which is also presented in this paper. It states that any

simple rectilinear polygon without holes (or having 1 holes) can be cut into two
subpolygons by a (or::::; 1 + 1) segment(s) such that the weights of the resulting
polygons are ::::; ~ of the weight of the original polygon, which is optimal. Here the
weight of a polygon is the sum of the weights of its vertices. To find this cut segment
takes only linear time (or O(n log n) in case there are holes).

Some open problems concerning rectilinear link distance remain. First of all,

the results of this paper are not (proved to be) optimal and might be improved.

Furthermore the computation of the rectilinear link centre of a polygon is of interest.

An interesting thing to note here is that the rectilinear link centre, opposed to the
'ordinary' link centre (see [10)), is not necessarily connected. (A counterexample
is left to the interested rea.der.) Finally, all problems could also be studied in the
(much more difficult) case of polygons containing holes or in the three or multi
dimensional case.

24

Acknowledgement

I would like to thank Mark OVerDl&l'S for his many helpful comments, which improved
the contents of this paper considerably.

References

[1] Aho, A.V., J.E. Hopcroft and J.D. Ullma.u, The De6ign and Analysis of Com

puter Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] Chazelle, B., A Theorem on Polygon Cutting with Applications, Proc. 29rd

Annual IEEE Symp. on Foundations of Computer Science, 1982, pp. 339-349.

[3] Chazelle, B., and L.J. Guibas, Visibility and Intersection Problems in Plane
Geometry, Proc. 1st Annual ACM Symp. on Computational Geometry, 1985,

pp. 135-146.

[4] Clarkson, K.L., S. Kapoor and P.M. Vaidya, Rectilinear Shortest Pa.ths through
Polygonal Obstacles in O(n(logn)2) time, Proc. 3rd Annual ACM Symp. on

Computational Geometry, 1987, pp. 251-257.

[5] Djidjev, H.N., A. Lingas and J. Sack, An O(n log n) Algorithm for Computing
the Link Centre in a Simple Polygon, Proc. 6th Annual Symp. on Theoretical

Aspects of Computer Science (STACS '89), 1989, pp. 96-107.

[6] Edelsbrunner, H., L.J. Guibas and J. Stolfi, Optimal point location in a mono

tone subdivision, SIAM J. Comput. 15(1985), pp. 317-340.

[7] Harel, D. and R.E. Tarjan, Fast algorithms for finding nearest common ances
tors, SIAM J. Comput. 13(1984), pp. 338-355.

[8] Ke, Y., An Efficient Algorithm for Link Distance Problems, Proc. 5th Annual

ACM Symp. on Computational Geometry, 1989, to appear.

[9] Larson, R.C., and V.O. Li, Finding minimum rectilinear paths in presence of
barriers, Networks 11(1981), pp. 285-304.

[10] Lenhart, W., R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint,
S. Whitesides and C. Yap, Computing the Link Centre of a Simple Polygon,
Proc. 9rd Annual ACM Symp. on Computational Geometry, 1987, pp. 1-10.

[11] van Leeuwen, J., Finding lowest common ancestors in less than logarithmic
time, unpublished report, 1976.

[12] Levcopoulos, C., Heuristics for Minimum Decompositions of Polygons,
Linkoping Studies in Science and Technology. Dissertations. No. 155, 1987.

25

