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Abstract

This article shows that, apart from the environment-related externalities linked to waste manage-
ment and recycling, which are reported in the previous literature, the technological aspect of recycling
is an additional source of externalities. The main focus of the paper is the impact that the presence
of recycling has on the technological profile of the economy and the implications of this change for the
dynamic paths of the key economic variables. We show that disregarding (or not completely internal-
izing) the technological effect of recycling can result in dramatic consequences regarding the dynamic
evolution of production and consumption decisions. A generalization of the traditional concept of
production function is proposed: the Production and Recycling Function (PRF). This function pro-
vides an integrated view of conventional production and recycling and represents the production set
of the economy when a recycling technology is available.
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1 Introduction

The increasing amount of waste has become an urgent problem in many countries (see, for example,
Quadrio-Curzio et. al. (1994), Beede and Bloom (1995), Porter (2002) or Fullerton and Kinnaman
(2002). The most traditional way to handle waste is landfill disposal® but the increasing cost of adequate
landfill space, as well as other environmental reasons, has triggered the search for alternative treatment
methods and, specifically, for ways to re-use and recycle waste (see Anderson, 1987; Dinan, 1993; Highfill
et. al., 1994; Huhtala, 1997, 1999).

Waste management, and specifically the possibility of recycling residuals, is subject to important eco-
nomic externalities. On the one hand, Weinstein and Zeckhauser (1974), Schulze (1974) Lusky (1975a,b),
Hoel (1978), Dinan (1993), Huhtala (1994) remark that the use of recycled materials enables scarce re-
sources to be saved. On the other hand, as discussed in Smith (1972), Lund (1990), Sigman (1995), Ready
and Ready (1995), Highfill and McAsey (1997), Huhtala (1997, 1999), recycling is a waste treatment tech-
nique which is more environmentally friendly than other alternatives, such as landfilling or incineration,
and allows landfill space to be saved. Insofar as recycling generates some social (environmental) benefits
that do not accrue to any specific individual, there is some externality which leads to the amount of
recycling in the competitive market not being efficient. As a consequence, some kind of policy instrument
is typically needed to restore efficiency (see Dinan(1993), Sigman (1995), Fullerton and Kinnaman (1995,
1996), Palmer and Walls (1997) Shinkuma (2003)).

This article stresses a further aspect of recycling: it can be regarded as a particular type of productive
technology having an important effect on the production set of the economy. Insofar as the markets
related to waste management and recycled products are not perfect, the technological impact of recycling
is likely not to be fully internalized. As a consequence, we obtain a further source of economic externalities
specifically linked to the technological nature of recycling, that add to the conventional environmental
externalities reported in the literature. To distinguish them from the latter, we label the former as
”technological externalities”.

Recycling becomes more technically difficult to perform (and hence less effective in practice) if waste
contains a complicated composition of different materials instead of being made of a simple material. As

a matter of fact, separation and sorting of waste is one of the main tasks involved in recycling activities,

1Some recent papers have addressed landfill management from an economic point of view. See, for example, Ready and

Ready (1995), Gaudet et al. (2001), André and Cerdd (2001b, 2003), Ley et.al (2002).



and so waste mixing becomes a key practical difficulty for the profitability and viability of recycling.
Henceforth, in order to determine the optimal use of a resource, it is crucial to take into account its
recycling ability and its effect on the recycling possibilities of other materials. This idea is captured in
the theoretical model presented below by specifying a recycling technology that depends on the material
composition of waste.

We can argue that the problem of waste management (and hence the use of recycling) does not begin
with the waste flow emanating from consumption, but it begins at a previous stage, when production
decisions are made. This observation has already been implicitly or explicitly taken into account by
several authors (see, for example, Dinan (1993), Pearce and Brisson (1994) Bruvoll (1998)). We can
conclude that the possibility of recycling not only changes the optimal treatment of waste, but also the
optimal production decisions. On the one hand, recycling increases the effective availability of resources.
On the other hand, it introduces a new channel for technological interaction among different productive
resources.

As shown in Beckman (1974, 1975) and Hartwick (1978a, 1978b, 1990), productive processes usually
depend on several natural resources in such a way that it is possible to choose among different resource
combinations. Hartwick (1978a) obtains some results regarding substitution among nonrenewable re-
sources. André and Cerdd (2001a) study the optimal substitution among different natural resources
whether they are renewable or nonrenewable. The present article uses a dynamic model to analyze the
optimal production and substitution among different natural (renewable and/or nonrenewable) resources
when a recycling technology is present. Interestingly, the presence of recycling involves some further
channels for technical interaction among different resources, resulting, not only in an increment in the
effective availability of the recyclable resources (which can be seen as a pure scale effect), but also in a
dramatic change concerning the dynamic properties of the optimal solution. As a consequence, disre-
garding the possibility of recycling may involve totally different dynamic patterns for the consumption
and production decisions (which we can label as technological effect).

The technological nature of recycling has been pointed out by Huhtala (1999) and Di Vita (2001)
but, to the best of our knowledge, there is not any paper that has explicitly modeled the implications of
the material composition of output (and hence, of waste) for the recycling possibilities and the resulting
interactions between conventional production and recycling.

The remainder has the following structure. In section 2 the theoretical model is presented. We are



interested in showing that, apart from the environment-related externalities linked to recycling, there are
some technological externalities that could arise even if the first ones were not present. We deliberately
construct a very simple model in order to highlight the role of the technological nature of recycling and
its interaction with the production decisions. For that purpose, we do not model other (environmental)
externalities related to waste management and recycling (that have already been studied in the literature,
as discussed above). Furthermore, we concentrate on the production decisions involving natural resources
(materials and energy) that are the inputs which are subject to the possibility of recycling. So, we take
as given the rest of the relevant inputs such as labor and capital.

Section 3, for comparison purposes, shows the main results regarding optimal output and relative use
of resources in the absence of recycling. These results are compared, in section 4, with the parallel ones
when recycling is available, so that the effect of such a technology is pointed out. We show that, even if
environmental concern is not explicitly taken into account, the simple fact that a recycling technology is
available is a source of externalities, so that the market outcome is not likely to be efficient. Specifically,
there are at least two possible market failures, one stemming from the recyclability of some resource itself,
and the other coming from the possible technical interactions among resources because of the mixing of
residuals. As a consequence, in general at least two policy instruments are needed. We mainly focus
on the different dynamic consequences of the introduction of recycling. We show that, in the solution,
the optimal output path follows a version of the Keynes-Ramsey rule where the marginal productivity
of capital is replaced by the "marginal productivity of natural capital”, that results from a weighted
sum of the marginal growth of both resources according to their weight on the aggregate technology of
the economy. The substitution between two resources depends on the difference between their marginal
growth and the flexibility of the technology. Nonrenewable resources are always used in a constant
proportion that depends on their relative weight in production and their relative scarcity. The results
involving renewable and nonrenewable resources provide some insight concerning the contribution of
recyclable resources and renewable resources for the sake of sustainability. Mainly: if production depends
on renewable and recyclable resources, the recoverability of the latter increases its effective availability
and permits a more intense use in the short term. In the long term, however, the possibility of obtaining
sustainable paths crucially depends on the extent to which production rests more and more intensively on
renewable resources, so that, from the viewpoint of sustainability, the presence of a recycling technology

is not enough by itself to compensate for the exhaustibility of non-renewable resources.



To illustrate the economic dynamic implications of recycling, section 5 offers an illustrative example,
with specific production and recycling functions, in which we show that the technological impact of
recycling can result in totally different time patterns for consumption and production decisions. Section
6 suggests a way to approach both the conventional technology and recycling technology in an integrated
framework. For that purpose, we introduce the new concept of Production and Recycling Function
(PRF), which is a generalization of the traditional production function, representing the new production
set when recycling is taken into account. This new concepts helps to complete and interpret the results
obtained in the previous sections. The main conclusions and some further research lines are given in

section 7 and all the mathematical results of the article are proved in an appendix in section 8.

2 Model and Assumptions

Assume an economy with a single consumption good, whose quantity is denoted by Y > 0, obtained from
two natural resources used as inputs in quantities X7 > 0 and X5 > 0, in agreement with the production
function Y = F(X, X3), which is assumed to be of class C?, homogeneous of degree 1, and verifying
Fi, F5 >0, Fi1, Fos <0, Fy1F5 — F122 > (0, where F; denotes the partial derivative g—;; and Fj; denotes
aXLaFX, Let us define the relative use of resources as the ratio z = §—; In order to focus our attention
on natural resources, we take as exogenously given the quantities of any other inputs, such as capital
and labor. Furthermore, a model with two resources is rich enough to address the main questions raised
in this paper. The solution provides simple and economically meaningful results that can be useful to
manage any arbitrary number of resources.

The whole output Y is consumed by a single consumer in the economy, whose preferences are rep-
resented by the utility function U(Y'), which we assume is of class C® and verifies U’ > 0, U” < 0.
X; (i = 1,2) is extracted from the available natural stock of resource i, denoted by S;. This stock
grows in accordance with its natural growth function g; (.S;) which is concave, of class C ) and verifies
gi (0) = 0. As noted for example in Smith (1968), the nonrenewable case can be seen as a particular one
with g; (S;) =0VS;.

After consumption, some waste is generated. This waste can be recycled, depending on its composi-
tion, to recover a certain amount R' of resource 1. Assume, as an example, that the model is meant to

represent the production of boxes, so the final output Y is measured in ”number of boxes”, which are

produced using both paper (X7) and plastic (X2). A recycling technology is available for paper, but not



for plastic. Then, the amount of paper that can be recovered by means of recycling should not depend
on the number of boxes (Y'), but on the amount of paper (X;) and plastic (X3) contained in the boxes.
This observation is central for the model and the results displayed in the paper and we represent it by
assuming that the output of the recycling process is given by R' = R(X1, X2), where R is a function
of class C'®), homogeneous of degree 1, and satisfying the assumptions 0 < R (X1, X») < X; (it is not
possible to recover a quantity of resource 1 equal to or larger than that employed in production) and
0 < Ry < 1 (the recovered quantity increases with X7 but the increment in R! is smaller than that
in X;). These two assumptions can be rationalized as being a direct consequence of the second law of
thermodynamics. Although the main theoretical results in this paper do not need any assumption on
the derivative Ry, we stick to the most plausible case, which is Rs < 0, and the most interesting results
arise when Ry < 0, meaning that the use of resource 2 makes waste classification more difficult, obstructs
recycling and causes the recovered quantity R' to decrease. In the example of the boxes, we can never
get more paper from recycling than the amount that was originally present as a component of the final
product. The larger the amount of plastic that is present in the residuals, the more severe the mixing of
waste and, as a consequence, the more difficult it becomes to separate and sort the paper, so recycling
becomes less effective.

The natural stock of resource 1 evolves through time according to the state equation

ds; (t)
dt

S (t) =g1(S1 (1)) — Xu (t) + R(Xy (t), X2 (2)).

Resource 2 is not recyclable?, so that S (£) = g2(Sa (t)) — X2 (t). To simplify the notation, the time
variable ¢ is omitted when no ambiguity exists.

A social planner has the objective of maximizing the consumer’s total discounted utility, so that he

2Tt is straighforward to include the possibility of recycling resource 2 by means of a function R? = T' (X1, X2). Never-

theless, this generalization adds little conceptual content and makes the mathematics much more tedious.



or she solves the problem

Max/ U(Y)e ®dt

{XI:XQ} 0
s.t.:
Y = F(X1,X9),
Sl =01(51) — X1 + R(X4, X5), (P)

Sy = ga(S2) — X,
Si(0) = 59,

© i=1,2,
Si 207

& being the time discount rate and S the initial stock of resource 4, which is exogenously given. We will
focus on interior solutions, that is, X; > 0 holding throughout the solution.

(P) is an infinite horizon, continuous time, optimal control problem with two state variables and two
control variables. Note that it resembles a neoclassical optimal economic growth model with two activity
sectors, each one exploiting a different natural resource, where the stocks of both resources play the
role of productive capital stocks, the natural growth functions g; play the role of two sector production

functions and the recycling technology plays the role of a negative externality between both sectors.

3 Model without recycling

André and Cerda (2001a) analyze a particular case of model (P) without recycling (R (X7, X2) =0). It
is useful to gather the main results in such a case as a benchmark to study the effect of recycling on the

solution. The ratio = evolves in agreement with the following differential equation?:

z

T o [91(S1) — g5(S2)] , (1)

o= %}%% being the elasticity of substitution of F' and M RTS = % the Marginal Rate of Tech-

nical Substitution between both resources. The optimal output path satisfies the following differential

equation:

% = ﬁ (€191 (S1) + £295(S2) — 6], (2)

3André and Cerd4 (2001a), Proposition 1.
4André and Cerda (2001a), Proposition 2.



where 7 (Y) is the intertemporal substitution elasticity of the utility function U, given by n(Y) =

%)z >0, and &, £, are the returns to the i-th input, given by

X, F; .
i= >0, =12 3
¢ F(Xl,XQ) (3)

Let us look at the economic interpretation of these results: according to (1), the evolution of z
is determined by an environmental component -the difference between the marginal growth of both
resources- and a technological component -the elasticity of substitution of the production function, in
such a way that x increases (decreases), or equivalently, that X7 (X2) grows faster than Xy (X1), if the
marginal growth of resource 1 is larger (smaller) than that of resource 2. In addition, the higher the
elasticity of substitution, the faster the response of z to a difference between ¢ and g5. Condition (2)
can be interpreted as a version of the Keynes-Ramsey rule of a standard neoclassical optimal economic
growth model, where &;S1 + £,55 is the stock of natural capital and &,g7 (S1) + €595 (S2) plays the role
of the marginal productivity of natural capital.’

When both resources are nonrenewable, equation (1) shows that & = 0 and z remains constant
throughout the solution and both resources are employed in a constant proportion or, equivalently, the

use of both resources increases (or decreases) at the same rate. Specifically,  is given by®

T = %A (4)

where A = %f, ;i being the costate variable associated with the stock of resource i. Note that S measures
2
the relative weight of both resources on production and A is a (relative) measure of the social valuation

of both resources, that remains constant throughout the solution. Equation (2) states that & = % <0
. . . X; X,  —&
and the assumption of constant returns to scale implies =% = ok
If resource 2 is renewable and resource 1 is nonrenewable, then (1) becomes £ = —ogh(Ss) and, if

g5(S2) > 0, then © < 0 and therefore the renewable resource tends to be more and more intensively used
with respect to the nonrenewable resource. Equation (2) becomes % = ﬁ [£295 (S2) — 8], according to
which, output increases more (or decreases less) when the marginal growth of the renewable resource is
larger and such a resource has a larger weight in the production technology, with respect to the discount

rate.

5Tn equations (1) and (2), note that, in general, o depends on z and 7 (Y) depends on Y. Nevertheless, this is not the
case for the production and utility functions which are traditionally used in economics. Typically F' and U are such that

both o and 7 are constant.
6 André and Cerd4 (2001a), Proposition 4.



4 Solution of the Model with Recycling and Economic Implica-
tions

Substituting the production function in the objective functional of problem (P), the current value Hamil-

tonian is defined as
H (S1,52, X1, X2, 1, X2) =U [F (X1, X2)] + A1 [g1 (S1) — X1 + R(X1, X2)] + A2 [g2 (S2) — X2],

where )\; is the costate variable associated with resource ¢, which can be interpreted as the social valuation
of a further unit of the stock of resource i or, equivalently, the social cost of extracting one unit of such
a resource. Finally, we can also interpret \; as a measure of scarcity of the resource ¢. Together with the

state equations, the Maximum Principle necessary conditions for an interior solution are

UF =M (1-Ry), (5)
U,FQ = X2 — M Ro, (6)

and
X =X (6—45(S)), (7)

with  lim e\ >0, Jim et (NS =0,  i=1,2

—00

In equations (5) and (6) we can see the impact of recycling on the optimal solution. Both equations
state the equality between the marginal utility and the marginal cost of using both natural resources.
The marginal utility obtained by the consumer from extracting resource ¢ (left hand side of (5) and (6))
is measured by the marginal utility of consumption times the marginal productivity of resource i. The
marginal cost of using resource 1 (right hand side of (5)) equals the social valuation of maintaining such
a resource for its future use (as measured by its shadow price A1) times (1 — Ry), that represents the
effective reduction of the stock. Recycling makes resource 1 effectively more abundant and hence its
extraction becomes less expensive from the social point of view. In a hypothetical, extreme case with
R (X1, X2) = X7, in which recycling would allow the whole amount of resource 1 to be recovered, we
have Ry = 1 and the social cost of extracting resource 1 would equal zero, meaning that a 100% effective
recycling technology is equivalent to an unbounded resource abundance. In the opposite case, when

R; =0, we obtain the same condition as in the non-recycling case, U'F} = \1.



The marginal cost of extracting resource 2 is measured as the shadow price of resource 2, A2, plus the
negative effect on the recovery of resource 1 which, in turn, equals the shadow price of resource 1 (A1)
times the marginal impact of resource 2 on the recyclability of resource 1 (Rg).

Note that, even if the beneficial environmental impacts of recycling are not explicitly modeled, the
simple fact that a recycling technology is available is likely to cause some market failures. Typically,
recycling markets are not perfect. Assume, in an extreme case, that they are nonexistent or, equivalently,
that there is no relationship between the virgin inputs market and the recycling products market, in
such a way that the resource owners and the conventional producers do not take into account that, after
consumption, the waste stream can be recycled, so their production decisions are made as if recycling did

not exist. In that case, the private optimality conditions are given by
UF, =X, i=12 (8)

where, in a competitive equilibrium, the private price for resource ¢ would equal the shadow price A;.
A social planner would be aware that the effective value of the resources is different from the market
price, and so some policy instrument should be implemented to correct the market prices Note that the
efficient solution can not be obtained, in general, with a single policy instrument and we need at least
two. Specifically, the price of resource 1 should be corrected downwards by the amount Ay Ry. This can be
done by a per-unit subsidy equal to A\; R; or, equivalently, an ad-valorem subsidy equal to R;. The price
of resource 2 should be increased by the amount —A; Ra (recall that Ry < 0), which can be performed,
for example, with a per-unit tax equal to —\; Ry or, equivalently, with an ad-valorem tax equal to +1_2R2.

Assume that the owners of resource 1 become aware of the possibility of recycling their own resource
and they implement some efficient waste collection mechanism to take advantage of this possibility or,
equivalently, some efficient secondary material market arises, so that the recyclability of resource 1 is
correctly internalized. In this case, the market outcome will guarantee the fulfillment of condition (5),
but the externality caused by the use of resource 2 on the recyclability of resource 1 still remains, so that
condition (6) is not likely to hold. Obviously, if the amount of resource 2 does not affect the recyclability
of resource 1, the latter effect does not show up, so a perfect market for the recycled material 1 is enough
to ensure overall efficiency.

In the most general case, in this setting there are at least two sources of market failure that require
two policy instruments. Note also that, given that R; and Ry are functions of X; and X5 or, more

precisely, of z (given the homogeneity assumption), so is the size of the externalities and, as far as x is

10



time-varying, the value of the required policy instruments should be also time varying. This observation
is in the same spirit as Sinclair (1992) and other authors, noting that a constant tax is not generally
effective when dealing with exhaustible resources.

Nonetheless, the main focus of the present paper is not on the specific instruments that should be
implemented to correct these externalities, but on the nature of the externalities themselves and their
economic dynamic implications. According to this aim, the rest of the paper is mainly devoted to showing
the different dynamic nature of the solution for the recycling model as compared with the situation without
recycling.

Sufficient optimality conditions for problem (P) are given in proposition 1.

Proposition 1 In an interior solution for problem (P), the Arrow sufficient conditions for global mazi-

mum hold if and only if, throughout the solution, A1, A2 > 0 holds.

Proof: See section 8.1,

In agreement with proposition 1, a solution satisfying the Maximum Principle conditions is a global
maximum for problem (P), iff A1, \a > 0. Given the assumptions on U, F and R, we obtain from (5) and

(6) that Ay > 0 trivially holds, but A > 0 requires the additional technical assumption

Iy
F: >
2+R21_R1_0, (9)

meaning that the marginal productivity of resource 2 in production is larger than its marginal negative
effect on recycling.
For being F and R homogeneous of degree 1, we are allowed to define the following functions depending

just on x:

= =r(x). (10)

F(X1,X2) (X .\ _ R(X1, Xs)
T_F(Xg’l> f(x), X,

Propositions 2 and 3 are the main results for problem (P) and state the optimal temporal evolution

of the relative use of resources and the output path.

Proposition 2 In an interior solution for problem (P), the temporal evolution of x is given by the

following differential equation:

519l (S1) — gb (S2)]. (11)

x

11



where

—SUA=r)+ ()]
c[ffrA=r)+ ffr]

G

f=f(z) ete.

Proof: See section 8.2,

Proposition 3 In an interior solution for problem (P), the temporal evolution of output is ruled by the

following differential equation:

¥ o [k (50 + bk (52) ] (13)
where
Uu'(y)y s~ f(x—r) A fd—=ry—f'(x—r)
=0 g Lo I T 14

and él + éQ =1 holds.

Proof: See section 8.3,

Equation (11) generalizes equation (1) and has a similar interpretation: throughout the solution, the
evolution of z depends on two factors: the difference between the marginal growth of both resources
and the technological coefficient 5. Such a coefficient plays a similar role to that of the elasticity of
substitution of F' in the model without recycling, i.e. a measure of technological flexibility, except for
the fact that the technology has two components in model (P): production and recycling. The complex
analytical expression of & prevents us from clearly distinguishing the role of both components. Section 6
provides a way to enlighten this interpretation.

Equation (13) is a version of the Keynes-Ramsey rule where é 151+ éQSQ plays the role of the stock of
natural capital and ¢ 191 +EQ g5 measures the marginal productivity of natural capital, in such a way that
output increases or decreases depending on the difference between the marginal productivity of natural
capital and the discount rate. The difference between (13) and (2) lies in the weight of resources on
natural capital. In (2) &; measures the participation of resource i in production. In (13) ¢, measures the
participation of resource ¢ in the aggregate technology, now including production and recycling. Section
6 provides an alternative way to interpret the coefficients in (14).

Note that recycling may produce two different effects on the solution: First, as shown in Weinstein and

Zeckhauser (1974), the recyclable resource becomes less scarce, in such a way that recycling is similar to

12



an exogenous increment of the resource stock. We label this impact as scale effect. Furthermore, recycling
changes the technological framework of the economy by altering the value of é 1 52 and &, and hence
the optimal temporal adjustment of output and resource use. We label this as technological effect. If we
think of x and Y as functions of time, the first effect is basically a parallel shift of such functions, whereas
the second effect changes their shape. If the recycling function has the linear form R (X7, X2) = 8Xq,
with 0 < § < 1, then, the only technological interaction between both resources happens by means of
the production function F', it turns out that 6 = o, 51 = ¢4, EQ = &, and only the scale effect appears.

Given that the technological effect of recycling shows up in the coefficients é 1 52 and &, from equa-
tions (11) and (13) we can conclude that this effect becomes relevant when some of the resources is
renewable. To get some further insight, let us compare now two possible situations: the first one with
two nonrenewable resources, and the second one with a renewable and a nonrenewable resource.

When both resources are nonrenewable, in agreement with equation (11), throughout the solu-

tion of (P), & = 0 holds and x remains constant. Its specific value is given in proposition 4.

Proposition 4 In an interior solution for problem (P), when both resources are nonrenewable, the op-

timal value for the ratio x can be expressed as
x = YA, (15)

A and ¥ being two coefficients that remain constant and are defined as

>

2oy X5 _ zf
XoFy — R F+ FiR B f(l—’f”)—ﬁ—f/(’f’—l’)'

’
1

A

where Fy = Fy (X1, X2) and so on.

Proof: See section 8.4 y

According to proposition 4, x comes from two factors: 1, which is a measure of the relative tech-
nological weight of both resources, and A, which is a measure of social relative cost, or equivalently, of
relative scarcity. If we compare this result with the equivalent for the nonrenewable case (4), we see

that the ratio &

& measuring the relative share of both resources in production, is replaced by the new

ratio 1, measuring the relative share of both resources in the new aggregate technology (encompassing
conventional production and recycling).
=)

From (13) we know that (as in the non-recycling case) % = 57 The homogeneity assumption on F

13



implies D C R well”, in such a way that the output and the instantaneous extraction of both
X1 X2 n

resources continuously decrease through time at a rate equal to %.

Observe that, in the case with two non-renewable resources, we get the same qualitative dynamic
properties of the solution as in the no-recycling case: x remains constant for ever and Y steadily decreases
at a constant rate equal to ﬁ. As a consequence, only the scale effect shows up. If a recycling technology
suddenly becomes available, then the value of the ratio x should be adjusted once and for all by some
parallel shift (presumably upwards). The larger availability of resource X; will also imply an upwards
shift of the output path, but the shape of the relevant variables is not affected.

Assume that resource 1 is recyclable and nonrenewable whereas resource 2 is renewable

and non-recyclable. Then equation (13) becomes

= ﬁ [5295 (52) 6|, (16)

so that production may increase or decrease through time depending on the marginal growth of resource

<<

2, the weight of such resource on the technology, as measured by EQ, and the discount rate. Provided that
7n(Y) >0, Y turns out to be the more increasing (or the less decreasing), the larger the marginal growth
of the renewable resource and its weight on technology. Note that the long term evolution of output is
determined by the properties of the renewable resource. For smaller values of the marginal growth and
the parameter £2, the case with one renewable resource is more similar to that with two nonrenewable

resources and output decreases faster (or increases slower). Equation (11) takes the form

T .

== 64 (5), (17)

and the evolution of x depends just on the marginal natural growth of resource 2 and the technological

coefficient 4. If such a coefficient is positive and throughout the solution g4 (S2) > 0 holds, then, z

continuously decreases with time and output depends more and more heavily on the renewable resource,
in the same fashion as in the no-recycling case.

The use of renewable resources and recyclable resources are two strategies claimed to be relevant for

economic sustainability. Insofar as we do not explicitly model some key elements such as physical capital

accumulation and technological change, we can not draw very general results concerning sustainability

"Deriving the equation Y = F (X1, X2) with respect to time, we obtain Y = F1 X1 + b Xo. Dividing both sides by Y

Y % % o X
and F (X1, X2) respectively and using (3), we know that — = fl—l + 52—2; Z_o (see section 4) implies G —2,
Y X1 Xo =z X1 Xa

X1 X
and &; + &, =1 (since F is homogeneous of degree 1) implies — = 21 _ 22
Y X1 Xo
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from our model. Nevertheless, we can obtain some insight about the contribution of recyclable and
renewable resources to the achievement of sustainable solutions.

The idea of sustainability in economics is linked to the possibility of obtaining a non-decreasing
time output path. Following this idea we can say, stretching the meaning of the terms somewhat, that,
comparing two decreasing paths, if one of them is more sharply decreasing than the other, then, the latter
belongs to a more sustainable economy than the former. From equations (16) and (17) we can conclude
that recycling increases the availability of resources and affects the temporal evolution pattern of output
and resource use. Nevertheless, the sign of the output increase or decrease mainly depends on the natural
growth ability of resources. Henceforth, as regards sustainability, recycling is a useful and relevant short
term strategy but, in the long run, the possibility of obtaining sustainable paths crucially depends on
the extent to which production rests more and more intensively on renewable resources. This conclusion
can be seen as a consequence of the second law of thermodynamics. As far as recycling is not ” perfect”
(in the sense that some material and energy is always lost in the process), it is not capable, by itself,

offsetting the depletion of exhaustible resources.

5 Example

In the previous section we have shown that the presence of a recycling technology may crucially affect the
shape of the production set of the economy and so, apart from increasing the effective availability of the
recyclable resources, it is likely to have an important impact on the shape of the dynamic paths for output
and natural resource use. Nevertheless, with this level of generality it is difficult to get some clear-cut
results about the specific dynamic impact of recycling. In this section we try to get some further insight
by discussing the solution with specific production and recycling functions, so that we can illustrate the
relevance of recycling for the dynamic behavior of the variables of interest.

Assume that the production function is of the Cobb-Douglas type F (X1, X2) = X7 X532, with ag +

ag = 1, and the utility function is U (V) = %]_;7” with constant elasticity of temporal substitution equal

ton e (0,1).

We compare the no-recycling case® with a case where the recycling technology is given by the following

8 All the results for the no-recycling case shown in this section are proved in André and Cerd4 (2001a).
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function:

X2
R'=R(X,Xy)=—"2_—=X,-h 1
(X1, X2) X+ X, 1-h(2), (18)
where h (v) = 75, satisfying 1 (0) =0, mlgr;oh (z)=1,0< K = ﬁ <1, n" = (113)3 <0,V z>0.

According to (18), for given values of X; and Xs, recycling allows a proportion h of resource 1 to be
recovered, h positively depending on the value of the ratio . Note that X5 = 0 implies R' = X, meaning
that the whole amount of resource 1 can be recovered through recycling. This situation is equivalent to an
unlimited abundance of resource 1. Nevertheless, given that both resources are essential for production,

the situation X; > 0, X5 = 0 never happens in the optimal solution.
Two nonrenewable resources

Assume, first, that both resources are non-renewable. Also make the technical assumption S9 > S9.

In the no-recycling case, the optimal extraction rate for each resource is given by

s 0
X; = Ajen  i=1,2, where A;= 85;

>0 i=1,2. (19)

Substituting the expressions for X; and X5 in the production function, we obtain the output path

—ot
st 6 0 0 [e5] RS
YAt -2 (%) e, (20)
and dividing Xy by Xs,
_ X8

Note that X7, X2 and Y decrease over time at a constant rate %. As shown in the theoretical results,
the relative input intensity « remains constant and (21) shows that its value is given by the initial stock
of both resources. Note that it does not depend on the value of a;.

Assume now that resource 1 can be recycling according to the technology described in (18). As shown

. . . . 58969  _& 589 _&
in section 8.5, the solution for X7 and Xs is given by X7 = F]_go_)e nt Xy = —nie 1. Therefore, the
M2 =1
X 50 § 0 50 [e%} _5y
relative use of resources takes the form x = z7~zr and output becomes ¥ = 55’2 (sTjF) e n.
2 1 2 1

In the absence of renewable resources, even if the possibility of recycling exists, the use of both

resources and output decreases at the rate %, the same as in the no-recycling case. Note, nevertheless,

the different impact of the initial resource stocks on the solution. For the non-recycling case, the following

2
9A slightly more general specification not involving this extreme possibility is R! = X?{g{g with b € (0,1).
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sensitivity analysis results are easy to show:

>0 if Q=7
0x, o
959 950

=0 if i#j]

>0, =12

The whole optimal path of the extraction rate of a resource depends positively on the initial stock of
the same resource and does not depend at all on the initial stock of the other resource. Output positively
depends on the stock of both resources. The following table shows the parallel signs for the case with

recycling!?:

X, X9 Y

oy S9 1
0 R PN A
S+ 0+ 35020 0T ay

As in the non-recycling case, if SY increases, the whole path of X; shifts upwards and that of X5
remains unchanged, so that the path of Y unambiguously shifts upwards. Nevertheless, unlike the non-
recycling case, the instantaneous use of resource 1 diminishes with S$ because of the negative technological
interaction between both resources by means of recycling. If resource 2 becomes more abundant, it is more
intensively used, negatively affecting the recycling recovery of resource 1, causing an effective shortening
of the availability of resource 1. The resulting effect on Y is ambiguous and depends on the initial relative

availability of both resources.
One renewable and one non-renewable resource

The most interesting case arises when there is one renewable resource. We will show that, in this
case, the dynamics of the solution is much more complex when a recycling technology exists. To keep
the discussion as simple as possible, assume that resource 1 is nonrenewable (g; (S1) = 0) and resource
2 is renewable with a constant growth rate, so that g (S2) = 75S2. Make the technical assumptions also
8 > a7y, (1 —n) to ensure the existence of solution.

In the no-recycling case, the solution for X; and X5 is given by

X; = K18% Kit > q, (22)

10Note that these results apply for "small” changes in S? and Sg, in such a way that the technical assumption S? < Sg

still holds.
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where K| = %M >0, Ko = M < 0, so that X; asymptotically decreases to zero,
whereas X9 may increase or decrease depending on the sign of Ks. Dividing the X equation by the Xs
X _ 5

equation, we obtain z = 5 = Zhe 72! and substituting (22) in the production function, we obtain the
2

output path

Y = (S?)oa (Sg)lfoa 06— (1 —04177)’)/2 (1 —n)}e%t

> 0. (23)

So, in this case the renewable resource replaces the nonrenewable one at a constant rate v5. Output
increases or decreases (depending on the sign of (1 —aq) vy — é) at a constant rate (1_(“777)72_5. If the
share of the renewable resource (a2) is large enough, or its growth ability (as measured by 7,) is large
enough, as compared with the discount rate 8, then it would be possible to have a balanced growth path
with a positive constant growth rate of output. Otherwise, output monotonically decreases and goes

asymptotically to zero.

Assume now that resource 1 can be recycled according to (18). Equations (16) and (17) become

= % [£272 - 6} and (24)

gly <|=-

= —675. (25)

In this case, it is not possible to find an analytical solution and we present an analysis of the quali-
tative behavior of the solution. Since both resources are essential for production'', and U’ > 0 we can
discard corner solutions with X; = 0 or X5 = 0, and concentrate on interior solutions. Substituting the

expressions for f and r in (12), we obtain the following expression for coefficient 6:

(1+2)%a; —(1+a)
(an = 1)+ (s + 1)z’

o=

(26)

Observe that lin}) 6 =1, lim 6 = oo and & has a vertical asymptote at the point x = %, as illustrated
T— T—00

in Figure 1.

INSERT FIGURE 1

Given (25) and the shape of &, we can study the optimal substitution between both resources depend-

ing on the value of x: if x € {0, 11—2‘1), then & > 0 and z decreases to zero. If x € (i;gl, 1;‘1’” ), then

6 < 0 and, according to (25) x tends to increase until z = %l, a point in whichz =6 =0. If z > %L,

Hie. F(X1,0) = F (0,X2) = 0. See, for example, Hartwick (1978a).
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1_?] . If the solution path reaches the value z = 1;?“ , then

then & > 0 and x diminishes towards x =
6 =0, and (25) implies & = 0; furthermore él =1, éQ =0, (16) becomes % = _T‘S, and the evolution of z
and Y is identical to that of a model with two nonrenewable resources.

Substituting the expressions for f and r in (14) and rearranging we conclude that ¢ ; and 52 are, in
this case, linear functions of x: él = ay (1+2), 52 =1— a3 (1+z). Note that, at the point z = 0,
we have él =¢ = o and éQ =&, = 1 — a4, so that the weight of both resources in the aggregate
technology is the same as in the conventional technology without recycling. The weight of resource 1 (2)
increases (decreases) with z. From (24), we can infer the evolution of output throughout the solution.
Assume first § > (1 — o) y5. In this case, Y decreases for every value of = (as in the no-recycling case).
Furthermore, (24) implies that, the larger the value of z (implying that production rests more heavily on

the nonrenewable resource), the faster output decreases.

Figure 2 compares the phase diagram for the solutions with and without recycling.
INSERT FIGURE 2

Recall that, in the no-recycling case, the nonrenewable resource is substituted by the renewable one at
a constant rhythm, in such a way that x decreases at a rate equal to 5, and output decreases at a constant
rate 6_%2 In the recycling case, output still decreases but the rate of decay depends on the value of z
and so, it is changing throughout the solution. Concerning the substitution of natural resources, there are
two cases depending on the initial conditions for S; and Ss. There is one case, similar to the no-recycling
one in which the renewable resource still replaces the nonrenewable one over time so that x tends to
zero. Nevertheless, there is also a rest point at = = 1?7?1 in such a way that x can increase or decrease
as it converges to Z. Intuitively, when changing the value of z, there is a trade-off between the growing
ability of the renewable resource, which contributes to = being decreasing, and the technological resource
interaction through recycling, which prevents x from decreasing too much (remember that increasing Xs
decreases the recycling ability of resource 1). From Figure 2, we can conclude that, in the latter case, the
technological interaction effect is important enough to make it optimal to keep a positive ratio of both
resources in the long run, despite the renewable ability of the second resource.

Consider now the situation § < (1 — aq)7y5. If there is no recycling, according to (23), output grows

over time at a constant rate equal to ﬁl_—a'nhd In the recycling case, according to (24), Y increases
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(decreases) if x is smaller than (larger than) the threshold value (1_21&.

= Figure 3 compares the

dynamic evolution of the solution in both cases!?.

INSERT FIGURE 3

Once again, note that, in the recycling case there is a range for the initial conditions such that the
behavior of the solution is analogous to that of the no-recycling case: the ratio = tends to zero and

output growths unlimitedly. In this case, the growth rate of Y increases as x decreases and it tends

. Nevertheless, there is still a rest point at = = , so that x increases

asymptotically to (1*01777)72*5

1—ay

ay
or decreases as it converges to Z. Interestingly, Y may display an inverted U shape for some initial
conditions. If z is "low’ (but not 'very low’, so that we are not in the first region), the growth rate of Y is
positive, according to (24). As z increases, the share of the renewable resource decreases, which affects

negatively the growth rate of Y, up to a point where % becomes zero and then negative, as « keeps on

increasing.

6 An integrated view of production and recycling: the Produc-
tion and Recycling Function (PRF)

The production side of the economy is shaped by numerous forces including the technological structure
and the decisions of all the active firms as well as all the interactions among them. Nevertheless, what
matters to assess the consumption and production decisions, from a macroeconomic point of view, is the
aggregated production set of the economy, as represented by the production function of the economy F,
that can be seen as a reduced form of all these individual forces. Along this article, we have shown the
technological relevance of recycling, which alters the technological framework and the production set of
the economy. As a consequence, recycling turns out to be one of the elements that should be taken into
account as an important component of the overall technological structure of the economy.

In this section, we look for an instrument, equivalent to the production function, that could represent

the new production set once recycling has been incorporated. For that purpose, we introduce the new

12The diagram for the recycling case is drawn under the combination

72 (1 —a1)

>6>7y(1— 1-
1o Yo (1—a1)(1—mn)

which is feasible if 7 is large enough.
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concept of Production and Recycling Function (PRF), which is a generalization of the production function,
aimed at representing the new production set of the economy when recycling is taken into account. This
concept provides an alternative way to formulate problem (P) and interpret its solution. The main idea is
to take full advantage of the economic interpretation given in section 3 for the problem without recycling.

Denoted by Z; and Zs, let the net extraction rate of resources 1 and 2 be defined as

Z1 = X1 — R(X41,X2), (27)

Zy = Xo, (28)

measuring the instantaneous effective reduction of the stock of each resource taking into account the
quantity extracted for production and the quantity recovered from recycling!?
The Implicit Function Theorem guarantees that equation (27) can be locally solved for Xy by a

implicitly defined, C® function ¢, in such a way that
X1=0¢(Z1,22). (29)

Substituting (27), (28) and (29) in the production function we obtain an expression for Y as a function
of Zy and Za: Y = F (X1,X0) = F(¢p(Z1,%22),22) = F(Zl, Z5), so that the original problem can be

reformulated as

Max / U(Y)e %dt

{ZUZQ} 0

s.t.:
Y = F(Z1,Z),
Si=9i(S) ~ Zi, i=1,2
S;(0) =259, i=1,2,

SiZ; >0, i=1,2.

We can rationalize problem (P’) in the following way: assume that, in order to produce Y, apart
from the amount Xo = Zs of resource 2, we use the amount X of resource 1, coming from two sources:
recycled material R', and virgin material Z;. Furthermore, assume that the recycled material R' is
always immediately reincorporated into the production process, so that, using (27), we can obtain the
instantaneous amount of required virgin material 7, as the difference between total requiered input and

the available recycled material. The assumptions on R guarantee that Z > 0.

131f resource 2 were assumed to be recyclable, then Z2 should be defined in the same way as Z;.

21



Note that (P) and (P’) contain the same elements, therefore they are fully equivalent. From the
solution to (P’), that of (P) can be obtained by undoing the variable change given in (27) and (28) and
vice versa. The auxiliary variables Z; allow us to include the recycling technology, not as a part of the
state equations, but as a part of the technology, represented by F.

Figure 4 compares graphically both alternative formulations: In (P), both types of technology are
represented separately by means of the functions F' and R. Recycling alters the production set but, taking
the formulation (P) into account, it is not possible to express such an effect in a compact way. Formulation

(P’) defines the new production set by a single function ﬁ‘, jointly considering both technologies.
INSERT FIGURE 4

Both resources 1 and 2 have a two-fold effect on output: a direct effect, through conventional pro-
duction, and an indirect effect, by means of resource recovery through recycling. The recovered resource
can be reused for production to obtain some additional output. For resource 1, both effects are positive,
whereas for resource 2, the direct effect is positive and the indirect one is negative. The representation
(P’) could be directly applied to a problem without recycling, which is a particular case with Z; = X7,
Zy = X and F = F. The PRF F includes the aggregate effect determined by the direct one and the

indirect one. The main mathematical properties of F are the following:

i) F is of class C'® since it is a composition of C'® functions.

i) Fis homogeneous of degree 1, so that it presents constant returns to scale. Multiplying both sides
of (27) by a > 0, using (28) and the homogeneity assumption on R, we have aZ; = aX; —
a[R(X1,X2)] = aX1 — [R (aX1,aZs)]. From the Implicit Function Theorem we know that aX; =
¢ (Zy,aZs) and, since F is homogeneous of degree 1, F (aZy, aZy) = F (¢ (aZy,aZs),aZs) =
F(aXy,aXy) = aF (X1, X2) = oF (Zy, Z3). The homogeneity of degree 1 allows us to define the
function f(z) given by F(ZZ%QZZ’) =F (g—;, 1) =F (z,1) = f(z), only depending on z = g—;, and we

know that Fy = f'(2), Fb = f(2) — zf’ (2).
iii) As for the first derivatives of F, substitute (28) and (29) in (27) to obtain

A :¢(Zla22)_R(¢(Zla22)vz2)' (30)
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Deriving (30) with respect to Z; and Zs by the chain rule and rearranging,

¢ 1 o9 Ry
= — = = — = < 0. 1
& 2, 1-Ri 0. ¢ 0Zy 1—Ry — (31)
Deriving F with respect to Z; and Zs, and using (31),
- OF OF 0¢ 13

! 07, 0X1 07, 1d)1 1-Ry — 129 (3 )

- OF 9F  OF 09¢ >
=—==—t——=FR+Fpy=F+F < F. 33
2= 0% T 0x, ox 0z, ethie=hthyTg s b (33)

The marginal productivity of resource 1 is positive and, if Ry > 0, then F, > F, in such a way that
the productivity of resource 1 in the aggregate technology is larger than that in the conventional
production, because both effects are the same sign. For resource 2 the two effects have the opposite
sign, so Fy < Fy. The sign of F, could be ambiguous, in principle, but the technical assumption (9)
implies P> 0, so that the direct positive effect overcomes the negative indirect effect of resource
2 on output. If Ry < 0, then Fy < Fy. The Marginal Rate of Technical Substitution (MRTS) of F

turns out to be

dz, F, FR+FR(1-R) B Fy
iZ\y ~ Fi R RITR<E,
A . . . ~ L
d—22 ~ representing the slope, in absolute value, of an isoquant of F', which is smaller than that
v

of an isoquant of F.

iv) F includes F as a particular case when R(X1,X2) = 0, Z3 = X1, Zo = Xo, F(Z],Zg) =

F (X1, X2) = F (X1, X9).

Define the relative effective extraction ratio as z = ZL. Provided that the mathematical formulation

Zy
of (P’) applies to the non-recycling case discussed in section 3, replacing F by F and X; by Z;, both
main equations for the problem without recycling, (1) and (2), are directly applicable to (P’). Specifically

z evolves according to

25 lai(50) - da(5)]. (39)

& denoting the elasticity of substitution of F and having the traditional economic interpretation: the

technological flexibility to substitute the use of resources while keeping output constant. In agreement
Z

with (34), if & > 0, then provided that gj (S1) > g5 (S2), — > 0 holds, then the net extraction rate of
z

resource 1 increases faster than that of resource 2. Furthermore, the larger the elasticity of substitution
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of the PRF (i.e., the more flexible the aggregate technology) the faster the temporal adjustment of z in
response to a difference between g) and g5. Equation (2) takes the following expression:

Y 1

o o
. _s
¥ = iy (G (51) + agh (52) — 8] (35)
gi = ﬁéi]ﬁ é)) representing the returns of resource i on the PRF. If the sufficient conditions for global

optimality hold, then we know that 13’1, B > 0, since F is homogeneous of degree 1, 21 + 52 =1
and & 191 (S1) + 2295 (S2) turns out to be a linear convex combination of the marginal growth of both
resources, that measures the marginal productivity of natural capital in problem (P’), where 51 S1+ 525’2
measures the stock of natural capital. Condition (35) is a version of the Keynes-Ramsey rule stating
that instantaneous output grows or diminishes depending on the difference between the natural capital
productivity and the discount rate.

We can now draw the relationship between the solutions to (P’) and (P). If (35) and (13) are to hold
simultaneously, then él = El must hold at every instant. From the formulation (P’) we know that EZ (and
hence & ;) represents the weight of resource i on the PRF, providing an interpretation for the coefficients
¢, that was not available in section 4. In order to find the relation between equations (34) and (11), note
that, using the definition of z and z jointly with (27) and (28), we know that z = « — r (z), and taking

derivatives with respect to time we obtain
z=x—1(x)x=1(1—1"(2)), (36)

from which, given that r' () = Ry € [0,1), # and & have the same sign. Dividing both sides of (36) by z

z
and x — r () respectively, and using (34) to substitute —, we have
2

E_ 2@ 5 10(81) - gh(Sa)]. (37)

z x(l—r)

Comparing (37) and (11), 6 turns out to be a simple, sign-preserving transformation of the elasticity

X1 —R(X,,X3) 5

of substitution of the PRF: 6 = m_r(m))& = %05

z(1—7r'

Computing the PRF in an example

Observe that, although we are able to ensure (under the assumptions made) the existence of the
PRF, it is not always possible to obtain the specific expression for such a function. All depends on the
possibility of solving (27) to obtain the function ¢ as shown in (29).

In the example presented in section 5, the selected functions F’ and R enable us to obtain the expres-

sions for ¢, and hence, for F. According to (27) and (28), the variables Z; and Z5 can be defined as
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Z] ZQ
To—71 0

7, =XX2 7 — X, After some simple algebra, we obtain X; =

Xi+X3° Xo = Z», and substituting

these expressions in the production function, we obtain the following expression for the PRF:

~ 212 Z1Zy \"'
Y =F(Z1,29) =F | 5 2o | = | 50— | Z5"
(17 2) (ZQ—Zl’ 2) (Z2—21> 2

7 Conclusions and further research

This paper has shown that, apart from the usually reported environment-related externalities, there is
an important source of externalities linked to recycling, arising from purely technological aspects. One
possible market failure comes from the recyclability of some resource itself, and an additional externality
comes from the possible technical interactions among resources along the recycling procedure. We have
shown how this externalities crucially affect the productive set of the economy and, as a consequence,
the optimal use and substitution of natural resources in production, depending on their stock availability,
their weight in production and, especially, their natural growth ability.

The results show that the output path follows a new version of the Keynes-Ramsey rule, where the
marginal productivity of capital is replaced by the ”marginal productivity of natural capital”, that results
from a weighted sum of the marginal growth of both resources according to their weight in the aggregate
technology of the economy. The output level increases (decreases) over time if the marginal productivity
of natural capital is larger (smaller) than the discount rate. The speed of this effect depends on the
elasticity of temporal substitution. The relative use of resources depends on the difference between
the marginal growth of both resources and the velocity of this effect depends on the flexibility of the
technology.

If both resources are nonrenewable, they are used in a constant proportion that depends on a measure
of relative weight in production and a measure of relative scarcity. If production depends on a renewable
and a recyclable resource, the recovery ability of the latter increases its effective availability and permits
a more intense use in the short term. In the long term, however, production is more sustainable if it rests
more heavily on the renewable resource.

The paper also introduces a generalization of the traditional concept of production function by the
joint formalization of production and recycling. As a result, we obtain the Production and Recycling
Function (PRF). The PRF shares most of the fundamental properties of a production function and

depicts the new production set by capturing the final effect of resources on output as an aggregation of
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two particular effects: through production and through recycling. This feature of the PRF provides an
economically meaningful interpretation for the solution of the production/recycling problem according
to traditional concepts from economic theory applied to a context in which conventional production and
recycling interact.

Concerning future lines of research, the results obtained in this paper could be extended and enriched
by including in the model some further interesting aspects, such as physical capital accumulation, technical
change and the waste management aspect of recycling. From an empirical point of view, it would be
interesting to estimate the observed effect of the recycling ability on the production possibilities and the

effective use of resources.

8 Appendix: Mathematical Results

8.1 Proof of Proposition 1

The maximized Hamiltonian function is defined as

HO (S1, S92, M, X2) = Max H(S1,S2, X1, X2, M1, \a).

X1,X2
According to the Arrow theorem!?, the necessary Maximum Principle conditions are sufficient for a
global maximum for problem (P) if H? is concave in (57, Ss) for all ¢, for given A\; and As.
The Implicit Function Theorem guarantees that the equation system (5) and (6) can be locally solved
for X; and X, by implicitly defined, C® functions X; = X, (M, A2), Xo = X, (A1, A2), and the maxi-

mized Hamiltonian function can be expressed as

HY = U [F (Xl (A1, A2) , X (MQ\Q))}

+A1 [91 (81) — X1 (M, \2) + R (Xl (M1, A2), Xa (A1, )\2))} + A2 [92 (S2) — Xa (A1, A2)] -
For given A1 and A2, the Hessian matrix of HO with respect to Sp, 59 is

)\19” 0
Hess = !
0 gy

Provided that ¢g; and go are concave, we know that Hess is negative semidefinite if and only if

A1, A2 > 0. In such a case, H? is concave in Sy, Se and Arrow sufficient conditions hold.,

M Arrow and Kurz (1970), proposition 6, p. 45.
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8.2 Proof of Proposition 2

Solving (5) for A1, substituting in (6) and rearranging, we obtain

U'Fy
A =
1 1 — Rl’ (38)
U'Fy Fy (1—R1)+F1R2
Ao = U'F =U' .
2 U 2+R21_R1 U[ - R, (39)
Deriving (38) and (39) with respect to time and dividing the result by (38) and (39), we have
M 14U 1 dFR 1 dR
a2 4, - Tu 4
N U dr R odt | (I—Ri) di (40)
Ao 1lav 1 dRy dF; dRy dF,
o U d T0-R)B+t R {_FQ g TR G s Ry (41)
Lt 1 dRy
(1—Ry) dt

Because of the homogeneity assumption on F and R, we know that the functions defined in (10) verify

= f'(z), F=f(z)—zf(2), Ry =1"(x), Ry =r () —ar' (x). (42)
Deriving (42) with respect to time, we have

3}
dt

Ry
dt

=ar" (x), % = —zir” (z). (43)

dF; _

= f"(x)z, pn —xzf’ (z),

Using (42) and (43) in (40) and (41), taking (7) into account and rearranging

M 1dv' s i

N S Ta T taos ot (44)
Ao o 1dv f'(r—a)—fr" . o /

SR A § Ry s M e KA (45)

Solving (44) and (45) for 6 — 7= ):fz - %dd—[{ and equating both results, we have

f// B f// (T—ZE) _ f?“” ;
FZRE Y (e gy

. . . (A=) ff . .
which, rearranging, becomes g} — g} = &7 f(l( p )_?_f,(r ] and gives rise to (11),

g1 +

8.3 Proof of Proposition 3

Adding (44), and (45) and rearranging, we have

1 dUu’
2@? +aJ =26 — g| — gh, (46)

27



£ (=) 2 () =)+ £ £ (1= ) 21 £ (1= ) (r—a)

where J = T R et . Using (11) in (46) we obtain 27 42" +
x6J (g — g5] = 26 — g} — g, and solving for %dd—cil we have
14U 1 N N
T :5[25—93 (1+2z6J)— g5 (1 —a6J)], (47)
where, taking (12) into account, we know that
I e R ) 4 2 () - )
" )+ 7]
and, substituting in (47) and rearranging, we obtain
1 dUu’ . .
T~ [5 - (519/1 "‘5295)] . (48)

where &, and &, are defined in (14) . Taking d(% = U"Y into account and using the definition of 7 (Y),

(48) becomes (13). Adding up the expressions for él and 22 in (14) we obtain él + 22 =1,

8.4 Proof of Proposition 4

If both resources are nonrenewable, (7) becomes \; = 6);, which is solved by A; = X; (0) e, \; (0) being

the value of \; at ¢t = 0. Dividing the expressions for Ao and A\; we have A = /A\i Egg, which is constant.

Substituting (44) and (45) in the definition of A, we obtain A = ﬂkl}—w which, using (10) and

(42) and rearranging, can be expressed as A = ﬂl_—v},w — z or, using (10) and (42) again, jointly

with the definition of z, =z = xw — A. Using the Euler result for homogeneous functions,

F(Xy,X9) = X1 F (X1,X2)+ XaoFs (X1, X2), and solving for , we obtain (15). Furthermore, given that

x and A are constant, ¢ is constant as well,

8.5 Example with two nonrenewable resources and recycling

The problem to solve is

Maz / T (X{“(l‘")X;?(l‘")) e Ot dt

1
{XerQ} 0 t=n

s.a.
X2 _ X1Xo
Xi+Xo X1+ Xo

SQ—_X27
SZ(O) :S?a i=1,2
0<X; <8;, 1=1,2
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Given that both resources are essential for production, we can discard as optimal any corner solution

with X7 = 0 or X5 = 0. The current-value Hamiltonian takes the expression

M= L - (x0T ) - — X,

The shadow price of a nonrenewable resource grows at a constant rate equal to 8, so that \; = \; (0) e%t.

The first order conditions for the maximization of the Hamiltonian with respect to X; and X5 are

O x =ty 2y
8X1 (X1 + X2)2
OH o (1=n) was(1—n)— X2
—8X = a2X11(1 n)XQ_(l R 1—)\171 5 —)\2:0
2 (X1 + XQ)
and rearranging we obtain
A= ag X g (x4 X2, (49)
Ny = OQXixl(lfn)Xéxz(lfn)fl _ OélXin(1*77)+1X§éz(1*77)*27 (50)
which, evaluated at ¢t = 0, give
M(0) = Xy (0 X, (0) T2 (X (0) + X2 (0))°,  and
X (0) = aaXy (0)" 7 X5 (0)2 T — g Xy (0) TF X (0)2 U
From the results for two nonrenewable resources shown in section 4, we know that % = §—: = X—; =

_76' The general solutions for these differential equations are Y = Y (0) e_%t, X1 =X1(0 e~ " and

X, = X5 (0) e ', From the transversality conditions for problem (P), we know that both resources
become exhausted under the optimal solution and essentiality imply that their exhaustion must be si-
multaneous. Let T denote the exhaustion time. The optimal value of T' comes from the transversality
condition H (T') = 0. Evaluating the solutions for X, Xa, A; and Ay at instant 7' and substituting in the
Hamiltonian, we conclude that T' = co and both resources exhaust asymptotically.

Substituting the solution for X5 in the state equation for resource 2 and using the initial condition
Sy (0) = S9, we obtain Sz = S3 + 21X (0) [e*%t - 1} and, using the final condition lim Sy () = 0,
we have the initial value for Xo, X5 (0) = %Sg. Substituting the solutions for X; and X5 in the state

X1(0)X2(0

equation for resource 1, we have $; = —ﬁ]ﬁﬁ%eﬂ%t that, using the initial condition Sy (0) = S?, is

solved by S; = S9 + %%‘(0%% {e’%t _ 1} and, using the final condition tlino1o S (t) = 0, the expression

. . _ 5 S80S9
for X5 (0) and rearranging, provides X; (0)

= 55040 Deriving the solutions for X; and Y with respect
2 1
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to S? and S, we obtain the following sensitivity analysis results:

90Xy
959
28
959
28
959

) (s

2 ar—1 1
(52)" (1) (W

5 (89)°

(S5 — SY)

a1+1
_ b
) et >0,

Sp

Sp

S (1 —ay) - 8P —5¢

_S?

)

ST— 8

30

e

)

1

04171 7ét
e N =
(59— 59)°

>0 59>

S

(1 —0(1)'




References

Anderson, C.L., 1987, The Production Process: Inputs and Wastes, Journal of Environmental Economics

and Management 14, 1-12.

André, F.J. and E. Cerd4, 2001a, Optimal Substitution of Renewable and Nonrenewable Resources in

Production, IVIE WP-AD 2001-14.

André, F.J. and E. Cerd4, 2001b, Optimal Sequence of Landfills in Solid Waste Management, Optimal

Control Applications and Methods 22, 1-25.

André, F.J. and E. Cerd4, 2003, Landfill Construction and Capacity Expansion, Environmental and

Resource Economics, Forthcoming.

Arrow, K.J. and M. Kurtz, 1970, Public Investment, the Rate of Return, and Optimal Fiscal Policy

(published for Resources for the Future, Inc., by the Johns Hopkins Press, Baltimore, MD).

Beckman, M.J., 1974, A Note on the Optimal Rates of Resource Extraction, The Review of Economic

Studies, ” symposium on the economics of exhaustible resources”, 121-122.

Beckman, M.J., 1975, The Limits to Growth in a Neoclassical World, American Economic Review 65,

695-699.

Beede D.N. and D.E. Bloom, 1995, Economics of the Generation and Management of Municipal Solid

Waste. National Bureau of Economic Research, Working Paper Series No. 5116.

Bruvoll, A.; 1998, Taxing Virgin Materials: an Approach to Waste Problems, Resources, Conservation

and Recycling 22, 15-29.

Dinan, T.M., 1993, Economic Efficiency Effects of Alternative Policies for Reducing Waste Disposal,

Journal of Environmental Economics and Management 25, 242-256.
Di Vita, G., 2001, Technological Change, Growth and Waste Recycling, Energy Economics 23, 549-567.

Fullerton, D. and T.C. Kinnaman, 1995, Garbage, Recycling and Illicit Burning or Dumping, Journal

of Environmental Economics and Management 29, 78-91.

Fullerton, D. and T.C. Kinnaman, 1996, Household Responses to Pricing by the Bag, American Eco-

nomic Review 86, 971-984.

31



Fullerton, D. and T. Kinnaman (eds.) (2002) The Economics of Household Garbage and Recycling Be-
havior. New Horizons in Environmental Economics. (Edward Elgar, Cheltenham, UK; Northamp-

ton, MA, USA).

Gaudet, G., M. Moreaux and S.W. Salant, 2001, Intertemporal Depletion of Resource Sites by Spatially

Distributed Users. American Economic Review 91, 1149-59.

Hartwick, J.M, 1978a, Substitution Among Exhaustible Resources and Intergenerational Equity, Review

of Economic Studies 45, 347-354.

Hartwick, J.M., 1978b, Investing Returns from Depleting Renewable Resource Stocks and Intergenera-

tional Equity, Economic Letters 1, 85-88.

Hartwick, J.M., 1990, Natural Resources, National Accounting and Economic Depreciation, Journal of

Public Economics 43, 291-304.

Highfill, J. and M. McAsey, 1997, Municipal Waste Management: Recycling and Landfill Space Con-

straints, Journal of Urban Economics 41, 118-136.

Highfill, J., M. McAsey and R. Weinstein, 1994, Optimality of Recycling and the Location of a Recycling

Center, Journal of Regional Science 34, 583-597.

Hoel, M., 1978, Resource Extraction and Recycling with Environmental Costs, Journal of Environmental

Economics and Management 5, 220-235.

Huhtala, A., 1994, Is Environmental Guilt a Driving Force? An Economic Study on Recycling, University
of California, Berkeley, Ph.D. Edited in University of Lapland. (Acta Universitatis Lapponiensis,

Rovaniemi).

Huhtala, A., 1997, A Post-consumer Waste Management Model for Determining Optimal Levels of

Recycling and Landfilling, Environmental and Resource Economics 10: 301-314.

Huhtala, A., 1999, Optimizing Production Technology Choices: Conventional Production vs. Recycling,

Resource and Energy Economics 21: 1-18.

Ley, E., M. Macauley and S. Salant, 2002, Spatially and Intertemporally Efficient Solid Waste Manage-

ment, Journal of Environmental Economics and Management 43, 188-218.

32



Lund, J.R., 1990, Least-Cost scheduling of Solid Waste Recycling, Journal of Environmental Engineering

116, 182-197.

Lusky, R., 1975a, Consumers’ Preferences and Ecological Consciousness” International Economic Review

16, 188-200.

Lusky, R., 1975b, Optimal Taxation Policies for Conservation and Recycling” Journal of Economic

Theory 11 , 315-328.

Palmer, K. and M. Walls, 1997, Optimal Policies for Solid Waste Disposal, Taxes, Subsidies and Stan-

dards, Journal of Public Economics 65, 193-205.

Pearce, D. and I. Brisson, 1994, Using Economic Incentives for the Control of Municipal Solid Waste,
in Quadrio-Curzio et. al. (eds.) The Management of Municipal Solid Waste in Europe. Economic,

Technological and Environmental Perspectives. (Elsevier Science).
Porter, R., 2002, The Economics of Waste. (Resources for the Future, Washington, D.C.).

Quadrio-Curzio, A., L. Prosperitti and R. Zoboli (eds.), 1994, The Management of Municipal Solid
Waste in Europe. FEconomic, Technological and Environmental Perspectives. Developments in

Environmental Economics, vol. 5, (Elsevier Science).

Ready, M.J. and R.C. Ready, 1995, Optimal Pricing of Depletable, Replaceable Resources: The Case of

Landfill Tipping Fees, Journal of Environmental Economics and Management 28, 307-323.

Schulze, W.; 1974, The Optimal Use of Non-Renewable Resources: the Theory of Extraction, Journal

of Environmental Economics and Management 1, 53-73.

Shinkuma, T., 2003, On the Second-Best Policy of Household Waste Recycling, Environmental and

Resource Economics 24, 77-95.

Sigman H.A., 1995, A Comparison of Public Policies for Lead Recycling, The Rand Journal of Economics

26, 452-478.

Sinclair, P., 1992, High Does Nothing and Rising is Worse: Carbon Taxes Should Keep Declining to

Cut Harmful Emissions, The Manchester School 60, 41-52.

Smith, V.L., 1968, Economics of Production from Natural Resources, The American Economic Review

58, 409-431.

33



Smith, V.L., 1972, Dynamics of Waste Accumulation: Disposal Versus Recycling, Quarterly Journal of

Economics 86, 600-616.

Weinstein, M.C. and R.J. Zeckhauser, 1974, Use Patterns for Depletable and Recycleable Resources,

The Review of Economic Studies, ”symposium on the economics of exhaustible resources”, 67-88.

34



(e}

//‘
0 1-ayl 1-a ;
1+aq oy

Figure 1. Shape of  as a function of z.

35



Y A
Y
x=0
0 =x .
0 1-q, 1-q, ;
1+a, o,
without recycling with recycling

Figure 2. Phase diagrams with renewable and nonrenewable resource
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Figure 3. Phase diagrams with renewable and nonrenewable resource

37

Y =0 x=0
a4 ym,-0  a, !
1+a, ¥, a,



Problem (P)

stock X X
of natural |-=4=2» production (F) —"—* Consumption
resources

A

R .
Recycling (R) |«
Problem (P*)
Production

stock Z,7Z, + Y _
of natural > Recycling » Consumption
resources -~

(F)

Figure 4: Comparing (P) and (P’)
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