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ABSTRACT. Sets which are efficiently reducible (in Karp's sense) to arbitrarily complex sets are s h o w n  

to be polynomial computable. Analogously, sets efficiently reducible to arbitrarily sparse sets are 
polynomial computable. A key lemma for both proofs shows that any set which is not polynomial 
computable has an infinite recursive subset of its domain, on which every algorithm runs slowly on 
almost all arguments. 

KEY WORDS AND PHRASES." polynomial time reducibility, a.e. complexity, many-one reducibility, 
complexity core 

CR CATEGORmS: 5.25, 5.26 

1. Introduction 

In [3], a difference is noted between the polynomial- t ime-bounded reducibflities of Cook 
[1] and Karp  [2] (whose definitions appear  in Section 2) : Any  recursive set is reducible in 
Cook's sense to arbi t rar i ly  complex (on almost all arguments)  sets, but  the same is not  
true for Karp ' s  reducibili ty.  When sparseness is considered rather  than complexity, i t  is 
discovered tha t  not  every recursive set is reducible to arbi t rar i ly  sparse sets, according to 
either definition. This indicates tha t  reducibil i ty arguments of the type  used in [6, 7] to 
prove inherent  complexity do not  apply  to sets which are complex almost everywhere, or 
to sets which are complex only on a sparse subset of their  arguments. 

In  this paper  we strengthen the results in [3] which pertain to Karp ' s  reducibility. In  
each case, where previously we only knew tha t  a result  did not  hold for all recursive sets, 
we now show tha t  the only sets for which i t  holds are those whose characteristic functions 
are computable in polynomial  time. Thus, no inherent  complexity higher than  polynomial  
can be proved by  efficient reducibil i ty techniques, for sets which are complex almost  
everywhere, or very sparse. One way of interpret ing the first of these results is as evidence 
for the  unna tura l i ty  of the condition of complexity on almost all arguments.  

Section 2 contains notat ion and definitions. Section 3 is devoted to proving a lemma 
which is very similar to a result of abstract  complexity theory in [4]; namely,  if the charac- 
teristic function of a recursive set A is not  computable in polynomial t ime, then there is 
an infinite recursive subset X of the domain on which all algorithms for A run slower than 
all polynomials,  for almost all members of X. This set X may be considered to comprise 
the "core" of the complexity of A. 

We use this lemma in Section 4 to show tha t  the only recursive sets which are reducible 
in Karp ' s  sense to arbi t rar i ly  complex (on almost all arguments)  sets are those which are 
polynomial  computable.  The proof is nonconstructive,  an example of an argument  which 
proves tha t  a problem is easy to compute, bu t  which does not  exhibit  a fast a lgori thm for 
i ts computat ion.  
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Similarly, in Section 5, we use the lemma to show that  the only sets which are reducible 
in Karp's sense to sets complex on arbitrarily sparse subsets of their domains are the 

- polynomial computable sets. Again, the proof is nonconstructive. 
The obvious questions of constructivity, as well as extension of the sparseness result to 

Cook's reducibility, are discussed in Section 6. 

2. Notation and Definitions 

All sets will be sets of finite strings over Z = {0, 1}. If  x E ~*, I x t will represent the 
length of string x. For any string x, we will ~cite ~ for the integer whose binary represen- 
tation is lx. 

For a set A, I A I will represent the cardinality and Ca the characteristic function. 
)~ represents the empty string. ()~ will also be used as in Church's lambda notation.) 
We ~Tite "4~x or i.e. (x) to denote "for infinitely many x," and V~x or a.e. (x) to de- 

note "for all except possibly finitely many x." When no confusion is likely, we ~-rite 
simply i.e. or a.e. 

If  A is a set, t : Z* -~ N a recursive function, we ~-rite comp A _~ t if there is a Turing 
machine computing Ca which uses not more than t(x) steps ("time t ( x ) " )  on any input 
string x. (The machine is not restricted as to number of tapes, number of worktape sym- 
bols, or (standard) input-output conventions.) Similarly, we ~Tite comp A < t a.e. if a 
Turing machine exists which computes Ca on all arguments, and which uses not more than 
i(x) steps a.e. (x). We ~ i t e  comp A _< t i.e. if a Turing machine exists which computes 
Ca on all arguments, and which uses not more than t(x) steps i.e. (x). comp A > t a.e. 
will denote ~ c o m p  A < t i.e., and comp A > t i.e. will denote ~ c o m p  A _< t a.e. 

Also, we write comp A < t on X for t, A as above, and set X if there is a Turing ma- 
chine computing Ca on all arguments, using not more than t(x) steps on any x E X. The 
other definitions in the preceding paragraph are extended analogously. 

Following Karp, we write A E 5 ) if for some polynomial p, comp A _< kx[p(] x ])]. 
We write A _TB< P (A is polynomial-time Turing reducible to B) for Cook's reducibility; 

namely, A _< Pr B iff there is an oracle Turing machine M and a polynomial p such that  
x E A ~=~M ~ith input x and oracle B accepts x~ithin p(] x I) steps. 

We write A _<~ B (A is polynomial-time many-one reducible to B) for Karp 's  re- 
ducibility. Namely, A _< ~ B iff there is a polynomial-time-computable function f such 
that  x E A ¢=* f ( x )  E B. We say A ~_~ B via S in this case. 

3. A Polynomial Complexity Core 

The following lemma is very similar to one proved in [4] in an axiomatic setting. Since we 
require the specific result for polynomial-time-bounded computation, we state and prove 
the new version here. The lemma isolates a "complexity core" for any set not  in (P. 

LE,~.~iA 1. I f  A is any recursive set with A ~ 5 ), then there exists an infinite recursive set 
X such that 

(Vp, a polynomial)[comp A > Xx[p(] x ])] a.e. on X]. 

PROOF. Let {pi} be an effective enumeration of a set of polynomials such that  
(Vp, po lynomia l ) (3 i ) (Vn)[p (n )  < p,(n)], and (Vi,  j,  n)[i <_ j ~ p~(n) <_ pi(n)].  

Let {~b~} be a standard enumeration of functions computed by Turing machines of some 
fixed type, {Ti} the associated running times. X ~ill be constructed in successive stages, 
1, 2, 3, • • •, with one element xn being added to X at the completion of each stage n. 

We start by  setting y -- ~. 

~tage n: 
(a) For each i, 1 <_ i <_ n, such that i is not yet canceled, see if 

T,(y) < P,(I Y I) and ~,(U) ~ Ca(U). 
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Can(.pl all i for which both are true. Go to substage (b). 
(b) See if for all ,,,~ca,,c~lcd i, 1 < i <_ n, 

2',(y) > p~([ y D. 

(1) If so, let x, = y, let y be the string having ~ = ~ 4- 1, and go on to stage n 4- 1. 
(2) If not, let y be the string having ~ = .~ -k 1, and return to substage (a). 

END 

The set X = {x;} constructed in this way is surely recursive. We claim i t  is infinite, 
because every stage must  eventual ly terminate.  For  if not, then let  n be the number  of 
the stage tha t  is reached bu t  fails to terminate.  Then for sufficiently long strings y, there 
must  exist i < n, uncanceled at  substage (b) ,  such tha t  T~(y) <_ P,(I Y I). Furthermore,  
for any  i <_ n, uncanceled at  substage (b) ,  we have T~(y) <_ p,(]  y I) ~ ~bi(y) = C , ( y ) ,  
for otherwise i would have been canceled during substage (a) .  Thus, if we dovetail  the 
computat ions of all functions ~b:, 1 _< i _< n, for which i is never canceled, we obtain an 
algori thm for C~ on sufficiently long strings y, which runs in polynomial time. A patch 
for the shorter  strings shows A E (P, contrary  to our assumption. 

Now consider any  polynomial  p and any ¢~ -- C, .  i can never be canceled. Let  n be 
such tha t  n _> i and p ,  _> p. Then the construction guarantees T, (x , )  > P(I x,  I), as 
required. [] 

4. Reducibility to Complex Sets 

I t  is shown in [5] t ha t  all recursive sets are _< er-reducible to arbi t rar i ly  complex sets. (A 
single membership question may  be encoded as the mod 2 sum of two questions of mem- 
bership in the complex set.)  The following theorem shows, in a strong way, tha t  this 

~ p  • . .  
result fails for _,~-reduclblhty:  

THEORE.~ 2. (VS, reeursive)(3B, recursive) [comp B > s a.e. and A <_ ~ B] iff A E 6 ). 
PROOF. ~ Trivial.  

Assume the hypothesis,  and assume A E 5 ). Obtain X by  Lemma 1. 
Let  r be some recursive function, monotone nondecreasing in its argument,  with r >_ 

),x[21~], and comp A _< r. We assume without  loss of generali ty tha t  for all y, x E X ~ i th  
< ~, we have r (y )  _< [ x I. (For  X may  be replaced, if necessary, by  some infinite subset 

whose elements are sufficiently separated.)  
We now require the following lemma from [3]. I t  s tates tha t  for A as in the hypothesis,  

we may choose a complex set B and a reducibi l i ty function f in such a way as to insure tha t  
f is very length-decreasing: 

< e L~.~.~A 3. Assume A is such that for all recursive s there is some recursive B with A _,~ B 
and comp B > s a.e. Then for any recursive t, 

('~B, recursive)(3f)[A <_~ B v i a l  and I x l > t ( f (x )  ) a.e.]. 

PROOF. Detai led verification is given in [3]. The basic idea is that ,  if the inequal i ty  
fails to hold, then CB could be computed quickly i.o. by  using the inverse of the function 
f and a fixed program for A. [] 

Using this lemma, we will be able to insure t h a t ]  is very far from 1-1 on X, so tha t  for 
infinitely many x in X there will be a much smaller y with f (y )  = f ( x ) .  But  this will allow 
us to obtain a polynomial- t ime (i.o. on X)  algori thm for CA, as follows: Given x, we ~ill 
search for a string y, with ?) < ~ and f ( y )  = f ( x ) ,  and say x E A or not, according to 
whether y E A or not. 

Assuming tha t  { x;] is an enumeration of X in increasing order, we now define a function 
t : ~*  ~ N b y  t ( y )  = I x:~[. 

By Lemma 3, we obtain B a n d f  ~-ith A _<~ B v i a l  and [ x[ :> t ( f ( x ) )  a.e. Since t is 
monotone nondecreasing in its argument,  we can easily show: 

(V*( x, Y))[I x l <_ t(y)  ~ ] ( x )  < ~]. 
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Since t is defined in such a way as to bound the lengths of elements of X, we see that  

(Vw E ~*)(3C~ ~ X, I C~I = 2~ ) (Vx  E C~)[[ z l _< t(w)]. 

Combining the last two formulas, we obtain an integer k such that  

(vw E Z*)(3C~ _ X, I C~] = 2~)[I {z E C~ :](z) < ~} I > 2~ - k]. 

Then since f on so many arguments can take on so few values, the Pigeonhole principle 
yields: 

(Vw)[ [ { (x, y) : x, y E C,~ and ~) <~ ~ andS(x) -- f(y)} ] >_ z~ - k -t- 1]. 

Thus, 

(3®x E X)( '~y E X)[~ <~ 2 and f (x)  = f(y)].  (1) 

We now use this function f and a fixed algorithm for C~ to define the follou4ng Al- 
gorithm a for computing C , :  

Algorithm a. Given input x, computer (x) .  Then compute, in order, f()~), f (0) ,  f (1) ,  
] (00) ,  . .  • . I f  for any y with ~ <: 2, we discover t h a t f ( x )  = f (y) ,  we compute and output 
C,~(y) by  the fixed algorithm. Otherwise, we compute C~(x) by the fixed algorithm. 

E N D  

By (1), there is an infinite set of arguments x E X for which the first alternative in 
Algorithm a ~_11 hold, and for which the y found will satisfy ~ < i <: ~ for some z E X. 
For these arguments x, the amount of time used by Algorithm a may be bounded by 
P (I x I, r (y)) ,  for some polynomial p, where y represents the first argument found by the 
search in Algorithm (L The lower bound on r is used here, as well as the condition comp A 
_< r. But  then by  the monotonicity of r and the sparseness of X this number of steps is 
bounded by Pl(I x i) for some polynomial pl. 

In  other words, comp A < ~x[p~(I x I)] i.o. on X. But this contradicts the choice of 
X. [] 

We note tha t  Theorem 2 seems counterintuitive; this indicates that  the condition of 
large complexity on almost all arguments is an unnatural one to consider. 

5. Reducibility to Sparse Sets 

More in accord ~i th  intuition is the result of this section, similar to Theorem 2 but  for 
sparseness rather than complexity. Here we note that  "sparseness" refers not to the 
elements of the set but  rather to the arguments on which the characteristic function has 
more than polynomial complexity. 

Definition 4. If  s : Z* --* N is recursive, and B is recursive, we say B is s-sparse if there 
is a Turing machine M computing CB, and a polynomial p such that  for any string x, M 
runs in time greater than hY[P(t Y t)] for at  most ~ strings of length less than or equal to 
s(x). 

THEOREM 5. (VS, recursive)(-aB, recursive)[B is s-sparse and A <_~ B] iff A E 6'. 
PaOOF. ~ Trivial. 

Assume the hypothesis, and assume A E 6'. Obtain X by Lemma 1. As for Theorem 
2, let r be an upper bound for A's complexity, ~i th  the same properties as before, and 
assume the elements of X are separated by r, as before. 

We claim tha t  for any recursive s, 
(:3B, recursive)(3f)[A < ~  B via f and B is s-sparse and 

(Vi)[~b, = C8 ~ (Vp, polynomial) (V*x) [x E X ~ T,( f (x))  > p( i f (x )  I)]]]. (2) 

(That is, f may be chosen to map most elements of X into the sparse set on which B is 
complex.) This is so, since the hypothesis on A yields recursive B and f such that  A _< ~ B 
via f and B is s-sparse. If  some i, p exist ~-ith ¢~ -- CB and (3®x E X)[T~(f(x)) 
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< p( i f (x ) I ) ] ,  then CA is polynomial computable for infinitely many elements of X, 
contradicting the condition on X. 

Now let s be defined by:  s(y) = 21~2~1, where {x~} is an enumeration of X in increasing 
order. We obtain B a n d f  satisfying (2) for this function s. 

Now clearly: 

(Vw E r.,*)(3C,~ c_ X, I C,, I = 2 ~ ) ( W  E C,~)[I x l _< I ~=m I]- 

S i n c e  B is s-sparse, there exists an integer i and a polynomial p such that  ¢~ = C~ and 

(Vx)[T~ > ~y[p([ y I)] for at  most 2 strings of length < s(x)]. 

For this i, p, (2) yields: 

(Y®x)[x E X ~  T~(f(x)) > p ( I f (x )  I)]. 

But then for some constant b, 

(Yw)(Vx)[I {x E C~ : T, ( f (x ) )  > p( I f (x )  I)} I > 2~ -- k]. 

By the polynomial computability of f, 

( Y % ) ( V x  E C~)[If (x)  I < 2 ~'~m = s(w)].  

Combining the last two lines, by  the s-sparseness of B and the Pigeonhole principle 
we obtain: 

(V=w)[I {(x, y) Ix, y E C~ and ~ < ~ andf(x)  = f (y )  >_ ~ - -  k]. 

Thus, (3~x E X)  (3y  E X)[~ < ~c and f ( x )  = f(y)].  The remainder of the proof is 
completed exactly as for Theorem 2. [] 

6. Related Questions 

Theorem 2, as noted, fails to hold for < ~ in place of _< ~. The extension of Theorem 5 to 
< ~ has been announced by R. Solovay [8] and will appear in a future paper. 

Since the proofs of both theorems of this paper are based on Lemma I, which is proved 
by contradiction, they are both proofs that  something is polynomial computable which 
do not explicitly produce polynomial-bounded algorithms. We wonder if it is possible to 
provide more constructive proofs which exhibit specific polynomial-bounded algorithms. 
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