
On Reducibility to Complex or Sparse Sets

NANCY LYNCH

University of Southern California, Los Angeles, California

ABSTRACT. Sets which are efficiently reducible (in Karp's sense) to arbitrarily complex sets are s h o w n

to be polynomial computable. Analogously, sets efficiently reducible to arbitrarily sparse sets are
polynomial computable. A key lemma for both proofs shows that any set which is not polynomial
computable has an infinite recursive subset of its domain, on which every algorithm runs slowly on
almost all arguments.

KEY WORDS AND PHRASES." polynomial time reducibility, a.e. complexity, many-one reducibility,
complexity core

CR CATEGORmS: 5.25, 5.26

1. Introduction

In [3], a difference is noted between the polynomial- t ime-bounded reducibflities of Cook
[1] and Karp [2] (whose definitions appear in Section 2) : Any recursive set is reducible in
Cook's sense to arbi t rar i ly complex (on almost all arguments) sets, but the same is not
true for Karp ' s reducibili ty. When sparseness is considered rather than complexity, i t is
discovered tha t not every recursive set is reducible to arbi t rar i ly sparse sets, according to
either definition. This indicates tha t reducibil i ty arguments of the type used in [6, 7] to
prove inherent complexity do not apply to sets which are complex almost everywhere, or
to sets which are complex only on a sparse subset of their arguments.

In this paper we strengthen the results in [3] which pertain to Karp ' s reducibility. In
each case, where previously we only knew tha t a result did not hold for all recursive sets,
we now show tha t the only sets for which i t holds are those whose characteristic functions
are computable in polynomial time. Thus, no inherent complexity higher than polynomial
can be proved by efficient reducibil i ty techniques, for sets which are complex almost
everywhere, or very sparse. One way of interpret ing the first of these results is as evidence
for the unna tura l i ty of the condition of complexity on almost all arguments.

Section 2 contains notat ion and definitions. Section 3 is devoted to proving a lemma
which is very similar to a result of abstract complexity theory in [4]; namely, if the charac-
teristic function of a recursive set A is not computable in polynomial t ime, then there is
an infinite recursive subset X of the domain on which all algorithms for A run slower than
all polynomials, for almost all members of X. This set X may be considered to comprise
the "core" of the complexity of A.

We use this lemma in Section 4 to show tha t the only recursive sets which are reducible
in Karp ' s sense to arbi t rar i ly complex (on almost all arguments) sets are those which are
polynomial computable. The proof is nonconstructive, an example of an argument which
proves tha t a problem is easy to compute, bu t which does not exhibit a fast a lgori thm for
i ts computat ion.

Copyright (~) 1975, Association for Computing Machinery, Inc. General permission to republish, b u t
not for profit, all or part of this material is granted provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and t o t h e fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Department of Mathematics, University of Southern California, University Park,
Los Angeles, CA 90007.

Journal of the Association for Computing Machinery, Vol. 22, No. 3, July 1975, pp. 341-345.

342 NANCY LYNCH

Similarly, in Section 5, we use the lemma to show that the only sets which are reducible
in Karp's sense to sets complex on arbitrarily sparse subsets of their domains are the

- polynomial computable sets. Again, the proof is nonconstructive.
The obvious questions of constructivity, as well as extension of the sparseness result to

Cook's reducibility, are discussed in Section 6.

2. Notation and Definitions

All sets will be sets of finite strings over Z = {0, 1}. If x E ~*, I x t will represent the
length of string x. For any string x, we will ~cite ~ for the integer whose binary represen-
tation is lx.

For a set A, I A I will represent the cardinality and Ca the characteristic function.
)~ represents the empty string. ()~ will also be used as in Church's lambda notation.)
We ~Tite "4~x or i.e. (x) to denote "for infinitely many x," and V~x or a.e. (x) to de-

note "for all except possibly finitely many x." When no confusion is likely, we ~-rite
simply i.e. or a.e.

If A is a set, t : Z* -~ N a recursive function, we ~-rite comp A _~ t if there is a Turing
machine computing Ca which uses not more than t(x) steps ("time t (x) ") on any input
string x. (The machine is not restricted as to number of tapes, number of worktape sym-
bols, or (standard) input-output conventions.) Similarly, we ~Tite comp A < t a.e. if a
Turing machine exists which computes Ca on all arguments, and which uses not more than
i(x) steps a.e. (x). We ~ i t e comp A _< t i.e. if a Turing machine exists which computes
Ca on all arguments, and which uses not more than t(x) steps i.e. (x). comp A > t a.e.
will denote ~ c o m p A < t i.e., and comp A > t i.e. will denote ~ c o m p A _< t a.e.

Also, we write comp A < t on X for t, A as above, and set X if there is a Turing ma-
chine computing Ca on all arguments, using not more than t(x) steps on any x E X. The
other definitions in the preceding paragraph are extended analogously.

Following Karp, we write A E 5) if for some polynomial p, comp A _< kx[p(] x])].
We write A _TB< P (A is polynomial-time Turing reducible to B) for Cook's reducibility;

namely, A _< Pr B iff there is an oracle Turing machine M and a polynomial p such that
x E A ~=~M ~ith input x and oracle B accepts x~ithin p(] x I) steps.

We write A _<~ B (A is polynomial-time many-one reducible to B) for Karp 's re-
ducibility. Namely, A _< ~ B iff there is a polynomial-time-computable function f such
that x E A ¢=* f (x) E B. We say A ~_~ B via S in this case.

3. A Polynomial Complexity Core

The following lemma is very similar to one proved in [4] in an axiomatic setting. Since we
require the specific result for polynomial-time-bounded computation, we state and prove
the new version here. The lemma isolates a "complexity core" for any set not in (P.

LE,~.~iA 1. I f A is any recursive set with A ~ 5), then there exists an infinite recursive set
X such that

(Vp, a polynomial)[comp A > Xx[p(] x])] a.e. on X].

PROOF. Let {pi} be an effective enumeration of a set of polynomials such that
(Vp, po lynomia l) (3 i) (Vn)[p (n) < p,(n)], and (Vi, j, n)[i <_ j ~ p~(n) <_ pi(n)].

Let {~b~} be a standard enumeration of functions computed by Turing machines of some
fixed type, {Ti} the associated running times. X ~ill be constructed in successive stages,
1, 2, 3, • • •, with one element xn being added to X at the completion of each stage n.

We start by setting y -- ~.

~tage n:
(a) For each i, 1 <_ i <_ n, such that i is not yet canceled, see if

T,(y) < P,(I Y I) and ~,(U) ~ Ca(U).

On Reducibility to Complex or Sparse Sets 343

Can(.pl all i for which both are true. Go to substage (b).
(b) See if for all ,,,~ca,,c~lcd i, 1 < i <_ n,

2',(y) > p~([y D.

(1) If so, let x, = y, let y be the string having ~ = ~ 4- 1, and go on to stage n 4- 1.
(2) If not, let y be the string having ~ = .~ -k 1, and return to substage (a).

END

The set X = {x;} constructed in this way is surely recursive. We claim i t is infinite,
because every stage must eventual ly terminate. For if not, then let n be the number of
the stage tha t is reached bu t fails to terminate. Then for sufficiently long strings y, there
must exist i < n, uncanceled at substage (b) , such tha t T~(y) <_ P,(I Y I). Furthermore,
for any i <_ n, uncanceled at substage (b) , we have T~(y) <_ p,(] y I) ~ ~bi(y) = C , (y) ,
for otherwise i would have been canceled during substage (a) . Thus, if we dovetail the
computat ions of all functions ~b:, 1 _< i _< n, for which i is never canceled, we obtain an
algori thm for C~ on sufficiently long strings y, which runs in polynomial time. A patch
for the shorter strings shows A E (P, contrary to our assumption.

Now consider any polynomial p and any ¢~ -- C, . i can never be canceled. Let n be
such tha t n _> i and p , _> p. Then the construction guarantees T, (x ,) > P(I x, I), as
required. []

4. Reducibility to Complex Sets

I t is shown in [5] t ha t all recursive sets are _< er-reducible to arbi t rar i ly complex sets. (A
single membership question may be encoded as the mod 2 sum of two questions of mem-
bership in the complex set.) The following theorem shows, in a strong way, tha t this

~ p • . .
result fails for _,~-reduclblhty:

THEORE.~ 2. (VS, reeursive)(3B, recursive) [comp B > s a.e. and A <_ ~ B] iff A E 6).
PROOF. ~ Trivial.

Assume the hypothesis, and assume A E 5). Obtain X by Lemma 1.
Let r be some recursive function, monotone nondecreasing in its argument, with r >_

),x[21~], and comp A _< r. We assume without loss of generali ty tha t for all y, x E X ~ i th
< ~, we have r (y) _< [x I. (For X may be replaced, if necessary, by some infinite subset

whose elements are sufficiently separated.)
We now require the following lemma from [3]. I t s tates tha t for A as in the hypothesis,

we may choose a complex set B and a reducibi l i ty function f in such a way as to insure tha t
f is very length-decreasing:

< e L~.~.~A 3. Assume A is such that for all recursive s there is some recursive B with A _,~ B
and comp B > s a.e. Then for any recursive t,

('~B, recursive)(3f)[A <_~ B v i a l and I x l > t (f (x)) a.e.].

PROOF. Detai led verification is given in [3]. The basic idea is that , if the inequal i ty
fails to hold, then CB could be computed quickly i.o. by using the inverse of the function
f and a fixed program for A. []

Using this lemma, we will be able to insure t h a t] is very far from 1-1 on X, so tha t for
infinitely many x in X there will be a much smaller y with f (y) = f (x) . But this will allow
us to obtain a polynomial- t ime (i.o. on X) algori thm for CA, as follows: Given x, we ~ill
search for a string y, with ?) < ~ and f (y) = f (x) , and say x E A or not, according to
whether y E A or not.

Assuming tha t { x;] is an enumeration of X in increasing order, we now define a function
t : ~* ~ N b y t (y) = I x:~[.

By Lemma 3, we obtain B a n d f ~-ith A _<~ B v i a l and [x[:> t (f (x)) a.e. Since t is
monotone nondecreasing in its argument, we can easily show:

(V*(x, Y))[I x l <_ t(y) ~] (x) < ~].

344 NANCY LYNCH

Since t is defined in such a way as to bound the lengths of elements of X, we see that

(Vw E ~*)(3C~ ~ X, I C~I = 2~) (Vx E C~)[[z l _< t(w)].

Combining the last two formulas, we obtain an integer k such that

(vw E Z*)(3C~ _ X, I C~] = 2~)[I {z E C~ :](z) < ~} I > 2~ - k].

Then since f on so many arguments can take on so few values, the Pigeonhole principle
yields:

(Vw)[[{ (x, y) : x, y E C,~ and ~) <~ ~ andS(x) -- f(y)}] >_ z~ - k -t- 1].

Thus,

(3®x E X)('~y E X)[~ <~ 2 and f (x) = f(y)]. (1)

We now use this function f and a fixed algorithm for C~ to define the follou4ng Al-
gorithm a for computing C , :

Algorithm a. Given input x, computer (x) . Then compute, in order, f()~), f (0) , f (1) ,
] (00) , . . • . I f for any y with ~ <: 2, we discover t h a t f (x) = f (y) , we compute and output
C,~(y) by the fixed algorithm. Otherwise, we compute C~(x) by the fixed algorithm.

E N D

By (1), there is an infinite set of arguments x E X for which the first alternative in
Algorithm a ~_11 hold, and for which the y found will satisfy ~ < i <: ~ for some z E X.
For these arguments x, the amount of time used by Algorithm a may be bounded by
P (I x I, r (y)) , for some polynomial p, where y represents the first argument found by the
search in Algorithm (L The lower bound on r is used here, as well as the condition comp A
_< r. But then by the monotonicity of r and the sparseness of X this number of steps is
bounded by Pl(I x i) for some polynomial pl.

In other words, comp A < ~x[p~(I x I)] i.o. on X. But this contradicts the choice of
X. []

We note tha t Theorem 2 seems counterintuitive; this indicates that the condition of
large complexity on almost all arguments is an unnatural one to consider.

5. Reducibility to Sparse Sets

More in accord ~i th intuition is the result of this section, similar to Theorem 2 but for
sparseness rather than complexity. Here we note that "sparseness" refers not to the
elements of the set but rather to the arguments on which the characteristic function has
more than polynomial complexity.

Definition 4. If s : Z* --* N is recursive, and B is recursive, we say B is s-sparse if there
is a Turing machine M computing CB, and a polynomial p such that for any string x, M
runs in time greater than hY[P(t Y t)] for at most ~ strings of length less than or equal to
s(x).

THEOREM 5. (VS, recursive)(-aB, recursive)[B is s-sparse and A <_~ B] iff A E 6'.
PaOOF. ~ Trivial.

Assume the hypothesis, and assume A E 6'. Obtain X by Lemma 1. As for Theorem
2, let r be an upper bound for A's complexity, ~i th the same properties as before, and
assume the elements of X are separated by r, as before.

We claim tha t for any recursive s,
(:3B, recursive)(3f)[A < ~ B via f and B is s-sparse and

(Vi)[~b, = C8 ~ (Vp, polynomial) (V*x) [x E X ~ T,(f (x)) > p(i f (x) I)]]]. (2)

(That is, f may be chosen to map most elements of X into the sparse set on which B is
complex.) This is so, since the hypothesis on A yields recursive B and f such that A _< ~ B
via f and B is s-sparse. If some i, p exist ~-ith ¢~ -- CB and (3®x E X)[T~(f(x))

On Reducibility to Complex or Sparse Sets 345

< p(i f (x) I)] , then CA is polynomial computable for infinitely many elements of X,
contradicting the condition on X.

Now let s be defined by: s(y) = 21~2~1, where {x~} is an enumeration of X in increasing
order. We obtain B a n d f satisfying (2) for this function s.

Now clearly:

(Vw E r.,*)(3C,~ c_ X, I C,, I = 2 ~) (W E C,~)[I x l _< I ~=m I]-

S i n c e B is s-sparse, there exists an integer i and a polynomial p such that ¢~ = C~ and

(Vx)[T~ > ~y[p([y I)] for at most 2 strings of length < s(x)].

For this i, p, (2) yields:

(Y®x)[x E X ~ T~(f(x)) > p (I f (x) I)].

But then for some constant b,

(Yw)(Vx)[I {x E C~ : T, (f (x)) > p(I f (x) I)} I > 2~ -- k].

By the polynomial computability of f,

(Y %) (V x E C~)[If (x) I < 2 ~'~m = s(w)].

Combining the last two lines, by the s-sparseness of B and the Pigeonhole principle
we obtain:

(V=w)[I {(x, y) Ix, y E C~ and ~ < ~ andf(x) = f (y) >_ ~ - - k].

Thus, (3~x E X) (3y E X)[~ < ~c and f (x) = f(y)]. The remainder of the proof is
completed exactly as for Theorem 2. []

6. Related Questions

Theorem 2, as noted, fails to hold for < ~ in place of _< ~. The extension of Theorem 5 to
< ~ has been announced by R. Solovay [8] and will appear in a future paper.

Since the proofs of both theorems of this paper are based on Lemma I, which is proved
by contradiction, they are both proofs that something is polynomial computable which
do not explicitly produce polynomial-bounded algorithms. We wonder if it is possible to
provide more constructive proofs which exhibit specific polynomial-bounded algorithms.

REFERENCES

1. CooK, S. A.

2.

3.
4.
5.

6.

7.
8.

The complexity of theorem-proving procedures. Conf. Rec. Third ACM Syrup. on
Theory of Computing, 1971, pp. 151-158.
KAnP, R. Reducibility among combinatorial problems. In Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103.
LYNCH, N. Complexity-class encoding sets. Submitted fer publication.
LYNCH, N. Helping: Several formalizations. J. Symbolic Logic (to appear).
LYNch, N., MEYEn, A., AND FmcnEn, M. Relativization of the theory of computational com-
plexity. Trans. AMS (to appear).
MEYER, A. Weak monadic second order theory of successor is not elementary-recursive. Manu-
script, M.I.T., Cambridge, Mass., 1972.
STOCKMEYEn, L. Ph.D. Th., Dep. of Elec. Eng., M.I.T., Cambridge, Mass., June 1974.
SOLOVAY, R. Private communication.

RECEIVED AUGUST 1974; REVISED DECEMBER 1974

Journal of the Association for Computing Machinery, Vol. 22, No. 3, July 1975

