
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 27, 2022

On reducing computational effort in topology optimization: We can go at least this far!

Limkilde, Asger; Evgrafov, Anton ; Gravesen, Jens

Published in:
Structural and Multidisciplinary Optimization

Link to article, DOI:
10.1007/s00158-018-2121-1

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Limkilde, A., Evgrafov, A., & Gravesen, J. (2018). On reducing computational effort in topology optimization: We
can go at least this far! Structural and Multidisciplinary Optimization, 58(6), 2481-2492.
https://doi.org/10.1007/s00158-018-2121-1

https://doi.org/10.1007/s00158-018-2121-1
https://orbit.dtu.dk/en/publications/16f232d0-125f-4f91-8f31-92e2537e59c7
https://doi.org/10.1007/s00158-018-2121-1


Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

On reducing computational effort in topology optimization:
We can go at least this far!

Asger Limkilde · Anton Evgrafov · Jens Gravesen

Received: date / Accepted: date

Abstract In this work we attempt to answer the ques-
tion posed in Amir O., Sigmund O.: On reducing com-

putational effort in topology optimization: how far can
we go? Struct. Multidiscip. Optim. 44(1), 25–29 (2011).
Namely, we are interested in assessing how inaccurately

we can solve the governing equations during the course

of a topology optimization process while still obtain-

ing accurate results. We consider this question from

a “PDE-based” angle, using a posteriori residual esti-

mates to gain insight into the behaviour of the residuals
over the course of Krylov solver iterations. Our main ob-
servation is that the residual estimates are dominated

by discretization error after only a few iterations of an

iterative solver. This provides us with a quantitative

measure for early termination of iterative solvers. We il-

lustrate this approach using benchmark examples from

linear elasticity, and demonstrate that the number of

Krylov solver iterations can be significantly reduced,

even when compared to previous heuristic recommen-

dations, although each Krylov iteration becomes con-

siderably more expensive.
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1 Introduction

The authors of the note [4] have posed an interesting

question: how inaccurately can we solve the governing
equations during the course of a prototypical (topology)
optimization algorithm without compromising its accu-

racy or convergence? The question itself implies the uti-

lization of an approximate, typically iterative, solver for

solving the state equations, which may be interrupted

when we are satisfied with the achieved accuracy. As a

result, the question can be rephrased in terms of finding
an adequate stopping criterion for the state and adjoint
equations solver.

In applied mathematics, and in particular numerical

analysis, the question of inexactness is a fundamental
one. A seminal paper [14] addresses this issue in the
framework of Newton’s methods and quantifies the ac-

curacy with which the Newton’s system has to be solved
at each iteration without sacrificing fast (superlinear or
quadratic) convergence of the method. This is achieved
by an intuitively understandable strategy, which allows

the accuracy to be rather lax far away from the solution,

and increases it progressively as the method approaches

the solution. This fundamental result provides com-

putable stopping criteria to a variety of Newton–Krylov
methods, where a Krylov solver (such as CG, GMRES,
see [28, Chapter 6] for more details) is utilized for solv-
ing the linearized equations at each Newton iteration.

In the context of PDE-constrained optimization this ul-

timately gives rise to efficient algorithms proudly bear-

ing the names of Lagrange (for PDE constraint han-

dling), Newton (for solving the optimality conditions),

Krylov (for solving the linearized Newton subproblems)

and Schur (for preconditioning the Krylov algorithm),

see for example [8, 9, 26]. These algorithms simultane-

ously update all the unknowns involved in the problem:
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design or control variables, state variables, and adjoint

state/Lagrange multipliers for the PDE constraint.

For topology optimization, algorithms working ex-
clusively in the design space of the problem while ex-

actly or approximately maintaining the corresponding

state and adjoint state remain exceedingly popular. Al-

gorithms of this class, commonly referred to as the

nested approach to topology optimization, treat solu-

tions to the state and adjoint PDEs as implicit func-

tions of the design variables, see [7] and references
therein for more details. In this context the question
of inexactness has also received its share of attention,

as for large scale problems the process of repeatedly

solving state and adjoint equations to compute objec-

tive function values and gradients by far dominates the

computational effort.1 Therefore, in order to reduce this

effort, one can either (i) focus on increasing the effi-

ciency of the linear solvers, or (ii) solve the state and

adjoint systems less accurately.

In this work we will focus on the approach (ii), as

several researchers did before us. For example, in a re-

cent study Kočvara et al. [19] utilized inexact solutions

of the linear algebraic systems arising in the applica-

tion of interior point methods to topology optimization

problems, naturally building on the recommendations

outlined in [14]. The idea of inexact solving of the gov-

erning and adjoint equations has also been investigated

in [3–5], where heuristic early termination criteria for

a Krylov subspace solver for solving the state and ad-

joint equations have been proposed and studied. The

authors of these works clearly demonstrate that seem-

ingly very rough approximate solutions obtained after
very few iterations of a Krylov solver are often sufficient
for successfully solving topology optimization problems.
In fact, it is sometimes sufficient to use only a small

fixed number of Krylov solver iterations, provided that

one uses an approximate solution obtained at the pre-

vious optimization iterations as a starting guess for the

Krylov solver. One may argue that as subsequent lin-
ear systems become progressively closer to each other
as (or indeed, if) the optimization process converges,
the accuracy of objective function and gradient evalu-

ations will also progressively increase as we get closer

to an optimum, as even a fixed number of Krylov it-

erations will in such a case “add up” over a range of

optimization iterations. This is also a line of reasoning,

which is compatible with that in [14].

1 This effect is a consequence of the utilization of only first
order information about the optimization problem, which re-
sults in computationally inexpensive iterations at the cost of
slow rates of convergence. Whereas in some situations sig-
nificantly faster converging alternatives exist, see for exam-
ple [16,19,27], we focus on first order algorithms in this work.

Notice that the previously mentioned studies take

the discretized optimization problem as their sole object
of interest, and focus on reducing the computational ef-
fort needed to solve these finite-dimensional problems.

Arguably, we solve the discretized problem not because

this is the problem we want to solve, but because this
is the problem we can solve on a computer, while hop-

ing that the resulting solution approximates an opti-

mal solution to the original infinite-dimensional PDE-

constrained optimization problem. Therefore, owing to

the inherent presence of the discretization error in the

problem we are solving, it does not make sense to solve

it more accurately than what is warranted by the dis-

cretization error estimates. Such a line of thinking is a

de-facto standard in the numerical analysis community,

even though the inclusion of rigorous discretization er-

ror estimates into the computational algorithms is often

a highly non-trivial task. For example in [6] (see also ref-

erences therein), termination of a preconditioned con-

jugate gradient (PCG) iteration for solving linear sys-

tems resulting from a finite element discretization of an

elliptic PDE is related to certain a priori and a posteri-

ori discretization error estimates. An easily computable

stopping criterion for the PCG algorithm is proposed

based on quantities which are already computed dur-

ing the PCG iteration. Our approach is close to that

in [6] in the sense that we try to relate the termination

of the solution algorithm for the discretized problem
to the discretization error estimates. Namely, we uti-
lize certain classical a posteriori finite element method
(FEM) error estimates2 in order to quantify the con-

vergence of the PCG iteration at a given discretization
level thereby gaining insight into the phenomenon out-
lined in the previous paragraph and attempting to give

a more quantitative answer to the question posed in [4].
To this end we use the same iterative method as in [4],
and monitor the PDE residual estimate as the Krylov
solver progresses. We observe that already after a few

iterations the residual estimate is dominated by the dis-

cretization error. On the one hand, this finding is not

unexpected given the fact that the finite element dis-

cretization of the PDEs with discontinuous coefficients
may approximate the solution to the said PDE rather
poorly, see for example [23]. On the other hand this ef-

fect might be the reason for the successful performance

of the early termination strategies utilized in for exam-

ple [4]: indeed, from the PDE-constrained optimization

perspective, these approximate solutions are as good as

what can be achieved at a given discretization level.

With the primary objective of gaining insight into
the premature termination of iterative linear solvers

2 A posteriori FEM error estimates have recently been used
in topology optimization in another context [24].
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in the topology optimization framework and not con-

structing an efficient computational algorithm, we have

utilized a posteriori error estimates, whose evaluation

by far dominates the computational effort of a stan-

dard PCG iteration. Namely, in addition to perform-

ing a matrix-vector multiplication, a few vector-vector

computations, and a preconditioning operation, an a

posteriori FEM error analysis has to be carried out,
which is in stark contrast to the method employed in [6].
With this disclaimer, we believe that the present study

provides an interesting perspective into why previously

utilized heuristic early termination criteria for itera-

tive linear solvers within topology optimization may

have been successful. Furthermore, this line of thinking

clearly demonstrates potential for resulting in efficient

numerical methods when combined with computation-

ally inexpensive ways of connecting the PCG iteration

with discretization error estimates, either through the

ideas described in [6] or by utilizing alternative FEM

discretizations naturally equipped with a posteriori es-

timates [10, 12,18].

The article is organized as follows. In Section 2 and 3

we briefly introduce the problem formulation and the

computational framework. In Section 4 and 5 we de-

scribe the residual estimate used in this work and in-

vestigate its behaviour during the course of a Krylov

subspace solver. In Section 6 the proposed method is

applied to some classical 2D and 3D benchmark exam-
ples from linear elasticity. We conclude the paper with
a discussion of the results in Section 7.

2 Problem formulation

For the purpose of keeping our discussion close to that

in [4] we mostly follow the setup used in the cited

work, with some trivial changes related to the imple-

mentation choices (for example, we consider simpli-

cial grids instead of those composed of quadrilater-

als/hexahedrons). Therefore we consider topology op-
timization problems in linear elasticity, namely that of
minimizing the compliance of elastic bodies, and that

of designing compliant mechanisms. We use the density

based approach and the SIMP interpolation scheme, for

details see [7]. The material distribution is updated on

the basis of optimality criteria (OC) fixed point itera-

tion. We use PDE-based density filtering for regulariz-
ing this problem, see [20].

Let us now fix the notation. We consider a bounded

domain Ω ⊂ R
d, d ∈ {2, 3}, with Lipschitz boundary

Γ = ∂Ω. Given a positive number r̂ > 0 the filter-

ing (compact, linear) operator Fr̂ : L2(Ω) → L2(Ω),
̺ = Fr̂ρ, is defined as the solution operator for the

following variational problem (weak formulation of the

Helmholtz PDE with homogeneous Neumann boundary

conditions):

r̂2
∫

Ω

∇̺(x) · ∇ ˜̺(x) dx+

∫

Ω

̺(x)˜̺(x) dx = (1)

∫

Ω

ρ(x)˜̺(x) dx, ∀ ˜̺ ∈ H1(Ω),

where we identify the solution ̺ ∈ H1(Ω) with a

function in L2(Ω) through the (compact) embedding

H1(Ω) ⊂ L2(Ω).

To describe the mechanical system we introduce a
(Hilbert) space where its displacements will be sought,

V = {v ∈ H1(Ω;Rd) | γD(v) = 0 }, which is the re-

striction of the standard Sobolev space H1(Ω;Rd) to

only those functions satisfying the prescribed homoge-

neous Dirichlet boundary conditions, the fact which we

denote by γD(v) = 0. The principle of virtual work
(weak formulation of the linearized elasticity equations)

will be stated with the help of a ̺-parametrized sym-

metric, bounded and coercive bilinear form a̺ : V ×

V → R and a bounded linear functional ℓ ∈ V ′3:

a̺(u,v) =

∫

Ω

̺(x)pc0ǫ(u(x)) : ǫ(v(x)) dx,

ℓ(v) =

∫

Ω

f(x) · v(x) dx+

∫

Γ

t(x) · v(x) dx,

(2)

where ǫ(u) = [∇u + (∇u)T]/2 is the linearized strain

tensor, and f ∈ L2(Ω,Rd) and t ∈ L2(Γ,Rd) are

the volumetric and traction forces,4 respectively. The
fourth order positive definite tensor c0 with the usual

symmetries encapsulates the linear stress-strain re-

lationship for the “stiff” material (stiffness tensor,

Hooke’s law), and the number p > 1 is the penalization

constant in the SIMP material law (in all our experi-

ments p = 3 is used).

The principle of virtual work in this notation can

be written rather succinctly as a linear equation

K̺u = ℓ, (3)

where the bounded linear operator K̺ : V → V ′

is defined by the relation (K̺u)[v] = a̺(u,v). Lax–

Milgram theorem together with Korn’s inequality guar-
antees the existence of a bounded inverse operator

K
−1
̺ : V ′ → V provided that the Dirichlet boundary

conditions defining V do not permit any rigid body

modes.

3 We denote the space of all bounded linear functionals on
V (the dual space of V ) by V ′.
4 Strictly speaking, traction forces only enter the model on

parts of the boundary, where the displacements are not fixed.
We only assume that t is defined on the whole boundary
and its components are set to zero on Dirichlet parts of the
boundary in order to keep the notation to a bare minimum.
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Finally the topology optimization problem we will

be interested in solving can be stated as

minimize
ρ∈L2(Ω)

J(ρ) =i(K−1
Fr̂ρ

ℓ),

s.t. V (ρ) =

∫

Ω

ρ(x) dx ≤ V0,

0 < ρmin ≤ ρ(x) ≤ 1, a.e. in Ω,

(4)

where i ∈ V ′, ρmin ∈ (0, 1), and V0 > ρmin|Ω| are given.

The minimum compliance example is obtained by set-

ting i = ℓ, while the force inverter mechanism example

is obtained by putting i(v) =
∫
Γ
iΓ (x) · v(x) dx, where

iΓ (x) = ±ejχΓout
(x). In the last equation, Γout is the

part of the boundary where the jth displacement is to

be either minimized or maximized (depending on the

sign ±). Thus ej is the jth canonical basis vector in

R
d, and χΓout

is the characteristic function of the set
Γout. The gradient of J with respect to ρ is classically

computed as

∇ρJ = −Fr̂[pρ
p−1c0ǫ(uρ) : ǫ(u

a
ρ)], (5)

where uρ = K
−1
Fr̂ρ

ℓ and ua
ρ = K

−1
Fr̂ρ

i are the solutions
to the state and adjoint problems. This gradient is then

utilized in the OC update scheme in this work, but of
course could also be used in the context of any other
non-linear constrained optimization algorithm. For the

sake of completeness we state the OC update scheme for

minimizing compliance. Given a material distribution

ρk we first compute uρk
= ua

ρk
by (approximately) solv-

ing the elasticity equations, and then the corresponding

gradient ∇ρJk from (5). The new material distribution
is defined by

ρk+1 = πSk
[ρk(−∇ρJk/λk+1)

ξ],

where πSk
[·] is the projection operator (in this case,

point-wise, owing to the simple bound structure of
the set) onto the closed, convex, and non-empty set

Sk = { ρ ∈ L∞(Ω) | max{0, (1 − γ)ρk} ≤ ρ ≤
min{1, (1 + γ)ρk} }, γ > 0 and ξ ∈ (0, 1) are trust-

region like and damping parameters, respectively. Fi-

nally, λk+1 is computed by finding the root of the equa-

tion
∫
Ω
ρk+1(x) dx = V0 using, for example, the bisec-

tion algorithm. For more details see [7].

3 Problem discretization

In short, we use standard finite element discretizations

of all PDEs involved in the problem, that is, (1)–(3)

and the adjoint of the latter. Implementations are done

using the high-level finite element library FEniCS [21].

Notationally, we will distinguish the discretized quan-

tities from their continuous counterparts by adding the

index h, where h > 0 is some characteristic size of the

elements in our mesh. In particular, the finite dimen-
sional piece-wise polynomial space for approximating
displacements will be denoted by Vh ⊂ V . We then

naturally put ℓh = ℓ|Vh
∈ V ′

h, ih = i|Vh
∈ V ′

h, and sim-

ilarly define K̺,h : Vh → V ′
h by restricting the bilinear

form a̺ to Vh × Vh.

In this notation the main question posed in the in-

troduction section is when to stop an iterative solver
used to approximately solve the state and adjoint sys-

tems K̺,huh ≈ ℓh and K̺,hu
a
h ≈ ih. For solving these

systems we utilize the preconditioned conjugate gradi-

ent method (PCG), preconditioned in exactly the same

fashion as done in [4] to make the direct comparison

possible.

4 Residuals and their evaluation

At every optimization iteration, given some current ma-

terial distribution ρh and its smoothed version ̺h =

Fh,r̂ρh we need to approximately solve the discretized

elasticity equations K̺h,huh ≈ ℓh and K̺h,hu
a
h ≈ ih in

order to evaluate the objective function value and its

gradient, see (4) and (5).5 As in [3–5] the approximate
solutions uh, u

a
h will be found by prematurely termi-

nating an iterative linear solver, which, unless specified
otherwise, is CG preconditioned with the stiffness ma-
trix [28, Chapter 9] corresponding to a solid design (i.e.,
ρ ≡ 1), exactly as done in [4]. Nevertheless the discus-

sion that follows is independent from the choice of a spe-
cific preconditioner. We also focus our discussion on ap-
proximately solving the state equations K̺h,huh ≈ ℓh
but provide the numerical illustrations for both the
state and adjoint equations. One of the main objects in
this discussion is the residual of (3), which for a given

approximation uh is defined by r̺h,uh
= ℓ−K̺h

uh. We

will aim at estimating this residual with the objective

of keeping the discretization error ‖uh−K
−1
̺h

ℓ‖V small.

When applied to our discretized elasticity system in

exact arithmetics, PCG will finitely terminate with the

solution uh,exact = K
−1
̺h,h

ℓh. Even this ideal solution to

the discretized system, however, does not usually solve

the “continuous” elasticity equations corresponding to

the material distribution ̺h, i.e., r̺h,uh,exact
6= 0. In-

deed, we can only hope that the residual r̺h,uh,exact

converges to zero as we keep refining the mesh. There-

fore, according to conventional wisdom there is no rea-

son to “oversolve” the discretized equations, and one

should stop when the error (or residual) is dominated

5 We are not concerned about repeatedly solving the filter-
ing problem, because it is a relatively well-conditioned one,
see [20].
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by the terms related to the discretization errors, which

cannot be eliminated by solving the discretized system

more accurately.

Given some material distribution ̺h and approx-

imate solution to the discretized elasticity equations

uh ∈ Vh the residual r̺h,uh
, being a linear bounded

functional over V , is somewhat difficult to measure and

work with. Indeed, by definition

‖r̺h,uh
‖V ′ = sup {|r̺h,uh

(v)| | v ∈ V, ‖v‖V ≤ 1}

= sup {|ℓ(v)− a̺h
(uh,v)| | v ∈ V, ‖v‖V ≤ 1} .

(6)

There are however many ways of estimating this quan-

tity, see for example [15, Chapter 10]. For the purpose

of getting insight about the behaviour of the residuals

both over the course of the topology optimization iter-

ations and over the course of each application of PCG

we utilize the following, arguably computationally ex-

pensive, approach, while noting that other alternatives
are possible [15, Chapter 10].

Let r ∈ V ′ be an arbitrary functional. Riesz repre-

sentation theorem provides us with a constructive ap-
proach for computing ‖r‖V ′ . Namely, first we compute

a function e ∈ V by solving the variational problem

〈e, ṽ〉V = r(ṽ), ∀ṽ ∈ V, (7)

where 〈·, ·〉V denotes the inner product in V . We then

use the fact that ‖r‖V ′ = ‖e‖V . Note that the latter
norm is simply a positive Sobolev norm, thus its com-

putation amounts to integration.

Of course numerically we need to discretize the
problem (7), for example using FEM. It is tempting

to use Vh in place of V in (7), but then the right hand

side of the problem is identically 0 (Galerkin orthogo-

nality condition) for r̺h,uh,exact
, and we will not learn

anything beyond what the original discretization of the

elasticity problem has provided us with. In other words,

we need to work with a richer space than Vh when dis-
cretizing (7), in order to capture some of the discretiza-

tion error. Here we use uniform h-refinement to com-
pute such a space, using the standard simplicial mesh

refinement algorithm implemented in FENICS [25]. The

piece-wise polynomial space of the same order as Vh ob-

tained after one iteration of uniform refinement will be

denoted by Vh
2

.6 The solution to (7) with Vh
2

instead of
V will be denoted by eh

2

∈ Vh
2

and the resulting norm

will be denoted by

|||r|||h
2

def
= ‖eh

2

‖V = ‖r‖V ′

h
2

.

6 In the numerical experiments we also try to refine the
mesh twice, that is to use V h

4

in place of V h

2

. The results that

we obtain are essentially the same, see Fig. 1 and 3.

Note that (7) is not a very difficult problem to solve:

it corresponds to an elliptic PDE with constant coeffi-
cients and is easily solvable by algebraic multigrid (on
unstructured grids) or even fast spectral methods (on

structured grids). Additionally, only the right-hand side

of this problem changes with ̺h and uh. Nevertheless,
it is of course computationally burdensome to solve this

problem at every PCG iteration, as we plan to do next.

5 Behaviour of a posteriori residual estimates

In view of the previous discussion it would be reason-
able to stop PCG iterations when no further improve-

ment of the residual ‖ℓ−K̺h
u
(i)
h ‖V ′ ≈ |||ℓ−K̺h

u
(i)
h |||h

2

is observed, where u
(i)
h ∈ Vh is the approximation to the

solution of the discretized elasticity equations at i-th it-
eration of PCG algorithm. When this happens we con-

clude that the residual is dominated by discretization

error and therefore it is time to stop the PCG algo-

rithm. To this end we monitor the relative norm of the

residual ηi = |||ℓ−K̺h
u
(i)
h |||h

2

/|||ℓ|||h
2

during the itera-

tions of the PCG algorithm, and stop when the relative

change in ηi is smaller than some prescribed tolerance

εη, that is when |ηi − ηi−1|/ηi < εη.

The behaviour of the a posteriori residual estimate
during the course of typical PCG iterations is illus-

trated in Fig. 1. Here we plot ηi as a function of the

PCG iteration number i for the elasticity system arising

when solving the example described in Subsection 6.1.

We consider two linear systems appearing at optimiza-

tion iterations 3 and 35, as well as two possible ini-

tializations of PCG, namely starting either from the

zero vector or from the “exact” solution uk−1 to the

linear system appearing at the previous optimization

iteration, which we compute using a direct solver. It is

seen that when starting from the zero vector the rel-

ative dual norm η is dominated by the discretization

error after only 10 or 15 PCG iterations. In practice

the solution from the previous optimization step uk−1

is often used as a starting guess, since the linear sys-

tems corresponding to two consecutive optimization cy-

cles are nearly identical when changes in the design are

small. When using such a starting guess we see that for

iteration 3 the residual is now dominated by discretiza-

tion error after fewer that 10 PCG iterations. When
considering the optimization iteration 35, which corre-
sponds to the case where design changes are small, it

is seen that the residual is already dominated by the

discretization error from iteration 1. This means that,

with respect to the measure of accuracy that we utilize,

the solution from iteration 34 is a good enough approx-

imate solution to the discretized elasticity equations at



6 Asger Limkilde et al.

0 5 10 15 20

PCG iteration count

10
−1

10
0

10
1

R
e
la

ti
v
e

d
u

a
l

n
o
rm

uk−1, ‖r
h,u

(i)
h

‖V ′

h

2

/‖ℓ‖V ′

h

2

0, ‖r
h,u

(i)
h

‖V ′

h

2

/‖ℓ‖V ′

h

2

uk−1, ‖r
h,u

(i)
h

‖V ′

h

4

/‖ℓ‖V ′

h

4

0, ‖r
h,u

(i)
h

‖V ′

h

4

/‖ℓ‖V ′

h

4

0 5 10 15 20

PCG iteration count

10
−1

10
0

10
1

R
e
la

t
iv

e
d

u
a

l
n

o
r
m

Fig. 1 The relative dual norm of the residual for two different
designs. The legend indicates the starting guess used, and the
error estimator considered. The error estimates differ in the
number of times the mesh is refined, when approximating the
dual norm. Top: Using the design from optimization iteration
3; bottom: Using the design from optimization iteration 35;
see Subsection 6.1 for details of the example.

iteration 35, which cannot be improved upon without

refining the grid or enhancing the discretization in some

other fashion.

We would like to point out that the stopping cri-

terion we utilize can be trivially satisfied if the PCG

method stagnates and fails to make any significant

progress towards the solution of the discretized system

from one iteration to the next. As a consequence of this,

whereas we do not rely on the utilization of any spe-

cific preconditioner, it should be of reasonable quality

to prevent such situations from happening. (One could

of course also tighten the tolerance in the stopping cri-

terion, or measure the progress over the course of more

than one iteration — but this would only deal with the

symptoms and not the issue.)

Another issue worth mentioning here is the relation

between the residual, measured as ‖ℓ − K̺u‖V ′ , and

the corresponding displacement error ‖u − K
−1
̺ ℓ‖V .

Whereas the two are equivalent (as a result of sym-

metry, coercivity, and continuity of the bilinear form

a̺(·, ·)) with equivalence constants involving the norms
of K̺ and its inverse, see [11, Section 2.3], in practice

small residual is not a guarantee of the small error. In-

deed, the latter estimate involves the terms inversely

proportional to ρpmin, see (4). Since this constant is ex-
tremely small in our case (value of 10−9 is commonly

used), the boundedness of the error with respect to
the residual is effectively lost. However, spatially, this
breakdown happens primarily in the regions where we
are not interested in solving the elasticity equations in

the first place, that is, the regions occupied by “the ap-

proximate void” ersatz material. Furthermore, contri-

butions to the objective function and the gradient (5)

from these areas are relatively small (they are scaled

with ̺p or ̺p−1), and therefore even large errors in these

areas are likely to be acceptable from the optimization

algorithm’s perspective.

Finally, one can of course utilize different equiva-
lent norms on V , which in turn induce norms on V ′

through (6). One natural example, which we have tried,

is the energy norm ‖v‖2E,̺ = a̺(v,v), which is the error

norm minimized by the non-preconditioned version of

CG for every linear system, or by the Galerkin method

at every discretization level. On the one hand, utilizing

this norm directly results in systems (7), which are re-

fined versions of the elasticity system we try to solve,

vary from one topology optimization to another, and
clearly are no longer associated with a system of PDEs
with constant coefficients. With this norm, we have seen
no clear improvement or deterioration in the obtained

results or behaviour of the method, but the system (7)

becomes completely impractical to solve. On the other

hand, we have the Galerkin orthogonality

‖uh −K
−1
̺h

ℓ‖2E,̺h

= ‖uh −K
−1
h,̺h

ℓh‖
2
E,̺h︸ ︷︷ ︸

linear solver error

+ ‖K−1
h,̺h

ℓh −K
−1
̺h

ℓ‖2E,̺h︸ ︷︷ ︸
discretization error

,

and the identity

‖uh −K
−1
h,̺h

ℓh‖
2
E,̺h

= a̺h
(uh,uh)− 2ℓh(uh)

+ ‖K−1
h,̺h

ℓh‖
2
E,̺h︸ ︷︷ ︸

indep. from uh

.

Therefore, convergence of the first two terms in the last
equality can be utilized as a computationally “free”

indicator of convergence of the linear solver with re-
spect to the energy norm instead of η. However, un-

like the actual residual or error estimate, the limiting
value of a̺h

(uh,uh)−2ℓh(uh) varies with the exact so-

lution of the linear system K
−1
h,̺h

ℓh and does not go

to 0 when h → 0. Therefore selecting the tolerance
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Fig. 2 Top: Sketch of the 2D cantilever example. Bottom:
Sketch of the 2D force inverting mechanism example.

for this convergence indicator, which should work in-

dependently from the optimization iteration and mesh

discretization is a non-trivial task. Our final comment

here is that a very similar criterion based on the value

of a̺h
(uh,uh) − ℓh(uh), which is precisely the resid-

ual applied to uh, is proposed by Amir et al. in [5].

This term will go to 0 as the iterative solver converges,

and it does so faster than the residual, thus making it

a suitable candidate for terminating the solver prema-

turely [5].

6 Numerical examples

In this section we solve a few benchmark optimization

problems while utilizing the PCG stopping criterion de-

scribed in the previous section. In all numerical exper-

iments we utilize “warm start” of the PCG iteration,

that is we initialize it with the approximate solution

obtained at the previous optimization iteration. For 3D

numerical experiments we visualize designs by extract-

ing the isosurface and rendering it in Paraview [1].

6.1 Example 1: 2D cantilever

We consider the problem which is sketched in the top of

Fig. 2. We utilize a small grid with 180×60 rectangular

elements, a filter radius of r̂ = 0.03 and set the vol-

ume fraction V0 = 0.5. The objective is to minimize the
compliance and in this case the problem is self-adjoint,

hence we have i = ℓ. We consider the proposed stop-

ping criterion with tolerance εη = 10−4. In Fig. 3 we

show the number of PCG iterations necessary to meet

the proposed stopping criterion during the optimiza-

tion process. For comparison, we also plot the number

of iterations necessary to meet a “standard” criterion
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Number of iterations to meet ‖r‖2 < 10
−6

Proposed number of iterations by Amir et al. [3]

With proposed stopping criterion

With stopping criterion, refining mesh twice

Heuristic stopping criterion by Amir et al. [4]

Fig. 3 Number of PCG iterations for the 2D cantilever ex-
ample.
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Fig. 4 The objective function (compliance) during the op-
timization process based on early termination of PCG vs.
utilizing a direct solver; 2D cantilever example.

on the residual vector7 ‖r‖2 < 10−6, with this precon-

ditioner, as well as the (iteration-independent) quantity

min{nx, ny}
8 for a regular nx×ny grid discretizing the

problem. Finally we also show the number of iterations

necessary to reach yet another heuristic stopping crite-

rion in [5], which is given by a̺(u
(i)
h , u

(i)
h )− ℓ(u

(i)
h ) ≤ τ ,

and we put τ = 10−4. From this plot we can conclude

that qualitatively the number of PCG iterations based

on the heuristic idea in [5] correlates very well with

what we compute based on the a posteriori residual esti-

7 Here and elsewhere we use the notation r =
[r̺h,uh

(φ1), . . . , r̺h,uh
(φNh

)] ∈ R
Nh for the algebraic rep-

resentation of the residual r̺h,uh
∈ V ′

h with respect to the
basis φ1, . . . , φNh

of Vh during PCG iterations.
8 In the presented case min{nx, ny} = 60. This quantity is

a heuristic number of iterations proposed by Amir et al. in [4]
based on numerical experiments with early termination of a
PCG solver.
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Table 1 Number of OC iterations performed to meet the
convergence criterion (8), when using ”exact” and inexact
solutions of the state and adjoint equations. Note that in
Example 3 and 4 we compare the designs after 50 and 150
iterations respectively, even though (8) is not satisfied.

Example ”exact” inexact

Example 1 69 70
Example 2 336 339

mates. In this plot we also see the “adaptive” behaviour

of the methods: the number of PCG iterations decreases

as the optimization algorithm progresses and eventually

starts making smaller and smaller alterations to the ma-

terial distribution. The average number of PCG itera-

tions used with the proposed stopping criterion is only
6.5 for this example and this discretization. Despite the

small number of iterations and rather approximate so-

lutions, the approximate approach compares very well

to using a direct solver, as can be seen in Fig. 4. For

practical purposes the behaviour of the two methods

can be deemed identical. Indeed, with respect to the

a posteriori estimate |||ℓ−K̺h
u
(i)
h |||h

2

utilizing a direct

solver gives no visible improvement when compared to

the very approximate solutions from the early termina-

tion of PCG, see Fig. 5.

As a convergence criterion for the optimality crite-

rion iterations we use the inequality

‖ρk,h − ρk−1,h‖L2(Ω) < ǫOC , (8)

and in this work we take ǫOC = 10−3. The number of

OC iterations necessary to meet this criterion is very

similar when using “exact” and inexact solutions of the

state and adjoint equations, as can be seen from Ta-

ble 1. This indicates that the inexact solutions do not

compromise the quality of the OC iterations at this ac-

curacy level.

The performance of the proposed method has also
been studied on a sequence of refined grids, see Fig. 6.

Generally speaking, we observe qualitatively similar be-

haviour, where the discretization error dominates af-

ter a few iterations of the optimization algorithm. As

expected, the estimated residual decreases with mesh

refinement, see Fig. 6. More importantly, the aver-

age number of required PCG iterations depends rather

weakly on the mesh size, see Table 2.

As mentioned earlier the estimation of the dual
norm of the residual is computationally burdensome,

so the significant reduction in the number of PCG it-

erations does not translate to a significant reduction in

the computational time. Running on a 64 bit HP Elite-

Book 840 G4 with and Intel(R) Core(TM) i7-7500U

CPU, with clock rate of 2.70 GHz and with a 360×120
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Fig. 5 The relative dual norm of the residual during the
optimization process based on early termination of PCG vs.
utilizing the direct solver; 2D cantilever example.
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Fig. 6 The relative dual norm of the residual, ‖r‖V ′

h
2

/‖ℓ‖V ′

h
2

for designs from optimization iteration 3; 2D cantilever ex-
ample on a sequence of refined grids. The design from op-
timization iteration 2 is used as starting guess for the PCG
solver.

Table 2 The average number of PCG iterations over the
course of the optimization run; 2D cantilever example on a
sequence of refined grids.

Mesh size Average no. PCG iterations

180× 60 6.5
360× 120 7.2
720× 240 8.6

grid the average time spent per PCG iteration was 0.47

sec with the proposed stopping criterion, and 0.028 sec

for a standard PCG iteration. Even with such an in-

crease, owing to the reduction in the number of itera-

tions the average time per each application of the lin-

ear solver still reduces from 13.0 sec for the “standard”

PCG stopping criterion ‖r‖2 < 10−6 to 4.5 sec for the

proposed early termination criterion. We emphasize yet

again that we do not claim that the proposed algorithm

is (more) efficient, as we could change the relationship

between these timings almost arbitrarily by changing
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the accuracy, preconditioning strategy, or computer ar-

chitecture. Indeed, the times were measured when using

an LU (pre-)factorization of the stiffness matrix for the

system (7) which we solve to estimate the dual norm of

the residual, which is not feasible for large scale prob-

lems. Also, for this example and grid size when using

a direct solver in FEniCS the average time spent per

each application of the linear solver is only 0.85 sec,
which is several times faster than either of the iterative

methods.

As a final experiment we have attempted to utilize

the (preconditioned) minimum residual method (MIN-

RES) instead of PCG [22]. Both methods are Krylov

subspace algorithms for symmetric matrices based on

Lanczos iterations, and as such have similar complexi-

ties, when the matrix-vector product and precondition-

ing dominate the rest of the computations. Unlike PCG,

in its unpreconditioned version MINRES minimizes the

residual of the equation over the current Krylov sub-

space, and as such is applicable to indefinite and even

singular systems. Since we terminate the computations

based on the value of the residual, one may expect that

even fewer iterations will be required to reach the de-

sired accuracy than in the case of PCG. Furthermore,

previous studies have indicated that even for positive

definite systems MINRES might be preferable to PCG

if the algorithm is terminated early [13]. For the present

problem we have observed that when utilizing MINRES
together with the proposed stopping criterion, the re-
sulting performance of the optimization algorithm is
very similar to the performance when PCG is used. For

example, on 180×60 grid, the average number of MIN-

RES iterations is 6.74 compared to 6.49 when using
PCG.

6.2 Example 2: 2D force inverter

In this example the force inverting compliant mecha-

nism from [30] is considered. This problem has been
a benchmark in topology optimization since [29]. The
setup is to maximize the transferred work from the

input actuator to the output spring. The example is

sketched in Fig. 2. We utilize a structured grid of size

160 × 80, a filter radius of r̂ = 0.03 and the volume
fraction is set to V0 = 0.3. The spring constants are set

to kin = 1 and kout = 0.001 as in [30]. This problem
is not self-adjoint so at each optimization iteration we

have to solve both the state and adjoint systems. For

the illustrative purpose, we will treat the solution of the

two linear systems independently from each other. That

is we apply PCG with the proposed stopping criterion

to approximate the solution to each system. In practice

one would use a block-CG method [17], where one solves
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Fig. 7 The relative dual norm of the residual during the
optimization iterations for the 2D force inverter example.

for the two right hand sides simultaneously and shares

information between the two Krylov spaces. For this

example the average number of PCG iterations in each

optimization step is 7.3 and 8.6 for the state and adjoint

equations, respectively. For comparison the number of
iterations necessary to meet the criterion ‖r‖2 < 10−6

is in this case 331.2 and 6625.17. Compared to the di-
rect solver the two methods behave nearly identically
with respect to the resulting dual norm of the resid-
ual during optimization, as seen in Fig. 7. The relative

difference between the objective values of the two com-

puted designs is merely 0.11%.

This example is especially interesting considering
how poorly the adjoint equations are solved at this

discretization level: indeed the estimated relative dual

norm of the residual is of the order of 50%!

6.3 Example 3: 3D cantilever

To test the method on larger scale problems we will

consider two 3D examples. The first one is a 3D can-

tilever beam with a sine-shaped load, an example which

is also considered in [3]. The beam is fixed at one end

and a sine-shaped load is applied at the other end. We

consider a 30× 30× 60 grid, a filter radius of r̂ = 0.02

and a volume fraction of V0 = 0.12. We consider the

design after 50 iterations of the optimality criteria al-

gorithm. With accurate analysis the compliance for the

obtained design is J(ρ) = 4.144 · 10−3. When we only

approximate the analysis equations with the proposed
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Fig. 8 The obtained design for the 3D cantilever with a sine-
shaped load, using the approximate approach based on the
proposed stopping criterion for PCG.

stopping criterion, again with εη = 10−4, the compli-
ance of the obtained design is J(ρ) = 4.145 · 10−3. The

relative difference is here only 3.2 · 10−4. The average

number of PCG iterations taken over the course of op-

timization iterations is 15.0, while the average number
of PCG iterations necessary to meet the “accurate” cri-

terion ‖r‖2 < 10−6 is 156.7. The design obtained when

using the approximate approach is shown in Fig. 8.

6.4 Example 4: 3D force inverter

The final example is that of a 3D force inverting com-
pliant mechanism, similar to the example considered
in [3]. The displacements are fixed to zero in the corners

at one end, and as in Example 2, the 2D force inverter,

the goal is to transfer work from the input actuator to

the output spring. The spring constants used here are

kin = 0.1 and kout = 0.0001. The point load bound-

ary conditions are approximated by a smooth mollifier
with small support. We consider only a quarter of the

design domain owing to the symmetry. The grid size is
20× 20× 40 with a filter radius of r̂ = 0.02.

The volume fraction is V0 = 0.1 and we consider the

design after 150 iterations of the optimality criterion
method. The objective function during the optimization
is shown in Figure 10. When using a PCG solver from

FEniCS preconditioned with AMG and with relative
tolerance 10−6, the objective value, after 150 iterations

is J(ρ) = −8.098. When using the approximate ap-

proach presented here, the objective value after 150 it-
erations is J(ρ) = −7.694. The relative difference of the

objective values is in this case approximately 5% and
the performance of the two methods is quite similar, de-

spite the very coarse discretization. The average num-

ber of PCG iterations for the approximate approach in

this case is 20.5 and 21.7 for the state and adjoint sys-

tem respectively. The final design obtained when using

the approximate approach is shown in Fig. 9.

Fig. 9 The obtained design for the 3D force inverter, using
the approximate approach based on the proposed stopping
criterion for PCG.
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Fig. 10 The objective function during the optimization pro-
cess of the 3D force inverter.

7 Discussion and conclusions

We have revisited the issue of inexact solution of state

and adjoint equations during the topology optimiza-

tion process. To this end we have derived quantitative

conditions for early termination of the iterative solver,
preconditioned conjugate gradient in the present case.
The proposed stopping criterion is based on a posteriori

FEM estimates, which is a rich research field in its own

right.

We have demonstrated the performance of the pro-

posed approximate approach on a few benchmark ex-

amples from 2D and 3D linear elasticity. Our main ob-

servation is that with inexact solutions of the state and

adjoint equations, the optimization algorithms behave

similarly to what one would expect from “exact” so-

lutions using, for example, direct solvers. The number

of iterations has been significantly reduced even when

compared to some previous heuristic recommendations
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for inexact solutions obtained by early termination of

iterative methods, e.g. see [4].

The residual estimation method utilized in this work

requires finding the solution to the linear system (7),

that is inverting the Riesz map for an h-refined space,
at each PCG iteration. This requires solving a linear

elliptic PDE with constant coefficients, where only the

right hand side of the equation changes from one iter-

ation to another. In principle, memory permitting, one

can prefactorize the matrix resulting from this system

before starting the optimization process, or at least pre-

build a high quality preconditioner for this problem (for

example AMG, see for instance [31]). However, this sys-

tem is still large — larger than the elasticity system we

are solving owing to the mesh refinement, which places

a significant computational burden on the residual esti-

mation alone. Owing to this additional computational
burden we readily acknowledge that it is impractical to
utilize the approach presented here as is. Nevertheless
we believe that it provides valuable insight into why

approximate approaches yield accurate results. Addi-

tionally, it provides quantitative guidelines for prema-

ture termination of PCG solvers which are based on

rigorous residual estimates and not heuristic empirical
statements. Furthermore, when combined with an ef-
ficient method for measuring the residual, our experi-

ments show that a lot of computational effort can be

saved by solving the discrete problem just accurately

enough.

A posteriori error estimation in FEM is a classical

topic, which is well studied with many different estima-

tors existing; see for example [2] or [15, Chapter 10].

Most of a posteriori estimators do not require solving

large additional systems. We have for example evalu-

ated utilizing the error estimator from [32]. While us-

ing this error estimator instead of the one described in

Section 4 for stopping PCG prematurely, we obtained

results similar to those presented in this paper. How-

ever, when considering the behaviour of the estimate

during the PCG iterations, see e.g. Fig. 1, we have not

observed the same monotonic behaviour. As a result

it is difficult to motivate such an error estimator for

our purposes. In our opinion it would be interesting to
investigate computationally viable alternative a poste-
riori error estimators, which can be used instead of the
one we have utilized.

Finally, we would like to mention that certain FEM

discretizations naturally come equipped with a poste-

riori estimates. This is notably true for least-squares

FEM, such as for example discontinuous Petrov–

Galerkin methods, see for example [10,12,18], which is

presently a very active research area. Indeed, in these

discretizations the residual estimate is computed lo-

cally as a by-product, and such methods would there-

fore be good candidates for exploiting an approximate
approach as the one presented here.
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