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Abstract—Robust human gait recognition is challenging because of the presence

of covariate factors such as carrying condition, clothing, walking surface, etc. In

this paper, we model the effect of covariates as an unknown partial feature

corruption problem. Since the locations of corruptions may differ for different query

gaits, relevant features may become irrelevant when walking condition changes. In

this case, it is difficult to train one fixed classifier that is robust to a large number of

different covariates. To tackle this problem, we propose a classifier ensemble

method based on the random subspace nethod (RSM) and majority voting (MV).

Its theoretical basis suggests it is insensitive to locations of corrupted features, and

thus can generalize well to a large number of covariates. We also extend this

method by proposing two strategies, i.e., local enhancing (LE) and hybrid decision-

level fusion (HDF) to suppress the ratio of false votes to true votes (before MV).

The performance of our approach is competitive against the most challenging

covariates like clothing, walking surface, and elapsed time. We evaluate our

method on the USF dataset and OU-ISIR-B dataset, and it has much higher

performance than other state-of-the-art algorithms.

Index Terms—Classifier ensemble, random subspace method, local enhancing,

hybrid decision-level fusion, gait recognition, covariate factors, biometrics

Ç

1 INTRODUCTION

COMPARED with other biometric traits like fingerprint or iris, the
most significant advantage of gait is that it can be used for remote
human identification without subject cooperation. Gait analysis
has contributed to convictions in criminal cases in some countries
like Denmark [1] and UK [2]. However, the performance of auto-
matic gait recognition can be affected by covariate factors such as
carrying condition, camera viewpoint, walking surface, clothing,
elapsed time, etc. Designing a robust system to address these prob-
lems is an acute challenge. Existing gait recognition methods can
be roughly divided into two categories: model-based and appear-
ance-based approaches. Model-based methods (e.g., [3]) employ
the parameters of the body structure, while appearance-based
approaches extract features directly from gait sequences regardless
of the underlying structure. This work falls in the category of
appearance-based methods, which can also work well on low-qual-
ity gait videos, when the parameters of the body structure are diffi-
cult to estimate precisely.

The average silhouette over one gait cycle, known as gait energy
image (GEI), is a popular appearance-based representation [4]. The
averaging operation encodes the information of the binary frames
into a single grayscale image, which makes GEI less sensitive to
segmentation errors [4]. Several GEI samples from the USF dataset
[5] are shown in Fig. 1. Recently, Iwama et al. evaluated the effec-
tiveness of several feature templates on a gait dataset consisting of
more than 3,000 subjects. They found that good performance can
be achieved by directly matching the GEI templates, when there
are no covariates [6]. However, it is error-prone when covariates

exist. Therefore, many researchers have been formulating various
feature descriptors to capture discriminant information from GEIs
to deal with different covariates. In [4], Han and Bhanu utilized
principle component analysis (PCA) and linear discriminant analy-
sis (LDA) to extract features from the concatenated GEIs. To extract
gait descriptors, Li et al. proposed a discriminant locally linear
embedding (DLLE) framework, which can preserve the local mani-
fold structure [7]. By using two subspace learning methods, cou-
pled subspaces analysis (CSA) and discriminant analysis with
tensor representation (DATER), Xu et al. extracted features directly
from the GEIs [8]. They demonstrated that the matrix representa-
tion can yield much higher performance than the vector repre-
sentation reported in [4]. In [9], after convolving a number of
Gabor functions with the GEI representation, Tao et al. used the
Gabor-filtered GEI as a new gait feature template. They also pro-
posed the general tensor discriminant analysis (GTDA) for feature
extraction on the high-dimensional Gabor features [9]. To preserve
the local manifold structure of the high-dimensional Gabor fea-
tures, Chen et al. proposed a tensor-based Riemannian manifold
distance-approximating projection (TRIMAP) framework [10].
Since spatial misalignment may degrade the performance, based
on Gabor representation, Image-to-Class distance was utilized in
[11] to allow feature matching to be carried out within a spatial
neighborhood. By using the techniques of universal background
model (UBM) learning and maximum a posteriori (MAP) adapta-
tion, Xu et al. proposed the Gabor-based patch distribution feature
(Gabor-PDF) in [12], and the classification is performed based on
locality-constrained group sparse representation (LGSR). Com-
pared with GEI features (e.g., [4], [8]), Gabor features (e.g., [9], [11],
[12]) tend to be more discriminant and can yield higher accuracies.
However, due to the high dimension of Gabor features, these meth-
ods normally incur high computational costs.

Through the “cutting and fitting” scheme, synthetic GEIs can

be generated to simulate the walking surface effect [4]. In [13],

the population hidden Markov model was used for dynamic-

normalized gait recognition (DNGR). Both methods can yield

encouraging performance against the walking surface covariate.

In [14], Wang et al. proposed chrono-gait image (CGI), with the

temporal information of the gait sequence encoded. Although

CGI has similar performance to GEI in most cases [6], [14], it

outperforms GEI in tackling the carrying condition covariate

[14]. In [15], through fusing gait features from different cameras,

it was found that short elapsed time does not affect the perfor-

mance significantly in a controlled environment. Clothing was

instead deemed as the most challenging covariate [15]. Based on

a gait dataset with 32 different clothes combinations, Hossain

et al. proposed an adaptive scheme for weighting different

body parts to reduce the effect of clothing [16]. Yet it requires

an additional training set that covers “all” possible clothes

types, which is less practical in real-world applications.
Most of the previous works have satisfactory performance

against some covariates like carrying condition, shoe type, (small
changes in) viewpoint, etc. However, so far it still remains an open
question to tackle covariates like walking surface, clothing, and
elapsed time in less controlled environments. As such, our aim is not
only to build a general framework that can generalize to a large
number of covariates in unseen walking conditions, but also to
address these open issues. Based on GEIs, we model the effect
caused by various covariates as an unknown partial feature corrup-
tion problem and propose a weak classifier ensemble method to
reduce such effect. Each weak classifier is generated by random
sampling in the full feature space, so they may generalize to the
unselected features in different directions [17]. This concept,
named random subspace method (RSM), was initially proposed
by Ho [17] for constructing decision forests. It was successfully
applied to face recognition (e.g., [18]). In our previous works [19],
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[20], we employed this concept in gait recognition. Empirical
results suggested RSM-based classifier ensemble can generalize
well to several covariates. However, more theoretical findings and
experimental results are needed to support this gait recognition
method, especially on addressing the aforementioned open issues.
Our contributions in this work can be summarized as follows:

1) Modelling of gait recognition challenges. Based on GEIs, we
model the effect of different covariates as a partial feature
corruption problem with unknown locations.

2) Classifier ensemble solution and its extensions. Through ideal
cases analysis, we provide the theoretical basis of the pro-
posed classifier ensemble solution. To tackle the hard prob-
lems in real cases, we further propose two strategies,
namely, local enhancing (LE) and hybrid decision-level
fusion (HDF).

3) Performance and open issues solving. On the USF dataset, our
method has more than 80 percent accuracy, more than 10
percent higher than the second best. It has very competitive
performance against covariates such as walking surface
and elapsed time. On the OU-ISIR-B dataset, the 90 percent
plus accuracy suggests our method is robust to clothing.

4) Parameters and time complexity. Our method only has a
few (i.e., 3) parameters, and the performance is not sen-
sitive to them. Our method also has low time complex-
ity. On the USF dataset, with the high-dimensional
Gabor features, the training time can be within several
minutes while the query time per sequence can be less
than 1 second.

The rest of this paper is organized as follows, Section 2 dis-
cusses the gait recognition challenges, and provides classifier
ensemble solution and its extensions. Details of the random sub-
space construction, local enhancing, and hybrid decision-level
fusion are provided in Section 3, 4, and 5. Our method is experi-
mentally evaluated and compared with other algorithms in
Section 6. Section 7 concludes this paper.

2 PROBLEM MODELLING AND SOLUTION

Metric-learning methods are popular for gait recognition. The
learned metrics (e.g., in [4], [7], [8], [9], [10], [21], [22], [23]), used as
feature extractors, may reduce the effect of covariates to some
extent. However, an effective metric can only be learned based on
representative training set, while this assumption may not hold in
real-world scenarios. Since most of the walking conditions of query
gaits are unknown, the training set collected in normal condition
cannot represent the whole population. In this case, overfitting
may occur. To build a model that generalizes to unknown covari-
ates, in this section we first model the effect of covariates as a par-
tial feature corruption problem with unknown locations, and then
we provide the theoretical analysis of the proposed RSM-based
classifier ensemble solution and its extensions.

2.1 Gait Recognition Challenges

Wemodel the effect of covariates by difference images between the
probe and gallery. Given a subject with the gallery GEI Igallery, and

the probe GEIs fIprobei gFi¼1 in F different walking conditions, we

define the corresponding difference images as:

Îi ¼ Iprobei � Igallery; i 2 ½1; F �; (1)

as shown in Fig. 2. Several examples of Îi corresponding to differ-
ent walking conditions are also illustrated in Fig. 3. For an

unknown walking condition i, Îi indicates the corrupted gait fea-
tures with unknown locations. Before matching, we need to find a

feature extractor T � that can suppress Îi, i.e.,

T � ¼ argmin kÎiTk2; i 2 ½1; F �; (2)

where T can extract features in the column direction of

Îi. However, the locations of corruptions may differ for differ-
ent walking conditions, as shown in Fig. 3. Given such non-

deterministic nature of Îi, from (2) we can see that it is difficult
to find a fixed T � that can extract effective features that can gen-
eralize to a large number of different covariates. In light of this,
an effective T � should only extract the relevant features dynami-
cally for different walking conditions.

2.2 Problem Formulation

For high dimensional gait feature templates, PCA is usually used
for dimension reduction (e.g., [4], [14]). In this work, we instead
use the matrix-based two-dimensional PCA (2DPCA) [24] because
of its lower computational costs and higher performance.

Let T be the 2DPCA transformation matrix consisting of the
leading d non-zero principle components such that T ¼ ½t1; t2; . . . ;
td�. Since ½t1; t2; . . . ; td� are pairwise orthogonal vectors, (2) can be
written as:

T � ¼ argmin
Xd
j¼1

kÎitjk2; i 2 ½1; F �: (3)

It is difficult for traditional 2DPCA with a fixed T � ¼ ½t1; t2; . . . ; td�
to reduce the effect of F different walking conditions. In (3), since

the terms kÎitjk2; j 2 ½1; d� are non-negative, it is possible to reduce

the effect of covariates by selecting a subset of ½t1; t2; . . . ; td� to form
a new feature extractor.

To see the reduced effect of covariates, we form different feature
extractors by randomly selecting 2 projection directions from
½t1; t2; . . . ; td�. In Fig. 4, we report the corresponding normalized

Fig. 2. An example of modelling the covariate effect by image difference between
the gallery GEI (i.e., Fig. 1a) and a probe GEI (i.e., Fig. 1e).

Fig. 3. From left to right: difference images between the gallery GEI Fig. 1a and the
probe GEIs Figs. 1b, 1c, 1d, 1e, 1f, 1g.

Fig. 4. Normalized Euclidean distances from gallery sample Fig. 1a to probe sam-
ples Figs. 1b, 1c, 1d, 1e, 1f, 1g, based on different projection directions.

Fig. 1. GEIs of the same subject from the USF dataset [5]. The leftmost (a) is the
gallery GEI in normal condition, while the rest (b)-(g) are probe GEIs with covari-
ates (b) viewpoint, (c) walking surface, (d) viewpoint and walking surface, (e) carry-
ing condition, (f) carrying condition and viewpoint, (g) elapsed time, shoe type,
clothing, and walking surface.
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Euclidean distances from the gallery sample in Fig. 1a to the probe
samples in Figs. 1b, 1c, 1d, 1e, 1f, 1g, respectively. We can see the
effect of covariates in Fig. 1b/Fig. 1e can be reduced by using
½t2; t35�, while the effect in Fig. 1g can be reduced based on ½t15; t61�.
These observations empirically validate that it is possible to select
subsets of ½t1; t2; . . . ; td� as feature extractors to reduce the effect of
covariates. However, the optimal subset may vary for different

walking conditions due to the non-deterministic nature of Îi.
Therefore, we formulate the problem of reducing the effect of

unknown covariates as a dynamic feature selection problem. For
an unknown walking condition, we assume the irrelevant fea-
tures (mainly corresponding to the corrupted pixels, as indi-
cated by Îi) exist in mð0 < m < dÞ unknown non-negative terms
of (3). We aim to dynamically select N 2 ½1; d� relevant features
(mainly corresponding to the uncorrupted pixels) for classifica-
tion. It is obvious that the probability of selecting N relevant fea-
tures is 0 when N > d�m. When N 2 ½1; d�m�, by randomly
selecting N features out of d features, the probability of not
choosing the m irrelevant features P ðNÞ follows the hypergeo-
metric distribution [25]. This can be expressed as the ratio of
binomial coefficients:

P ðNÞ ¼
d�m
N

� �
d�ðd�mÞ
N�N

� �
d
N

� � ¼ ðd�mÞ!ðd�NÞ!
d!ðd�m�NÞ! ; N 2 ½1; d�m�: (4)

P ðNÞ is a generalization measure that is related in someway to the
performance of the matching algorithm. Classifiers with greater
P ðNÞ tend to generalize well to unseen covariates, and vice versa.

Lemma 1. Let d;m;N be the numbers of the total features, irrelevant fea-
tures (with 0 < m < d), and randomly selected features, respectively,
then P ðNÞ in (4) is inversely proportional to N in the range
N 2 ½1; d�m�.

Proof. It can be proved using mathematical induction. From (4), it
is easy to see that P ðN þ 1Þ=P ðNÞ ¼ 1�m=ðd�NÞ < 1 for
N 2 ½1; d�m�. This completes the proof of the lemma. tu
It is preferable to set N to smaller values, which can yield

greater P ðNÞ, according to Lemma 1. Specifically, when N � d,
the hypergeometric distribution can be deemed as a binomial dis-
tribution [25], we have

P ðNÞ ¼ N

N

� �
pNð1� pÞðN�NÞ ¼ pN ; N � d; (5)

where p is the probability of randomly selecting one relevant fea-
ture. Since p ¼ 1�m=d, (5) can be written as:

P ðNÞ ¼ 1�m

d

� �N
; N � d; (6)

which clearly reflects the simple relationship between P ðNÞ and
the other parameters when we set N � d.

2.3 Classifier Ensemble Solution and its Extensions

We use a classifier ensemble strategy for covariate-invariant gait
recognition. After repeating the random feature selection process L
times (L is a large number), L base classifiers with generalization
ability P ðNÞ (see (6)) are generated. Classification can then be per-
formed by majority voting (MV) [26] among the labeling results of
the base classifiers.

Given a query gait and the gallery consisting of c classes, we
define the true votes Vtrue as the number of classifiers with correct

prediction, while the false votes fV i
falsegc�1

i¼1 as the incorrectly pre-

dicted classifier number distribution over the other c� 1 classes.
Given that, through MV, the final correct classification can be

achieved only when Vtrue > maxfV i
falsegc�1

i¼1 .

Ideal cases analysis.Wemake two assumptions in ideal cases:

1) When irrelevant features are not assigned to a classifier
(referred to as unaffected classifier), correct classification
should be achieved.

2) When irrelevant features are assigned to a classifier
(referred to as affected classifier), the output label should be a
randomguess from the c classes, with a probability of 1=c.

Given L classifiers, in the ideal cases the true votes �Vtrue can be
approximated as the sum of the number of unaffected classifiers
P ðNÞL (based on the law of large numbers [27]) and the number of
affected classifiers:

�Vtrue � round

 
P ðNÞLþ ð1� P ðNÞÞL

c

!
: (7)

Similarly, in the ideal cases the false votes should correspond to the
number of affected classifiers for the other c� 1 classes. Based on

assumption 2), its maximum value, maxf �V i
falsegc�1

i¼1 , can be roughly

expressed as the corresponding mean value:

max
�
�V i
false

	c�1

i¼1
� mean

�
�V i
false

	c�1

i¼1
� round

 
ð1� P ðNÞÞL

c

!
: (8)

Correct classification can be achieved when �Vtrue > maxf �V i
falsegc�1

i¼1 .
From (7) and (8), it is obvious that this condition can be met when
P ðNÞ > " (" is a small positive number).

From ideal cases analysis, it can be seen that we only care about the
number of unaffected classifiers, instead of which ones are. According to
(6), by setting N to a small number to make P ðNÞ > ", the corresponding
classifier ensemble method is insensitive to the locations of corrupted

features (since �Vtrue > maxf �V i
falsegc�1

i¼1 , as supported by (7) and (8)).

Therefore, it is robust to a large number of covariates as long as the irrele-
vant feature number is not extremely large (i.e.,m < d in (6)).

Real cases analysis. Here the two assumptions made in the ideal
cases analysis do not hold precisely: 1) unaffected classifiers do not
always make the correct classification; 2) although the affected classi-
fiers would result in label assigning in a relatively random manner,
it is difficult to estimate maxfV i

falsegc�1
i¼1 precisely. However, in real

cases we can deem �Vtrue and maxf �V i
falsegc�1

i¼1 from ideal cases analy-

sis as the upper bound and lower bound, respectively, i.e.,

Vtrue � �Vtrue;

max
�
V i
false

	c�1

i¼1
	 maxf �V i

falsegc�1
i¼1 :

(9)

Since correct classification can be achieved only when Vtrue >

maxfV i
falsegc�1

i¼1 , our objective is to increase Vtrue and decrease

maxfV i
falsegc�1

i¼1 . Since it is difficult to estimate maxfV i
falsegc�1

i¼1 pre-

cisely, we relax the objective by decreasing
Pc�1

i¼1 V
i
false. Then we

can reformulate our objective as a problem of suppressing G

defined as

G ¼
Pc�1

i¼1 V
i
false

Vtrue þ �
; (10)

where � is a small positive number to avoid trivial results. To sup-
press G in (10), we extend the classifier ensemble method by pro-
posing two strategies:

1) Local enhancing. If we use the output labels of all the L classi-

fiers as valid votes such that L ¼ Vtrue þ
Pc�1

i¼1 V
i
false, then according

to (10) we can get G / L=ðVtrue þ �Þ: Since L is a constant, the first
strategy is to increase Vtrue. To realize it, based on supervised learn-
ing, for each subspace we extract more discriminant features in
order to enhance the classification performance. We name the sec-
ond-stage supervised feature extraction (after the first-stage ran-
dom feature selection) as local enhancing. Details of LE used in
this work are presented in Section 4.
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2) Hybrid decision-level fusion. The second strategy is to decreasePc�1
i¼1 V

i
false by dynamically eliminating classifiers corresponding to

the irrelevant features, before MV. Irrelevant features would lead
to label assignment in a relatively random manner. Based on the
same irrelevant features, a classifier pair corresponding to two
different LE methods would produce two random labels, which are
unlikely to be the same. Based on the “AND” rule, classifier pairs
with different output labels are deemed as invalid votes and sim-
ply discarded. Although this scheme may also decrease Vtrue to

some extent, it significantly reduces the value of
Pc�1

i¼1 V
i
false to sup-

press G in (10). Details of HDF are presented in Section 5.

3 RANDOM SUBSPACE CONSTRUCTION

We construct the feature space using 2DPCA, from which we can
generate L feature extractors. Given n gait templates (e.g., GEIs)

fIi 2 RN1
N2gni¼1 in the training set (i.e., the gallery), we can com-

pute the scatter matrix S� ¼ 1
n

Pn
i¼1ðIi � mÞT ðIi � mÞ, where m ¼

1
n

Pn
i¼1 Ii. The eigenvectors of S� can be calculated, and the leading

d eigenvectors associated with non-zero eigenvalues are retained

as candidates T ¼ ½t1; t2; . . . ; td� 2 RN2
d to construct the random
subspaces. By repeating L times the process of randomly selecting
subsets of T (with size N � d), the random subspaces

fRl 2 RN2
NgLl¼1 are generated and can be used as random feature

extractors. Then a gait template I 2 RN1
N2 can be represented as a

set of random features fXl 2 RN1
NgLl¼1 such that

Xl ¼ IRl; l ¼ 1; 2; . . . ; L: (11)

Note the random feature extraction is only performed in the col-
umn direction of I, with the dimension reduced to RN1
N .

4 LOCAL ENHANCING

The random features can be used for classification directly. How-
ever, these features may be redundant and less discriminant since
1) the random feature extraction process based on (11) is per-
formed only in the column direction and 2) the random feature
extractors are trained in an unsupervised manner, without using
the label information. As a result, these features may lead to high
computational costs and low recognition accuracies. Local enhanc-
ing is used to address this issue, as discussed in Section 2.3. In each
subspace, we further extract more discriminant features based on
two different supervised learning methods, i.e., two-dimensional
LDA (2DLDA) [28], and IDR/QR [29]. In this paper, these two
types of feature extractors are referred to as local enhancers (i.e.,
LE1 and LE2), and the process of training 2DLDA-based LE1 and
IDR/QR-based LE2 are summarized in Algorithm 1 and Algorithm
2, respectively. More details about 2DLDA and IDR/QR can be
found in [28], [29].

In the lth subspace, a gait template I with extracted random fea-

ture matrix Xl (or the corresponding concatenated vector X̂l) can

be enhanced by Wl (the output of Algorithm 1) or V l (the output of
Algorithm 2) through

xl ¼ ðWlÞTXl; l 2 ½1; L�; (12)

or

x̂l ¼ ðV lÞT X̂l; l 2 ½1; L�: (13)

xl (resp. x̂l) are the enhanced random features by LE1 (resp. LE2),
and they can be used for classification in the lth subspace.

Based on the (enhanced) random features, we also reconstruct
the GEIs corresponding to Figs. 1a, 1b, 1c, 1d, 1e, 1f, and 1g, which
can be found in this paper’s supplemental material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2014.2366766

Algorithm 1. 2DLDA-based LE1

Input: Training set (i.e., the gallery) fIi 2 RN1
N2gni¼1 in c clas-

ses, random feature extractors fRl 2 RN2
NgLl¼1, and the
number of LE1 projection directionsM ;

Output: LE1-based feature extractors fWl 2 RN1
MgLl¼1;
Step 1: Random feature extraction on training set
Xl

i ¼ IiR
l; i ¼ 1; 2; . . .n; l 2 ½1; L�;

for l ¼ 1 to L do
Step 2: For fXl

igni¼1, letting ml be the global centroid, Dl
j be

the jth class (out of c classes) with sample number nj and

centroidml
j;

Step 3: Calculating Sl
b ¼

Pc
j¼1 njðml

j � mlÞðml
j � mlÞT ;

Step 4: Calculating Sl
w ¼Pc

j¼1

P
Xl
i
2Dl

j
ðXl

i �ml
jÞðXl

i �ml
jÞT ;

Step 5: Setting Wl ¼ ffigMi¼1, which are the M leading

eigenvectors of ðSl
wÞ�1Sl

b.

end for

Algorithm 2. IDR/QR-based LE2

Input: Training set (i.e., the gallery) fIi 2 RN1
N2gni¼1 in c classes,

random feature extractors: fRl 2 RN2
NgLl¼1, and the number
of LE2 projection directionsM;

Output: LE2-based feature extractors fV l 2 RS
MgLl¼1, where
S ¼ N1N ;
Step 1: Random feature extraction on training set
Xl

i ¼ IiR
l; i ¼ 1; 2; . . .n; l 2 ½1; L�;

Step 2: Concatenating Xl
i 2 RN1
N to X̂l

i 2 RS; i ¼ 1; 2; . . . ; n;
l 2 ½1; L�;
for l ¼ 1 to L do
Step 3: For fX̂l

igni¼1, letting m̂l be the global centroid, D̂l
j be

the jth class (out of c classes) with sample number nj and

centroid m̂l
j;

Step 4: Constructing the set of within-class centroids:

C ¼ ½m̂l
1; m̂

l
2; . . . ; m̂

l
c�, and performing QR decomposition

[30] of C as C ¼ QR, where Q 2 RS
c;

Step 5: After setting ej ¼ ð1; 1; . . . ; 1ÞT 2 Rnj , computing
Hl

b ¼ ½ ffiffiffiffiffin1
p ðm̂l

1 � m̂lÞ; ffiffiffiffiffi
n2

p ðm̂l
2 � m̂lÞ; . . . ; ffiffiffiffiffi

nc
p ðm̂l

c � m̂lÞ�,
Hl

w ¼ ½D̂l
1 � m̂l

1e1
T ; D̂l

2 � m̂l
2e2

T ; . . . ; D̂l
c � m̂l

cec
T �;

Step 7: Calculating Sl
B ¼ Y TY , where Y ¼ ðHl

bÞTQ;

Step 8: Calculating Sl
W ¼ ZTZ, where Z ¼ ðHl

wÞTQ;

Step 9: For ðSl
W Þ�1Sl

B, calculating its M leading eigenvec-

tors, U ¼ ffigMi¼1;
Step 10: Setting V l ¼ QU ;

end for

5 HYBRID DECISION-LEVEL FUSION

Given the random feature extractors fRlgLl¼1, the corresponding

LE1-based fWlgLl¼1, and LE2-based fV lgLl¼1, we can extract the sets

of LE1-based (resp. LE2-based) features from a gait template using
(11), and (12) (resp. (13)). Based on the new gait descriptors, for the

lth subspace let ½fl
1;f

l
2; . . . ; f

l
c� be the centroids of the gallery. For a

query sequence Pl (including np gait cycles) with the correspond-

ing descriptors ½pl1; pl2; . . . ; plnp �, the distance between Pl and the jth

class centroid fl
j is defined as: dðP l;fl

jÞ ¼ 1
np

Pnp
i¼1 kpli � fl

jk; j 2 ½1; c�:
Nearest neighbour (NN) rule is employed for classification. Let

fvjgcj¼1 be class labels of c subjects in the gallery, then the output

label VlðPlÞ 2 fvjgcj¼1 of the lth base classifier can be expressed as
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VlðPlÞ ¼ argmin
vj

dðP l; fl
jÞ; j 2 ½1; c�: (14)

Then we use HDF to identify the query gait P ¼ fPlgLl¼1. For sim-

plicity reasons, let fVl
LE1ðPlÞ;Vl

LE2ðP lÞgLl¼1 be the output labels of

the classifier pairs corresponding to LE1 and LE2. HDF can be per-

formed by assigning the class label to �VðP Þwith

�VðP Þ ¼ argmax
vj

XL
l¼1

Ql
vj
; j 2 ½1; c�; (15)

where

Ql
vj

¼ 1; if Vl
LE1ðP lÞ ¼ Vl

LE2ðP lÞ ¼ vj,
0; otherwise,

�
j 2 ½1; c�: (16)

It can be seen that
Pc

j¼1

PL
l¼1 Q

l
vj

� L. When there are a large num-
ber of irrelevant features for the query gait P , most of the corre-

sponding votes can be eliminated such that
Pc

j¼1

PL
l¼1 Q

l
vj

� L. In

this case,
Pc�1

i¼1 V
i
false of (10) can be significantly reduced while Vtrue

of (10) are less affected. As such, G of (10) can be effectively
suppressed.

6 EXPERIMENTS

In this section, first we describe the two benchmark databases,
namely USF [5] and OU-ISIR-B [16] datasets. Then we discuss the
parameter settings and the time complexity of our method. Perfor-
mance gain analysis by using the proposed LE and HDF strategies
is also provided, followed by the algorithm comparison.

6.1 Datasets

The USF dataset [5] is a large outdoor gait database, consisting of
122 subjects. A number of covariates are presented: camera view-
points (left/right), shoes (type A/type B), surface types (grass/
concrete), carrying conditions (with/without a briefcase), elapsed
time (May/Nov.), and clothing. Based on a gallery with 122 sub-
jects, there are 12 pre-designed experiments for algorithm evalua-
tion, which are summarized in Table 1. The second gait database,
namely, the OU-ISIR-B dataset [16], was recently constructed for
studying the effect of clothing. The evaluation set includes 48 sub-
jects walking on a treadmill with up to 32 types of clothes combina-
tions, as listed in Table 2. The gallery consists of the 48 subjects in
standard clothes (i.e., type 9: regular pants þ full shirt), whereas
the probe set includes 856 gait sequences of the same 48 subjects in

the other 31 clothes types. Several images from the USF and OU-
ISIR-B datasets are shown in Fig. 5. For both datasets, the gallery is
used for training. In this work, we employ two templates sepa-
rately, namely, GEI (with the default size 128
 88 pixels) and
downsampled Gabor-filtered GEI (referred to as Gabor, with size
320
 352 pixels).

We employ rank-1/rank-5 correct classification rate (CCR) to
evaluate the performance. Considering the random nature of our
method, the results of different runs may vary to some extent. We
repeat all the experiments 10 times and report the statistics (mean,
std, maxima and minima) in Tables 3 and 7 for both datasets. The
small std values (listed in Tables 3 and 7) of the 10 runs indicate
the stability of our method. Therefore, throughout the rest of the
paper, we only report the mean values.

6.2 Parameter Settings and Time Complexity Analysis

There are only three parameters in our method, namely, the dimen-
sion of random subspace N , the base classifier number L, and the
number of projection directions M for LE1/LE2. As discussed in
Section 2.2, we should setN to a small number for great generaliza-
tion ability P ðNÞ. The classifier number L should be large, since
our classifier ensemble solution is based on the law of large numbers
[27] (see Section 2.3). Like most subspace learning methods, the
performance should not be sensitive to the number of projection
directions M for LE1/LE2 (unless it is extremely small). On the
USF dataset (Exp. A-L) we check the average performance sensitiv-
ity to N , M , and L, based on Gabor and GEI templates, respec-
tively. By empirically setting L ¼ 1;000 and M ¼ 20, we run our
methods with N set within the range ½2; 6�. The results in Fig. 6a
indicate that the performance is not sensitive to N . Based on
L ¼ 1;000, and N ¼ 2, we conduct experiments with M ¼ ½20;
40; 60; 80; 100�. The results in Fig. 6b suggest that the performance
is stable for M with different values. By setting N ¼ 2 and M ¼ 20,
we can also see from Fig. 6c that the performance is not decreasing
with respect to the increasing number of classifiers. These observa-
tions are consistent with our expectation that the performance is
not sensitive to these three parameters. For the rest of this paper,
we only report the results based on N ¼ 2,M ¼ 20 and L ¼ 1;000.

TABLE 1
Twelve Pre-Designed Experiments on the USF Dataset

Exp. A B C D E F

# Seq. 122 54 54 121 60 121
Covariates V H VH S SH SV

Exp. G H I J K L

# Seq. 60 120 60 120 33 33
Covariates SHV B BH BV THC STHC

Abbreviation note: V-View, H-Shoe, S-Surface, B-Briefcase, T-Time, C-
Clothing.

TABLE 2
Different Clothing Combinations in the OU-ISIR-B Dataset

Type s1 s2 s3 Type s1 s2 Type s1 s2

3 RP HS Ht 0 CP CW F CP FS
4 RP HS Cs 2 RP HS G CP Pk
6 RP LC Mf 5 RP LC H CP DJ
7 RP LC Ht 9 RP FS I BP HS
8 RP LC Cs A RP Pk J BP LC
C RP DJ Mf B RP Dj K BP FS
X RP FS Ht D CP HS L BP Pk
Y RP FS Cs E CP LC M BP DJ
N SP HS - P SP Pk R RC -
S Sk HS - T Sk FS U Sk PK
V Sk DJ - Z SP FS - - -

Abbreviation note: RP - Regular pants, BP - Baggy pants, SP - Short pants,
HS - Half shirt, FS - Full shirt, LC - Long coat, CW - Casual wear, RC - Rain
coat, Ht - Hat, CP-Casual pants, Sk - Skirt, Pk - Parker, DJ - Down jacket, Cs
- Casquette cap, Mf - Muffler, si - ith clothes slot.

Fig. 5. Images from (a) the USF dataset [5], and (b) the OU-ISIR-B dataset [16].
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We analyze the time complexity for training the L LE1/LE2-
based classifiers. For a LE1-based classifier in Algorithm 1, it takes

OðnNN2
1 Þ (resp. OðcNN2

1 Þ) for Sl
w (resp. Sl

b) and OðN3
1 Þ for eigen-

value decomposition. N1 is the template’s row number (i.e.,
N1 ¼ 128 for GEI, N1 ¼ 320 for Gabor), while n and c are the num-
ber of training samples and classes, respectively. Since, in our case,
n > c and n > N1, the time complexity for generating L LE1-based

classifiers can be written as OðLnNN2
1 Þ. For a LE2-based classifier

in Algorithm 2, it takes Oðc2SÞ for the QR decomposition, where

S ¼ NN1. Calculating Sl
B and Sl

W requires Oðc3Þ and Oðc2nÞ, while

calculating Z and Y requires OðnScÞ and OðSc2Þ. Solving the eigen-

value decomposition problem of ðSl
W Þ�1Sl

B takes Oðc3Þ and the

final solution V l is obtained by matrix multiplication, which takes
OðcSMÞ. Since in our case n > c and S > c, the time complexity for
generating L LE2-based classifiers is OðLnScÞ, which can also be
written as OðLnNN1cÞ. We run the matlab code of our method on a
PC with an Intel Core i5 3.10 GHz processor and 16GB RAM. For
the USF dataset, we report the training/query time (with
L ¼ 1;000) in Table 4. Note the classifiers are trained in an offline
manner and can be used to identify probe sets with various covari-
ates. It is clear that LE2 is very efficient when the dimension is
large. For example, based on Gabor templates, LE2 only takes
about 1=10 of LE1’s training time.

6.3 Performance Gain Analysis and Algorithms
Comparison

Based on GEI and Gabor templates, we evaluate the effect of sup-
pressing the ratio of false votes

Pc�1
i¼1 V

i
false to true votes Vtrue, as

defined in (10) by using LE and HDF. For a probe set with K gait

sequences, according to (10) we define Ĝ as

Ĝ ¼ median

(Pc�1
i¼1 V

i
false

Vtrue þ �

)K

k¼1

; (17)

which is used to reflect the general ratio over the whole probe set.
We set � ¼ 1 to avoid the trivial results. Over the 12 probe sets (A-

L) on the USF dataset, the distribution of Ĝ and the performance
are reported in Fig. 7 and Table 5. We can observe that, LE1/LE2

can reduce Ĝ to some extent, and RSM(LE1)/RSM(LE2) is less sen-
sitive to covariates such as viewpoint, shoe, and briefcase (A-C, H-

J). On the other hand, RSM-HDF can significantly suppress Ĝ and
yields competitive accuracies in tackling the hard problems caused
by walking surface and elapsed time (D-G, K-L).

On the USF dataset, we also compare our method Gabor+RSM-
HDF with the recently published works, with the rank-1/rank-5
CCRs reported in Table 6. These works include Baseline [5], hidden
Markov models (HMM) [31], GEI+Fusion [4], CSA+DATER [8],
DNGR [13], matrix-based marginal Fisher analysis (MMFA) [21],
GTDA [9], linearization of DLLE (DLLE/L) [7], TRIMAP [10],
Image-to-Class [11], Gabor-PDF+LGSR [12], CGI+Fusion [14],
sparse reconstruction based metric learning (SRML) [23], and
sparse bilinear discriminant analysis (SBDA) [22]. From Table 6,
we can see that in terms of rank-1 CCRs, our method outperforms
other algorithms on all the 12 probe sets. Our method has an aver-
age rank-1 CCR more than 10 percent higher than the second best
method (i.e., Gabor-PDF+LGSR [12]), and also the highest average
rank-5 CCR. It is significantly superior than others on the challeng-
ing tasks D-G, and K-L, which are under the influences of walking
surface, elapsed time and the combination of other covariates.
Although these walking conditions may significantly corrupt the
gait features, our proposed HDF scheme (based on LE1 and LE2)
can still suppress G of (10), leading to competitive accuracies. We

Fig. 6. On the performance sensitivity to the parameters on the USF dataset: (a) N is the dimension of the random subspace; (b)M is the number of projection directions
of LE1/LE2; (c) L is the classifier number.

TABLE 4
Running Time (Seconds) on the USF Dataset

- Training Time Query Time Per Seq.

GEI þ RSM(LE1) 91.42 0.58
GEI þ RSM(LE2) 28.66 0.26
Gabor þ RSM(LE1) 320.09 0.60
Gabor þ RSM(LE2) 32.79 0.31

TABLE 3
Performance Statistics in Terms of Rank-1 CCRs (Percent)

for 10 Runs on the USF Dataset

- maxima minima std mean

GEI + RSM 52.44 50.73 0.62 51.45
GEI + RSM(LE1) 64.08 62.36 0.49 63.01
GEI + RSM(LE2) 62.79 59.81 0.91 61.72
GEI + RSM-HDF 70.90 69.20 0.50 70.01

Gabor + RSM 67.58 66.30 0.46 67.06
Gabor + RSM(LE1) 75.29 73.89 0.49 74.56
Gabor + RSM(LE2) 74.95 73.45 0.36 74.27
Gabor + RSM-HDF 82.12 80.30 0.53 81.17

Fig. 7. Over the 12 probe sets on the USF dataset, the distribution of Ĝ (i.e., the general ratio of false votes to true votes).
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notice that our method only has 42 percent rank-1 CCRs for probe
sets K-L. In these cases, elapsed time is coupled with other covari-
ates like walking surface, clothing, and shoe, as listed in Table 1.
These walking conditions may significantly increase the number of
irrelevant features m, which would result in a lower P ðNÞ in (6).
According to Section 2.3, a lower P ðNÞ would lead to a higher G in
(10), which contributes negatively to the performance. Neverthe-
less, experimental results suggest our method is robust to most
covariates in the outdoor environment.

6.4 In Tackling the Clothing Challenges

Clothing was deemed as the most challenging covariate [15], and
there are only a few works that have studied the effect of various
clothes types. Recently, Hossain et al. built the OU-ISIR-B dataset
[16] with 32 combinations of clothes types, as shown Table 2. Based
on an additional training set that covers all the possible clothes
types, they proposed an adaptive part-based method [16] for cloth-
ing-invariant gait recognition. On this dataset, based on Gabor tem-
plates, we evaluate our methods RSM(LE1), RSM(LE2) and RSM-
HDF. The statistics of our methods over 10 runs are reported in

Table 7. Compared with the part-based method [16], Gabor+RSM-
HDF can yield a much higher accuracy, as shown in Table 8. It is
worth noting that different from [16], our method does not require
the training set that covers all the possible clothes types and can
generalize well to unseen clothes types.

We also study the effect of different clothes types, and the rank-
1 CCRs for 31 probe clothes types are reported in Fig. 8. For most
of the clothes types, our method can achieve more than 90 percent
rank-1 accuracies. However, the performance can be affected with
several clothes types that cover large parts of the human body.
In this case, a large number of irrelevant featuresmwould result in

TABLE 5
Rank-1 CCRs (Percent) of Our Methods on the USF Dataset

Exp. A B C D E F G H I J K L Avg.

GEI + RSM 89 93 82 24 27 16 16 83 69 54 18 9 51.36
GEI + RSM(LE1) 95 94 86 42 50 23 35 88 88 72 26 19 62.88
GEI + RSM(LE2) 96 94 82 40 46 27 29 87 83 72 19 18 61.70
GEI + RSM-HDF 98 95 88 54 60 37 44 90 93 83 33 21 70.16

Gabor + RSM 96 94 87 47 45 24 38 96 97 85 25 27 67.13
Gabor + RSM(LE1) 100 95 93 62 63 42 50 97 96 89 23 29 74.65
Gabor + RSM(LE2) 98 94 93 60 58 39 47 97 97 92 34 31 74.09
Gabor + RSM-HDF 100 95 94 73 73 55 64 97 99 94 42 42 81.15

TABLE 6
Algorithms Comparison in Terms of Rank-1/Rank-5 CCRs (Percent) on the USF Dataset

Exp. A B C D E F G H I J K L Avg.

Rank-1 CCRs

Baseline[5] 73 78 48 32 22 17 17 61 57 36 3 3 40.96
HMM [31] 89 88 68 35 28 15 21 85 80 58 17 15 53.54
GEI + Fusion [4] 90 91 81 56 64 25 36 64 60 60 6 15 57.66
CSA + DATER [8] 89 93 80 44 45 25 33 80 79 60 18 21 58.51
DNGR [13] 85 89 72 57 66 46 41 83 79 52 15 24 62.81
MMFA [21] 89 94 80 44 47 25 33 85 83 60 27 21 59.90
GTDA [9] 91 93 86 32 47 21 32 95 90 68 16 19 60.58
DLLE/L [7] 90 89 81 40 50 27 26 65 67 57 12 18 51.83
TRIMAP [10] 92 94 86 44 52 27 33 78 74 65 21 15 59.66
Image-to-Class [11] 93 89 81 54 52 32 34 81 78 62 12 9 61.19
Gabor-PDF + LGSR [12] 95 93 89 62 62 39 38 94 91 78 21 21 70.07
CGI + Fusion [14] 91 93 78 51 53 35 38 84 78 64 3 9 61.69
SRML [23] 93 94 85 52 52 37 40 86 85 68 18 15 66.50
SBDA [22] 93 94 85 51 50 29 36 85 83 68 18 24 61.35
Gabor + RSM-HDF (Ours) 100 95 94 73 73 55 64 97 99 94 42 42 81.15

Rank-5 CCRs

Baseline [5] 88 93 78 66 55 42 38 85 78 62 12 15 64.54
GEI + Fusion [4] 94 94 93 78 81 56 53 90 83 82 27 21 76.23
CSA + DATER [8] 96 96 94 74 79 53 57 93 91 83 40 36 77.86
DNGR [13] 96 94 89 85 81 68 69 96 95 79 46 39 82.05
MMFA [21] 98 98 94 76 76 57 60 95 93 84 48 39 79.90
GTDA [9] 98 99 97 68 68 50 56 95 99 84 40 40 77.58
DLLE/L[7] 95 96 93 74 78 50 53 90 90 83 33 27 71.83
TRIMAP [10] 96 99 95 75 72 54 58 93 88 85 43 36 77.75
Image-to-Class [11] 97 98 93 81 74 59 55 94 95 83 30 33 79.17
Gabor-PDF + LGSR [12] 99 94 96 89 91 64 64 99 98 92 39 45 85.31
CGI + Fusion [14] 97 96 94 77 77 56 58 98 97 86 27 24 79.12
SBDA [22] 98 98 94 74 79 57 60 95 95 84 40 40 79.93
Gabor + RSM-HDF (Ours) 100 98 98 85 84 73 79 98 99 98 55 58 88.59

TABLE 7
Performance Statistics in Terms of Rank-1 CCRs (Percent)

for 10 Runs on the OU-ISIR-B Dataset

- maxima minima std mean

Gabor + RSM(LE1) 89.49 86.92 0.76 87.92
Gabor + RSM(LE2) 87.97 86.80 0.36 87.52
Gabor + RSM-HDF 91.00 90.07 0.32 90.72
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a higher G in (10), which would hamper the performance (as dis-
cussed in Section 6.3). Specifically, the results are less satisfactory
when the following 3 clothes types are encountered: 1) clothes type
R, (i.e., raincoat) with a rank-1 CCR of 63.3 percent; 2) clothes type
H, (i.e., casual pants + down jacket) with a rank-1 CCR of 52.1 per-
cent; 3) clothes type V, (i.e., skirt + down jacket) with a rank-1 CCR
of 52.2 percent. Nevertheless, in general the results suggest that
our method is robust to clothing.

7 CONCLUSION

In this paper, we model the effect of covariates as a partial feature
corruption problem with unknown locations and propose a RSM-
based classifier ensemble solution. The theoretical basis suggests
that its insensitivity to a large number of covariates in ideal cases.
To tackle the hard problems in real cases, we then propose two
strategies, i.e., LE and HDF, to suppress the ratio of false votes to
true votes before the majority voting. Experimental results suggest
that our method is less sensitive to the most challenging covariates
like clothing, walking surface, and elapsed time. Our method has
only three parameters, to which the performance is not sensitive. It
can be trained within minutes and perform real-time recognition in
less than 1 second, which suggests that it is practical in real-world
applications.
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